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Abstract

A ubiquitous quantity in epidemic modelling is the basic reproduction number R0. This became so pop-
ular in the 1990s that ‘All you need know is R0!’ became a familiar catch-phrase. The value of R0 defines,
among other things, the control effort needed to eliminate the infection from a homogeneous host popula-
tion, but can be misleading when applied to a heterogeneous population for the same purpose. We have
defined the type-reproduction number T for an infectious disease, and shown that this not only has the
required threshold behaviour, but also correctly determines the critical control effort for heterogeneous
populations. The two quantities coincide for homogeneous populations. In this paper we further develop
the new threshold quantity as an indicator of control effort required in a system where multiple types of
individuals are recognised when control targets a specific type.
� 2007 Published by Elsevier Inc.
1. Introduction

In Roberts and Heesterbeek [1], we introduced a new threshold quantity for use in the analysis
of models for infectious disease control. It is defined for situations where a discrete number of
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types of individuals are distinguished by some epidemiologically significant characteristic, for
example species, age group, or route by which they were infected. For homogeneous populations
the quantity coincides with the well-known basic reproduction number R0; in heterogeneous sit-
uations it is related to R0, but singles out the control effort needed when control is targeted at a
particular host type (or a subset of types) rather than at the population as a whole. We refer to the
quantity as T when a single type is targeted. We now propose to call this quantity the type-repro-
duction number.

In our previous paper, we introduced T and showed that the relation: T < 1() R0 < 1
holds. We then applied the new concept to one class of possible control interventions, to be de-
fined below as S-control. With S-control we mean that control acts primarily on reducing the
availability of susceptibles of the target type, for example by vaccination, or the pre-emptive
culling of hosts in the control of animal infections. We dealt rigorously with a number of prop-
erties of T in that context, notably that in the simplest case of a perfect vaccine, an epidemic is
prevented in the vaccinated population if we vaccinate at least a fraction 1� 1

T of the suscepti-
bles of the target type. This ‘control relation’ is well known for R0 in a homogeneous popula-
tion, but we will see that no such simple explicit relation in term of R0 exists for structured
populations, even in the situation with only two types. In the present paper we extend the the-
ory in that we also deal with another class of control measures, to be defined below as I-control.
With I-control we mean that control acts primarily on the infectives of the target type, with
measures aimed at reducing infectious output or the length of the infectious period being prime
examples. We see that the definition of T leads directly to the quantification of the control effort
needed.

In Section 2 we introduce the type-reproduction number in the simplest case of a population
with two types of host individuals, and explain the differences between this quantity and R0.
We introduce and analyse the S-control situation. In Section 3 we develop the theory for the sit-
uation with n types of host individuals and derive ‘control relations’ for special cases of I-control.
We do not give proofs for control relations of the S-control case, since these are already contained
in Roberts and Heesterbeek [1]. In Section 4 we derive the control relation for the I-control case in
detail. We conclude with a discussion of the possible usefulness, some caveats, and a primary
focus for future research that is needed in order for the type-reproduction number to become a
useful quantity in practice.
2. The simplest case of two types

Suppose we have two types of individuals, and interpret these for the purpose of illustra-
tion as host (type 1) and vector (type 2). We will always number the types in such a way
that control is aimed at type 1. The next-generation matrix K (introduced in [2], for a full
treatment see [3]) gives the next generation of infectious individuals distributed over the dif-
ferent types, as a matrix acting on the present infection generation. The element kij of K
may be interpreted as the expected number of cases of type i produced by one infected indi-
vidual of type j. Matrix K is therefore positive by definition, and we will assume throughout
this paper that it is also irreducible. The basic reproduction number R0 is the dominant
eigenvalue of K.
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First assume that hosts do not infect hosts and that vectors do not infect vectors. We then have
K ¼
0 k12

k21 0

� �
; R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k12k21

p
.

Suppose we concentrate control effort on the host. For example we vaccinate a fraction v of sus-
ceptible hosts with a perfect vaccine and k12 is linear in the number of susceptibles. We can then
calculate the reproduction number in the population where this control measure is active (Rv) as
the dominant eigenvalue of the matrix
Kv ¼
0 ð1� vÞk12

k21 0

� �
; Rv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� vÞk12k21

p
¼ R0

ffiffiffiffiffiffiffiffiffiffiffi
1� v
p

.

We then derive immediately that invasion of the infectious agent will be unsuccessful, i.e. Rv < 1
and a large epidemic will be prevented, if and only if
v > 1� 1

R2
0

.

We are interested in seeing what happens when an infection chain can cycle in one type before
going back to the other type. For example, if the agent could be transmitted vertically in the vec-
tor, we would have k22 > 0. This is assuming that vertically infected vectors are, epidemiologically
speaking, otherwise not different from horizontally infected vectors. The reason for making this
assumption is for expositional purposes only, when vertically infected vectors behave differently
(e.g. by having a longer infectious period, a lower life expectancy, et cetera), it makes more sense
to introduce them as a third type. We would then obtain a 3 · 3-matrix, see Roberts and Heest-
erbeek [1] for further details. The theory still holds, but as an example it is unnecessarily
complicated.

If we repeat the argument above with k22 > 0 we find
K ¼
0 k12

k21 k22

� �
; R0 ¼

1

2
ðk22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

22 þ 4k12k21

q
Þ.
and, for the control effort targeted at the hosts as before
Kv ¼
0 ð1� vÞk12

k21 k22

� �
; Rv ¼

1

2
ðk22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

22 þ 4ð1� vÞk12k21

q
Þ.
A large epidemic in the population will be prevented, i.e. Rv < 1, if
v > 1� 1� k22

k12k21

.

We then see that the simple relation with R0 that we had before no longer exists and that R0 can-
not be used to estimate the control effort needed. Furthermore, when the number of types
becomes larger than two, the next-generation matrix generally does not lead to convenient explicit
expressions for R0. Note that when k22 > 1, i.e. when the vector population alone is capable of
sustaining the agent, then no amount of control effort devoted to the host population will prevent
invasion.
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3. The type-reproduction number T

When we have n types of epidemiologically distinct host types, we define the type-reproduction
number T as
Fig. 1
squar
indivi
squar
T ¼ e0KðI � ðI � P ÞKÞ�1e
where I is the identity matrix, e is the first unit vector and P is the projection matrix on type 1 (i.e.
p11 = 1, and pij = 0 for all other entries). We refer to Roberts and Heesterbeek [1] for the deriva-
tion of the main property
T < 1() R0 < 1
provided K is irreducible. A few remarks are in order:

• The interpretation of T is as follows: it is the expected number of cases in individuals of type 1,
caused by one infected individual of type 1 in a completely susceptible population, either
directly or through chains of infection passing through any sequence of the other types. The
picture in Fig. 1 illustrates this.

• Generalisations to other subsets of more than one type at which the same control method is
targeted are possible, see Roberts and Heesterbeek [1].

• The derivation of the explicit expression is given in [1]. In brief: Ke is the second generation
vector of infecteds if we start with one infective of type 1 in generation 1. Of these we trace fur-
ther any type except type 1. The third generation is then given by K(I � P)Ke, leading to
e 0K(I � P)Ke expected cases of type 1 in that generation. If we do this for infinitely many gen-
erations we obtain a series that, when it converges, converges to the expression given above.
The requirement for convergence is that the spectral radius of (I � P)K is less than 1. In words
this means that T is well defined if the types 2, . . . ,n, at which the control effort is not aimed,
cannot sustain an epidemic by themselves. Note that if these types could sustain the agent, then
no amount of control effort aimed at type 1 alone would be able to prevent an epidemic.
. Schematic definition of the type-reproduction number T. Infected individuals of type 1 are indicated by black
es, infecteds of type 2 by white squares. Shown are the first generations of the epidemic tree emanating from one
dual of type 1, where the branches from any new infections of type 1 that arise are cut. For T we count all black
es arising in this way, over all generations.
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Up to now we have concentrated on S-control: reducing the fraction of susceptibles of type 1
that are available for transmission from infecteds of all types in the population. Examples are vac-
cination, isolation, preemptive culling, prophylaxis. S-control reduces the number of cases in type
1 coming from all source types. For S-control with control effort v, we replace the elements of the
first row of the next generation matrix k1j with (1 � v)k1j for all j = 1, . . . ,n and 0 6 v 6 1. In gen-
eral one could say that S-control leads to a next-generation matrix Kv, and a corresponding type-
reproduction number. Direct calculation gives that this type-reproduction number is given by
Tv = (1 � v)T. The effort devoted to type-1 individuals alone is sufficient to prevent an epidemic
in the whole population when v is such that (1 � v)T < 1, and a large epidemic is therefore pre-
vented by S-control of type 1 only when
v > 1� 1

T
.

We recover in general the simple well-known formula, which in terms of R0 only holds for homo-
geneous populations. In fact for the simple example in Section 2 we have T = k12k21/(1 � k22).

There are different control options, however, which have other effects on the entries of the next-
generation matrix. In what we call I-control, control effort is aimed at the infecteds of target type
1. This class of control measure could increase the rate at which infected individuals of type 1 are
removed (either to a non-infectious state or removed completely from the system), or could pre-
vent them from transmitting infection. These methods therefore reduce the potential of type 1
infecteds to produce cases of all types. In an analogous way to our analysis of S-control, we
can say that with control effort w, we replace ki1 with (1 � w)ki1 for all i = 1, . . . ,n and
0 6 w 6 1. The two next generation matrices are equal when w = 0, and total control is achieved
when w = 1.
4. The case of I-control

In the simple host-vector example of Section 2 we can illustrate I-control by discussing control
efforts aimed at the vector population. Vectors are now type 1, hosts are designated by type 2.
Assume infected vectors have a removal rate l1 and produce b11 vertically infected offspring
per unit of time, and b21 infected hosts per unit of time. We can regard
ðKwÞi1 ¼
ð1� wÞbi1

l1

i ¼ 1; 2; 0 6 w 6 1.
Therefore
Kw ¼
ð1� wÞk11 k12

ð1� wÞk21 0

� �
.

The factor (1 � w) could represent, for example, an increase in the removal rate of infectives (i.e. a
shortening of the infectious period). We then have in mind that
ðKwÞi1 ¼
bi1

l1 þ q
i ¼ 1; 2;
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leading to the choice w = q/(l1 + q). For other examples, the control measure represented here
might be a quarantine policy that prevents a proportion w of contacts by infectives. Calculation
of T for the corresponding non-controlled matrix K leads to T = k12k21 + k11, and the type-repro-
duction number corresponding to Kw is Tw(1 � w)T. I-control effort aimed at type 1 alone is there-
fore successful if
w > 1� 1

T
.

For n types we obtain the same result. This can be seen as follows. The n · n matrix Kw and the
type-reproduction number is given by
T w ¼ e0KwA�1
w e
where Aw = I � (I � P)Kw and hence
Aw ¼

1 0 � � � 0

�ð1� wÞk21 1� k22 �k23 �k2n

..

.
�k32

. .
.

�kn�1;n

�ð1� wÞkn1 �kn2 � � � 1� knn

0
BBBB@

1
CCCCA.
It is therefore clear that the determinant D(Aw) is independent of w. Since we are only interested in
element (1,1) of KwA�1

w , we only need to know the first column of A�1
w . The first element of A�1

w is 1,
and therefore the first term of ðKwA�1

w Þ11 is (1 � w)k11. The only elements of Aw that depend on w
are the elements of the first column, apart from the first element, and all dependence is through
the multiplicative factor (1 � w). Therefore, all elements of the first column of A�1

w will have
(1 � w) as a factor, and consequently, all further terms of ðKwA�1

w Þ11 will have (1 � w) as a factor.
Together with the first term, and the fact that the first row of Kw does not depend on w apart from
the first term, we finally have that
T w ¼ ðKwA�1
w Þ11 ¼ ð1� wÞT
where T is defined as before, based on the corresponding matrix K in the absence of control.
It is clear that there are also control methods that would have effect on both the susceptibles

and the infecteds of type 1. In fact, vector control is likely not to distinguish between shortening
the life of infected or susceptible individuals. Control aimed at increasing the removal or death
rate of vector individuals, will also lower the demographic steady state of the susceptible vector
population. In terms of the above example, it will therefore also influence the element k12, since
this element describes the expected number of new cases among susceptible vectors, caused by one
infective host. One can easily check that looking at I-control of the vector, while taking the mul-
tiplicative effect on the susceptible vectors into account, can be incorporated in the above argu-
ments. The simple relations between the controlled and uncontrolled type-reproduction
numbers are lost, however, even in the simplest case of the vector-host example above. One
can check, for example, that the case
Kv;w ¼
ð1� wÞk11 ð1� vÞk12

ð1� wÞk21 0

� �
.
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has type-reproduction number Tv,w = (1 � w)(k11 + (l � v)k12k21), where one should remember
that now v and w are linked, and one cannot choose both freely. For example, when we have a
fixed vector birth rate b, leading to a demographic steady state b/l1 in the uncontrolled popula-
tion, we will have a steady state (1 � w)b/l1 in the case of additive vector control. We are then in
the above situation with v = w, leading to an equation that is in this simple explicit case already
quadratic in the control efforts w.
5. Discussion

We have shown that R0 is not the right quantity to look at if one wishes to obtain insight into
the control effort needed when targeting selected types of individuals in a heterogeneous popula-
tion. In the situation where we target one host type for control, the type-reproduction number T is
more closely related to the actual control effort required. T is the cumulative number of new cases
of type 1, per case of type 1, from all chains of infection with no intermediate cases of type 1. In a
homogeneous system R0 = T, but in a heterogeneous system the two quantities only share their
threshold behaviour at R0 = T = 1. We have seen that in the simplest setting of control, we obtain
explicit and simple relations between T and the control effort required, for two broad classes of
control effects, and we obtain the same relations for any finite discrete number of types in the
population.

When judging the effect of control measures one can of course also study the dominant eigen-
value Rv or Rw of the next-generation matrices Kv and Kw, respectively. The disadvantage of that
approach, however, is that for situations where more than two types are recognised, one cannot
get an explicit expression for the dominant eigenvalue (save for some special cases). We have
shown that the type-reproduction number T serves the same purpose, but that it is defined by
an explicit relation. Moreover, for simple control strategies, we find simple explicit relations be-
tween T and the control effort required, which cannot be obtained in terms of R0 when focussing
on the dominant eigenvalues.

We have focussed in this paper on simple relations where the effect of control effort v and w on
the generation factors kij can be written as a linear multiplicative factor. This is not a prerequisite
and other functional dependencies of the kij on control effort can be imagined for less idealised
control measures.

One use of the calculation of T could be to repeat the analysis for all host types, allowing all
types to become the target type for control and thus obtaining control efforts for all these cases
separately. This would allow comparison, for example with additional information on cost, of
the likely control targets and their relative efficacy.

We are able to look at n types of individual, but several important types of heterogeneity need a
continuous type space. While it is perfectly clear how the calculation of R0 generalises to that sit-
uation (see [2,3]), it is less immediate that the same holds for T (Barbara Boldin, unpublished
results). One needs to formulate the problem in a measure-theoretical sense; since we would no
longer be able to fix one target type for control, we would have to fix a set of positive measure.

Calculation of T could also be of benefit in the theory of matrix population models ([5]). Here
one could calculate T targeting conservation effort at various stages in the life cycle, or age classes,
to determine where the effort would have the most impact on the population growth rate.
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What is lacking at the moment is insight into ways in which a quantity like T could be estimated
from data. In the history of the basic reproduction number, it was certainly this aspect that
brought to R0 much wider applicability (see [4], for a historical account). We should investigate
whether T can be linked to directly measurable population or demographic parameters to obtain
estimates. It should be noted that these relationships exist for R0, but most rely on some assump-
tion of homogeneity (e.g. the inverse of the endemic fraction of susceptibles, the ratio of life expec-
tancy and average age at infection). For T we have, by definition, to deal with a heterogeneous
population, which makes the problem much harder.

In the case of T we have the idea to study realisations of epidemic trees from various data sets
to see whether estimates from these sources are possible and whether statistical techniques can be
developed to say something of their accuracy. Such data sets are becoming available in various
places where contact tracing is essential in targeting control, such as the 2001 FMD outbreak
in the United Kingdom (see [6]) and the world-wide SARS outbreak.
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