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We theoretically study the electrokinetic problem of a pressure-induced liquid flow through a narrow
long channel with charged walls, going beyond the classical Helmholtz-Schmolukowski picture by
considering the surprisingly strong combined effect of (i) Stern-layer conductance and (ii) dynamic charge-
regulating rather than fixed surface charges. We find that the water flow induces, apart from the well-known
streaming potential, also a strongly heterogeneous surface charge and zeta potential on chemically
homogeneous channel walls. Moreover, we identify a novel steady state with a nontrivial 3D electric flux
with 2D surface charges acting as sources and sinks. For a pulsed pressure drop our findings also provide a
first-principles explanation for ill-understood experiments on the effect of flow on interfacial chemistry
[D. Lis et al., Science 344, 1138 (2014)].
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The flow of water along a solid surface such as glass,
rock, or an electrode is of profound interest in fields as
diverse a geosciences (rivers, erosion) [1], oil-field engi-
neering (enhanced oil recovery) [2], and micro- and nano-
fluidics. The Poiseuille flow through a long channel due to
a pressure drop between inlet and outlet is a textbook
example, in which the stationary Navier-Stokes equation
with no-slip boundary conditions on the channel surface
gives rise to a parabolic flow profile (represented in Fig. 1)
that is proportional to the pressure drop. In many cases
relevant for, e.g., microfluidics and blue-energy harvesting
[3,4], however, a liquid flow induces a much richer
phenomenology, often due to surface charges on the
channel walls that interact with the ionic species in the
liquid. In such a channel an applied pressure drop does not
only induce a fluid flow but also a net electric current due to
advection of the so-called electric double layer (EDL),
which is the diffuse layer of mobile ions that screen the
electrode in the nanometer vicinity of the charged surface.
In closed-circuit conditions this so-called “streaming cur-
rent” can persist in a stationary state, but in open-circuit
conditions it leads to the buildup of net charge and hence a
potential difference between the outlet and the inlet of the
channel, the so-called “streaming potential” ΔΦS derived
long ago by Helmholtz [5] and Smoluchowski [6], as

ΔΦS ¼
−ζϵ
ηG

Δp: ð1Þ

Here ζ is the (zeta) potential at the slipping planes, ϵ and η
the dielectric permittivity and the shear viscosity of the
liquid, respectively, and Δp the pressure drop that drives

the Poiseuille flow. The total channel conductivity G ¼
Gb þ 2Gs=H of a channel of height H is well known
to consist not only of a bulk contribution Gb but also
of two surface contributions Gs=H to account for
conduction processes close to the channel surfaces [7].

FIG. 1. Streamlines of the net charge flux and color map of the
tangential electric field Ex near the charged surfaces (green
stripes) of a rectangular channel with a pressure drop Δp ¼ 0.5
bar between inlet and outlet at x ¼ �L, (a) with vanishing Stern-
layer conduction (Ds ¼ 0) resulting in a fixed surface charge of
−eσeq ¼ −0.069 e=nm2 that mimics silica at pH ¼ 6.5, and in
(b) with nonzero Stern-layer conductance and our dynamic
charge regulation model. (c) Flow-induced heterogeneous surface
charge density σðxÞ and surface charge flux −ejσ for Δp ¼ 0.1,
0.5 bar for the parameters of the case of (b).
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The dimensionless Duhkin number Du ¼ Gs=GbH charac-
terizes the relative importance of the surface-to-bulk con-
duction [7]. It is important to realize that Gs ¼ Gd

s þ GS
s

not only contains a contribution Gd
s from the relatively high

density of charge carriers in the diffuse part of the EDL, as
first recognized by Bikerman in 1933 [8,9], but also a
contribution GS

s from the quasi-2D Stern layer where the
surface charges reside [10]. In fact, a substantial body of
literature exists that not only confirms the finite charge
mobility in the Stern layer for different types of (insulating)
materials such as PMMA, silica or clay [11–16], but even
that the in-plane charge mobility is comparable to the
mobility of simple ions in bulk electrolytes [11,17,18].
The lateral conductance in the Stern layer is the first key
ingredient of this Letter.
Equation (1) stems from a linear-response analysis, in

which the prefactor −ζϵ=ηG is assumed to be a constant
for a given channel and transported fluid. Motivated by
inherently heterogeneous biological surfaces and by micro-
fluidic applications with patterned electrodes, extensions
towards periodic [19] and steplike [20] variations of ζ were
considered. Heterogeneity of ζ not only leads to normal
components of the ionic fluxes [19,20], but also to the
notion of the so-called healing length l ¼ Gs=Gb ¼ HDu
as the governing lateral length scale [20]. However, in this
Letter we will for the first time show that defect-free and
unpatterned surfaces, charged over a finite length, can
exhibit flow-induced heterogeneities with the surface
charge density and the zeta potential varying over the full
length of the charged surface, even if Du ≪ 1. Here one
should realize that most surfaces in contact with water do
not have a fixed charge but obtain their net charge by
regulation processes, in which, for instance, a fraction f of
the neutral surface groups SC dissociates into a covalently
bound negatively charged surface group S− and a released
cation Cþ. The reaction SC⇌S− þ Cþ is characterized by
an equilibrium constant K, which together with the Cþ
concentration at the surface ρC;s determines the equilibrium
Langmuir desorption isotherm f¼ð1þρC;s=KÞ−1 [21–23].
Although the importance of charge regulation was indeed
recognized in earlier works on the electrophoresis of
colloidal particles, the underlying equilibrium Langmuir
desorption isotherm has so far always been assumed
[24,25]. In this Letter we will introduce out-of-equilibrium
charge regulation as a second key ingredient, in which the
rates of adsorption (kads) and desorption (kdes) play a key
role individually rather than only their ratio K ¼ kdes=kads.
In fact, by tuning the chemical rates to the reaction-limited
regime, we will see that our theory provides a natural
first-principles explanation for puzzling recent experiments
that show a profound influence of a fluid flow on the
interfacial chemistry [26], provided Stern-layer conduction
and out-of-equilibrium charge regulation are taken into
account simultaneously. We expect that this intricate inter-
play between dynamic charge regulation and Stern-layer

conduction will play an equally important role in many
nanoflow problems of recent interest [4,27–29].
The system we consider in this Letter, sketched in Fig. 1,

consists of two bulk aqueous reservoirs connected by a
wide rectangular channel of length 2L and height H, with
lateral and normal Cartesian coordinates x ∈ ½−L;L�,
z ∈ ½0; H�, and with translational invariance in the lateral
y direction. The reservoirs contain three monovalent ionic
species labeled by i ¼ þ;−; C, with valency zþ ¼ zC ¼
−z− ¼ 1 and with bulk concentrations ρi;b, satisfying
neutrality

P
iziρi;b ¼ 0. The Debye screening length is

given by λD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵkBT=e2

P
iz

2
i ρi;b

q
, with kB the Boltzmann

constant, T the temperature, and e the proton charge.
We denote the time- and position-dependent ionic

density profiles and fluxes (actually flux densities) by
ρiðr; tÞ and Jiðr; tÞ, respectively, the electric potential by
ψðr; tÞ, the (identical) surface charge density in the planes
z ¼ 0 and z ¼ H by −eσðx; tÞ, and the fluid velocity profile
by uðr; tÞ. The ion flux Ji is composed of diffusive,
conductive, and advective contributions, and is related to
∂tρi by the continuity equation. The Poisson equation
accounts for Coulomb interactions, and the incompressible
Navier-Stokes equation, including an electric body force
and a pressure gradient ∇p, describes the fluid flow.
Collecting all this we obtain the well-known Poisson-
Nernst-Planck-Navier-Stokes (PNPNS) equations [30] with
Gauss’s law and no-slip boundary conditions:

∂ρi
∂t ¼ −∇ · Ji; Ji ¼ −D

�

∇ρi þ
eziρi
kBT

∇ψ

�

þ ρiu;

m
∂u
∂t ¼ −mðu · ∇Þu −∇pþ η∇2u −

X

i

zieρi∇ψ ;

∇ · u ¼ 0; ∇2ψ ¼ −
e
ϵ

X

i

ziρi;

us ¼ 0; ns ·∇ψ s ¼
eσ
ϵ
: ð2Þ

HereD is the diffusion constant, assumed to be equal for all
ion species, andm is the mass density of water. Throughout
this Letter the subscript s denotes a surface quantity; e.g.,
us is the fluid velocity at the surface and ns is the unit
surface normal pointing into the water.
The standard PNPNS equations [Eq. (2)] are to be

contrasted with the novel boundary conditions that we
impose in this Letter, where we describe regulation of the
surface charge σ combined with Stern-layer conductance
[31]. The bottom and the top surfaces each contain an
identical, chemically homogeneous patch for x ∈
½−L=2; L=2� that can become negatively charged due to
the desorption reaction SC⇌S− þ Cþ. Therefore, a non-
vanishing cationic counterion flux −ns · JC;sðxÞ entering
the surface is possible, whereas the other two ionic species
� are chemically inert and satisfy the no-flux boundary

PHYSICAL REVIEW LETTERS 120, 264502 (2018)

264502-2



conditions ns · J�;s ¼ 0. Within the Stern layer we intro-
duce the lateral (surface) current −ejσðxÞ, satisfying the
continuity equation for the surface charge density as

∂σ
∂t ¼ −

∂jσ
∂x þ ns · JC;s; ð3Þ

which explicitly couples the 3D flux of cations as a source
term for the 2D surface density. We describe the net flux of
Cþ towards the surface in terms of simple reaction kinetics
with an adsorption flux kadsσρC;s and a desorption flux
kdesðΓ − σÞ, with Γ the total number of chargeable sites per
unit area. Additionally, we assume a Nernst-Planck-like
equation for jσ, with a diffusive and a conduction con-
tribution, where the former is modified to account for
forbidden multiple adsorption and desorption on a single
site [35]:

jσðxÞ ¼ −Ds

�
1

1 − σ=Γ
∂σ
∂x −

eσ
kBT

∂ψ s

∂x
�

; ð4Þ

−ns · JC;s ¼ −kdesðΓ − σÞ þ kadsσρC;s; ð5Þ

where Ds is the surface diffusion constant, which we have
seen to be comparable to the bulk diffusion coefficient D.
If we impose static equilibrium conditions, in particular
JC ¼ 0, Eqs. (3)–(5) reduce to the standard Langmuir
desorption isotherm where σ=Γ equals the fraction f of
charged sites introduced above [36]. In the case of a
pressure-induced flow, however, the streaming potential
generates an in-plane electric field component ∂xψ s, which
according to Eq. (4) not only drives a finite jσ ifDs ≠ 0, but
for a charge-regulating surface also a finite ns · JC;s and a
surface heterogeneity ∂xσ according to Eqs. (3) and (5).
As a consequence the zeta potential ζðxÞ ¼ ψðx; 0Þ −
ψðx;H=2Þ becomes heterogeneous too, and hence a non-
trivial self-consistency problem emerges in which the
streaming potential not only determines ζðxÞ but also
depends on it [see, e.g., Eq. (1)]. Interestingly, this flow-
induced surface heterogeneity does not require relatively
narrow channels or high Du.
We solve the set of nonlinear equations (2)–(5) numeri-

cally using the Finite-Elements software COMSOL

MULTIPHYSICS. For computational reasons we take at each
side of the chargeable surface an uncharged patch of length
L=2 to allow entrance and exit effects on the fluid flow
driven by a pressure drop Δp to essentially die out [37].
Because of the crucial role played by the chemical reaction,
we must fully resolve the EDL in order to accurately
determine ρC;s. The thin-EDL approximation [30] is
therefore not possible here. In this Letter we choose
parameters that represent silica at pH ¼ 6.5, such that
−log10ρC;bðMÞ ¼ 6.5, Γ ¼ 4.6 nm−2, and pK ¼ 6.75 (an
average over the widely varying reported values [38–40]),
with millimolar added salt concentrations ρ�;b ≃ 1 mM

such that λD ¼ 10 nm. The single reaction mechanism
assumed here is actually too simple to capture the behavior
of silica quantitatively, but it serves our purposes here as a
generic case. Under these conditions, the equilibrium
surface charge and potential are −eσeq ¼ −0.069 e=nm2

and ζeq ¼ −93 mV. Throughout we set D ¼ 10−9 m2=s
such that Gb ¼ 7.5 mS=m and Gd

s ≈ 1.2 nS [41]. In agree-
ment with Stern-layer mobilities discussed above, we either
set Ds ¼ D or Ds ¼ 0 to study presence or absence of
Stern-layer conductance, respectively. We furthermore
focus on a channel height H ¼ 1 μm; i.e., H ≫ λD and
Du ≃ 0.16. Apart from the channel length L, the only
remaining system parameter is the timescale of the adsorp-
tion-desorption process, which will be fitted to experiments
below. For computational efficiency we set kdes ¼
2 × 10−4 s−1 for now, which is comparable to certain
photocatalytic rates [42] and comfortably in the reaction-
limited regime, as we will see.
In Fig. 1 we show the steady-state field lines of the ionic

charge flux Je ¼
P

iziJi and a color map of the x
component of the electric streaming field Ex for a channel
of height H ¼ 1 μm and total length 2L ¼ 60 μm, and a
pressure drop Δp ¼ 0.5 bar, in Fig. 1(a) without
Stern-layer conduction (Ds ¼ 0), and in Fig. 1(b) in the
presence of both Stern-layer conduction (Ds ¼ D) and
charge regulation. The resulting maximum fluid velocity is
approximately 0.1 m=s, 3 orders of magnitude higher than
the elecotro-osmotic slip velocity induced by the electric
field; i.e., the body forces [last term Navier-Stokes Eq. (2)]
are negligible [43]. A striking difference between Figs. 1(a)
and 1(b) is nonparallel field lines in Fig. 1(b), even far
outside the EDL, and a much weaker electric field
especially for x ∈ ½−L=2; 0� in Fig. 1(b). We can trace
these two features back to a nonzero surface current jσðxÞ
and a strong heterogeneity of the surface charge profile
σðxÞ; both extend over the full width L as shown in
Fig. 1(c). This shows that, in addition to the inherent
heterogeneities of silica in equilibirum conditions [44],
surfaces can exhibit dynamical heterogeneities. We note
that the diffusive and conductive contributions to jσ [see
Eq. (4)] are counteracting and individually 3 orders of
magnitude larger than jσ; i.e., both are essential to obtain
this steady state. The near cancellation is the cause of the
numerical noise observed for jσ, and furthermore leads to
the surprising conclusion that the effects persist even for
Du ≪ 1 [45]. Figure 1(b) also shows that Je and Ex depend
not only on z but also on x, even far outside the EDL. Note
that a lateral heterogeneous charge current has also been
reported in the case of a (highly conducting) metallic
surface [46].
For Δp ¼ 0.1 bar, the heterogeneous profile σðxÞ shown

in Fig. 1(c) is essentially linear in x, locally lower (higher)
by about �25% of σeq at the inlet (outlet) side of the
chargeable area. For Δp ¼ 0.5 bar; however, σðxÞ is
strongly nonlinear with deviations ranging from −75%
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to as high as þ100% from σeq at the edges. In equilibrium,
such a change in the surface charge would correspond to a
pH varying between 4.9 and 7.4, i.e., concentrations of Cþ
that are a factor of 10 higher and lower. The laterally
averaged charge in this case decreases to a value as low as
hσi ¼ 0.7σeq. Additionally, hζi also decreases, which
causes a breakdown of Eq. (1) [47]. Therefore, the local
as well as the average surface charge are not at all (quasi)
static quantities, but fully dynamic properties of the solid-
fluid interface that can be tuned by the fluid flow in the
channel. The sharp peaks of σ at x ≃�L=2 in Fig. 1(c) are
expected in a range of λD next to an uncharged area [48].
We can identify four different timescales that govern the

dynamics of this system: (i) the EDL diffusion time
τdif ¼ λ2D=D, which is only about 100 ns for our parameter
choice; (ii) the advection time τadv ¼ L=uxðλDÞ for an ion
in the EDL to be advected parallel to the surface over a
distance L, of the order of ms in all cases studied here;
(iii) the conduction time τcond ¼ Lσeq=jσ for a charge in the
Stern layer to traverse a lateral distance L, which is of the
order of seconds here; and (iv) the chemical reaction time
τreac ¼ ðkadsρC;sÞ−1 [49] of the order of an hour here. We
found that significant heterogeneities only occur if τreac
exceeds the three others, i.e., if the system is in the reaction-
limited rather than in the diffusion-, advection-, or con-
duction-limited regime. This can be qualitatively under-
stood, e.g., if τreac ≪ τcond chemical equilibration would
take place before any conductive flux can develop. Note
also that τcond ∝ D−1

s confirms the crucial role played by a
finite surface conduction, since Ds ¼ 0 would cause the
system to be conduction rather than reaction limited. As
long as this ordering of timescales is obeyed and
Ds=D ¼ Oð1Þ, as noted already on the basis of
Refs. [11,17,18], the exact value of Ds has no significant
effect on the presented results.
So far we have seen that the stationary state of a charge-

regulating and conducting surface exposed to a fluid flow
becomes heterogeneously charged in a stationary state. In
an exciting experiment in 2014, however, the full relaxation
dynamics of the surface charge of silica upon an applied
water pressure pulse was measured in an experiment that
combines microfluidics and sum frequency generation
(SFG) [26], albeit only at the central position (here
x ¼ 0) in the channel. By ruling out alternative interpre-
tations the authors of Ref. [26] attribute their time-
dependent SFG signal to a time-dependent surface charge
σðx ¼ 0; tÞ. Here we confirm this interpretation by showing
that our theory provides a microscopic explanation for the
time dependence of the surface charge, which in the
experiments (see inset Fig. 2 or Fig. 2(d) of Ref. [26])
consists of a quasi-instantaneous initial reduction by 40%
(on the timescale of seconds) upon switching on the flow
followed by a further reduction by an additional 10% on the
timescale of minutes, and upon switching off the flow a
very slow relaxation (on the timescale of tens of minutes)

back to equilibrium. In Fig. 2 we show a time-dependent
pressure pulse (blue) similar to the experimental one as
well as the surface charge density σðx ¼ 0; tÞ (red) that
follows from our theory. Here we use the same silica
parameters and bulk concentrations as before in Fig. 1(b),
again at pH ¼ 6.5 but now with the desorption rate kdes ¼
6 × 10−6 s−1 as the only “fit” parameter. This corresponds
to τreac ¼ 1.7 × 103 s, which sets the transient behavior of
σð0; tÞ. This is also consistent with the observation that σ
remains constant during such a pressure pulse for larger
ρC;b, since τreac ∝ ρ−1C;b, such that the system is no longer
reaction limited for increased counterion concentration.
The channel dimensionsH ¼ 1 μm and L ¼ 40 μm are for
computational reasons smaller than in the experiment,
although the aspect ratio is the same. We checked that
this time dependence is hardly dependent on L and H for
fixed pressure drop amplitude Δp ¼ 0.5 bar and aspect
ratio L=H ¼ 40 [50]. The similarity between the time-
dependent experimental SFG signal and σðx ¼ 0; tÞ=σeq is
striking, except perhaps for the strong short-time relaxation
immediately after switching off the flow, which is present
in our calculations (see Fig. 2) but absent in the experiment
(inset). For comparison, Fig. 2 also shows the surface
charge for the case of a nonconducting Stern layer with
Ds ¼ 0 (dotted red), which is virtually indistinguishable
from σeq. By increasing the desorption rate, such that the
system becomes less reaction limited, the transient behavior
speeds up and the steady state approaches the equilibrium
state, as can be observed from the dashed line in Fig. 2 [51].
In conclusion, we apply the classical PNPNS equa-

tions (2) to pressure-driven flow through a channel with

FIG. 2. Time-dependent pressure drop ΔpðtÞ (blue) in a
channel of dimensions H ¼ 1 μm and L ¼ 40 μm, together with
the resulting surface charge σðx ¼ 0; tÞ in the middle of the
channel, for a silica surface at pH ¼ 6.5 (see text) with
desorption rate kdes ¼ 6 × 10−6 s−1 (τreac ¼ 1.7 × 103 s) (red),
to be compared with experimental data (in arbitrary units) of
Ref. [26] shown in the inset. The red dotted line shows the case of
a nonconducting Stern layer withDs ¼ 0, and the dashed line the
case with desorption rate kdes ¼ 0.2 s−1 (τreac ¼ 0.05 s).
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newly formulated boundary conditions for out-of-
equilibrium charge regulation and a conducting Stern layer.
For realistic system parameters, in particular for silica
surfaces, this theory predicts a strong flow-induced hetero-
geneity of the surface charge and the zeta potential, even
for a chemically homogeneous silica surface with Du ≪ 1.
The traditional Helmholtz-Smoluchowski relation Eq. (1)
for the streaming potential, which assumes a laterally
constant zeta potential, breaks down for these regulating
and conducting surfaces, provided the system is reaction
limited; i.e., the chemical reaction is the slowest process.
In this reaction-limited regime, a nonzero conductive flux
in the Stern layer must be largely compensated by an
opposite diffusive surface flux (i.e., by a heterogeneous
surface charge) in order to prevent steady-state charge
accumulation at the edges due to slow reaction kinetics.
The resulting surface charge profile has a reduced lateral
average hσi compared to equilibrium. Our theory also
provides a microscopic picture for measurements on the
full time dependence of the relaxation dynamics of the
surface charge after switching on and off a tangential flow
[26]. We have therefore shown that the combination of a
nonzero surface conduction and (s)low chemical adsorption
and desorption rates can have dramatic impact on the
interpretation of electrokinetics in micro- and nanofluidic
experiments, for which the surface charge and zeta poten-
tial are a vital component. We expect that these or similar
mechanisms also play a role in electro-osmotic and
diffusio-osmotic phenomena, which are interesting topics
for future research in the context of, e.g., blue-energy
harvesting [3,4] and catalysis [52].
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