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Process-based spatio-temporal models simulate changes over time using equations that represent real
world processes. They are widely applied in geography and earth science. Software implementation of
the model itself and integrating model results with observations through data assimilation are two
important steps in the model development cycle. Unlike most software frameworks that provide tools for
either implementation of the model or data assimilation, this paper describes a software framework that

integrates both steps. The software framework includes generic operations on 2D map and 3D block data
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that can be combined in a Python script using a framework for time iterations and Monte Carlo
simulation. In addition, the framework contains components for data assimilation with the Ensemble
Kalman Filter and the Particle filter. Two case studies of distributed hydrological models show how the
framework integrates model construction and data assimilation.
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Software availability

Name: PCRaster

Developer: Department of Physical Geography, PO Box 80115, 3508
TC Utrecht, the Netherlands

Contact: d.karssenberg@geo.uu.nl

Required software: PCRaster, Windows (free), Linux and UNIX on
request; http://pcraster.geo.uu.nl

Python: all major platforms; http://www.python.org

NumPy: http://numpy.scipy.org

Online courses: http://pcraster.geo.uu.nl

1. Introduction

Spatio-temporal numerical models simulating geographic
change are one of the cornerstones of research in geography and
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earth science and are frequently used in management, planning,
and risk assessment in application domains such as land use change
(Ligtenberg et al., 2004; Moulin et al., 2004), hazards and evacua-
tion (Helbing et al., 2000), ecosystem studies (Sydelko et al., 2001;
Gimblett et al., 2003), spread of diseases (Breukers et al., 2006),
criminology (Groff, 2007), land degradation and geomorphology
(Karssenberg and Bridge, 2008; Wilkinson et al, 2009), or
hydrology (Beven, 2002; Ajami et al., 2007; Bloschl et al., 2008;
Brown et al., 2008). Although the application field may vary, spatio-
temporal numerical models have in common that they simulate
change over time using equations that represent real world
processes (Wesseling et al., 1996; Burrough, 1998), whereby the
state of the modelled system at each moment in time is a function
of its state in the past. Another common characteristic is that
processes are modelled in a spatially-explicit way, which means
that spatial patterns and spatial interaction in the system are taken
into account (Karssenberg and De Jong, 2005a). Spatio-temporal
numerical models are either individual-based or field-based.
Individual-based models, also referred to as agent-based or object-
based models, consider the geographic space as a set of objects
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(Benenson and Torrens, 2004; Grimm and Railsback, 2005).
Field-based models represent the geographic space using contin-
uous fields of attributes that have a value at all locations (Burrough
and McDonnell, 1998). The focus in this paper is on field-based
models, although many concepts presented here apply to indi-
vidual-based models, too.

As it is required to use models tailored to the research goals of
a project, the available data, and the properties of the system
being modelled (Karssenberg et al., 2006), model development is
central in almost any research project that involves modelling.
Three important steps in the model development cycle (Kars-
senberg et al., 2006) are the conversion of the conceptual model
structure to computer code, i.e. the implementation or
construction of the model, model calibration, and state estima-
tion by assimilation of spatio-temporal observational data
collected by remote sensing, automatic data loggers, or ques-
tionnaires, or retrieved from large data bases. The term calibra-
tion is used for the process that aims at finding model
parameters that result in an optimal fit between modelled and
observed state variables (e.g., Hill and Tiedeman, 2007). The term
data assimilation refers here to sequential Bayesian estimation.
This procedure sequentially updates the model state at time
steps when observations of state variables or parameters are
available (e.g., Gelb, 1974; Simon, 2006). Data assimilation is
increasingly being used to integrate data with spatio-temporal
models in a wide range of different fields in the earth sciences,
such as oceanography (van Leeuwen, 2003), hydrology (Clark
et al., 2006; Moradkhani, 2008), ecology (Chen et al., 2008), or
crop science (Naud et al, 2007). Below, we use the term
optimization to refer to both calibration and data assimilation.
Although both model development and optimization can be done
by programming software from scratch using system program-
ming languages, it is preferable to use software frameworks at
a higher level of abstraction that can be used by scientists and
modellers without specialist knowledge in programming (van
Deursen et al., 2000; Karssenberg, 2002).

A number of software frameworks exist for construction of
temporal numerical models in geography and earth science. Widely
used are graphical modelling languages (ModelMaker, 2009;
STELLA, 2009), languages incorporated in Geographical Informa-
tion Systems (GRASS, 2009; ESRI, 2009), technical computer
languages (MATLAB, 2008), and modelling languages designed for
spatio-temporal modelling in geography (SIMUMAP, Pullar, 2004;
PCRaster, 2009). Karssenberg (2002) and Karssenberg and De Jong
(2005a) evaluate and discuss these frameworks. Apart from
technical computer languages, none of these frameworks come
with integrated tools for calibration of models or data assimilation.
This is mostly done by interfacing the model with an external
framework that incorporates solution schemes for calibration
(e.g., PEST, 2008) or data assimilation (e.g., BUGS, 2008; COSTA,
2008; ReBEL, 2009).

The use of two different software frameworks for model
construction and optimization has the disadvantage that the user
requires knowledge of two different frameworks. This can be
a problem as the frameworks will have totally different
programming and visualisation environments. Also, the imple-
mentation of the interface between the model construction and
optimization frameworks can be cumbersome and hinders
modification of the model. The latter is because changing the
model often comes with changes in the variables and parame-
ters. As the optimization framework interfaces with the model
through these variables and parameters, the interface that
handles this needs to be adjusted. In many cases modifying the
interface is not feasible within a project. As a result, exploratory
model development whereby a number of candidate models are

developed and optimized in order to find the optimal model is
often not possible. A possible solution to these problems is the
use of a single framework that supports model construction and
optimization. This approach is followed here. Such integrated
frameworks have not yet been widely developed as the focus of
software development teams has been on either frameworks for
model construction or model optimization. The proprietary
MATLAB framework allows doing both when using the external
ReBEL toolkit for optimization that runs inside MATLAB. In this
paper we extend the PCRaster model construction framework
(van Deursen, 1995; Wesseling et al., 1996; PCRaster, 2009). New
modules for data assimilation with the widely used Ensemble
Kalman Filter (e.g., Evensen, 2003) and the particle filter (van
Leeuwen, 2003; Weerts and El Serafy, 2006) are added resulting
in an integrated framework for model construction and optimi-
zation. The modeller has access to these components and
combines them with the generic Python scripting language
(Python, 2009). Stochastic spatio-temporal model inputs and
outputs can be analysed with an integrated, interactive visual-
isation program. In addition to optimization of models built
within the framework, the framework provides an interface to
external models. The framework also integrates a calibration
toolbox using Genetic Algorithms. For a description of this
component the reader is referred to (AMORI, 2009).

The purpose of this paper is to explain how the integrated
framework is used for model construction and data assimilation,
and to evaluate the framework with two case studies of distributed
models. The first case study is a simplified snowmelt model that is
constructed inside the framework. We will assimilate distributed
snow cover data into the model to improve estimation of snow
cover and discharge. The assimilation of snow cover data is
expected to improve the prediction of snow cover and discharge, as
has been shown by others using remotely sensed snow cover data
(e.g., Clark et al., 2006; Nagler et al., 2008). The second case study
shows how the external LISFLOOD model (Van der Knijf et al., in
press) can be optimized with the framework. LISFLOOD is
a hydrological model that runs at the river basin scale. The purpose
of the paper is mainly to show how the different filter techniques
can be used and does not pretend to provide an extensive
comparison of the performance of the filters. However, we provide
a preliminary comparison of the Ensemble Kalman Filter and the
Particle Filter.

2. Stochastic spatio-temporal modelling
2.1. Monte Carlo simulation and concepts of the framework

We first outline modelling concepts and define notations for the
case without data assimilation or calibration. Let the vector z; be
the state variables of the model at time index t=1, 2, ..., T. Given an
initial state zg, z; evolves over time according to the governing
equation:

z; = fr(z;_1,ir,py), for each t. (1)

In Eq. (1), f; is a system transition function that mimics real world
processes and p; is a vector containing the parameters used in f;.
The vector i; contains the inputs or boundary conditions of the
system. Each of the vectors in Eq. (1) may represent spatial
attributes in two- or three-dimensional geographic space. In
a stochastic model at least one vector contains stochastic variables.
Also, f; may be a sample from a probability distribution of different
possible system transition functions.

Our software framework solves Eq. (1) by Monte Carlo simula-
tion using the scheme:
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In Eq. (2), the probability density functions (PDF) of the compo-
nents of Eq. (1) are represented by a collection of N independent
realizations, respectively, ", i{”, p", and f\"), withn=1,2, ..., N.
The iterations over time (Eq. (2b)) to evaluate the governing Eq. (1)
are performed inside the loop (Eq. (2a)) that iterates over the
realizations. After finishing the loops (Eqgs. (2a) and (2b)), the PDFs
of the required components in Eq. (1) are available. The function g
calculates sample statistics (e.g., moments, quantiles) from these
PDFs and stores these in the vectors Z;, I, and Py, respectively. The
calculation order in Eq. (2) was chosen because of its generic
application and ease of implementation. Alternative schemes are
discussed in (Karssenberg and De Jong, 2006).

The scheme in Eq. (2) contains components that are generic and
components that are specific for a particular model. The generation
of Monte Carlo samples and iteration over time steps, the use of 2D
or 3D spatio-temporal attributes and the calculations of sample
statistics are generic components (Karssenberg and De Jong,
2005b; Karssenberg and De Jong, 2005a). The framework stan-
dardizes these as pre-programmed methods, functions and data
types. However, the system transition function (f;) is specific for
a particular model and it needs to be defined by the model builder.
The modeller can do this by combining standard spatio-temporal
functions on the 2D and 3D attributes. The framework includes
a wide range of spatio-temporal functions taken from the PCRaster
library (van Deursen, 1995; Wesseling et al., 1996; Karssenberg and
De Jong, 2005a). In addition, pre-programmed functions are
provided to create the realizations z\", i, and p{".

2.2. Case study model

The use of the framework is illustrated with the implementation
of a distributed snowmelt model. As it is only used for illustrative
purposes, a number of processes are ignored and parameter values
are based on assumptions or estimates from literature. We first
outline the equations used by the model. The model uses a time
step At (days) of one day. The precipitation (pgn/day) is defined as
a non-spatial stochastic time series:

Pt = Pmt X €t (3)

In Eq. (3), pm, is the observed precipitation for time step t at the
meteorological station in the study area, and e; ~ N(1, 0.04),
a random variable for each time step t, independent of other time
steps. The near-surface temperature t(s); (°C) is defined as a spatial
stochastic variable:

t(S); = tms¢ +h(s) 1 (4)

In Eq. (4), tm¢ (°C) is the observed near-surface temperature at the
meteorological station in the study area and h(s) is a spatial field
with the elevation (m) of each grid cell above the elevation at the
meteorological station. The spatial fields are indicated by the
spatial index s, which is defined on a regular 2D grid (i.e. the study
area). The lapse rate of the temperature (I, °Cm~!) is modelled as

a static non-spatial stochastic variable, with | ~ N(—0.005,1 x 107).
The value and the uncertainty of the season-averaged lapse rate
were estimated from Marshall et al. (2007), Blandford et al. (2008)
and Huang et al. (2008).

The snow pack a(s); (m water equivalent) is:

a(s); = a(s);_1+(ps(s)—b(s);) At (5)

In Eq. (5), ps(s) is snowfall (m/day) and b(s); is snowmelt
(m/day). These, and rainfall p,(s); (m/day), are calculated at each
cell as:

Ps(S)¢= Pr, Pr(S);= 0, b(s);= 0,
pS(s)t: 07 pr(s)t: pf7 b(s)[’: mt(s)t7

In Eq. (6), m (mday '°C™") is the degree-day factor, with
avalue of m=0.01 mday~! °C~. For each cell, the discharge (q(s);)
is calculated as the sum of b(s); + p{s); values in its upstream cells.
Upstream cells are derived from a local drain direction network
calculated from the digital elevation model using the 8-point pour
algorithm (Burrough and McDonnell, 1998).

The model is applied to a region in the Swiss Alps, south of the
Vierwaldstatter See (centred around 46°45'N, 8°26'W). Observed
rainfall (pp¢) and temperature (¢ ) time series for one winter season
were synthesised from the ERA40 data set (Uppala et al., 2005).
Elevation was taken from the GTOPO30 data set (EIONET, 2009).

We created an artificial data set to serve as observations in the
data assimilation techniques described in the second part of the
paper. The data set consists of one model realization having a lapse
rate | of —0.004°Cm™".

for t(s);<0
for t(s),> o} (6)

2.3. Implementation of the snowmelt model

We will now explain the use of the frameworks with the
implementation of a distributed snowmelt model. Below, refer-
ences are made to lines in the entire script provided in Table 1. The
modeller creates a model by defining a standard Python class, here
SnowModel (line 4). Depending on the type of model, the modeller
needs to implement a set of methods that are invoked by the
associated frameworks. Here, the DynamicFramework requiring
initial and dynamic methods (line 17 and 23), and the
MonteCarloFramework requiring premcloop and postmcloop
methods (line 10 and 38), are used. By deriving from preset classes
the modeller is able to use methods allowing to query model
specific attributes. In line 42, self.timeSteps () returning a list
of time steps is an example of a method derived from the
DynamicModel class. The modeller can use the preset classes and
belonging methods as off-the-shelf components.

The approach followed in the design of the framework refactors
optimization logic out of individual models into reusable frame-
work classes. As a result the user models are easier to maintain, and
the modeller is less burdened with framework logic. Furthermore,
models can be used in combination with different optimization
frameworks. An optimization framework is used by instantiating it
while passing a user model object, and calling the run member
function. Each framework thereby places requirements on the user
model it is utilising. For example, the Dynami cFramework requires
its user model to have member functions called initial and
dynamic. The DynamicFramework will call these functions once it
is run. The frameworks not only can be instantiated with user
models but also with other frameworks. For example, either
StaticFramework Or DynamicFramework objects can be passed
to the MonteCarloFramework upon instantiation.

Model construction comes down to inserting the required
functions inside the methods associated with a framework.
Although any Python function could be used, here the model is
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Table 1
Model script for stochastic snowmelt model.

1 from PCRaster import *

2 from PCRaster.Framework import *

3

4 class SnowModel(DynamicModel, MonteCarloModel):

5 def __init__(self):

6 DynamicModel. __init__(self)

7 MonteCarloModel.__init__(self)

8 setclone(”clone.map”)

9

10 def premcloop(self):

11 dem = self.readmap(”dem”)

12 self.ldd = Iddcreate(dem, 1e31, 1e31, 1e31, 1e31)

13 elevationMeteoStation = scalar(2058.1)

14 self.elevationAboveMeteoStation = dem —
elevationMeteoStation

15 self.degreeDayFactor = 0.01

16

17 def initial(self):

18 self.snow = scalar(0)

19 self.temperatureLapseRate = 0.005 + (mapnormal() * 0.001)

20 self.report(self.temperatureLapseRate, "lapse”)

21 self.temperatureCorrection = self.elevationAboveMeteoStation *
self.temperatureLapseRate

22

23 def dynamic(self):

24 temperatureObserved = self.readDeterministic(""tavgo”)

25 precipitationObserved = self.readDeterministic("pr”)

26 precipitation = max(0, precipitationObserved *
(mapnormal() * 0.2 + 1.0))

27 temperature = temperatureObserved — self.temperatureCorrection

28 snowFall = ifthenelse(temperature < 0, precipitation, 0)

29 self.snow = self.snow + snowFall

30 potentialMelt = ifthenelse(temperature > 0, temperature
* self.degreeDayFactor, 0)

31 actualMelt = min(self.snow, potentialMelt)

32 self.snow = max(0, self.snow — actualMelt)

33 rain = ifthenelse(temperature >= 0, precipitation, 0)

34 discharge = accuflux(self.ldd, actualMelt + rain)

35 self.report(self.snow, "'s”)

36 self.report(discharge, ”q”)

37

38 def postmcloop(self):

39 names = ["s”, "q"]

40 mcaveragevariance(names, self.sampleNumbers(),
self.timeSteps())

41 percentiles = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

42 mcpercentiles(names, percentiles, self.sampleNumbers(),
self.timeSteps())

43

44 myModel = SnowModel()

45 dynamicModel = DynamicFramework(myModel, 180)

46 mcModel = MonteCarloFramework(dynamicModel, 1000)

47 mcModel.run()

built using the set of functions from the PCRaster library. The
framework provides these functions, as these are particularly useful
for spatially explicit modelling in geoscientific domains. In prin-
ciple, inputs and outputs of these functions are raster maps,
although most functions take non-spatials (i.e., single values) as
input, too.

The premcloop method is used to calculate parameters, inputs
or variables that are constant and deterministic. The calculations
defined in the premcloop are evaluated once, at the start of the
model execution. At line 11, the digital elevation map (Fig. 1A) is
read from disk and assigned to the map variable dem. In the next
line, the function 1ddcreate derives the local drain direction map
(Fig.1B) from dem. Unlike the variable dem, the local drain direction
map is defined as a member variable of the class SnowMode1, using
the self prefix. A variable is required by Python to be defined as
member variable when it is used in other methods, too. Here, for
instance, 1dd is defined in the premcloop while it is used in the
dynamic method.

The functions entered by the modeller in the initial and
dynamic methods are evaluated for each Monte Carlo sample,
representing the loop in Eq. (2a). All script variables calculated in
these methods refer to realizations. The initial method is used to
create or derive realizations of parameters, constant inputs, or the
initial value of state variables. The mapnormal () function, drawing
a realization from N(0,1), is used in line 19 to create a realization of
the temperature lapse rate (I in Eq. (4)). This non-spatial variable is
used in line 21 to derive the realization temperatureCorrection,
which gives for each cell a temperature corrected relative to an
observed temperature at the meteo station. It represents h(s)-/ in
Eq. (4). Also, the initial value of the state variable snow pack (a(s)o,
in Eq. (5)) is set to zero assuming no snow pack at the start of the
simulation.

The dynamic method contains calculations that represent f; in
Eq. (1). These are executed for each time step, for each Monte Carlo
loop, with the order of calculations defined in Eq. (2). Observed
temperature and precipitation (pm and tm in Egs. (3) and (4)) are
imported with the self.readDeterministic function (lines 24
and 25). This function reads for each time step a map from disk
containing the required input for that time step. Line 26 creates
arealization of the precipitation (py, Eq. (3)) by adding for each time
step an independent realization to the observed precipitation. The
realization of the temperature t(s); (Eq. (4)) is calculated in the next
line, by adding temperatureCorrection to the observed
temperature. Note that temperatureCorrection was created in
the initial, so it is the same for all time steps according to the model
description (Eq. (4)). Lines 27-33 represent Eq. (6) by a set of point
operations on maps. The map discharge (Fig. 1B) is calculated for
each time step in line 34 with the accuflux function that routes
rainfall plus melt water downhill over the local drain direction map.

The calculation of sampling statistics (Eq. (2c)) and visualisation
of model results requires the map data for all time steps and Monte
Carlo samples. As this is typically a number of gigabytes of data,
these data need to be stored to hard disk in Egs. (2a) and (2b) and
read from hard disk again in Eq. (2c). This is done in the script with
the self.report function (used in lines 20, 35 and 36).
Depending on the method in which it is used, it either stores
a single map (when used in the initial method, e.g. in line 20) or
a time series of maps (in the dynamic, e.g. lines 35 and 36). This is
done for each Monte Carlo sample when these methods are used in
a MonteCarloFramework. Variables are stored using rules for file
names defined by the framework: numbered filename suffixes and
directory names represent time steps and Monte Carlo samples,
respectively. The same rules are used in visualisation routines and
functions that read files from disk, such as the functions calculating
sampling statistics explained below.

The postmcloop method contains functions to calculate
sampling statistics from the ensemble map data written to disk.
It represents Eq. (2c). The functions mcaveragevariance and
mcpercentiles calculate mean, variance and percentiles of the
file names defined in line 39, snow pack (s) and discharge (q).
These sampling statistics are calculated for the time steps provided
by the last argument in these functions. Here, the last argument is
self.timesteps () returning a list containing all time step
numbers. As a result, the sampling statistics are calculated here for
all time steps. The mcpercentiles function takes the list
percentiles defining the percentiles that need to be calculated.
Results are stored using file names defined by the framework.

2.4. Visualisation routines and results of the model
The Aguila visualisation tool (Pebesma et al., 2007) is integrated

with the framework. It allows prompt visualisation of model inputs
and outputs without conversion because it reads map data from
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Fig. 1. (A) Digital elevation model (dem, m), (B) discharge (discharge, m3/day) at time step 157 (days) with superimposed local drain direction network (ldd). The local drain
direction network contains flow directions to the steepest down slope neighbour. The marked cells represent the snow pack and the discharge measurement locations, indicated by

S and D on the left and right panel, respectively.

disk using rules for file names defined by the modelling framework.
Spatial data are shown in map views. When stochastic data are
visualised, Aguila shows a map view of a variable at a user defined
percentile value. To visualise the full distribution of a variable at
a location on the map, Aguila can create a cumulative probability
distribution plot. In the case of temporal data, map views or
cumulative probability distribution views can be animated through
time. In addition, time series plots can be created containing the
(percentile) value of a variable at a particular cell. Fig. 2 shows how
Aguila visualises the snow pack. The top panels show the run with
the stochastic model, the second row of panels represent a run with
data assimilation, which will be described in the next sections.
Aguila was started with the percentile data as input, written to disk
by the function mcpercentiles as explained above. Aguila
visualises the results of the model run representing a period
between autumn and spring. The top right panel is a time series of
the snow pack (m), showing the median value for a location
selected on the map (top left panel). The panel in the top centre
shows the cumulative probability distribution of the snow pack for
the same location and the selected time step (day 145). As the
Aguila software is interactive, the user can browse the map to show
time series or cumulative probability distributions of other
locations. In addition, the player window (bottom) can be used to
steer the animation while locations, time steps or percentile values
can be selected in the data window (bottom right).

The modelled median of the snow pack is greater than the
observed snow pack, as illustrated by the time series in Fig. 3A. This
is because the model uses a mean lapse rate (I=-0.005 °C m 1)
that is greater than the lapse rate used to generate the observa-
tional data (I=—0.004 °C m™!), resulting in too much precipitation
that falls as snow. This also results in an underestimation of
discharge for most time steps in the period of snow accumulation
(time steps 1-150), as shown in Fig. 4A and D. In the melting season
(time steps 150-180), the model overestimates discharge most of
the time, because too much snow is available for melting.

The width of the confidence interval of the snow pack increases
with time (Fig. 3A and E). This is partly due to the accumulation of
error introduced by the uncertainty in precipitation, which has an
error for each time step independent of the other time steps. Also,

the uncertainty in snow pack during the melting season at the end
of the run is large, because snowmelt is dependent on the lapse rate
having a large uncertainty.

3. General theory and framework for data assimilation

In sequential data assimilation, the model Eq. (1) is updated at
time indices when observational data are available, referred to here
as update moments. We give a short outline of the basic data
assimilation formulations here. For a more extensive explanation
the reader is referred to Doucet et al. (2001) and Simon (2006). Data
assimilation is mostly done with observations of the state variables
z.. In some cases, observations of model inputs i; and parameters p;
are also assimilated. Let x; (t = 1, 2, ..., T) be a vector of model
components for which observations are available. It is a subset of z;,
i; and p;. Let y; be a vector containing the corresponding instanta-
neous observation. It is defined as:

Ve = He(X¢) + Ve (7)

for each update moment ¢t when observations are available. In Eq.
(7), Hy is the measurement operator that transforms the model state
to the observation, and v; is a zero-mean vector representing
measurement error. Let Y; be all past and current observations at
time index t. A data assimilation filter estimates the conditional
probability density function p(x;|Y;). Each update moment it eval-
uates Bayes’s formula:

p(Xe|Ye) = p(YelXe)p(Xe|Ye—1)/P(¥e) (8)

In (8), p(x/Y;) is the posterior probability density function of x; at t,
p(x¢|Y¢—1)is the prior probability density function at t calculated with
Eq. (1). For time indices for which no observations are available, Eq.
(1) is used to calculate p(x(|Y;). Most approaches solve Eq. (8) using
a Monte Carlo computational method. We have implemented the
Particle Filter (e.g., Simon, 2006; Weerts and El Serafy, 2006) and the
Ensemble Kalman Filter (e.g., Evensen, 2003). Eq. (8) retrieves the
posterior probability density function of the model components for
which observations are available only. However in most cases it is
required to retrieve the posterior of all model components ((p(z¢Y¢),
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p(iYe), and p(p¢|Y:)) as these are required to evaluate Eq. (1) for time 20 _ gm (Z(") im p(") )

steps without observations. These posteriors are calculated by both 6 70t W1t ot

filters implemented, although the Ensemble Kalman Filter requires evaluate Eq. (8)

additional solution procedures, such as state augmentation (Hen-

dricks Franssen and Kinzelbach, 2008), as will be used here. The for each t: (9d)

filters are implemented in the software framework by adding an

extra loop to the scheme in Eq. (2): Z — g(zgl,...,N))’ I = g(igl,...,N)), P, — g(pgl,...w))

for each period : (9a) Each update moment is associated with a period consisting of all
time indices after the previous filter moment up to and including

for each n: (9b) the time index of the respective update moment itself. For each
period, the model is run in Monte Carlo mode. At the end of the
for each t in period : (9¢) period, after executing all time steps, the filter is applied.
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Fig. 2. Screenshot showing Aguila visualisations of the Monte Carlo (upper three windows) and the Particle Filter (lower three windows) modelled snow pack (snow, m). Left, map
view; centre, cumulative probability density function; right, time series. The location, time step and percentile value for which results are shown are interactively selected in the
plots or in the cursor window (bottom right). All windows show results for that cursor location in the spatial, temporal and stochastic dimension. Here, we selected the location
shown by the cross in the left panels, the time step 145 (days) shown by the vertical line in the right panels and the percentile value of 0.5 (median) shown in the centre panels. All
panels can be animated over time with the Animation Dialog (bottom centre panel).
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Fig. 3. Snow pack (a(s);, m) at the location indicated in Fig. 1, left panel. (A) Stochastic
model; (B) Particle Filter; (C) Ensemble Kalman Filter; solid line, median; grey area,
values between 10th and 90th percentile; dotted line, observed (from artificial data
set). (D) Modelled median value minus observed. (E) Width of confidence interval
(90th percentile value minus 10th percentile value). Vertical dotted lines indicate
update moments.

4. Particle filter
4.1. Theory

The Particle Filter approximates the posterior probability
density function in Eq. (8) by the collection of Monte Carlo samples
(i.e., particles), assigning a weight to each sample:

N
pxeYo)= > pMox — x{™) (10)

n=1

The weights pE"), also referred to as probability masses, sum to
one. In Eq. (10), 6( ) denotes the Dirac delta function. For Gaussian
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Fig. 4. Discharge (q(s), m’/day) at the location indicated in Fig. 1, right panel.
(A) Stochastic model; (B) Particle Filter; (C) Ensemble Kalman Filter; solid line, median;
grey area, values between 10th and 90th percentile; dotted line, observed (from arti-
ficial data set). (D) Modelled median value minus observed value (m>/day). (E) Width
of confidence interval (90th percentile value minus 10th percentile value, m>/day).
Vertical dotted lines indicate update moments.

measurement error v;, the weights are proportional to (Simon,
2006; Chin et al., 2007):

a = exp(— [y; — Hi(x")"R; [y, — He(x")]/2) } (11)
pf =af

where R; is the covariance matrix of the measurement error v The
weights are calculated by normalization of aE"):

N .
= a/y a (12)
j=1

When the observation errors are uncorrelated the off-diagonal
elements of R; are zero and Eq. (11) is equivalent to the equations
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provided by van Leeuwen (2003) and Weerts and El Serafy (2006).
An example of the weights is provided in Fig. 5A. Next, a new set of
N Monte Carlo samples is created that consists of exact copies of
a subset of the Monte Carlo samples in the prior probability density
p(XdY:—1). This step is referred to as resampling. As the weights in
Eq. (12) can be used to calculate the posteriors of all model
components (p(z¢Y;), p(it|Yr), and p(p¢|Yr)), exact copies of a subset
of Monte Carlo samples in the prior probability density of all model
components can be made to retrieve the posteriors of all model
components. A number of different approaches exist to do the
resampling step. Each approach represents the intuitive idea that
the number of copies of a sample in the prior probability density
should be approximately proportional to pﬁ”). In Sequential
Importance Resampling or SIR for short (e.g., Gelman et al., 2004),
a cumulative distribution function is constructed from the weights
pﬁ") (Fig. 5B). From this distribution, N samples are randomly drawn
with replacement using a uniform distribution between zero and
one. This draw of samples represents the posterior probability
distribution of model states p(x;|Y;) and all other model compo-
nents (Fig. 5C). Residual Resampling (RR, Liu and Chen, 1998;
Weerts and El Serafy, 2006) copies samples in two steps. In the first
step, a sample is copied a number of times equal to
l<§”) = round(p{"” -N), where round(x) is a function that rounds to
the nearest integer towards zero. In the second step, residual
weights r§") are calculated:

o Nk
t

S /S Sk (13)
N - 21::1 kgm

Anumberof N — °N_, k("™ additional copies of samples is made
using the residual weights rt"). This is done in a similar way as in SIR
by uniform sampling from a cumulative distribution function
constructed now from the residual weights r§"). The samples copied
in step one and two result again in N samples representing the
posterior probability density of all model components.

4.2. Software framework

In order to illustrate how particle filtering can be done with the
framework, snow pack data will be assimilated into the snowmelt
model using sequential importance resampling (SIR). We mimic the
availability of snow pack data from remote sensing or field obser-
vations by using the artificial observational data set generated with
the model (see Section 2.2). This data set contains a map of snow
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Fig. 5. Calculation of posterior state at update moment with Sequential Importance
Sampling, first update moment. (A) Weights, pg"); (B) Cumulative distribution function
of the weights; (C) Number of copies per sample. X-axis: sample (particle) number.
Plots show first 100 particles out of a total number of 1000 particles.

pack a(s); for each time step. In principle this map could directly
serve as observational data y; (Eq. (7)). However, the covariance
matrix R; (Eq. (11)), in particular the non-diagonal elements, cannot
be estimated here because the spatial correlation structure of the
measurement error at the support of the grid cells of the model is
unknown. We circumvent this problem by assimilating snow pack
data at a larger spatial support under the assumption that the
errors at a larger support can be considered independent. Five
elevation zones with an equal area are created. For each time step,
the snow pack observations are averaged over each area, resulting
in five snow pack observations that are used as observational data
y: with associated errors v;. The standard deviation of the errors v;
is assumed to be 40% of the observed average snow pack in the area
and provide the variances in R;. The covariances in R; are set to zero
representing independent errors.

We designed the software framework such that Particle Filtering
can be done by a small number of additions to a script for stochastic
dynamic modelling. These additions consist of the methods
suspend, updateWeight, and resume that are added at the
bottom of the script (Table 2). Aside from initialising the Parti-
cleFilterModel class, the content of the methods defined in the
original snowmelt model (Table 1) does not need to be adjusted for
Particle Filtering. Thus, the user can easily switch between running
the model with or without Particle Filtering, simply by using
another framework.

The suspend, updateWeight and resume methods are
invoked, in this order, at an update moment. The line numbers
below refer to these in Table 2. The suspend method (line 44)
needs to contain self.report functions to store the realizations
representing the prior probability density functions of the state
variables p(z|Y; 1) and these of the stochastic parameters
p(pt|Y:—1). Here, this is the lapse rate and the snow pack (line 45 and
46). The suspend method stores these for each sample in
directories referred to as filter directories. These are different from
the directories containing the data written to disk in the dynamic
method. This is because the filter directories will be copied in the
resampling step. The subdirectories containing the data written to

Table 2
Bottom part of script for Particle Filtering.

44 def suspend(self):

45 self.report(self.temperatureLapseRate, "lapse”)

46 self.report(self.snow, "’s”)

47

48 def updateWeight(self):

49 modelledData = self.readmap(”’s”)

50 modelledAverageMap = areaaverage(modelledData,
"zones.map”)

51 observedAverageMap = self.readmap(”avgObs”, "observations”)

52 observedStdDevMap = ifthenelse(observedAverageMap > 0,
observedAverageMap * 0.4, 0.01)

53 sum = maptotal(((observedAverageMap — modelledAverageMap)
**2)/(2.0 * (observedStdDevMap ** 2)))

54 weight = exp(sum)

55 weightFloatingPoint, valid = cellvalue(weight, 1)

56 return weightFloatingPoint

57

58 def resume(self):

59 self.temperatureLapseRate = self.read("lapse”)

60 self.temperatureCorrection = self.elevationAboveMeteoStation
* self.temperatureLapseRate

61 self.snow = self.read(”s”)

62

63 myModel = SnowModel()

64 dynamicModel = DynamicFramework(myModel, 180)

65 mcModel = MonteCarloFramework(dynamicModel, 1000)

66 pfModel = SequentiallmportanceResamplingFramework(mcModel,

[70,100,150])

67 pfModel.run()
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disk in the dynamic need to be kept untouched as these are
required to calculate the sampling statistics in the postmcloop.

Next, the framework executes the resampling step copying the
filter directories a number of times, either using the RR or the SIR
algorithm. Both algorithms need for each sample the value of aﬁ"),
a value proportional to the weight of each sample (Eq. 11). This
value is calculated by the user-defined functions in the update-
weight method (line 48). Thus, the calculation of aE") itself is not
done by the framework as in some cases the user may want to use
a weight function different from Eq. (11), for instance when the
errors v; are non-Gaussian (e.g., van Leeuwen, 2003). Here, the
updateWeight method contains PCRaster functions on maps to
read the modelled snow pack from disk and to average this snow
pack over the five elevation zones (lines 49 and 50). Line 51 reads
the observed snow pack data, which were already averaged over
the zones. Line 52 calculates the standard deviation of the snow
pack data. Eq. (11) is represented by lines 53 and 54. Finally, the
method needs to return to the framework the value that is
proportional to the weight (line 56). The framework does the
normalization (Eq. (12)).

After the resampling, the filter directories contain the realiza-
tions representing the posterior probability density functions of
the state variables p(z:|Y;) and of the stochastic parameters
p(p¢Y:). To evaluate the transfer function Eq. (1) for the next time
step, these realizations need to be read from disk. This is done in
the resume method (line 58). Here, it reads the temperature lapse
rate maps from disk and calculates the variable temper-
atureCorrection derived from this parameter, as was done in
the initial. Also, the state variable snow is read from disk. Now, the
framework invokes the dynamic method for the next time step,
using temperatureCorrection and snow, calculated in resume,
as input.

Line 66 defines the algorithm used for resampling, which in this
example is SIR. The time indices corresponding to the update
moment are given as constructor arguments.

5. Ensemble Kalman Filter
5.1. Theory

The Ensemble Kalman Filter is a Monte Carlo approximation of
the Kalman filter (e.g., Evensen, 2003; Simon, 2006). The evaluation
scheme is identical to the one given in Eq. (9), and evaluation of
Eq. (8) is done by:

u”" = w0 POH] (HPPH] +R,)™!
(" —Hu?), for each n (14)

In a standard Ensemble Kalman Filter, u(" is equal to z\"”, the

realizations of all state variables in the model. It contains the state
variables for which observations are available, referred to above as
x§”>, and all other state variables. Unlike the Particle Filter, the
standard Ensemble Kalman Filter does not provide the posterior of
the parameters p(p:]Y;) and the inputs p(ifY:). A number of
different approaches exist to find the posterior of these model
components (Hendricks Franssen and Kinzelbach, 2008). In our
case study we use state augmentation, which is a procedure that is
also supPorted by the framework. In this procedure, the state
vector ut”) (Eq. (14)) is extended with the model components (p;
and/or i;) for which posterior probability density functions are
required to be calculated. In Eq. (14), the superscript 0 in u§")
indicates the prior state vector and superscript + indicates the
posterior state vector calculated by the update. P? is the covari-
ance matrix of ui")"o and yﬁ") is a realization of y; (Eq. (7)). The size

of the vectors and matrices in Eq. (14) is uﬁ"), ke+1; P?,
(ke+ 1) x (ke + 1); Hy, (ke x ke+1); Ry, (ke x ke); ¥, ke; with ke being
the number of observations at t. In the standard Ensemble Kalman
Filter, | is the number of values in the state variables without
observations. In the augmented filter, | is the number of values in
the state variables, the parameters and inputs minus the number
of observations. We have implemented the Ensemble Kalman
Filter following Evensen (2003).

5.2. Software framework

In our case study, snow data are assimilated with the Ensemble
Kalman Filter using state augmentation in order to include the
temperature lapse rate in the update. For each update moment,
the state vector ui") contains the values of the snow pack and the
temperature lapse rate. The measurement operator H; is used to
convert the individual cell values of the snow pack to five average
values, i.e. an average value for each of the five elevation zones. The
stochastic dynamic modelling script can again be used with small
modifications (Table 3). The user has to provide the content of three
methods passing information on observations and state variables
between the model and the Ensemble Kalman Filter framework.
This information is in the form of matrices as used by NumPy
(Oliphant, 2006; NumPy, 2009). The software framework includes
functions to convert PCRaster maps to NumPy matrices and vice-
versa. These can be used, for instance, to convert between state
variables stored as PCRaster maps and state variables stored in
a Numeric Python matrix.

The setObservations method (Table 3, line 44) is run once
per update moment passing the observational data as matrices to
the framework. The content of the matrices needs to be defined by
the user (computations omitted in Table 3). The matrices that need
to be passed include the matrix realizationObs, containing the
realizations of the observations (y§"> for all n), the matrix covEr-
rorObs, the covariance matrix of the measurement error on the
observations (R;), and the matrix measurementOperator (Hp).
Setting the measurementOperator (line 50) is optional. By
default, the measurementOperator is a matrix with ones on the
main diagonal and zeros elsewhere, applicable when the first values
in uE") can directly (one-to-one) be mapped to the values in yE").

Table 3
Bottom part of script for Ensemble Kalman Filter.

44  def setObservations(self):

45 # left out: create realizationObs and covErrorObs

46 # pass the matrices to the filter framework

47 self.setObservedMatrices(realizationObs, covErrorObs)

48 # left out: create measurementOperator matrix

49 # pass the measurement operator matrix to the framework (optional)
50 self.setMeasurementOperator(measurementOperator)

51

52  def setState(self):

53 # left out: collect snow pack values and temp. lapse rate in stateVector
54 # pass the state vector to the framework

55 return stateVector

56

57  def resume(self):

58 # retrieve updated state vector for current sample

59 updatedStateVector = self.getStateVector(self.currentSampleNumber())
60 # left out: convert state vector to model variables containing the state
61

62 myModel = SnowModel()

63  dynamicModel = DynamicFramework(myModel, 180)

64 mcModel = MonteCarloFramework(dynamicModel, samples)

65 ekfModel = EnsKalmanFilterFramework(mcModel, [70, 100, 150])
66  ekfModel.run()

Left out parts indicated.
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The setstate method (Table 3, line 52) is run for each sample n
for each update moment. It is used to pass the statevector
variable, representing uﬁ"), to the framework. The user defines this
vector by converting state variables, parameters and/or inputs to
a single vector. At each filter moment, the framework evaluates
Eq. (14) using the information provided by the setObservations
and setState methods. It returns a state vector with the posterior
state of the model. This is done in the resume method (line 57). The
user has to provide code to convert this state vector to model
variables that are used in the main script of the model.

Where the Particle Filter deletes or copies entire samples, the
Ensemble Kalman Filter adjusts the values of state variables,
parameters, and/or inputs of each sample. This is done for each
sample in place, in the folder containing the results for that sample.
Thus, the Ensemble Kalman Filter does not create a separate folder
structure with cloned (resampled) samples, as is the case in the
Particle Filter.

6. Results and discussion of filters applied to the snow model

When a small number of particles is copied a large number of
times in the Particle Filter, it may happen that the posterior
probability density function of the model is represented by a too
small number of different, unique, particles. This is known as
particle collapse or impoverishment. In our model, this problem
does not occur as can be seen in the plots created from files stored
by the framework (Figs. 5 and 6). Each update moment, a relatively
large number of samples is copied. As a result, a diverse population
of samples remains to exist up to and including the posterior
distribution at the last update moment (Fig. 6). Hence, employing
1000 samples appears to be sufficient for the model and data used.
This is confirmed by a model run using 10,000 samples that gave
probability density functions that were comparable to the results
reported here. Our runs indicate that with a time varying noise in
the input (here, precipitation), particle collapse is not a problem in
the application of the particle filter. However, further evaluation of
the particle filter is required under various conditions of stochastic
inputs and model structures.

To evaluate the performance of the stochastic model without
data assimilation, the particle filter, and the Ensemble Kalman
Filter, Figs. 3 and 4 provide time series of snow pack and
discharge. From these time series values, statistics were calculated.
The mean squared error (MSE) is calculated as
MSE = S{_;(a¢ — ttops)?/T, with oy, the median of the modelled
variable (either snow pack or discharge) at time step t and agps ¢
the observed value at ¢ (artificial data set). The mean width of the
80% confidence interval (MW) is MW = T (Pog; — P1o)/T,
with Pggy, the 90th percentile value of the modelled variable at
time step t and Pjq, the 10th percentile value at t. The results are
provided in Table 4. The table shows that the data assimilation
techniques reduce the MSE and MW compared to the run without
data assimilation. The reduction is largest for the snow pack,
resulting in an MSE value that is 17% of the MSE value of the
stochastic model. The Particle Filter and the Ensemble Kalman
Filter use different methods to represent the Bayesian update.
However, the results in terms of MSE and MW are comparable
(Table 4). It should be noted that the results in Table 4 are not
representative for performance of the two schemes in general
terms, as performance depends on a number of factors not studied
here, including the number of samples (particles), the linearity of
the model and the statistical properties of the errors.

In the data assimilation runs, the width in the 80% confidence
interval for snow pack reduces at update moments (Fig. 3),
particularly at t=70. Also, the filters are capable of reducing the
large error in snow pack estimates during spring observed in the
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Sampling, snowmelt model. Arrows indicate copies of samples at update moments.
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shown.

run without data assimilation, as can be seen by comparing the last
part (the spring period) of the time series in Fig. 3A and B and this
part of the time series shown in Fig. 3E. As a result, the 80%
confidence intervals of discharge in this period also become
narrower (Fig. 4A, B and E) as most discharge in the spring is
generated from snowmelt.
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Table 4
Mean squared error (MSE) and mean width of confidence interval (MW) for snow pack a(s); (m) and discharge q(s); (m>/day).
Snow pack Discharge
MSE MW (m) MSE (x10'2) MW (x106, m?/day)
Stochastic model 0.00218 (100%) 0.105 (100%) 0.56 (100%) 0.74 (100%)
Particle Filter 0.00037 (17%) 0.051 (49%) 0.37 (66%) 0.56 (76%)
Ensemble Kalman Filter 0.00037 (17%) 0.036 (34 %) 0.42 (75%) 0.56 (76%)

The values are calculated for the locations indicated in Fig. 1. Values between brackets: value as a percentage of the corresponding value for the stochastic model.

As discussed in a previous section, Fig. 2 shows how the user can
interactively evaluate different scenarios using the Aguila software.
The panels in the first row show the results of the stochastic model
while these in the second row show the results of the run with the
Particle Filter. The panels in the centre can be used to compare the
cumulative probability density function of the two runs. The panels
show that the width of the probability density function for the
Particle Filter is small compared to the width of the stochastic
model confirming the results discussed above.

7. Data assimilation with external models
7.1. Framework concepts

The software framework provides a close integration between
the definition of a model itself, i.e. the code describing the model
equations, and the code to integrate observations using data
assimilation. However, in some cases it is required to perform
Monte Carlo simulation or data assimilation using an existing
model. This is also supported by the software framework through
functions that pass information from the software framework to
the external model. The information that needs to be passed to the
model includes the time steps of update moments, and directory
names for storing model data according to the definitions of the
software framework, using subdirectories for Monte Carlo samples.
Below, we illustrate the possibility of calling external models with
the LISFLOOD model Van der Knijf et al. (in press). The emphasis is
here on the model and the results of Particle Filtering. For details on
the use of the software framework when calling external models,
the reader is referred to the manual (Schmitz et al., 2009).

7.2. Case study: discharge assimilation using the distributed
rainfall-runoff model LISFLOOD

LISFLOOD is a spatially distributed, grid based rainfall-runoff
model that has been developed for the simulation of hydrological
processes in large European river basins. It is implemented using
a combination of the PCRaster and the Python scripting language.
The model was designed to facilitate the handling of large spatial
data sets on soils, land cover, topography, and meteorology.
LISFLOOD is driven by meteorological input time series and the
simulated hydrological processes include snowmelt, infiltration,
interception of rainfall, leaf drainage, evaporation and water uptake
by vegetation, surface runoff, preferential flow, exchange of soil
moisture between soil layers and drainage to the groundwater,
sub-surface and groundwater flow, and flow through river chan-
nels. A more detailed description of LISFLOOD can be found in van
der Knijf (forthcoming). In this case study we evaluate whether the
assimilation of observed discharges using the Particle Filter can
improve model output. This is especially important when model
output derived from near-real time meteorological forcing is used
as initial conditions in operational flood forecasting, as is the case
for LISFLOOD, which is currently employed in the European Flood
Alert System (Thielen et al., 2008).

The results of this case study are obtained using the Meuse
catchment upstream of Borgharen, covering an area of approxi-
mately 21,000 km? (see Fig. 7). The Meuse catchment is situated in
Belgium, France, and the Netherlands and is mainly fed by rain all
year round with the highest flows occurring generally in winter and
the lowest flows occurring during summer. The topography of the
area has an elevation ranging from 50 to 700 m. To obtain all
necessary soil and land use related parameters we employ the Soil
Geographical Database of Europe (King et al., 1994), the HYPRES
database on hydraulic soil properties (Wosten et al., 1999), and the
CORINE Land Cover database (EIONET, 2009). The interpolated
meteorological input grids were obtained using ordinary kriging
with daily observations of approximately 23 stations from the
Meteorological Archiving and Retrieving System (Rijks et al., 1998).
The remaining parameters have been estimated by a previous
calibration of the system on discharge at the Borgharen gauging
station. The model setup employed uses a 5-km grid resolution and
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et al.,, 2007).



500 D. Karssenberg et al. / Environmental Modelling & Software 25 (2010) 489-502

a daily time step. Particle Filtering was performed using daily-
observed discharges for the Borgharen gauging station for the
period from 1/12/1993 to 30/04/1994.

Data assimilation using the Particle Filter requires the explicit
specification of the measurement error model in order to calculate
and update particle weights as shown in Egs. (11)-(13). Most of the
streamflow measurement error models assume a Gaussian distri-
bution having zero mean and a heteroscedastic variance due to the
nonlinear nature of the rating curves used to transform water levels
into discharges (Thiemann et al., 2001). Here, we employ
a non-parametric approach to estimate the error deviation as
suggested by (Vrugt et al., 2005). An exponential function was fit
through nine years of observed discharge data, which was then
employed to derive the variance of the streamflow measurement
error at each time step as a function of observed streamflow. In this
case study we assume that precipitation is the largest source of
uncertainty in modelling hydrological processes. Hence we perturb
the observed precipitation grids according to Eq. (3) using
a uniform distribution with an error range of +30%. As nowadays
usually observed discharge values are available with a high
frequency in real time we assimilate discharge for each day using
a total of 100 particles. Similar to the snow model, the realizations
of the state variables need to be stored in the filter directories,
which for the case of LISFLOOD results in a total of twelve state
variables maps for each filter moment.

Fig. 8 presents the results of the data assimilation using the SIR
algorithm. A general improvement in modelled discharges in
comparison to the simulated discharge without data assimilation
can be observed. Especially, in phases with strong rainfall the
Particle Filter clearly improves model output and the 95 percentile
confidence interval embraces well the measured discharges.
However, there are still periods where the model is not capable to
reproduce the observed discharge properly. This is especially
significant for periods not influenced by strong precipitation
events, i.e., during the decrease in discharge after high flow periods
or during low flow periods. During these stages the mismatch
between modelled and observed discharges is mainly caused by
model structural errors, which originate from an inadequate
representation of the hydrological processes in the model.
Including these uncertainties into the data assimilation would
further improve model output. However, the proper treatment of
model structural errors in hydrological modelling and its imple-
mentation in data assimilation techniques is not a trivial task and is
beyond the scope of this paper. Nevertheless, the presented results
illustrate that Particle Filtering is a valuable tool to merge various

sources of data and their corresponding uncertainties into distrib-
uted hydrological models and therewith improve model output.

8. Discussion and conclusions

We have built a software framework that integrates a frame-
work for model construction and routines for visualisation of
model data. The software framework for model construction
includes a large set of spatial operations on raster maps. These
operations can be used in various framework classes that provide
control flow for a number of different modelling approaches and
activities: static modelling, spatio-temporal modelling, determin-
istic modelling, stochastic modelling, and data assimilation. The
framework makes it fairly easy for the modeller to switch between
the different modelling approaches as each of the framework
classes use highly similar methods. As a result, model code can be
reused or even copied without any changes when switching
between modelling frameworks. It is for instance possible to switch
from Particle Filtering to Monte Carlo mode (no data assimilation)
by just selecting the Monte Carlo framework class at the bottom of
the script. The software framework comes with routines for
visualisation of stochastic spatio-temporal data read and written by
models running in the framework. These routines allow prompt
visualisation of data without conversion of data formats or
configuration of displays. The software framework makes it fairly
easy to explore and evaluate alternative process representations
because changing the code of a model can be done by recombining
high level functions on raster maps while evaluation of model
inputs and outputs is possible with the integrated visualisation
routines. As data assimilation techniques are integrated in the
framework, the integration of data using advanced data assimila-
tion techniques can be done in relatively little time. To our
knowledge this is the first software framework that closely
integrates construction of spatio-temporal stochastic models, data
assimilation, and visualisation of spatio-temporal stochastic data.

It is preferable to perform Monte Carlo simulation or data
assimilation with models that are constructed with the framework
itself, as this guarantees seamless integration of the model and the
framework. However, it is also possible to call external models, as
shown in the case study with LISFLOOD. This can be done with any
external model, given that the external model can be called from
a command line. Also, the model needs to be capable of directing
output data to directories containing results for the individual
Monte Carlo samples, as specified by the framework. Alternatively
small programs can be written that redirect the data. In the case of
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Fig. 8. Hydrograph at the Borgharen gauging station for the data assimilation period (12/01/1993-04/30/1994). Daily observed discharges are represented by squares. The black
solid line denotes simulated discharge without data assimilation. The light grey shaded area denotes the prediction uncertainty (95% confidence interval) resulting from particle
filtering with precipitation uncertainty. The dark grey shaded solid line depicts the simulated discharge of the particle with the highest weight during sequential data assimilation.
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data assimilation, the external model also needs to be capable of
being interrupted at update moments. At an update moment, the
model needs to stop its execution, store its prior state to disk, and
restart from disk reading the posterior state from disk again. In the
LISFLOOD model, a Python wrapper redirects model input and
output and modifies start and end time steps according to the filter
periods.

The Particle Filter and the Ensemble Kalman Filter give
comparable results when applied to the example snowmelt model.
In a certain way this confirms the reliability of the filter techniques,
because similar results are found by two different approaches to
solve the Bayesian update equation. While the Ensemble Kalman
Filter modifies the state vector of each Monte Carlo sample at the
update moment, the Particle Filter leaves the state vector of each
Monte Carlo sample unchanged, as it represents the Bayesian
update by copying entire Monte Carlo samples. As a result, the
problem of violation of the conservation of mass, momentum, or
energy encountered sometimes with the Ensemble Kalman Filter
does not occur with the Particle Filter. This is an advantage of the
Particle Filter. The difference between the methods in how the
Bayesian update equation is solved has also its consequences for
the run time of a data assimilation procedure. In our imple-
mentation of the Ensemble Kalman Filter, the update equation
involves an evaluation of matrices that can become very large in the
case of a large number of observations. The Particle Filter does not
have this problem because the update equation is solved in
a computationally less intensive way. However, the Particle Filter is
assumed to require a large number of Monte Carlo samples.
A review and comparison of the filtering techniques implemented
in our framework is provided by e.g. Evensen (2003), van Leeuwen
(2003). In our opinion the Particle Filter needs further attention as
its application in environmental modelling is relatively recent, and
because it is promising, also because of its relatively simple
approach to solve the Bayesian update.

The software framework presented in this paper can be
extended by other components for data assimilation and calibra-
tion. An example of such a component is the AMORI software for
calibration of spatio-temporal models using genetic algorithms
(AMOR], 2009).
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