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Moreover, prediction models are often used to recommend treatment for individuals with 

a risk estimate above a certain risk threshold, and no treatment otherwise. However, when 

there are competing prediction models for the same targeted population, but predicting a 

different (composite) endpoint, the models’ predicted risks have different interpretations and 

may require different decision making and management. Indeed, the same individuals can 

be classified differently according to their predicted risk by different models.

Another complicating factor is that a classical prospective study to assess the impact of the 

use of prognostic prediction models is often cumbersome. Ideally a comparative randomized 

design is used where healthcare providers are randomized to either use or not use of the 

prediction model under study. However, depending on the prediction model and time needed 

to follow-up, such a study is often time consuming, costly and actual health effects are hard 

to measure in case of long term outcomes.

The aim of this thesis is to explore the challenges in research on the impact assessment of 

prediction models, and to provide solutions for these challenges. The thesis is separated in 

two parts. First, the challenges of using different endpoints in competing prediction models 

for the same targeted population are described. Second, challenges in the design of impact 

assessments of prediction models are presented.

Chapter 2 describes the complexity of estimating the burden of cardiovascular disease in a 

Dutch population cohort based on four different prognostic prediction models with varying 

endpoints. Chapter 3 describes how the use of different prediction models with varying 

endpoints may lead to different treatment recommendations. Chapter 4 describes how 

the decision for preventive treatment for CVD based on predicted probabilities of prediction 

models may be optimized by explicitly considering the expected burden of the long term 

endpoints at different ages in the prediction calculations.

As the use of long term randomized studies for impact assessment of prognostic prediction 

models is often not feasible, other methods to assess the impact of a prediction model 

are required. One alternative is to perform a decision analytical modelling approach. This 

approach is less time consuming and costly. However, it requires the availability of sufficient 

high-quality data and evidence on various aspects. Chapter 5 describes the development 

of a decision analytic model to explore key elements of evidence in the impact assessment 

Since crystal balls do not exist, risk prediction models are often used to assist in medical 

decision making. Diagnostic models estimate the risk of current presence of a certain 

outcome (e.g. disease) whereas prognostic models estimate their future presence [1, 2]. The 

Pooled Cohort Equations, the Framingham risk score, and SCORE risk chart are examples 

of prognostic prediction models that may be used to estimate the risk of experiencing a 

cardiovascular event in the future [3-5]. In Dutch general practices for example, the SCORE 

risk chart is advocated and mostly used. A general practitioner determines the risk profile of 

an individual based on various characteristics (e.g. age, gender, smoking behaviour, blood 

pressure and cholesterol levels) to estimate the 10-year cardiovascular disease (CVD) risk. 

[6, 7]. According to CVD guidelines, individuals at elevated risk are recommended to use 

preventive medication in order to reduce their risk of CVD events [6, 7].

Over the last decades, in all medical domains, risk prediction models have been researched 

extensively, resulting in ten thousands of newly developed and updated prediction models. 

An underlying assumption of this research is that any new or updated model with a better 

predictive performance, indeed leads to improved health outcomes and lower health care 

costs since individuals with elevated risks are identified and treated more precisely and 

timely. However, this is not always the case. It is always important to investigate how the 

use of the model affects actual medical decision making and behaviour [8, 9]. After all, 

individuals’ health outcomes, health care provision, and its costs are only impacted by the 

actions that are taken following the use of the prediction model to estimate risks. The use 

of a prediction model itself is often relatively inexpensive, although it sometimes requires 

input based on various laboratory, imaging or even genetic tests, which obviously have costs 

associated with them.

Impact assessment of prediction models, both on decision making behaviour and on even-

tual health outcomes and care, is complex and rarely performed [9, 10]. One complicating 

factor is that prediction models may predict multiple endpoints, using a so-called composite 

endpoint. The predicted risks are thus related to a combination of endpoints, which each in 

turn have different associated health outcomes and costs. For example, the consequences 

of a stroke versus myocardial infarction, both often combined in the prediction of CVD 

events, differ substantially.
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of a prediction model-based CVD prevention strategy in young individuals. In Chapter 6, 

this model is applied in a full cost-effectiveness analysis of CVD prevention strategies in 

young women with a history of preeclampsia. In Chapter 7, we describe the added value 

of performing a decision analytical model approach to optimize the design of a planned 

randomized trial investigating the use of CVD risk prediction in an emergency care setting.

Finally, in Chapter 8, we describe the advantages and disadvantages of performing a 

decision analytical model approach to assess the impact of prediction models, along with 

case studies and recommendations.
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1. INTRODUCTION

Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality 

worldwide [1]. The annual number of CVD related deaths is expected to increase from 17.5 

million in 2012 to 23.3 million by 2030 [2]. The burden of disease including all CVD related 

health loss gives an indication of the overall health loss due to CVD in the population. 

This CVD burden can also be interpreted as the maximum health gain achievable by 

any preventive CVD intervention, such as lifestyle improvements, and pharmacotherapy. 

To increase the effectiveness of prevention strategies, these are increasingly based on 

CVD risk stratification, i.e. CVD risk prediction models are used to allocate individuals 

to predefined risk categories to tailor preventive interventions. Numerous CVD risk 

prediction models have been developed for individualized CVD risk prediction and risk 

classification [3-5]. For example, the Framingham risk equation classifies individuals with 

a ≤ 20% 10-year CVD risk as low risk, and individuals with a > 20% 10-year CVD risk 

as high risk, whereas the Pooled Cohort Equation (PCE) uses a 7.5% 10-year CVD risk 

threshold instead of 20% [3, 6]. These prediction models can be used to estimate the risk 

of CVD for individuals, but can also be used to estimate the CVD burden in (sub)groups of 

individuals, for example, in individuals classified as high-risk [7, 8]. CVD burden estimates 

can be derived by simply aggregating all risk estimates of individuals in the (sub)group to 

get the expected total number of CVD events in that (sub)group. As long as the prediction 

model used is calibrated to (sub)group of individuals, the total number of CVD events can 

be validly estimated by the sum of the individual risk estimates. Estimating the expected 

CVD burden then requires deriving the expected health loss caused by these CVD events. 

For example, experiencing a stroke may persistently lower quality of life, or even lead to 

death. However, different CVD risk prediction models may predict different CVD events. 

In fact, these models are commonly developed based on composite endpoints, including 

multiple and different types of CVD events. For example, one CVD risk prediction model 

may predict only (fatal or non-fatal) stroke, whereas another may predict only (fatal and 

non-fatal) myocardial infarction (MI). Often, even more complex composite endpoints are 

used, in which >10 different types of CVD events are combined. The use of composite 

endpoints may be favourable from a clinical perspective, because it is more relevant 

to predict a range of CVD related events rather than a single event, and may increase 

statistical power [9]. However, the use of complex composite CVD endpoints makes it 

hard to estimate the health loss related to that endpoint, unless the included, separate 

ABSTRACT

Objectives: To explore the extent of the differences in definitions of composite endpoints 

and assess how these differences influence estimates of CVD burden.

Study design and settings: Data from a Dutch cohort study (n=19,484) were used to 

calculate 10-year risks according to four CVD risk prediction models: ATP-III, Framingham 

(FRS), Pooled Cohort Equations (PCE) and SCORE. Health loss was estimated based on 

the impact of event types included in the corresponding composite endpoints. Finally, each 

prediction model was used to estimate the expected CVD burden in high-risk individuals, 

expressed as Quality-Adjusted Life Years (QALYs) lost.

Results: The definition of the composite endpoints varied widely across the four models. 

FRS predicted the highest CVD risks and the composite endpoint used in SCORE was 

associated with the highest health burden. The predicted CVD burden in high-risk individuals 

was 0.23, 0.74, 0.43, and 0.39 QALYs lost per individual when using ATP, FRS, PCE and 

SCORE, respectively.

Conclusion: The investigated CVD risk prediction models showed huge variation in definition 

of composite endpoints and associated health burden. Therefore, health consequences 

related to predicted risks cannot be readily compared across prediction models, and 

estimates of burden of disease depend crucially on the prediction model used.
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We compared the composite endpoints of the seven CVD risk prediction models using a large 

population cohort (MORGEN) in the Netherlands. The MORGEN cohort includes men and 

women aged 20 to 74 years at baseline, recruited from the general population between 1993 

and 1997 [17]. After a follow-up time of 10 to 15 years (average 12.3 years), participant information 

on vital status, cause of death and comor bidity was obtained through municipal registries, 

Statistics Netherlands, and from the National Medical Registry (NMR), respectively. To apply 

the prediction models, information on both the recruitment and follow-up was required, leaving 

19,484 individuals with adequate data from the original cohort for the analysis. Information on 

the composition of this cohort and exclusion criteria for the current use of co hort data can be 

found in Appendix B.

To investigate the constitution of the composite endpoints, the observed rates and distributions 

of the individual components were determined for each model separately, using the set of ICD-10 

codes comprising the composite endpoint (Appendix B). As the different prediction models have 

different composite endpoints, whether individuals are registered as experiencing a CVD event 

thus depends on the applied prediction model. Furthermore, due to censoring mechanisms that 

vary per prediction model, the observed rate for a specific CVD event may also vary per prediction 

model. Interpretation of a first and secondary event within individuals depends on whether such 

event is included in the composite endpoint of each prediction model.

2.2 Consequences of dissimilarities in composite endpoints

Assessment of dissimilarities in the consequences of the composite endpoints requires 

estima tions of the predicted risks and consequences of the included individual components. 

As evidence on certain risk factors, such as family history of CHD, C-reactive protein and 

social deprivation, was not available within the MORGEN cohort, the predicted risks accord-

ing to prediction model QRISK, PROCAM and Reynolds could not be estimated. Hence, these 

three models were excluded from further analyses. To assure accurate predicted risks, we 

first validated and recalibrated the remaining four CVD risk prediction models ATP, FRS, PCE 

and SCORE to the cohort data. For the survival data (time-to-event data) considered in this 

study, recalibrating a prediction model typically involves updating the baseline hazard and 

adjusting the mean values of the predictors (the linear predictor of the “average” patient) 

[18]. Note that this was only to ensure that the model was well fitted, as we do not focus on 

statistical performance.

CVD events are considered. When, in addition, different CVD risk prediction models use 

different composite endpoints, this would further complicate the robust assessment of 

the expected CVD burden in (sub)groups of individuals.

To explore the extent of this problem, the expected CVD burden is estimated in a large cohort 

using four widely used CVD risk prediction models. Firstly, we investigate the definition and 

constitution of the composite endpoints used in these CVD risk prediction models. Secondly, 

we estimate the CVD risk for all individuals in the cohort, and the health loss of the CVD 

events included in the composite endpoint, for each prediction model. Finally, we assess 

how the identified differences in composite endpoints in the prediction models considered 

influence the estimated CVD burden in this cohort.

2. METHODS

2.1 Constitution of composite endpoints in MORGEN

Seven widely used CVD risk prediction models were initially selected for this study: Adult 

Treatment Panel III (ATP), Framingham Global Risk Score (FRS), Pooled Cohort Equations 

(PCE), SCORE-low (SCORE) model, PROCAM, QRISK and Reynolds risk score [3, 10-16]. The 

models were chosen based on their largely overlapping subsets of easy to measure and 

frequently available risk factors, e.g. gender, age and systolic blood pressure. Furthermore, all 

models were derived from general population cohorts. All prediction models except SCORE 

are Cox proportional-hazards (PH) regression models, i.e. semi parametric survival models 

where the form of the baseline hazard is not specified. The SCORE model is a Weibull model, 

i.e. a fully parametric survival model. More information on these CVD risk prediction models 

can be found in Appendix A). All models estimate the absolute risk of a composite endpoint, 

occurring within 10 years. The exact definition of the composite endpoint was identified from 

background articles for each prediction model [3, 10-16] and translated in terms of ICD-10 

codes for each model (see Appendix B).
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CVD events were linked to corresponding utilities. Furthermore, information from Statistics 

Netherlands was used to determine the survival rates per gender and age category, for the 

years 2007-2012, after excluding mortality due to CVD events. These survival probabilities 

were applied to establish the average life expectancy per gender and for each age category, 

in absence of CVD.

Furthermore, for simplification, a persistent, lifetime impact of events was estimated based 

on the observed QoL following (partial) recovery of a CVD event (see Appendix C). The 

occurrence of multiple (recurrent) CVD events or other diseases was not taken into account. 

In addition, it was assumed that the CVD events (according to the predicted risks) occurred, 

on average, after five years (for details see Appendix C).

The overall estimated CVD burden of disease was assessed by combining predicted absolute 

(individualized) risks of an event with the consequences of the composite endpoint. The 

estimated overall CVD burden from each prediction model gives an indication of the expected 

health loss due to CVD events per individual, and can also be interpreted as the maximum 

health gain achievable by any preventive CVD intervention, according to the corresponding 

prediction model. In addition to assessing the CVD burden based on the consequences of 

the composite endpoint as defined per model, this burden was also assessed using the 

most comprehensive endpoint used in the four models.

The selected prediction models all result in a predicted risk for a 10-year time horizon, 

therefore follow-up time was truncated at 10 years prior to validation, recalibration and 

subsequent analyses. The overall performance of the original and recalibrated models 

was expressed in the Brier Score [18]. Furthermore, the calibration of both the original and 

recalibrated models was assessed and expressed in terms of a cali bration plot, including 

estimating the slope and intercept of each plot, and Hosmer-Lemeshow chi-square statistic 

[18]. The discrimination of the original and recalibrated models was also assessed, using 

Harrell’s c-statistic [19]. The discrimination measure indicates the accuracy of the model 

by ordering individuals by their risk, i.e. a subgroup with high-risk individuals should exhibit 

higher event rates than a low-risk subgroup [20].

The original CVD risk prediction models were developed with other data than used for this 

study, hence only for the recalibrated models the 10-year CVD risks were predicted per 

individual in the MORGEN cohort and presented for six risk categories: 0-2%, 2-4%, 4-6%, 

6-8%, 8-10%, >10%. Although age is included as a risk factor in all models, the actual effect 

of age differs per model. As age was skewed to the right, it was not possible to use age 

values expressed in whole years to create deciles. Therefore, the comparison of predicted 

risks according to the different models was also presented for deciles of age: 20.1-26.5, 

26.6-32.1, 32.2-36.7, 36.8-40.4, 40.5-43.5, 43.6-47.0, 47.1-50.3, 50.4-53.5, 53.6-57.4, and 

57.5-73.7 years. We defined low-risk individuals as those with the lowest 25% predicted risks 

and high-risk individuals as those with the highest 25% predicted risks, regardless of their 

absolute predicted risk, per prediction model. Reclassification tables were constructed to 

determine whether high-risk individuals correspond among the CVD risk prediction models.

For measuring the consequences, i.e. the individualized (weighted) impact, of a “composite 

endpoint”, Quality Adjusted Life Years (QALYs) were used. The QALY is a measure combining 

the length of life and quality of life (QoL) of individuals [21]. As morbidity and mortality due 

to disease decrease the number of QALYs experienced by individuals, burden of disease can 

be expressed in terms of QALY loss. To correct a year of life lived in a sub-optimal health 

status, i.e. following a CVD event, life years were weighted by a utility (value) for the QoL 

during that year. Evidence on QoL following different CVD event types was collected from 

a clinical guideline defined in 2014 by the National Institute for Health and Care excellence 

(NICE) [22]. This guideline presents utilities for different health states after a CVD event and a 

baseline utility for normal health by age (see Appendix C). The ICD-10 codes used to define all 
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Figure 3A shows that differences in mean values of the predicted risks were already present 

at a young age, and became more pronounced at older age. Furthermore, the predicted risk 

increased supra-linear for all models, except ATP. Reclassification tables showed, however, 

that individuals identified as low and high risk still mostly correspond among the prediction 

models (Appendix E). The consequences of the composite endpoint (in terms of QALYs 

lost) according to prediction model SCORE was expected to be highest due to the severity 

of the incorporated individual components, i.e. only fatal CVD events. For the other models, 

the consequences of the composite endpoints were much lower and in the same order 

of magnitude. For all models, the risk and consequences of the composite endpoint was 

assessed per individual, based on age and gender dependent CVD patterns. For example 

CVD burden decreased with age, even though the risk of fatal versus non-fatal events 

increases with age, due to decreasing life expectancy (see Appendix F). SCORE showed 

the most rapid decrease in consequences of the composite endpoint (Figure 3B). Figure 

3C illustrates the results for the predicted individualized CVD burden per individual, i.e. the 

maximum potentially preventable health loss per individual from CVD, as function of age. 

The predicted CVD burden is highest for FRS, at all ages, and is relatively stable with age for 

ATP and PCE. The predicted CVD burden for SCORE was highly age dependent, resulting in 

a very low predicted burden at young age, which was even lower than ATP. At older age, the 

predicted burden for SCORE was substantial, much higher than ATP and PCE.

The expected CVD burden in the high-risk individuals is 0.23, 0.74, 0.43, and 0.39 QALYs lost 

per individual for ATP, FRS, PCE and SCORE, respectively (Appendix F). Hence, FRS predicts 

a CVD burden 1.9 times as high as SCORE. This large variation in burden is caused by the 

differences in composite endpoints.

Figure 4A illustrates that a predicted risk according to ATP results in a lower CVD burden 

per individual than a similar predicted risk according to PCE due to the different composite 

endpoints. Of the four models considered, the Framingham model used the most com-

prehensive endpoint (Table 1). Using the Framingham composite endpoint to predict the 

CVD burden in the high-risk individuals, resulted in 0.74, 0.74, 0.72, and 0.65 QALYs lost per 

individual for ATP, FRS, PCE and SCORE, respectively (Figure 4B).

3. RESULTS

3.1 Constitution of composite endpoints in MORGEN

Table 1 (column 1-2) shows that composite endpoints of the investigated prediction models 

are very different with varying types of individual components included. The definition and 

ICD-10 code per component is shown in column 1-2. Per prediction model, the type of 

individual components and observed number of individuals experiencing this component 

(event) is shown in Table 1 (column 3-16).FRS and QRISK had the highest observed numbers 

and largest variety in individual components as compared to the other CVD risk prediction 

models. All models include MI, either alone (ATP) or in combination with different sets of 

other manifestations of cardiovascular diseases (Figure 1). There was also a clear difference 

in the severity of the different components included, most notably mortality and morbidity. 

Furthermore, absolute numbers for SCORE were about eight times smaller than FRS, as 

SCORE only predicts fatal CVD events.

3.2 Consequences of dissimilarities in composite endpoints

Calibration and discrimination results for the original ATP, FRS, PCE and SCORE models 

and the recalibrated models, based on the endpoints as defined in Table 1, can be found 

in Appendix D. The performance of the four models is good and very similar; c-statistic of 

0.81, 0.78, 0.78, and 0.81 for ATP, FRS, PCE and SCORE respectively. Moreover, the predicted 

number of events now closely matches the observed number of events, for each of the 

four models (Appendix D – Table 2). However, the observed differences in the definition of 

the composite endpoints, and type and number of individual components, directly led to 

large differences in predicted risks, as shown in Figure 2. Incorporation of more individual 

components into the composite endpoint automatically lead to higher predicted risks and 

prediction models focusing only on more severe events, e.g. SCORE provided lower predicted 

risks due to a lower incidence of such events. For the SCORE model, 90% of the individuals 

had a predicted risk lower than 2%, while according to FRS only 33% of the individuals were 

classified into this lowest risk category. The average predicted risks for the four prediction 

models are 1.4%, 5.9%, 2.2%, and 0.7% for APT, FRS, PCE and SCORE, respectively.
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interventions require evidence of a) the initial risk of different types of CVD events, b) their 

consequences, and c) how the intervention reduces these risks. Finally, standardization of 

impact analysis in a single disease area also requires including the exact same (broad set 

of) event types in all such analyses, to make impact aspects comparable.

Strengths

Four widely used CVD risk prediction models are compared regarding their composite 

endpoints, their risk estimates and the associated burden of disease. Furthermore, this 

study unambiguously links all CVD endpoints of interest to ICD-10 codes, thereby improving 

clarity and ensuring replicability of the analyses in other cohorts. In addition, the size of the 

dataset used allowed for stratified analyses per risk- and age category. Finally, following from 

the recalibration, the prediction models considered have similar statistical performance, and 

the group of individuals categorized as high-risk is very similar across the prediction models. 

The large differences regarding predicted CVD risks and CVD burden can therefore reliably 

be attributed to differences in the constitution of their composite endpoints.

Limitations

The actual results from this study are dependent on the dataset used, i.e. the observed 

differences between CVD risk prediction models may be different in other datasets and 

populations. The cohort used consists of relatively young and healthy individuals, so even 

high-risk individuals have few CVD events. Thus, all predicted absolute risks are low com-

pared with typical categories for high-risk individuals. However, the presented analyses can 

easily be generalized to other populations. Moreover, the methodology can also be applied 

to other disease areas in which composite endpoints are common such as for example 

the C-WATCH risk score for upper gastrointestinal bleeding [35]. Further analyses in other 

disease areas require large individual patient datasets with long follow up and accurate 

registration of all event types included in the prediction models, as well as registration of 

sequences of events in individuals.

For the translation of composite endpoints into ICD-10 codes, certain assumptions are 

required due to unclear definitions of the composite endpoints in the original publications. 

For PCE and ATP the defined endpoints “non-fatal MI and CHD death” are translated in 

“non-fatal and fatal MI” for consistency reasons. CVD risk prediction models PCE and ATP 

are both based on a formal Framingham prediction model, with ATP defining composite 

4. DISCUSSION

In this study, the definitions and constitution of composite endpoints for four widely used 

CVD risk prediction models, ATP, FRS, PCE and SCORE, have been investigated regarding 

both the number and type of CVD events included. Results indicate that these CVD risk 

prediction models vary substantially regarding the definition of their composite endpoint, that 

is, they include different sets of CVD event types (individual components). This variation in 

individual components induces large differences in predicted risk, i.e. individuals in our cohort 

have different predicted CVD risks according to these four prediction models. However, the 

group of individuals classified as high-risk is very similar when different prediction models 

are used. The variation in included individual components also induces a large variation in 

the expected health loss associated with the occurrence of a composite endpoint across 

prediction models. In addition, the estimated CVD burden is highly age dependent when 

applying SCORE [11, 13]. Consequently, the estimated CVD burden in individuals classified 

as high-risk in our cohort varies widely, with FRS predicting a 1.9 times higher burden than 

SCORE.

Previous (clinical) research has shown that the use of composite endpoints in studies may 

be more relevant to patients and clinicians as they cover more aspects and outcomes of 

the disease [23]. The usefulness of composite endpoints in the context of randomized 

trials, however, is still debated, due to the ensuing difficulty of interpreting differences in 

‘sets of outcomes’ [24-30]. Moreover, even commonly used prediction models, such as 

the four models considered here, often have hard to find, or unclear, definitions of the 

composite endpoint in terms of ICD codes included. This affects a direct comparison of 

CVD risk prediction models, as each different composite endpoint has to be unravelled 

into its individual components, and each component has to be linked to a unique disease 

code. This process complicates the statistical analysis, e.g. evaluation, comparison and 

external validation of prediction models. Still, a transparent description of the composite 

endpoint and incorporated components is unavoidable to 1) translate changes in statistical 

prediction performance to expected health benefits for individuals, and 2) estimate the 

expected health benefits from new risk-based preventive interventions [31-33]. For example, 

assuming that preventive statin treatment reduces the risk of a composite CVD endpoint 

by a certain percentage will result in estimated health benefits which are highly dependent 

on the prediction model used [34]. Appropriate impact analysis of risk-based preventive 
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feasible or useful for the negative consequences of treatment, as different treatments may 

have widely different negative side effects. More comprehensive prediction models, such 

as for example FRS and QRISK, cover more manifestations of CVD and might therefore yield 

more meaningful estimates regarding the (preventable) burden of CVD.

endpoints “hard CHD” as developing a MI or MI death event, whereas PCE does not clearly 

specify the definition of “hard CHD”. These assumptions may have led to slight underestima-

tions of predicted risks and consequences and therefore the overall predicted CVD burden. 

They are, however, unavoidable when unclear definitions of events needs to be linked to 

unique disease codes. In this study, we only accounted for the first CVD event in individuals 

even though in practice individuals may experience multiple CVD events. This limitation 

will lead to underestimation of the CVD burden but was necessary because the CVD risk 

prediction models considered are only validated for predicting first CVD events and are not 

appropriate for estimating the risk of recurrent CVD events [36].

Recommendations

Firstly, it is recommended that developers of CVD risk prediction models with a composite 

endpoint clearly describe the definition of that composite endpoint, as well as all its individual 

components, and their incidence in the development cohort. Secondly, studies comparing 

(the performance of) different prediction models should clearly describe the dataset(s) used 

and the link defined between the composite endpoints and the disease codes, preferably 

using the most recent ICD codes. Finally, impact assessments of preventive interventions 

should separate the individual components, and include their respective health conse-

quences and costs, rather than focus on the composite endpoint.

Conclusions

Our results suggest that the number of different composite endpoints and included individual 

components used in CVD risk prediction models may almost be as large as the actual 

number of models itself. Furthermore, many CVD risk prediction models have unclear or 

hard to establish definitions of the composite endpoint in terms of ICD codes included. 

Hence, estimating the CVD burden using risk prediction models is not straightforward, and 

results should be interpreted with caution as they are highly dependent on the prediction 

model used. When using prediction models that include only a very limited set of CVD 

events, such as SCORE (fatal events only) and ATP (only MI), both the estimated CVD burden 

and the health benefits from preventive intervention will be underestimated. Moreover, the 

estimated health impact of preventive interventions may be biased if too narrow composite 

outcomes are used to estimate health benefits, or too narrow endpoints are used to reflect 

risks and side effects from such treatments. Whereas a broad common set of endpoints 

may be defined to reflect health benefits of preventive strategies in CVD, this may not be 
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Figure 4: Individualized CVD burden2 (QALYs loss) according to Plot A) the original endpoint and Plot B) comprehensive 

endpoint (Framingham model).

2 The CVD burden was estimated for categories based on risk quartiles.

Figure 2: Distribution of individuals per risk category and CVD risk prediction model

Figure 3: Three figures as function of age, with Plot A) the 10-year CVD predicted risks, Plot B) the expected (lifetime) 

consequence of a composite endpoints per individual, and Plot C) the expected (potentially preventable) CVD burden 

per individual1.

1 Distribution of individual components was evaluated per age category, except for ATP where this distribution was assessed in the entire population due 
to limited number of included endpoints
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A.2 - Cox proportional hazard model

A general CVD risk function, from a Cox-PH model, looks like

where 
 
is the baseline survival at follow-up time (t = 10 years in this case),  are the Cox 

regression coefficients and  are the (log-transformed) predictors or risk factors. The value 

of 
 
and the (values of the) regression coefficients 

 
differ for each prediction model.

A.3 - Weibull proportional hazard model

First, the shape of the baseline survival is modelled and then the relative risks regarding the 

risk factors are calculated. The SCORE model exists of a CHD part and a non CHD part, i.e. 

different sub models are used to estimate the probability of different endpoints within the 

composite endpoint.

Appendix A - Table 2 shows the risk formulas of the SCORE model. Here and  differ for 

CHD, non-CHD, gender and low/high risk region. The regression coefficients  differ for 

CHD and non-CHD.

Appendix A - Table 2: Risk formulas SCORE
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Appendix B - Table 2: Translation ICD codes

ICD 9 ICD 10

Coronary heart disease (CHD) 410-414

Ischematic heart disease (IHD) 427.5 I20-I25

Cardiac arrest I46

Sudden death R96

Stroke 430-434, 436 I60-I66

Cardiovascular disease (CVD) 410-414, 427.5, 428, 415.1, 443.9,
430–438, 440–442, 444, 798.1, 798.2, 798.9

I20–I25, I46, R96, G45, I60–
I67, I69, I70–I74, I50

C. BURDEN OF DISEASE

The impact ( ), in terms of QALY loss, when an event predicted by model j occurs in 

individual 
 
is given by

with the number of individual components Θ under consideration, average life expectancy 

 after surviving an event with remaining quality of life , utility  and probability 

 
that an event predicted by prediction model  is of a specific type k.

Here, the left component represents the remaining life years – adjusted for their quality – in 

the absence of CVD events. The right component represents the total expected loss in quality 

of life due to all predicted CVD events in model j. Note that  is zero for any type of event 

k not included in the composite endpoint of model j.

The quality of life of individual  with age  is given by

The formula for the expected CVD burden of disease ( ) is given by

where 
 
is the recalibrated predicted risk for individual 

 
 and prediction model .

B. STUDY POPULATION

Appendix B - Figure 1: Flowchart of the inclusion and exclusion of individuals from the MORGEN cohort; the white 

rectangle presents the inclusions, the grey eclipses present the exclusions, the grey rectangles show the sub totals 

and in the light grey oval the final result is shown.

Appendix B - Table 1: Baseline characteristics of the MORGEN cohort, N = 19.484

Male Female

Gender (m / f) 8.855 / - - / 10.629

Age (years) 43.4 ± 11.02 42.5 ± 11.29

Total cholesterol (mg/dL) 205.8 ± 41.30 204.2 ± 40.82

High-density lipoprotein 45.9 ± 11.62 58.4 ± 14.51

Systolic blood pressure (mmHg) 125.2 ± 15.24 117.9 ± 16.28

Treatment for hypertension (%) 4.2 5.1

Current smoking (%) 35.6 35.7

Diabetes (%) 13.1 10.8

Follow-up time (years) 11.82 ± 2.71 12.20 ± 2.16

All information was (re)coded according to ICD-10 [17, 37], as information recruited before 1997 was coded using 
ICD-9 codes. Therefore, in this study only ICD-10 codes were used.
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Appendix D - Table 2: Overall observed and expected number of CVD events

# Observed CVD events # Expected CVD events

Original model Recalibrated model

ATP 282 732 282

FRS 1148 1,388 1,148

PCE 436 711 436

SCORE 141 144 141

Appendix D - Table 3: Overall performance measured by the Brier Score for the original and recalibrated models

Original model Recalibrated model

ATP 0.016 0.014

FRS 0.051 0.051

PCE 0.022 0.021

SCORE 0.007 0.007

Appendix C - Table 1 - Utility values [38]

Utility

Morbidity

Myocardial infarction (MI) 0.88

Other Coronary heart disease (OCHD) 0.88

Cardiac arrest 0.81

Ischemic stroke (CVAI) 0.63

Haemorrhagic stroke (CVAH) 0.63

Other stroke (OCVA) 0.63

Other Cardiovascular diseases (OCVD) 0.68

Mortality

All seven cardiovascular events 0

D. CALIBRATION AND DISCRIMINATION

Appendix D - Table 1: Discrimination and calibration of original and recalibrated models3

Model Intercept Slope Chi-square p-value C-statistic 95% low limit 95% high limit

ATP Original 0.002 0.331 326.3 0.00 0.804 0.759 0.850

Recalibrated 0.001 0.956 22.01 0.01 0.807 0.762 0.852

FRS Original -0.001 0.855 45.9 0.00 0.781 0.756 0.806

Recalibrated -0.002 1.054 10.98 0.28 0.782 0.757 0.807

PCE Original 0.002 0.57 130.65 0.00 0.779 0.738 0.820

Recalibrated 0.002 0.943 28.68 0.00 0.779 0.738 0.820

SCORE Original 0.001 0.819 79.46 0.00 0.813 0.747 0.879

Recalibrated 0.002 0.719 75.42 0.00 0.805 0.740 0.871

3 Appendix D - Table 1 shows the statistical performance of the original and recalibrated models with the estimated average value for slope and intercept 
(column 1-2) corresponding with Appendix D - Figure 1 - 4. Calibration plot ATP1–4. A good calibration fit has an intercept and slope estimate of 0 and 1, 
respectively.
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Appendix D - Figure 3: Calibration plot PCE

Appendix D - Figure 4: Calibration plot SCORE

Appendix D - Figure 1: Calibration plot ATP

Appendix D - Figure 2: Calibration plot FRS
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E. RECLASSIFICATION TABLES

According to risk prediction model FRS, all individuals were classified into four quartiles 

based on their relative predicted CVD risk, and reclassified based on ATP, PCE, and SCORE 

respectively.

Appendix E - Table 1: Reclassification table FRS to ATP in percentage

ATP
FRS

Low risk
(r =0.000) 

Moderate low risk 
(r =0.003)  

Moderate high risk 
(r =0.012)

High risk 
(r =0.043)

Low risk 
(r =0.008)

85.22 14.76 0.02 0.00

Moderate low risk  
(r =0.024)

14.19 70.05 15.64 0.12

Moderate high risk  
(r =0.054)

0.58 14.86 72.55 12.01

High risk
(r =0.150)

0.02 0.33 11.78 87.87

Appendix E - Table 2: Reclassification table FRS to PCE in percentage

PCE
FRS

Low risk 
(r =0.002)

Moderate low risk  
(r =0.007)

Moderate high risk 
(r =0.019)

High risk 
(r =0.062)

Low risk 
(r =0.008)

75.98 24.00 0.02 0.00

Moderate low risk  
(r =0.024)

15.52 63.13 21.35 0.00

Moderate high risk  
(r =0.054)

5.48 11.09 71.38 12.05

High risk
(r =0.150)

3.02 1.79 7.25 87.95

Appendix E - Table 3: Reclassification table FRS to SCORE in percentage

SCORE
FRS

Low risk 
(r =0.000)

Moderate low risk
(r =0.001)

Moderate high risk 
(r =0.004)

High risk 
(r =0.024)

Low risk 
(r = 0.008)

82.39 17.16 0.45 0.00

Moderate low risk  
(r =0.024)

17.29 59.56 21.82 1.33

Moderate high risk  
(r =0.054)

0.33 22.75 56.99 19.93

High risk
(r =0.150)

0.00 0.53 20.74 78.73
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Appendix F - Table 3: Overall and individualized CVD burden according to four CVD risk prediction models, classified 
to four risk quartiles

ATP FRS PCE SCORE

Low risk Overall CVD burden (QALYs lost) 16 490 110 15

Individualized CVD burden (QALYs lost) 0.00 0.10 0.02 0.00

Moderate low risk Overall CVD burden (QALYs lost) 120 988 352 119

Individualized CVD burden (QALYs lost) 0.02 0.20 0.07 0.02

Moderate high risk Overall CVD burden (QALYs lost) 377 1672 791 453

Individualized CVD burden (QALYs lost) 0.08 0.34 0.16 0.09

High risk Overall CVD burden (QALYs lost) 1,137 3,594 2,080 1,911

Individualized CVD burden (QALYs lost) 0.23 0.74 0.43 0.39

Cohort Overall CVD burden (QALYs lost) 1,651 6,744 3,333 2,498

Individualized CVD burden (QALYs lost) 0.08 0.35 0.17 0.13
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1. INTRODUCTION

One of the leading causes of mortality and morbidity worldwide is cardiovascular disease 

(CVD) with an expected burden of disease of 143 million disability adjusted-life years in 2020 

[1, 2]. An important target of the World Health Organization (WHO) is to reduce the CVD burden 

with 30% before 2030 [3]. A substantial part of this CVD burden can be prevented by positively 

influencing behavioural risk factors, e.g. blood pressure, smoking, diabetes and cholesterol, 

through preventive strategies [4].

In the last decade, CVD risk prediction models have increasingly been used to predict individu-

alized CVD risks. Based on their predicted 10-year CVD risk, several guidelines recommend the 

use of such prediction models to stratify individuals into risk categories, with a corresponding, 

recommended preventive treatment strategy. For example, cholesterol lowering drug prescrip-

tion is advocated in case of a risk above the threshold of 7.5% risk of CVD events in 10 year 

according to prediction model Pooled Cohort Equations (PCE) or above 10% risk according to 

Framingham Global Risk Score [4, 5]. Over the years, many CVD risk prediction models have 

been developed, each with a specific risk threshold for ‘high risk’, implying that the classifica-

tion of individuals who qualify for (preventive) treatment is, to say the least, not uniform. As 

different CVD risk prediction models may use different predictors and different coefficients, 

different models may classify different individuals as having ‘high risk’ [6]. However, individuals 

have different health-related consequences of CVD, that is, loss in terms of life years due to 

(earlier) death, and health-related quality of life due to non-fatal CVD events. Consequently, 

the health-related consequences of being classified as ‘high risk’ may differ per individual, 

depending on the current quality of life and life expectancy. Additionally, through combining the 

individual predicted risk of a CVD event with the expected consequences of this CVD event, it 

is possible to estimate the expected CVD burden of an individual. Aggregating these individual 

burden estimates can then provide an estimate of the total expected CVD burden in a specific 

population or group of individuals.

Inferences of the value and usefulness of current risk-based prevention strategies for CVD, 

however, are solely based on their ability to provide accurate risk estimations and do not 

include any consideration of the expected health loss due to occurrence of the predicted 

CVD event(s). As a consequence, the selection of high risk individuals, in whom preventive 

treatment is initiated, may include individuals at high risk but with a low expected CVD burden, 

ABSTRACT

Background: Cardiovascular disease (CVD) prevention is commonly focused on providing 

individuals at high predicted CVD risk with preventive medication. Whereas CVD risk 

increases rapidly with age, current risk-based selection of individuals mainly targets the 

elderly. However, the lifelong (preventable) consequences of CVD events may be larger 

in younger individuals. The purpose of this paper is to investigate if health benefits from 

preventive treatment may increase when the selection strategy is further optimized.

Methods: Data from three Dutch cohorts was combined (n=47469, men:women=1:1.92) 

and classified into subgroups based on age and gender. Framingham Global Risk Score 

(FRS) was used to estimate 10-year CVD risk. The associated lifelong burden of CVD events 

according to this 10-year CVD risk was expressed as Quality-Adjusted Life Years (QALYs) lost. 

Based on this approach, the additional health benefits from preventive treatment, reducing 

this 10-year CVD risk, from selecting individuals based on their expected CVD burden rather 

than their expected CVD risk was estimated. These benefits were expressed as QALYs 

gained over lifetime.

Results: When using current selection strategy (10% risk threshold), 32% of the individuals 

was selected for preventive treatment. When the same proportion was selected based 

on burden, more younger and less older individuals would receive treatment. Across all 

individuals, the gain in QALYs was 217 between the two strategies, over a 10 year time 

horizon. Additionally, when combining the strategies 5% extra eligible individuals were 

selected resulting in a gain of 628 QALYs.

Conclusion: Improvement of the selection approach of individuals can help to further reduce 

the CVD burden. Selecting individuals for preventive treatment based on their expected CVD 

burden will provide more younger and less older individuals with treatment, and will reduce 

the overall CVD burden.
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2.1 Estimating CVD risk and CVD burden

Framingham Global Risk Score (FRS) is a widely used CVD risk prediction model containing 

easy to measure predictors s, e.g. age, gender and systolic blood pressure (see Appendix 

A - Table 2) [5, 14]. Prediction model FRS was originally not developed to estimate the risk 

of a CVD event for individuals with a CVD history. Currently, there are multiple prediction 

models available for secondary risk estimations, for example the SMART risk score [15, 

16]. Therefore, FRS was used to estimate CVD risks of MORGEN and Prospect individuals 

and SMART risk score was used to estimate CVD risks of SMART individuals. As FRS pre-

dicts 10-year risk of CVD events (Appendix A - Table 3, column 1-3), only events occurring 

within 10 years from baseline (start of cohort) were included in the event distribution and 

further analysis. Furthermore, for each cohort, the event distribution according to FRS was 

determined and presented separately for men and women. The observed event distribution 

was determined per ICD-10 code. The event distribution for men and women is shown per 

cohort in Appendix A - Table 3.

Conform methodological guidelines in prediction modelling, the FRS prediction model 

was first recalibrated to each cohort, by updating the baseline hazard and linear predictor 

to better match each of the three separate cohorts. [17, 18]. Measures of the statistical 

performance after this recalibration, i.e. discrimination and calibration, were determined 

per cohort and separately for men and women. The statistical performance of FRS after 

recalibration is presented in Appendix B. Note that the SMART risk score was originally 

developed on the SMART cohort, therefore recalibrating was not necessary and only the 

statistical performance of FRS is presented.

To estimate each individual’s expected burden of CVD, the individual’s predicted risk was 

multiplied by the consequences of the events, i.e. multiplying the probability of getting 

CVD events with the consequences of experiencing CVD events. The consequences of the 

occurrence of CVD events were estimated and expressed in Quality-Adjusted Life Years 

(QALYs) lost and determined per individual. The consequences were determined as a product 

of the observed event distribution, the impact on quality of life (QoL) following different CVD 

event types (utilities), and average life expectancy, representing years of life lost for fatal 

CVD events. The observed event distribution was determined separately for cohort, gender, 

and age groups. The life expectancy of a (healthy) individual only depended on age and 

for example due to high age. Similarly, young individuals with relatively low CVD risk would not 

receive preventive treatment, even though their expected CVD burden (because they will lose 

life years due to the consequences of a non-fatal or fatal CVD event) could be substantial. For 

example, the overall expected burden due to fatal strokes may be higher in young individuals 

than in older individuals even though the risk of a stroke being fatal increases with age. Indeed, 

it has been shown that the estimated consequences in terms of health loss of having a CVD 

event vary widely with age [7, 8]. This implies that selecting individuals for preventive treatment 

based on predicted risks only, may not necessarily result in the most effective nor the most 

efficient strategy to reduce CVD burden on population or group level.

In this paper, we investigate if the selection strategy for preventive CVD treatment can be 

improved by considering a threshold based on expected CVD burden rather than on predicted 

CVD risk. We illustrate how the selected individuals differ, and how this influences the effec-

tiveness of a hypothetical preventive treatment strategy, in a combination of Dutch cohorts.

2. METHODS

To illustrate if CVD preventive strategies can be improved by considering a burden threshold 

rather than a risk threshold, we combined different cohort datasets from the Netherlands. This 

resulted in a heterogeneous large dataset with different age groups and risks.

First, the MORGEN cohort was used [9, 10]. The MORGEN cohort is a subset of the general 

population from Maastricht, Amsterdam and Doetinchem, including 20.423 males and females 

with baseline and follow up data [11, 12]. The second cohort (PROSPECT) is a cohort 16.401 

females of whom baseline and follow up data are available after linkage [13]. Finally, we used 

data from 10.645 patients with a history or recent diagnosis of manifest atherosclerotic disease 

enrolled In the Secondary Manifestations of ARTerial disease (SMART) Study between January 

1996 and February 2014 [15]. A reason to include individuals with a CVD history in the analysis 

was that these individuals were older, had more risk factors and higher occurrence of CVD events.

Combined across these three cohorts 47.469 individuals were eligible for the analysis. The 

men to women ratio was 1:1.92. Baseline information on the individuals per cohort is shown 

in Appendix A - Table 1.



52 53

New selection method to increase the health benefits of CVD prevention strategiesCHAPTER 3

3

Given selection on both risk and burden scenario 3 will select a larger number of individuals 

for preventive treatment than scenario 1 and 2. Therefore, comparison of outcomes between 

these scenarios is not possible. To assess the impact of combined selection, scenario 4 

was defined as an extension of scenario 2, again selecting individuals on burden, but now 

selecting exactly the same number of individuals as in scenario 3.

In Appendix F, two figures are presented to show more details on the four investigated sce-

narios, where the marks represent the selected individuals according to the four scenarios.

2.3 Description of hypothetical treatment

For those individuals selected for preventive strategies in any of the 4 scenarios, hypothetical 

treatment was considered, for example poly pill, blood pressure lowering medication or 

aspirin. We assumed that all individuals adhered to this medication and that medication 

would lower the risk of CVD events with 35%, similarly across all types of CVD events 

included in the composite endpoint [19]. As preventive CVD medication often has side 

effects, these were included in the analysis (for details see Appendix C - Table 2).

After preventive treatment, the risk reduction on CVD events was applied to each individual. 

For all four scenarios of selecting individuals, the number of selected individuals, average 

values of risk and burden, and average values of reduction in CVD burden after treatment 

were determined. The expected number of events was calculated by summing the estimated 

CVD risk of the selected individuals. After preventive treatment, the individual risk estimates 

were multiplied with 35% which resulted in a decrease of the average CVD risk and number 

of expected CVD events. Furthermore, the gain in QALYs was determined for scenarios 

2-4 compared with scenario 1 (reference scenario). Scenarios were also compared among 

each other.

gender and the impact of CVD events on QoL was assumed to be similar for all individuals, 

i.e. no separate values were used for cohort, gender, or age groups. Appendix C presents 

more information on the impact of CVD events on QoL and the formula used to estimate 

CVD burden. Additionally, Appendix C also provides an example on the calculation of CVD 

burden, per individual.

2.2 Description of the selection process

In this study, we compared four different scenarios of selection of high risk individuals for 

preventive strategies.

For scenario 1, risk-based selection, we investigated individuals at high absolute risk, accord-

ing to FRS, with a 10% risk threshold as recommended in the US guideline for CVD preventive 

strategies [4]. For consistency, we used one single threshold instead of two thresholds for 

each prediction model.

For scenario 2, burden-based selection, individuals were ranked according to the individual 

expected CVD burden. Individuals with the highest burden were then selected, until exactly 

the same number of individuals was selected as when applying scenario 1. The CVD burden 

of the selected individual with lowest CVD burden was defined as the burden threshold (i.e. all 

individuals with burden exceeding this threshold were selected). Selecting exactly the same 

number of individuals in scenarios 1 and 2 allowed comparison of the expected benefits 

from preventive treatment across these two scenarios.

Scenario 3 combined the selection procedures of scenario 1 and 2. Here, individuals were 

selected if they had a high predicted risk (scenario 1), a high expected burden (scenario 2) 

or both. It was expected that the two groups of selected individuals would largely overlap 

between scenario 1 and 2 because ‘high predicted risk’ would often lead to ‘high expected 

burden’. However, applying a burden-based selection as in scenario 2 might result in not 

selecting, and thus withholding treatment from, a small subgroup of individuals with a 

high CVD risk currently considered for preventive treatment (scenario 1). Scenario 3 thus 

reflects the notion that withholding relatively cheap and effective preventive medication 

from individuals with a high CVD risk but with low expected burden may not be desirable.
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exceeding 0.59 QALYs would make individuals eligible for preventive treatment. Overall, 

32.1% of all individuals had an expected CVD burden exceeding 0.59 QALYs and therefore 

were assigned to preventive treatment in scenario 2.

The total number of the selected individuals was, by definition, similar, the percentage of men 

and women changed across the selection strategies. In scenario 2, more men, and therefore 

fewer women, were considered compared to scenario 1 (Table 1, column 2). Although in 

scenario 2 the total number of selected individuals did not change, individuals were selected 

based on their estimated CVD burden rather than on their CVD risk. Consequently, certain 

individuals were selected in scenario 2 who were not selected in scenario 1 since their CVD 

risk was below the risk threshold of 10%, and vice versa. Appendix G provides more details 

on the percentage of selected individuals per age group, separately for men and women, in 

each scenario. Comparing scenario 2 with scenario 1, on average the risk estimates were 

similar and burden estimates were higher. The difference in burden estimates was mainly 

caused by the fact that on average younger individuals qualify for treatment in scenario 2, 

compared to scenario 1. The lower part of Figure 1 shows that, for example, for the age 

group 35-45 years, the part of the percentile interval line above the threshold (grey dotted 

line) is largerthan in the upper part of Figure 1. As an example of different implications of 

scenario 1 and 2, 15.2% and 4.4% of the men and women between the age of 35-45 years 

were selected for preventive treatment in scenario 1, whereas much more individuals (28.6% 

and 13.9% of the men and women, respectively) were selected in scenario 2. Additional 

details on selected individuals and average values of risk and burden per age group and 

gender are provided in Appendix F.

Following scenario 3 and 4, an additional 2,351 individuals were selected which resulted in 

a group that included 37.1% instead of 32.1% of all individuals.

3.3 Description of the impact of hypothetical treatment

Treatment following a risk based selection strategy (scenario 1) is estimated to yield 6,474 

QALYs, compared to no treatment. Treatment following the burden based selection strat-

egy (scenario 2) is estimated to yield 6,691 QALYs (Table 1). Hence, without treating more 

individuals, 217 QALYs can be gained from switching to a burden rather than a risk based 

selection strategy.

3. RESULTS

3.1 Estimating CVD risk and CVD burden

Figure 1 (upper part) shows the barplot for the predicted CVD risks according to FRS per age 

group and gender, with vertical lines representing the 5th and 95th percentile values. The risk 

estimates vary widely between men and women. As a consequence, men have on average 

a higher predicted risk compared to women. As expected, there was a trend towards higher 

CVD risk with increasing age, both for men and women.

The expected CVD burden increased up till the age of 75 years for men and women and 

decreased thereafter (Figure 1, lower part). Additionally, the burden estimates were higher 

for men than for women due to two reasons. First, CVD risk also partially determines CVD 

burden and CVD risks were higher for men. Second, there were differences in the observed 

event rates, for example, men experienced more often a fatal CVD event than women 

(Appendix D - Table 2). This was due to the high proportion of men in the SMART cohort. 

As this subgroup has the highest risk of fatal CVD, in the combined cohort the CVD risk for 

men exceeds that for women. This effect is therefore not apparent in the other cohorts. The 

relation between CVD risk and CVD burden is shown in Appendix E - Figure 1.

3.2 Description of the selection process

In the combined cohort, applying the risk based strategy to select individuals resulted in 

a selection of 32.1% of all individuals, i.e. 15,263 individuals had a predicted risk above the 

threshold of 10% (scenario 1). However, the percentage of selected men and women was 

not similar due to different risk estimates, 50.4% and 22.7% of all men and women were 

considered for the hypothetical treatment, respectively (Table 1, selection part). Additionally, 

men were selected for treatment at a much earlier age than women, with about 50% of men 

over 45 years of age qualifying for treatment, while a similar percentage was reached only 

in women between 65 and 75 years of age.

At the same proportion of selected individuals for scenario 2 (the burden based strategy), 

the burden threshold was 0.59 QALYs. This indicates that, on individual level, an expected 

lifelong health loss due to CVD (i.e. CVD risk multiplied with CVD event consequences) 
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Furthermore, aggregating the individual estimates of CVD burden provides an estimated 

total CVD burden in a specific population which can also be interpreted as the maximum 

theoretical health gain achievable by any preventive strategy in this population. When 

assessing and comparing CVD prevention strategies, the extent to which they would be 

able to reduce CVD burden on population or group level should be the primary ‘effectiveness’ 

outcome of an impact assessment, as it better matches the targets set by the WHO and 

other organizations [20].

Clinical impact

Many western countries have implemented a risk-based selection strategy to select individ-

uals that should use medication to prevent cardiovascular disease. Following this strategy, 

many older persons use such medication. This study illustrates how a new selection method 

may increase the health benefits from CVD preventive treatment. However, in clinical practice 

the results may vary. A switch from a risk-based to a burden-based strategy implicates 

earlier intervention with preventive strategies in younger individuals. This raises the question 

whether prescription of medication is desirable for these individuals since they have to take 

medication lifelong which may complicate and lower adherence. A lifestyle intervention 

may be more appropriate for this group [21]. Furthermore, communication is key here since 

young individuals have a low absolute risk but their relative risk may be high. For example, 

a 2.6% risk for a 30 year old woman may not seem very threatening, but as this risk falls in 

the highest risk quintile, it is very high relative to the risk of peers.

Another implication of the switch from risk to burden based strategies is withdrawal of 

preventive medication for some using or currently starting with preventive medication. This 

is especially the case in older people with low expected burden. The exact benefits are still 

under debate, however, as multiple studies investigated the added value of medication, 

for example statins, in older individuals. Han et al. concluded that there was no benefit 

in giving pravastatin in primary prevention for all-cause mortality or CHD event among 

adults 65 years and older [22]. Additionally, Thompson et al. showed that the payoff time 

of using statins in primary CVD prevention lengthened when the direct treatment disutility 

of medication increased [23]. In 2012, the American Geriatrics Association recommended 

that clinicians should balance the benefits and harms of interventions in older individuals 

[24]. For example, the benefits of most medication are long-term, i.e. decrease CVD risk, 

while the harms are short-term, e.g. muscle weakness, in elderly people. Balder et al. 

When comparing scenario 3 to scenario 1, the expected gain was 628 QALYs. This differ-

ence in QALYs was due to the effect of treating the additionally selected individuals hence 

comparison of the current and new risk based strategy is not directly informative. For a 

more informative comparison the burden based strategy was extended (scenario 4) by 

also selecting 37.1% of the individuals as in scenario 3, this was achieved by decreasing the 

burden threshold with 0.08 QALYs to a threshold of 0.51 QALYs. After hypothetical treatment, 

the gain from scenario 4 compared to scenario 3 was 41 QALYs (Table 1, column 8)

Overall, the gain was 217 QALYs without treating additional individuals (scenario 2 versus 

1) and 669 QALYs when additional individuals were selected based on their CVD burden 

(scenario 4 versus 1). Hence, scenario 2 is has potential for greater health gain than scenario 

1, and, likewise, scenario 4 has potential for greater health gain than scenario 3. As it may not 

be desirable to withhold preventive treatment from individuals currently eligible for preventive 

treatment (according to scenario 3), the opportunity loss of not implementing scenario 4, 

compared to scenario 3, is 41 QALYs.

The analysis on the combined dataset is also performed on the different cohorts separately; 

the results are presented in appendix H.

4. DISCUSSION

This study illustrates how health benefits from preventive hypothetical treatment increase 

when the selection of individuals qualifying for preventive intervention changes rather than 

the intervention itself. Our study results illustrates that the current risk-based selection 

mainly targets at older individuals, since CVD risk rapidly increases with age. Furthermore, 

when exactly the same number of individuals was selected based on their CVD burden, both 

old and young individuals are selected, with the selected young individuals having a low 

absolute risk but potentially a high health loss with corresponding high expected burden, 

when a CVD event would occur. As individuals selected on their expected CVD burden 

have, on average, a higher expected burden than individuals selected on their predicted 

risk, burden-based selection increases the health benefits of preventive treatment. When 

both selection strategies are combined, the yield of preventive treatment further increases 

without the need to withhold preventive treatment in older individuals at (relatively) high risk.
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of the burden estimates but was necessary since the registration of sequential events in 

individuals was not always very accurate in the included cohorts. Should we have had more 

data on follow up and/or the sequence of CVD events within individuals, the expected burden 

would probably have been higher. Consequently, the absolute differences in QALYs gained 

between scenarios would have been different but the relative differences would still be mar-

ginal. Since this study is an illustration of a proof of concept, we had to make a choice on the 

treatment effect and possible side effects of the preventive treatment. In our analysis only a 

single overall effectiveness estimate of event reduction was applied, however the treatment 

effect of the medication may be different per age group since the observed CVD event 

rates differ for sex and gender. Furthermore, in practice different treatments (e.g. statins, 

antihypertensive drugs, or both) will likely be provided to different individuals depending on 

their risk profile. Along with large variation in individuals’ baseline risks, the expected risk 

reduction of preventive treatment in practice will vary substantially across individuals. The 

impact of assuming no variation could be assessed, for example, in a patient-level model with 

separate risk reduction estimates for each individual, or in deterministic sensitivity analyses 

based on a range of plausible risk reductions. However, this would further complicate the 

analyses and is therefore mainly of interest when either the average risk reduction in groups 

of individuals would deviate substantially from 35%, or when absolute outcomes of selection 

scenarios are appraised rather than differences between scenarios as in our analysis. As 

our purpose was merely to demonstrate a proof-of-concept and not to evaluate absolute 

outcomes or real-world implementation of burden-based selection strategies, we chose 

to not account for individual variation of treatment effectiveness. A concrete application 

of this burden based selection strategy requires detailed information on effectiveness and 

consequences of the medication, the risk of the associated side effects and should account 

for, sequences of CVD events within individuals.

The results show that after hypothetical treatment the burden based selection strategy 

provides more QALYs prevented compared to the risk based strategy. However, the gain 

in QALYs was not equally distributed for men and women. The reduction in CVD burden 

according to the burden strategy was mainly caused by selecting more men and conse-

quently fewer women. In other words, women had to sacrifice health benefits such that 

men had more health benefits from preventive treatment. Although this is a disadvantage 

of the burden based strategy, the analyses can easily be performed for men and women 

separate, for example with a gender specific burden threshold. To investigate this matter 

showed a large discrepancy between CVD risk guidelines and the current practice of statin 

prescription in the Netherlands, i.e. a large group of individuals had no discernible cause 

for statin treatment [25].

Strengths

This study provides a transparent and detailed illustration of different strategies to select 

individuals for a preventive CVD intervention rather than improving the intervention itself. 

Risk-based selection compresses the individualized characteristic of the patient into 

one single number. Moreover, individuals with a similar high predicted CVD risk can be 

significantly different. Since there is no direct relation between risk and burden estimates, 

similar risk estimates may result in varying health consequences of the disease and health 

benefits of preventive treatment. However, burden-based selection accounts for patient 

age and gender, in addition to predicted risk. Individuals with a similar burden may also be 

different but the impact of preventive treatment will not vary significantly when expressed 

as a reduction of this burden. Furthermore, this way of considering individuals for preventive 

strategies is a move into the direction of more individualized care and increasing the effec-

tiveness of a preventive strategy without (possibly) increasing costs, as similar numbers in 

a population use preventive medication [26]. The used dataset consists of individuals from a 

broad age range with relatively young individuals whereas studies on CVD prevention often 

only included older individuals. However, the power in this young age group is low due to a 

low number of observed CVD events.

Limitations

As the main focus of this study is to illustrate a proof of concept, our data may not accurately 

represent the population of the Netherlands. Preferably, we would have used one large 

cohort consisting of individuals from 20-90 years with a follow-up time of 15 years or longer. 

Unfortunately, such a cohort is not available in the Netherlands, and probably not even 

world-wide, therefore we used and combined three existing cohorts. Although, our approach 

may yield slightly different results in population cohorts from other countries, the analysis 

itself is generalizable across other populations or can be repeated in a large population 

cohort whenever data are available.

In this study, only first CVD events are accounted, although in practice individuals may experi-

ence more CVD events in a 10 year period. This simplification may lead to an underestimation 
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3Figure 1: Bar plot of the average values for the predicted CVD risk (upper part) and for the expected CVD burden 

(lower part), per age group. The vertical lines represent the 5th- and 95th-percentile values of the predicted risks in 

each group and not the confidence intervals for the expected mean CVD risk estimates. Furthermore, the grey dotted 

lines represent the threshold with a risk threshold of 10% (upper part) and a burden threshold of 0.59 QALYs (lower 

part), with the lower part indicating that individuals with an expected lifelong health loss due to CVD (i.e. CVD risk 

multiplied with CVD event consequences) exceeding 0.59 QALYs would be eligible for preventive treatment. For visual 

clearance, this figure is presented with some limits value for the estimates of CVD risk and burden.

more, we applied both selection strategies on the cohorts separately (Appendix H). Results 

showed that more women were selected according to the burden strategy compared to the 

risk strategy. In other words, the switch in selected individuals was in the opposite direction. 

For the combined dataset, this means that the reduction in CVD burden may be biased due 

to a cohort effect because Prospect only consists of women. Additionally, the imbalance 

in gender was already present in the risk based strategy where a larger proportion of men 

was selected compared to women. The effect of risk selection was enhanced since the 

health consequences of CVD events, e.g. more severe CVD events, were larger in men. The 

imbalance in health benefits from preventive treatment for men and women is undesirable, 

however it is logical since our present goal was to maximize the number of QALYs to be 

gained from preventive treatment. Furthermore, the unfavourable effects are resolved in the 

extended selection strategy where currently selected individuals retained their preventive 

treatment. The additionally selected individuals were mostly men, hence the QALY gain is 

caused by giving men preventive medication only now without withdrawing women from 

preventive medication.

Although in our analysis we fixed the burden threshold value to select the exact same number 

of individuals for preventive treatment as in traditional risk based selection, in practice 

different burden thresholds can be set, and thresholds could also vary across subgroups 

of individuals. For example, in a formal health economic analysis the optimal value of the 

burden threshold for preventive treatment may be determined, even separately for men 

and women, or depending on co-morbidities of individuals, if such distinctions would be 

deemed socially and ethically acceptable. Similarly, for consistency we used one single risk 

threshold since different thresholds may have complicated the analysis and interpretation 

of the results.

Conclusion

For decades, risk based prevention has been applied to optimize the selection of individuals 

eligible for preventive interventions, from a perspective in which risk reduction is seen as 

the ultimate goal. With the increasing emphasis on actual health outcomes of patients, and 

on the improvements in these health outcomes provided by (preventive) interventions, it is 

now time to add a burden component to selection strategies. This is straightforward and 

easily implementable in clinical practice, and can efficiently improve the health benefits 

from preventive interventions.
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Table 2: Scenario analyses for four different selection strategies

Selection Impact Gain in QALYs 
compared to 
scenario 1

Total selected 
individuals

Estimated CVD 
burden (QALYs lost)

Gain in QALYs

N % Total Average Total Average Total

Scenario 1 − Risk based strategy
risk ≥ 0.10

15,263 32.1 18,511 1.20 6,474 0.42 -

Scenario 2 − Burden based strategy
burden ≥ 0.59 QALYs

15,263 32.1 19,133 1.24 6,691 0.44 217

Scenario 3 − Extended risk  
based strategy
risk ≥ 0.10 or burden ≥ 0.59 QALYs

17,614 37.1 20,310 1.15 7,103 0.40 628

Scenario 4 − Extended burden 
based strategy
burden ≥ 0.51 QALYs

17,614 37.1 20,426 1.16 7,143 0.41 669
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A. DETAILED INFORMATION ON THE DIFFERENT 
COHORTS

A.1 – Baseline information

Appendix A - Table 1 shows that individuals from SMART were less healthy and older 

compared to Morgen and Prospect participants. Moreover, they had significantly higher 

blood pressure, had diabetes more often, smoked more often and used more medication. 

On average, the values of the Morgen women regarding their CVD risk factors were slightly 

lower than the values for the Prospect women, except for smoking. The follow up time across 

cohorts varied widely because the SMART cohort is an ongoing cohort, whereas Morgen 

and Prospect are closed cohorts.
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A.3 - Event distribution regarding different cohorts

Only events occurring within 10 years after recruitment were included in the analysis, 

because the timeline of the CVD risk prediction models used was 10 years. The event dis-

tribution varied hugely between the cohorts, for example, SMART individuals suffered more 

events resulting into a higher observed incidence rate per individual (Appendix A - Table 3). 

Moreover, the percentage fatal CVD events was higher for SMART individuals compared to 

Morgen and Prospect. There were also differences between men and women. Overall and 

per cohort, it can be seen that men suffered more non-fatal myocardial infarctions whereas 

women suffered more from strokes.
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B. STATISTICAL PERFORMANCE

Implementation of a prediction model typically follows updating or recalibration of the model 

in the target setting, as the target cohort may differ from the original development cohort 

[28]. Therefore, we recalibrated FRS to the MORGEN and PROSPECT cohorts to ensure that 

the models provide accurate risk estimates in these cohorts. For the survival data (time-

to-event data) considered in this study, recalibrating a prediction model typically involves 

updating the baseline hazard and centering each predictor around the mean value of all 

patient characteristics (i.e. linear predictor) in our cohorts, for men and women separately 

[18]. Furthermore, we incorporated an additional correction factor to ensure that the updated 

baseline hazards actually reflect the observed probability of survival after 10 years. The 

regression coefficients of the risk factors of the original FRS model were not changed [15].

Results of the updated values for the linear predictor and baseline hazard can be seen 

in Appendix B - Table 1 (column 2-5). Calibration and discrimination results according to 

the original and recalibrated model can be found in Appendix B - Table 1 (column 6-10). 

The performance of the subgroups of individuals is good and very similar, see the column 

“c-statistic”. Moreover, the predicted number of events now closely matches the observed 

number of events. Furthermore, the calibration plots according to FRS for Morgen and 

Prospect cohort are shown below, see Appendix B - Figure 1 and Appendix B - Figure 2.
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C. INFORMATION ON THE ESTIMATION OF CVD 
BURDEN

The impact ( ), in terms of QALY loss, when an event predicted by model j occurs in 

individual 
 
is given by

with the number of individual components Θ under consideration, average life expectancy 

 after surviving an event with remaining quality of life , utility  and probability 

 that an event predicted by prediction model  is of a specific type k.

Here, the left component represents the remaining life years – adjusted for their quality – in 

the absence of CVD events. The right component represents the total expected loss in quality 

of life due to all predicted CVD events in model j. Note that  is zero for any type of event 

k not included in the composite endpoint of model j.

The baseline quality of life of individual  with age  is given by [29, 30]

The formula for the expected CVD burden of disease ( ) is given by

where 
 
is the recalibrated predicted risk for individual  and prediction model .

For example, the CVD burden estimate of a 59 year old man was 0.9 QALYs, resulting from 

a 20.8% 10-year CVD risk and health related consequences equal to losing 4.2 QALYs when 

CVD events occurred.

Appendix B - Figure 1: Calibration plot for Prospect individuals

Appendix B - Figure 2: Calibration plot for Morgen individuals
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D. INFORMATION OF THE COMBINED COHORT

Appendix D - Table 1 shows baseline information of the combined cohort, separately for men 

and women. Although women were older and had higher total cholesterol, men were less 

healthy regarding the other risk factors. Men more often had diabetes, smoked more often, 

used more preventive treatment medication and had a slightly higher blood pressure. The 

event distribution for men and women varied substantially between men and women, as 

shown in Appendix D - Table 2. The percentage of non-fatal strokes was higher for women 

whereas men had more myocardial infarctions. Additionally, the percentage of observed 

fatal events in men was higher than in women.

Appendix D - Table 1: Baseline characteristics of the combined cohort

Men Women

Number individuals 16,241 31,228

Age (SD) 49.82 (13.48) 51.9 (11.65)

Total cholesterol (SD) 199.97 (46.42) 222.05 (45.87)

High density lipoprotein (SD) 45.44 (12.14) 57.69 (15.35)

Using preventive treatment 22% 16%

Systolic blood pressure (SD) 132.11 (19.52) 128.67 (21.03)

Smoking 33% 28%

Diabetes 11% 7%

Follow up Time (min-max) 12.07 (0.00-17.97) 13.58 (0.00-17.97)

Here, the loss of 4.2 QALYs was calculated from a life expectancy of 20.4 years, adjusted 

for decrease in quality of life with age (first part of the impact equation), multiplied with the 

expected impact when a CVD event occurred (second part of the equation). This expected 

impact is the summation of the expected impact of all 14 CVD event types we observed 

in the data. For each event type, there was a disutility (Appendix C - Table 1) and marginal 

probability, i.e. the probability that a specific event type occurred given occurrence of CVD. 

All these 14 marginal probabilities summed up to 1 and were determined by dividing the 

number of observed events (for that event type) with the total number of observed event (all 

types). The marginal probabilities were determined per cohort and age group, and separate 

for gender.

Appendix C - Table 1: Utility values [31]

Morbidity Utility Disutility

Myocardial infarction (MI) 0.88 0.12

Other Coronary heart disease (OCHD) 0.88 0.12

Cardiac arrest 0.81 0.19

Ischemic stroke (CVAI) 0.63 0.37

Haemorrhagic stroke (CVAH) 0.63 0.37

Other stroke (OCVA) 0.63 0.37

Other Cardiovascular diseases (OCVD) 0.68 0.32

Mortality

All CVD event types 0 1

Side effect of the preventive treatment were chosen as known as the side effects of statins, 

see Appendix C - Table 2 for details.

Appendix C - Table 2: Side effects of preventive treatment [32]

Side effect Probability Health loss (utility)

Minor 0.18 2 days of lost life

Major 1/18000 14 days of lost life

Death, given major side effects 0.09
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Appendix D - Table 2: Observed event distribution for the combined cohort

Men (n=16,241) Women (n=31,228)

N % N %

Morbidity

Myocardial infarction (MI) 451 27 330 16.3

Other Coronary heart disease (OCHD) 290 17.4 613 30.3

Cardiac arrest 10 0.6 9 0.4

Ischemic stroke (CVAI) 304 18.2 352 17.4

Haemorrhagic stroke (CVAH) 13 0.8 84 4.2

Other stroke (OCVA) 29 1.7 51 2.5

Other Cardiovascular diseases (OCVD) 136 8.1 347 17.2

Mortality

Myocardial infarction (MI) 53 3.2 59 2.9

Other Coronary heart disease (OCHD) 5 0.3 6 0.3

Cardiac arrest, sudden death 148 8.9 54 2.7

Ischemic stroke (CVAI) 20 1.2 11 0.5

Haemorrhagic stroke (CVAH) 2 0.1 13 0.6

Other stroke (OCVA) 1 0.1 23 1.1

Other Cardiovascular diseases (OCVD) 208 12.5 69 3.4

Total number of events‡ 1,670 2,021

Percentage fatal events 26.2% 11.6%

Prevalence events 10.3 6.5

‡ Up to 10 years
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G. GENDER DIFFERENCES

Results on the selection and impact part, separate for men and women, are shown in 

Appendix G - Table 1 and Appendix G - Table 2. The numbers in these tables correspond 

with Figure 1, where columns “average risk” and “average CVD burden” corresponds with 

the values on the y axis of the bars in Figure 1(upper and lower part). For example, men 

from the age group “35-45 years” have an average risk and burden of 0.15 and 1.25, based 

on scenario 1. Moreover, the increase in risk over age, shown in Figure 1, can also been 

seen in the tables below, together with the difference in predicted risk for men and women. 

Men have on average a higher predicted CVD risk and burden for all age groups compared 

to women. Furthermore, Appendix G - Table 1 and Appendix G - Table 2 show that the 

percentage of selected individuals per age group increases with age, hence, selection of 

high risk individuals in general means selection of older individuals. Additionally, more 

older men are selected for preventive treatment compared to women from the same 

age group, for example, 82% vs 33% for age group “55-65” years of the men and women, 

respectively.

For scenario 2, i.e. burden based selection, the same number of individuals were selected 

but the percentage of man versus women and the percentages of selected individuals per 

age groups changes. There is an increase in the proportion of younger individuals and a 

decrease in the proportion of older individuals selected. The switch in selected individuals 

results in higher burden estimates for each age group and thus a health gain of 217 QALYs 

according to scenario 2 compared to scenario 1.

Results on the selection and impact part, separate for men and women, are shown in 

Appendix G - Table 1 and Appendix G - Table 2. The numbers in these tables correspond 

with Figure 1, where columns “average risk” and “average CVD burden” corresponds with 

the values on the y axis of the bars in Figure 1(upper and lower part). For example, men 

from the age group “35-45 years” have an average risk and burden of 0.15 and 1.25, based 

on scenario 1. Moreover, the increase in risk over age, shown in Figure 1, can also been 

seen in the tables below, together with the difference in predicted risk for men and women. 

Men have on average a higher predicted CVD risk and burden for all age groups compared 

to women. Furthermore, Appendix G - Table 1 and Appendix G - Table 2 show that the 

percentage of selected individuals per age group increases with age, hence, selection of F.
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9)high risk individuals in general means selection of older individuals. Additionally, more 

older men are selected for preventive treatment compared to women from the same 

age group, for example, 82% vs 33% for age group “55-65” years of the men and women, 

respectively.

For scenario 2, i.e. burden based selection, the same number of individuals were selected 

but the percentage of man versus women and the percentages of selected individuals per 

age groups changes. There is an increase in the proportion of younger individuals and a 

decrease in the proportion of older individuals selected. The switch in selected individuals 

results in higher burden estimates for each age group and thus a health gain of 217 QALYs 

according to scenario 2 compared to scenario 1.

Apart from differences in CVD risk, and in the distribution of CVD event types, experienced 

by men and women, the reduction in health-related quality of life (i.e. disutility) when 

experiencing a particular CVD event may also be different for men and women. Technically, 

it is straightforward to account for different utilities of men and women in models such as 

the one used here. The same goes for gender-specific burden threshold values. However, 

the societal acceptance of such gender-specific threshold values for treatment requires 

further investigation of ethical and social considerations.
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H. DIFFERENCES IN COHORTS

Results on the selection and impact, separate for cohorts, are shown in Appendix H - Table 1,  

Appendix H - Table 2, and Appendix H - Table 3. The different combined cohorts have a 

large variation in risk estimates hence we used a relative risk threshold of 10% rather than 

an absolute risk threshold. In other words, individuals with the highest 10% risk and highest 

10% burden estimates were selected and compared among each other.

Across all cohorts, the selection of high risk individuals, i.e. scenario 1, in general means 

selection of older individuals. Additionally, more men are selected for preventive treatment 

compared to women. For scenario 2, i.e. relative burden threshold, exactly the same number 

of individuals was selected but the percentage of man versus women and the average 

age of the selected individuals changes. There is an increase in the proportion of younger 

individuals and women selected resulting in higher burden estimates for each cohort and 

thus a health gain of 109 (8.6%), 20 (2.6%), and 15 (2.4%) QALYs according to scenario 2 

compared to scenario 1, according to the SMART, Morgen, and Prospect cohort.
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1. INTRODUCTION

Reduction of cardiovascular disease (CVD) burden, i.e. at population level, is commonly 

accomplished using preventive strategies (like lifestyle and dietary advice or pre-emptive 

drug treatment) in individuals with marked elevations in risk factors, e.g. low-density 

lipoprotein (LDL), or a high predicted CVD risk based on a combination of risk factors [1]. 

Identification of high risk individuals is often achieved using CVD risk prediction models of 

which over 360 different variants have been published as of 2016 [2]. However, different 

models may predict multiple and often different CVD outcomes or sets of outcomes (as is 

the case in model with composite endpoints) [2-4]. These differences in predicted outcomes 

may result in large variation in CVD risk estimates. Consequently, it is unclear to what extent 

the predicted CVD risks obtained from different prediction models are comparable and can 

be interpreted similarly in clinical practice [4-7].

The large variation in CVD risk estimates combined with different recommended risk thresh-

olds for each prediction model, may lead to different definitions of high-risk individuals. For 

example, the Pooled Cohort Equation stratifies individuals with a > 7.5% 10-year CVD risk 

as high-risk whereas the recommended threshold for the Framingham risk equation is 10% 

[8, 9]. Different definitions of high-risk individuals may, in turn, lead to different treatment 

recommendations. Furthermore, the expected health benefits of treatment may also be 

different since the impact on quality of life differs per CVD event type and severity. For 

example, the expected health loss due to a stroke is expected to be higher than the health 

loss due to a myocardial infarction [10].

Since the implication of different treatment recommendations could be large, the aim of 

this paper is to assess if the use of different prediction models leads to different treatment 

recommendations in clinical practice. Therefore, four widely used CVD risk prediction models 

were investigated regarding their comparability and interpretation, after applying them to 

a large population cohort. Additionally, we discuss the usefulness of such models based 

on the comprehensiveness of their composite endpoint and provide a recommendation for 

the development of new prediction models in order to enhance their usefulness in clinical 

practice. This paper does not focus specifically on Dutch clinical practice and does not 

provide guidance on preferred prediction models for the Dutch context.

ABSTRACT

Background: Cardiovascular disease (CVD) risk prediction models are often used to identify 

individuals at high risk of CVD events. Providing preventive treatment to these individuals 

may then reduce the CVD burden at population level. However, different prediction models 

may predict different (sets of) CVD outcomes which may lead to variation in selection of 

high risk individuals. Here, it is investigated if the use of different prediction models may 

actually lead to different treatment recommendations in clinical practice.

Methods: The exact definition of and the event types included in the predicted outcomes 

of four widely used CVD risk prediction models (ATP-III, Framingham (FRS), Pooled Cohort 

Equations (PCE) and SCORE) was determined according to ICD-10 codes. The models 

were applied to a Dutch population cohort (n=18,137) to predict the 10-year CVD risks. 

Finally, treatment recommendations, based on predicted risks and the treatment threshold 

associated with each model, were investigated and compared across models.

Results: Due to the different definitions of predicted outcomes, the predicted risks varied 

widely, with an average 10-year CVD risk of 1.2% (ATP), 5.2% (FRS), 1.9% (PCE), and 0.7% 

(SCORE). Given the variation in predicted risks and recommended treatment thresholds, 

preventive drugs would be prescribed for 0.2%, 14.9%, 4.4%, and 2.0% of all individuals when 

using ATP, FRS, PCE and SCORE, respectively.

Conclusion: Widely used CVD prediction models vary substantially regarding their outcomes 

and associated absolute risk estimates. Consequently, absolute predicted 10-year risks from 

different prediction models cannot be compared directly. Furthermore, treatment decisions 

often depend on which prediction model is applied and its recommended risk threshold, 

introducing unwanted practice variation into risk-based preventive strategies for CVD.
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years, range 20.1-73.7 years, and 45% men).The MORGEN cohort was also used to compare 

the predicted CVD risks by estimating every individual’s 10-year CVD risk with each of the 

four prediction models. Implementation of a prediction model typically follows updating 

or recalibration of the model in the target setting, as the target cohort may differ from the 

original development cohort [18]. Therefore, we first recalibrated the four prediction models 

using the MORGEN cohort to ensure that the models provide accurate risk estimates in this 

cohort. For the survival data (time-to-event data) considered in this study, recalibrating a 

prediction model typically involves updating the baseline hazard and centering each predictor 

around the mean value of all patient characteristics in our empirical cohort, correcting for 

men and women separately [19, 20]. Furthermore, we incorporated an additional correction 

factor to ensure that the updated baseline hazards actually reflect the observed probability 

of survival after 10 years.

Many clinical guidelines advocate the use of prediction models to select individuals with a 

predicted risk above a certain threshold for pre-emptive lipid or blood pressure lowering drug 

treatment. Different recommendations for absolute 10-year risk thresholds were identified 

for each model: 10% (ATP), 10% (FRS), 7.5% (PCE), and 5% (SCORE) [9,12,21]. By doing this, 

we were able to further explore and compare the varying treatment decisions according to 

the four models. Finally, we first assigned individuals to treatment based on their FRS risk 

and the FRS risk threshold and then reassigned individuals according to their ATP, PCE, and 

SCORE risks, and the corresponding thresholds.

The aim of this paper was to illustrate the complexity of comparing predicted risks. This 

paper does not focus specifically on Dutch clinical practice and does not provide guidance 

on preferred prediction models for the Dutch context.

2. METHODS

Adult Treatment Panel III (ATP), Framingham Global Risk Score (FRS), Pooled Cohort Equa-

tions (PCE), and SCORE-low (SCORE) are four widely used CVD risk prediction models for 

primary prevention [11-14]. All are derived from general population cohort data. Hence, they 

include (often similar) predictors that are easy to measure in everyday clinical practice, such 

as gender, age and systolic blood pressure. The exact definition of the included risk factors in 

the risk equation can be found in the original publication [11-14]. Furthermore, the probability 

estimate of each model reflects the absolute risk of the composite endpoint occurring within 

10 years. In order to compare these four models, we first identified the exact definition of 

each composite endpoint from the original publication describing the development of the 

model [11-14]. We then, standardized the composite endpoints using ICD-10 codes. This 

was necessary since the published articles often only described the outcomes in words, 

e.g. “coronary heart disease” or “ischemic heart disease”.

To compare the composite endpoints, we used the MORGEN cohort. The MORGEN cohort is 

a large Dutch general population cohort which includes men and women aged 20 to 74 years 

at baseline, recruited from the general population between 1993 and 1997 [15]. Participant 

information on vital status, cause of death and comor bidity was obtained from Statistics 

Netherlands and the National Medical Registry (NMR). The follow-up period of the MORGEN 

cohort was 10 to 15 years with a mean follow-up time of 12 years. To apply the prediction 

models, information both from baseline and from follow-up was required, leaving 19,484 

(72%) individuals with adequate data for the analysis from the original cohort [16, 17]. To 

further investigate the constitution of the composite endpoint, we determined the observed 

rates and distributions of the individual components, i.e. included CVD event type according 

to the associated ICD-10 code(s), for each model separately.

As the indication for statin therapy is also LDL-dependent and we aim to illustrate the 

complexity of CVD risk predictions by comparing results of different prediction models, 

individuals with an elevated level of LDL and/or diabetes were excluded for further analysis. 

We focused on individuals in whom preventive intervention was indicated based on predicted 

CVD risk rather than on elevated LDL levels and/or diabetes. After excluding 231 individuals 

with diabetes, 1,141 individuals with elevated LDL levels and 25 individuals with both risk 

factors at baseline, this resulted in a cohort size of 18,137 individuals (mean age is 42.4 
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Figure 1 shows that the dissimilarities in composite endpoints lead to substantial variation 

in predicted 10-year CVD risks. Since predicted risks increase with the inclusion of more 

CVD event types in the composite endpoint, to an extent that depends on their absolute 

incidence. For example, in our cohort the broad composite endpoint used in the FRS model, 

covering a large range of CVD event types, yields higher risk predictions than the ATP, PCE, 

and SCORE models. Similarly, the narrow composite endpoint of SCORE (only fatal events), 

and its inherent low incidence of included event types yields the lowest risk predictions of all 

models considered. The average predicted risks in the MORGEN cohort are 1.2% (ATP), 5.1% 

(FRS), 1.9% (PCE), and 0.6% (SCORE). Hence, the differences in composite endpoints between 

prediction models (shown in Table 1) result in large variation in predicted CVD risks across 

prediction models.

Considering that the largest set of CVD event types was included by the FRS composite 

endpoint, we compared FRS risk estimates with risk estimates from the other three models 

using more narrow composite endpoints. Figure 1 shows the comparison in CVD risks and 

reveals an association between these risk estimates. This association indicates that, in this 

cohort, individuals who have the highest risk according to FRS typically also have the highest 

risk according to ATP, PCE, and SCORE. However, while the relative risks are similar the absolute 

risks are clearly different. Furthermore, the vertical spread of points in Figure 1 shows how 

individuals with a certain FRS risk estimate may have varying risk estimates according to 

the other models, due to the effect of different risk factor combinations in each model. For 

example, the group of individuals with an average predicted FRS risk of 10% had an average 

PCE risk of 3.9%, with a 95% percentile range of 2.2%-5.1% (Figure 1, plot B).

Given the variation in composite endpoints and the subsequent variations in risk predictions 

from the four models, selecting high risk individuals based on the corresponding recom-

mended risk thresholds results in highly different high risk groups, identified per model. 

Unfortunately, the fact that each prediction model has its own associated risk threshold 

further complicates the interpretation and comparison of absolute predicted risks between 

prediction models. Consequently, treatment decisions may vary with the prediction model 

that is used. For example, in the MORGEN cohort these thresholds would possibly lead to a 

seventy-fold difference in prescription of preventive drug treatment in 0.2%, 14.4%, 4.3%, and 

1.4% of all individuals, when using ATP, FRS, PCE and SCORE, respectively. To illustrate the 

implications of these differences, we determined the CVD risks and the consequences on 

3. RESULTS

Although the predictors of the four prediction models are similar, the composite endpoints 

vary widely and include different CVD event types (Table 1, column 1-6). Myocardial infarction 

(MI) is included in all four composite endpoints, either alone or in combination with other CVD 

event types. The endpoint defined for FRS includes the largest range of fatal and non-fatal 

CVD event types, whereas the endpoint defined for SCORE only includes fatal event types.

Table 1 (column 4, 6, 8, and 10) shows the incidence of each CVD event type as observed in the 

MORGEN cohort for the four different prediction models. Due to different composite endpoints, 

individuals with an earlier CVD event which was not included in the considered endpoint were 

not censored. Therefore, the observed event rates for a specific CVD event vary per prediction 

model. Definition of a first and secondary event within individuals thus depends on whether the 

observed CVD events for individuals are included in the composite endpoint of each prediction 

model. Due to the different definitions of the composite endpoint of the four prediction models, 

the total number of observed events for SCORE (n=105) is almost nine times smaller than for 

FRS (n=928). These differences in composite endpoints also affect the absolute number of 

observed events per prediction model, due to different censoring mechanisms. For example, 

the absolute number of fatal MIs varies per prediction model because secondary fatal MIs may 

be censored due to occurrence of another primary event present in the composite endpoint. To 

illustrate: a fatal MI following a non-fatal stroke event would be accounted for (not censored) in 

the SCORE and ATP model and not accounted for (censored) in the FRS and PCE model. The 

relative incidence of CVD event types within composite endpoints also varies substantially. For 

example, of the 105 events observed according to SCORE, 48 (46%) were fatal MIs, whereas 

the relative incidence of fatal MIs is 17%, 4%, and 11%, for ATP, FRS, and PCE, respectively. 

This means that the burden, or health loss, associated with the incidence of each compos-

ite endpoint varies with a) the included event types, and b) the relative incidence of these  

event types.

The performance of the recalibrated prediction models was good and quite similar; the c-index 

was 0.81, 0.78, 0.78, and 0.81 for ATP, FRS, PCE, and SCORE respectively. Appendix A - Table 1 

shows an overview of the observed and predicted number of CVD events for each of the four 

models. Following from this table, it is apparent that the events are well captured by the models 

and that the number of predicted events closely matches the observed number of events.
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4. DISCUSSION

CVD risk prediction is key in providing preventive medication to large groups of individuals at 

intermediate or high risk of future CVD events, despite absence of specific elevated risk factors. 

Although PCE is often used, contemporary decision making and CVD management in the US, 

FRS is also applied, for example to guide pharmacotherapy for LDL-C lowering in women [9].

This paper illustrates the complexities of interpreting and comparing predicted 10-year CVD 

risks from four widely used CVD risk prediction models. We showed that the models vary 

substantially regarding their composite endpoints, and therefore also regarding their predicted 

absolute risks. As a result, absolute predicted 10-year risks from different prediction models 

cannot be compared directly and treatment decisions depend on the applied prediction model 

and its associated risk threshold. For example, of the high-risk individuals considered for 

preventive treatment according to FRS, only 1%, 28%, and 2% were eligible according to ATP, 

PCE, and SCORE, respectively (Table 2). Hence, the choice for a specific prediction model is 

very likely to impact treatment decisions in a large group of assessed individuals. Fortunately, 

the variation in relative predicted CVD risks is limited, implying that these prediction models 

rank individuals similarly regarding their CVD risk.

Consequences of difference in composite endpoints on clinical utility

Previous research has indicated that the use of composite endpoints instead of single end-

points in clinical trials may have benefits, e.g. improved power or wider coverage of the disease 

[22]. However, the overall usefulness of composite endpoints in clinical trials is still debated 

due to the difficulty of interpreting differences in ‘set of outcomes’ [22, 23]. The interpretation 

of the associated consequences of predicted CVD risks is also directly affected by the different 

composite endpoints. For example, communicating to a patient that he/she has a 10-year CVD 

risk of 3% according to SCORE, compared to a 10-year CVD risk of 6% according to FRS, may 

affect understanding and adherence of patients to any recommended preventive treatment. A 

3% SCORE risk could indicate that the patient is part of the group with the 20% highest absolute 

risk according to SCORE whereas the patient could be part of the group with the 20% lowest 

predicted absolute risk with a 6% risk according to FRS (Figure 1).

In addition, the expected health loss due to events predicted by SCORE is expected to be 

higher than the health burden or health loss due to events predicted by FRS due to how all 

treatment decisions according to the four prediction models for one individual in our cohort. 

Indeed, using FRS for this individual implies both a greater necessity to consider preventive 

drug treatment and a larger potential benefit of such treatment, compared to ATP, PCE, and 

SCORE (see Clinical example).

The treatment decisions based on the four risk thresholds are shown in Table 2. We found that 

the treatment decisions based on the different models vary widely, which is undesirable from a 

public health point of view. When using FRS, 2618 individuals have an estimated risk exceeding 

the FRS threshold and would thus be eligible for medical treatment. Of these individuals, only 

32 (1.2%), 725 (27.7%), and 56 (2.1%) individuals would be considered eligible for medical 

treatment using the estimated risk and corresponding threshold when applying ATP, PCE, 

and SCORE respectively.

These different decisions may be due to either the different estimated risks or due to the use 

of different risk thresholds for classifying individuals as high risk and thus eligible for medical 

treatment. In our cohort, we observed that mostly the same individuals were assigned a 

relatively high risk according to each of the four prediction models (Figure 1). For example, of 

the individuals with the highest 20% predicted risks according to FRS (n=3621), 3106 (85.8%), 

3131 (86.5%), and 861 (23.8%) of individuals were also classified as relatively high risk (top 

20%) according to ATP, PCE, and SCORE, respectively. This relatively high risk group had 

an average CVD risk of 14.2% according to FRS, and average risks of 3.9%, 5.6%, and 0.7% 

according to ATP, PCE, and SCORE, respectively. None of the individuals within the top 20% risk 

group according to FRS had a relatively low risk (bottom 20%) according to the other models. 

Hence, the expected differences in treatment decisions across prediction models is mainly 

due to the different corresponding treatment thresholds, and their relation to predicted risks, 

and not due to the different classification of individuals.
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Conclusion

Current CVD risk prediction models vary widely in predicted outcomes, which directly impact 

their usefulness in clinical practice. Furthermore, this renders estimates of the population 

burden of CVD, and of the impact of risk-based CVD intervention strategies that highly 

depend on the prediction model used. Physicians, patients and health policy makers may 

benefit from a broader and more standardized method of defining outcomes and classifi-

cation thresholds in prediction model studies.

included events in SCORE are fatal, but can fatal or non-fatal in FRS. This issue also affects 

the evaluation of benefits from preventive interventions. For example, when preventive statin 

treatment is assumed to reduce the risk of a “composite” endpoint with a certain fraction 

(relative risk < 1), estimates of the corresponding health benefits will be highly dependent on 

the (constitution of) the composite endpoint of the prediction model used [24].

Even for a single prediction model, the impact of experiencing a predicted composite event 

is likely to depend on age, since a) the proportion of fatal events increases with age, and b) 

the actual health loss due to CVD events decreases with age (i.e. with decreasing life expec-

tancy). Hence, even if the distribution of events included in a composite endpoint is known, 

the expected health impact of a specific risk estimate, for example a 10-year FRS risk of 8%, 

and therefore the potential benefits of preventive intervention, may differ between groups of 

individuals [25].

Given the adequate performance of the CVD prediction models considered, and roughly similar 

relative risk classification, it is recommended that models are applied that have a broad rather 

than narrow composite endpoint, i.e. models covering a large range of CVD event types. For 

example, ATP and SCORE may be less useful in this context than FRS and PCE, as the latter 

cover more manifestations of the underlying cardiovascular disease process. This results in 

higher predicted risks, which may then be communicated as the ‘total risk’ of any (type of) 

CVD event to the patient, to facilitate understanding and improve adherence to preventive 

medication [26]. However, understanding the “total (high) risk” is only an aspect of adherence 

and should not replace informed choice and shared decision making.

Implications for development of new prediction models

Regarding prediction model development and research, it is recommended that any newly 

developed clinically relevant risk prediction model also use a broad composite endpoint, with 

each included event type uniquely defined, e.g. using ICD-10 codes. A clear definition of a) the 

composite endpoint and b) the observed incidence of each event type in the development 

cohort is critical to enable correct interpretation of the predicted risks. This will allow for 

more transparent and direct comparison of predicted risks and statistical performance 

of prediction models as well as more standardized evaluations of the health impact of 

risk-based preventive interventions.
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Table 2: Reclassification table where all individuals are classified and considered for treatment, according to the 
FRS risk threshold (10%), and reassigned for treatment according to the thresholds according to ATP (10%), PCE 
(7.5%), and SCORE (5%)

Framingham risk prediction (percentiles)

Below (risk < 10%)
N = 15,519

Above (risk ≥ 10%)
N = 2618

Mean predicted risk 3.26% 16.15%

Observed events 489 439

Reclassification

ATP Mean predicted risk 0.68% 4.42%

Observed events 209 12

N (%) N (%)

Below (risk < 10%) 15,519 (100) 2,586 (98.78)

Above (risk ≥ 10%) 0 (0) 32 (1.22)

PCE Mean predicted risk 1.17% 6.44%

Observed events 172 178

N (%) N (%)

Below (risk < 7.5%) 15,469 (99.68) 1,894 (72.35)

Above (risk ≥7.5%) 50 (0.32) 724 (27.65)

SCORE Mean predicted risk 0.55% 0.76%

Observed events 87 18

N (%) N (%)

Below (risk < 5%) 15,330 (98.78) 2,562 (97.86)

Above (risk ≥ 5%) 189 (1.22) 56 (2.14)

All individuals are separated into two subgroups “below” and “above” based on the FRS risk threshold, with the 
following definitions; below - individuals with a predicted risk < 10% (no treatment), and above - individuals with a 
predicted risk ≥ 10% (treatment). For each (FRS-)subgroup (column 3-4), the number of individuals present (N) and 
their average predicted FRS risk (%) is shown. For each FRS-subgroup, individuals are reassigned into two (sub-)
subgroups below or above according to ATP (row 5-8), PCE (row 10-13), and SCORE (row 15-18). The green highlighted 
cells indicate concordance and blue highlighted cells indicate discordance on the classification of individuals.

Table 1: Constitution of the composite endpoints according to ATP, FRS, PCE, and SCORE and incidence of CVD 
events in MORGEN cohort

ATP FRS PCE SCORE

Individual components ICD-10 code # # # #

Morbidity

Myocardial infarction (MI)* I21,I22 X 183 X 164 X 176

Other Coronary heart disease (OCHD) I20,I23,I24,I25 X 348

Cardiac arrest, sudden death I46,R96 X 3

Haemorrhagic stroke (CVAH) I60,I61,I62 X 39 X 39

Ischemic stroke (CVAI) I63,I65 X 56 X 58

Other stroke (OCVA) I64,I66 X 29 X 29

Other Cardiovascular diseases (OCVD) G45,I67,I69,I70-I74,I50 X 222

Total observed events 183 861 302 0

Mortality

Myocardial infarction (MI) I21,I22 X 38 X 33 X 38 X 48

Other Coronary heart disease (OCHD) I20,I23,I24 X 3 X 12

Cardiac arrest, sudden death I46,R96 X 7 X 8

Haemorrhagic stroke (CVAH) I60,I61,I62 X 5 X 5 X 12

Ischemic stroke (CVAI) I63,I65 X 2 X 2 X 4

Other stroke (OCVA) I64,I66 X 1 X 3 X 2

Other Cardiovascular diseases (OCVD) G45,I67,I69,I70-I74,I50 X 16 X 19

Total observed events 38 67 48 105

Composite endpoints
(morbidity + mortality)

Ischemic Heart disease (IHD) I20-I25

Coronary heart disease (CHD) I20-I25,I46,R96

Cerebrovascular accident (CVA) I60-I66 X

Cardiovascular disease (CVD) I20-I26,I46,R96,G45,
I60-I67,I69,I70-I74,I50

X X  
(only fatal 
events)

Overall observed events 221 928 350 105

* The primary endpoint for ATP III is ‘hard CHD’, however model ATP III was based on the previously developed 
Framingham risk score with total CHD as primary endpoint [27]. For this study, the endpoint defined in the original 
ATP III paper is followed, i.e. endpoint ‘hard CHD’ is used.
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Figure 1: Predicted (absolute) CVD risk according to FRS and A) ATP, B) PCE, and C) SCORE.

The red marker is the estimate of the mean predicted risk according to FRS and ATP, PCE, or SCORE.

The grey lines (raster lines) represent the different risk thresholds and reveal the fraction of individuals eligible for 

treatment.
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CLINICAL EXAMPLE

Consider a 57 year-old female, with total cholesterol, low-density-lipoprotein (LDL) and 

high-density-lipoprotein (HDL) levels of 193 mg/dL, 91 mg/dL, and 54 mg/dL, respectively, 

a systolic blood pressure (SBP) of 186, no use of blood pressure lowering drugs, who does 

not smoke and does not have diabetes. This woman has an estimated 10-year CVD risk 

of 1.9%, 14.1%, 3.2%, and 0.4%, according to ATP, FRS, PCE, and SCORE, respectively. This 

would indicate a risk above the respective treatment threshold for FRS (10%), but not for 

ATP (10%), PCE (7.5%) and SCORE (5%).

The use of these different risk prediction models may not only lead to different treatment 

decisions, but also to different estimates of the expected benefit from preventive treatment. 

When this woman would receive preventive statin treatment, expected to reduce the overall 

CVD risk with 30%, this would reduce the risk of non-fatal and fatal MI by 0.6% according to 

ATP, whereas according to SCORE, the risk of fatal CVD events would decrease by 0.1% [28]. 

Similarly, the risk of non-fatal and fatal MI and stroke would decrease by 1.0% according to 

PCE, whereas according to FRS, the risk of the broad range of CVD events included in FRS, 

both non-fatal and fatal, would be reduced by 4.2%. Apparently, for this woman CVD risk 

prediction using FRS implies both a greater necessity to consider preventive drug treatment 

and a larger potential benefit of such treatment, compared to ATP, PCE, and SCORE.

SUPPLEMENTARY

Supplementary – Table 1: Observed and predicted number of CVD events

# Observed 

CVD events

# Expected CVD events

Original model Recalibrated model Recalibrated model with correction factor

ATP 221 581 672 221

FRS 928 1,147 1,456 928

PCE 350 577 751 350

SCORE 105 119 105 105
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1. INTRODUCTION

The development of a disease can take decades before first manifestations emerge, many 

cardiovascular diseases (CVDs) have such long incubation period being a progressive conse-

quence of atherosclerosis which often begins early in life [1]. In 2016, 15.2 million people died 

due to CVD which represents 27% of all global deaths [2]. Risk factors for CVD, e.g. obesity, 

smoking, high blood pressure and lipids, mainly result from a prolonged unhealthy lifestyle, e.g. 

inadequate nutrition and physical inactivity. Primary prevention of CVD is possible by changing 

lifestyle, e.g. by losing weight, increasing physical activity, quitting smoking, or administering 

lipid and blood pressure lowering drugs [3].

Several guidelines recommend the use of CVD risk prediction models to stratify individuals 

into CVD risk categories, and based on absolute CVD risks that exceed a certain threshold, pre-

ventive treatment strategies are administered. For example, a lipid lowering drug prescription 

is advocated in case of a 10-year CVD risk estimate above the threshold of 7.5% according to 

prediction model Pooled Cohort Equations (PCE) [4, 5]. As age is an important risk factor for 

CVD, current risk-based selection of individuals mainly targets the more elderly, even though 

the process of developing CVD already starts at a young(er) age. Intervening already in the 

twenties, thirties or forties could be a substantial component of the global effort to reduce the 

burden of CVD worldwide, and may be supported by a burden-based rather than risk-based 

selection approach [6].

Over the last decades evidence has grown that other, non-traditional and non-modifiable, 

risk factors also affect the manifestation of CVD. Quantifying benefits from CVD prevention 

requires taking into account such new CVD risk factors since they also contribute to CVD risk. 

Examples of non-modifiable risk factors are preterm delivery, hypertensive pregnancy, and 

autoimmune diseases [7-9]. Of the non-modifiable CVD risk factors, pregnancy disorders are 

mostly described in the literature as early manifestation of CVD.

The long-time horizon over which health benefits from CVD prevention may accrue makes 

observing and measuring them infeasible in randomized trials or prospective longitudinal 

cohort studies. Another way of quantifying long-term benefits from early CVD prevention 

strategies is to perform a model-based analysis [10]. However, developing a valid decision 

analytic model to assess prevention at young age, with all required evidence on CVD risk, 

ABSTRACT

Background: Manifestations of common and/or severe diseases at old(er) age can 

sometimes be traced back to elevated risk factor levels at young(er) age. Intervening at 

young(er) age to reduce the burden of disease may be beneficial, but comes at a cost. 

Assessing the long-term health benefits in a trial is hardly feasible, conversely, modelling 

these benefits is likely to be more feasible. As evidence on the impact of prevention at young 

age is very limited, it is important to study which parameters and assumptions influence the 

expected long-term benefits of preventive strategies at young age most.

Methods: A micro-simulation model with a lifetime horizon is developed to explore the 

influence of key parameters on the long-term impact assessment of preventive strategies 

for cardiovascular diseases (CVD). Women with hypertensive pregnancy disorder (HPD) 

are used as a case study and screening at 30, 40, or 50 years is investigated as preventive 

strategy. Different preventive strategies are compared in terms of total number of CVD 

events, costs, and quality-adjusted-life-years. Uncertainty is investigated by Monte-Carlo 

simulation. Additionally, a Value of Information analysis and net benefit regression are 

performed to identify parameters that warrant future further research and that have a large 

influence on the health benefits.

Results: Parameters associated with treatment effectiveness, adherence to medication 

and average 10-year CVD risk at 80 years have the largest impact on model outcomes. 

All investigated preventive strategies for CVD in women with HPD are cost-effective, with 

screening every 10 years at the age of 30, 40, and 50 having the highest probability to be 

cost-effective.

Conclusion: Decision analytic models can determine those parameters that impact the 

long-term impact of preventive interventions most. In the case of prevention of CVD in 

women with HPD, it would be crucial to further study risk reduction of preventive treatment 

and the long-term adherence rate of medication in women.
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average and range are for example, the long-term adherence rate of medication. This last 

group may play a large role in the cost-effectiveness of preventive screening. Therefore, we 

will focus in more detail on these five parameters, i.e. parameters with uncertain average and 

unknown range.

Below we first explain the natural history of the individuals who are followed in the micro simu-

lation model. Second, the early prevention strategies for cardiovascular disease are explained. 

Third, the impact analysis including the reduced incidence of CVD events and cost effective-

ness analysis of these strategies is specified. Last, we describe the value of information (VOI) 

analysis and Net Benefit Regression (NBR) which are used to identify parameters with large 

influence on the cost-effectiveness estimates of these early CVD prevention strategies [14].

2.2 Natural history of CVD in targeted individuals

An example of non-traditional and non-modifiable CVD risk factors are pregnancy related and 

reproductive disorders in women [15]. Some pregnancy and reproductive related disorders 

can be viewed as early manifestation of CVD. For example, women with a hypertensive 

pregnancy disorder (HPD) have a two-fold increased risk of CVD [16, 17]. In this paper, we 

focus on the long-term benefits of early prevention in women with HPD as a case study to 

identify key parameters in this context.

Survival

The survival of young women is simulated based on sex- and age-specific life tables from 

Statistics Netherland [18].

CVD risk and correlation

It is assumed that the population of women with HPD has an average age of 30 years, i.e. the 

average age of women at a first pregnancy in the Netherlands [18]. To estimate annual and 

10-year CVD risks, a hypothetical dataset is populated with general and easily measurable risk 

factors, e.g. age, cholesterol levels and systolic blood pressure.

In the absence of evidence on change over time, for example in CVD risk factor levels, we 

predict individualized CVD risk estimates before running the simulation. Based on literature, the 

average 10-year CVD risk at young and older age, in this study 30 and 80 years, are determined 

effectiveness of the preventive strategies and adherence to these strategies over time, is 

challenging. For example, adherence to prescribed medication (such as blood pressure or lipid 

lowering medication) is highly variable over time, treatment effectiveness of such medication 

(as a function of age and other risk factors) may change over time, as well as patterns of risk 

progression [11, 12]. All these aspects are likely to be affected also by gender and baseline 

risk factor levels. A trustworthy model-based analysis of early prevention strategies needs to 

parameterize these aspects, and incorporate the uncertainty associated with the evidence 

used to establish the parameter estimates.

We have developed a micro simulation model to explore which key (sets of) parameters have 

the largest influence on the expected long-term benefits of CVD prevention in young women 

with pregnancy related CVD risk factors. Rather than accurately quantifying the expected 

benefits for a particular early prevention strategy to be implemented in actual daily manage-

ment of young women with pregnancy related CVD risk factors, this paper aims to study the 

influence of parameters and other crucial evidence in the assessment of the long-term impact 

of early CVD prevention strategies.

2. METHODS

2.1 General remarks

We developed a discrete time micro simulation state transition model as this allows inclusion 

of CVD risk factors, simulated events and outcomes on an individual level [13]. The cycle length 

of the model is one year and all individuals are followed until death (i.e. a lifetime time horizon is 

applied). Then, outcomes over time are aggregated at population level, i.e. total number of CVD 

events, total costs and total health outcomes, expressed in Quality-Adjusted Life Years (QALYs).

Appendix A shows the flow chart of the micro simulation model and Appendix B - Table 1 

shows an overview of all input parameters that are varied in the modelling. Given the scarcity 

of evidence we divide parameters into two categories: a) parameters with an uncertain average 

and/or unknown range (row 3-38), and b) parameters related to policy decisions and therefore 

with fixed values (row 39-44). Examples of parameters with an uncertain average and known 

range are average costs and utilities of CVD event types, whereas parameters with unknown 
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Risk of a CVD event

For simplicity, we distinguish three CVD event categories; coronary heart disease (CHD), 

cerebrovascular disease (CVA), and other cardiovascular disease (OCVD) events. All 

three CVD event categories can vary in severity, i.e. non-fatal and fatal, resulting in six 

CVD event types being incorporated in the model. The event distribution (i.e. relative 

occurrence) of these six CVD event types is based on literature and cohort studies, and 

is dependent on age (Appendix B - Table 2). For all women who experience a non-fatal 

event in the current cycle, the annual CVD risk estimates are proportionally increased 

since experiencing a CVD event is a risk factor for a recurrent CVD event (see Appendix 

B - Table 1 for further details).

Quality of life and costs

Quality of life values (utilities) of women with HPD are based on evidence from Dutch 

studies and the National Institute for Health and Care Excellence (NICE) [26, 27]. Quality 

of life is adjusted for age [28, 29]. Women, who experience a non-fatal CVD event in the 

previous or current cycle, have their quality of life proportionally decreased. CVD events 

can occur multiple times in this model. The proportional reduction in quality of life due to a 

CVD event is higher in the first year compared to the consecutive years to reflect recovery 

from the CVD event towards a normal quality of life. For non-fatal first CVD events, the 

utilities vary over the six CVD event types. Side-effects of medication after a CVD event 

are not taken into account separately but are assumed to be incorporated in the disutility 

of CVD events. Utilities of recurrent CVD event do not vary over event type.

Costs of CVD events are based on Dutch studies and evidence from NICE, and vary over 

the six event types. Costs of recurrent CVD events are set at the same value. Higher costs 

for the first year after the occurrence of a CVD event are incorporated. For screened 

women, disutility due to the screening is not taken into account. In women receiving 

preventive treatment, an average disutility of the treatment (due to minor side-effects) 

is taken into account for medication adherent women. For all screened women, costs 

are updated with the costs due to screening, i.e. visit to the GP and laboratory tests. For 

women with a CVD risk exceeding the treatment threshold, the costs for medication are 

added regardless of their adherence.

[19]. It is assumed that after the age of 80 years, the 10-year CVD risk stays constant. The 

10-year CVD risk estimates for the years in between 30 and 80 years are determined by 

smooth exponential interpolation. These 10-year CVD risk estimates per age decade are used 

to calculate corresponding annual CVD risk for use in the cycles of the simulation model. For 

more details see Appendix C

On average risk estimates of CVD increase with age. Unfortunately there is no reliable data 

available on the potential change in the risk profiles within women over time. In the absence 

of evidence on the correlation between 10-year CVD risk estimates at young age and at older 

age, a single correlation coefficient is used to correlate the risk values within women over 

time. A small value indicates small correlation between the risks, i.e. women have substantial 

chance to move from a relative high predicted risk to a relative low risk and vice versa. More 

details are shown in Appendix C.

CVD primary prevention strategies

Preventive screening for CVD is common (certainly in western countries) but is often not 

systematically provided and conducted across the entire population. It may vary between care 

providers and young women are often not included in CVD prevention [20, 21]. The natural 

history (i.e. the CVD occurrence without any primary prevention) is therefore hard to define.

There is no nationwide primary prevention program in the Netherlands. However, the general 

practitioner may identify women at high CVD risk, for example based on early symptoms or 

complaints. These women then are classified into risk categories based on their predicted 

10-year CVD risk according to the SCORE model [22-24]. Women at high risk, i.e. a risk estimate 

exceeding the risk threshold of 10%, receive preventive medical treatment.

The expected risk reduction (based on statin use) is assigned to each woman who adheres 

to their medication [25]. For the medication adherence rate, it is assumed that the annual 

adherence rate decrease over time. Evidence on the proportion of women who are adherent 

to their medication for a long time horizon is not available. Therefore, we assume all high risk 

women start with medication and a proportion of women adhere to their medication after 

10 years, and derive the annual rate accordingly, i.e. exponential interpolation. The 10-year 

adherence rate is varied in the analyses, average of 0.25 (95% CI 0.01-0.50).
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2.4 Cost effectiveness analyses

A cost-effectiveness analysis is performed with an incremental cost-effectiveness ratio 

(ICER) as outcome. This ICER represents the ratio of the difference in lifetime costs between 

early preventive screening and no screening (natural history) divided by the difference in 

effectiveness (i.e. health outcomes) between both scenarios. The effectiveness is measured 

in quality adjusted life years (QALYs). A commonly applied Dutch Willingness-to-Pay (WTP) 

threshold of € 20,000 per QALY gained is used to determine whether a screening strategy is 

cost-effective or not, and to calculate the incremental Net Health Benefits (INHB).

To explore the influence of parameters with uncertain values and range, probabilistic 

sensitivity analysis is performed using 2,000 Monte Carlo simulations. Last, the probability 

that a screening strategy is cost-effective compared to all alternative strategies (including 

no screening) is estimated, as a function of the WTP, and visualized in cost-effectiveness 

acceptability curves.

2.5 Value of Information

A value of information (VOI) analysis is performed using the online Sheffield Accelerated 

Value of Information (SAVI) tool [14]. VOI can be used to investigate the value of collecting 

additional data to reduce uncertainty in the input parameters of the simulation model, in 

order to reduce uncertainty in cost-effectiveness outcomes, and thereby the risk of incorrect 

decisions, for example regarding reimbursement [31]. The expected value of perfect (EVPI) 

and partial perfect information (EVPPI) is calculated. The value of hypothetically resolving 

all uncertainty is reflected by the EVPI, whereas, the EVPPI indicates what the value is of 

resolving all uncertainty in one parameter or a group of parameters [31, 32].

Since costs of screening based on cardiovascular risk prediction are low, and preventive drug 

therapy with blood pressure and lipid lowering drugs is relatively cheap and effective, there 

may be limited uncertainty regarding the cost-effectiveness of early screening compared 

to no screening. Therefore, we also perform a Net Benefit Regression (NBR) to investigate 

which parameters have a substantial influence on the benefits of early screening strategies, 

using a multivariable linear regression model [33] .

All values of the utilities and costs can be found in Appendix B - Table 1 (row 8-37). Following 

Dutch guidelines, a discount rate of 4% for costs and 1.5% for health outcomes is applied 

[30]. It is assumed that preventive screening and CVD events can occur halfway through 

the cycle, i.e. year. Therefore, a mid-year discount and half-cycle correction is applied for 

the costs and utilities which are accumulated at the end of each cycle.

2.3 Preventive screening strategies under study

In a simulated preventive strategy, we assume that women with HPD are invited for early 

screening for CVD. However, only a proportion of these women, varied in the simulation 

between 0.6 and 0.9, will participate in the preventive screening. This preventive screening 

is based on 10-years predicted CVD risks, and stratification of screened women into a risk 

category based on this absolute risk. Current guidelines on CVD management across the 

globe commonly advocate to use only one risk threshold, i.e. 7.5% - 20% depending on the 

country, for administering preventive medication, which is then applied to all age groups. 

Since the average 10-year CVD risk is very low in women at 30 years (i.e. around 2.5%), these 

recommended risk thresholds are not directly suitable for our case study. Therefore, a lower 

absolute risk threshold of 2% was chosen for the purpose of our study.

It is unknown how young women would follow-up on the advice to use preventive medication 

following detection of an increased risk of CVD. Therefore, we varied the adherence rate, 

relative to the adherence rate that is observed in older women with an increased CVD risk 

(see natural history, section 2.2.3). We use an adherence rate varying between 0.5 and 1.5, 

relative to adherence in older women with “classical” CVD risks.

Table 1 shows an overview of the different preventive scenarios considered. To investigate 

the potential effect of key parameters, i.e. parameters with an unknown average and range, 

and different preventive screening scenarios for young women with HPD, we simulate a 

cohort of 2,000 women and compare the resulting number of simulated CVD events.



118 119

Assessing the impact of CVD prevention strategies at young ageCHAPTER 5

5

screening strategies with no screening can be found in Appendix E, together with the associ-

ated ICERs (Appendix E - Table 1). Figure 3 shows the cost-effectiveness acceptability curve. 

Preventive screening at 30, 40, and 50 years has the largest probability to be cost-effective 

for different WTP thresholds, increasing from 0.75 for a WTP of €0/QALY to 0.94 for a WTP 

of €100,000/QALY.

3.3 Value of information

The value of information (VOI) analysis indicates that the overall EVPI per person affected 

is €4.69 per person, or 0.0002 QALYs per person. Furthermore, the analysis indicates that 

treatment effectiveness, in terms of relative risk reduction, has the largest EVPI value per 

person (i.e. €0.22). Further investigation of the uncertainty of single parameters shows that 

collecting more information on the five key parameters, i.e. parameters with an unknown 

average and range, has no added value (see Appendix F - Table 1). Assuming 2,000 women 

present with HPD in the Netherlands per year amounts to a population EVPI of € 9,380. When 

considering only decision uncertainty with respect to cost-effectiveness, this low value of 

EVPI would not merit investing in further research, as the cost of research would surpass the 

costs of further reducing uncertainty.

Table 4 shows an overview of the groups of associated parameters that are used to estimate 

the group EVPPI. Collecting additional information on all parameters related to treatment (i.e. 

set 3), has a limited value with an EVPPI of €0.71 per person. Additionally, collecting additional 

information on all other parameters has no value (see Appendix F - Table 1). To make sure 

individual patient variation (i.e. first order uncertainty) is excluded from the VOI analyses, these 

were repeated based on 2,500 simulation runs of a cohort of 50,000 women. The result is an 

overall EVPI of € 0 per person (i.e. none of the 2,500 PSA samples lie above the WTP threshold) 

implying that there is near perfect certainty that preventive screening at 30, 40, and 50 years 

is cost-effective, for the applied WTP of €20,000/QALYs.

The results of the cost-effectiveness analysis show that preventive screening strategies are 

(almost always) cost saving and beneficial (Figure 2). However, there is some variation in the 

size of the health benefits. The incremental net health benefit (INHB) estimates, i.e. preventive 

screening at 30, 40, and 50 years compared with usual care, is used as outcome in the NBR.

3. RESULTS

3.1 Impact of key parameters

The impact of the five key parameters is investigated in terms of CVD events before the age 

of 60 and lifelong, in a cohort with 2,000 women. The results are presented in Appendix D, 

together with the initial parameter settings used for the simulations. The relation between 

one key parameter, i.e. probability to participate in preventive screening, and the actual 

number of (expected) CVD events is shown in Figure 1. The effect of this parameter on the 

number of CVD event is substantial for the preventive screening scenarios. For example, for 

screening starting at 30 years, the number of lifelong CVD events decreases by 9% and 13% 

for a probability to participate in screening of 0.60 and 0.75 respectively.

3.2 Cost effectiveness analyses

It is expected that the main driver of the impact of CVD preventive strategies is the reduced 

number of CVD events. Table 2 shows the number of CVD events for no screening and the 

five screening strategies of Table 1. A screening strategy with 3 screening moments at 10 

year intervals results in the largest decrease in CVD events, i.e. 35% of all life-long CVD events 

can be prevented by screening at 30-40-50.

Table 3 shows the results of the cost-effectiveness analysis for five different screening 

scenarios. No screening is more costly than all five preventive screening scenarios; the 

mean cost for no screening is €6,376 per women. Cost savings of preventive screening 

versus no screening is largest when preventive screening at 30-40-50 is applied: mean 

incremental costs are -€ 543. Moreover, preventive screening at 30-40- also has the largest 

health benefit; the mean incremental benefit compared to no screening is 0.20 QALYs.

Figure 2 shows the incremental cost-effectiveness plane with a WTP threshold of €20,000/

QALY. Despite the substantial uncertainty present in the model input parameters, in almost all 

simulations preventive screening is less costly and more effective compared with no screen-

ing. All preventive screening strategies dominate no screening. To compare the preventive 

screening strategies with each other, we used incremental net health benefit (INHB) estimates 

with a WTP threshold of €20,000/QALY. Preventive screening at 30-40-50 has the largest 

INHB estimate (Table 3–column 7). The cost-effectiveness plane comparing the preventive 
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Strengths of the study

We explicitly included parameters that are commonly excluded in health economic eval-

uations of primary screening for CVD, e.g. correlation of risk profiles in individuals over 

time, and different levels of adherence to the preventive intervention (here lipid lowering 

medication) in younger and older women. Including such parameters captures more of the 

uncertainty in the health economic outcomes, whereas (implicitly) assuming a correlation of 

exactly 1, and equal medication adherence across age ranges ignores uncertainty in these 

parameters, and obviously is distant from what is being observed in real life.

Few studies on model-based impact assessment of CVD prevention strategies can be found 

in the literature [35, 36]. A quick research in PubMed showed approximately 340 results 

of which only four studies modelled a lifelong time horizon. Many model-based impact 

assessments of CVD prevention strategies have a time horizon between 10 and 30 years, 

i.e. follow-up ends before death, whereas our study models the entire life-time of women 

entering the model at young age [37]. Furthermore, we used a patient-level state transition 

model rather than a cohort state transition model, to accurately reflect individual risks, 

treatment decisions, adherence, and patient pathways.

Limitations of the study

For the parameters in the model with an unknown average and/or range (e.g. probability 

to participate in preventive screening), a very wide distribution was defined, deliberately, to 

not underestimate uncertainty in these parameters. Even so, not all model aspects were 

parameterized and it was necessary to make a limited number of assumptions. We assumed 

that the relative risk of CVD when taking medication versus without medication was similar 

for all CVD event types and also across age categories. Evidence demonstrating otherwise is 

lacking. Furthermore, data on CVD risk after 80 years of age was lacking and was therefore 

kept constant beyond this age in the model. As the vast majority of CVD events in our model 

occurs before the age of 80, the influence of this assumption is however limited.

The aim of this study was to explore influence of different (sets of) parameters on the 

long-term impact of preventive strategies rather than to conclusively demonstrate what is 

the best preventive strategy in women with HPD. The structure of the model was chosen to 

be as simple as possible while still realistic enough to provide relevant insights. An example 

of the “simplistic” structure of the model is that only the occurrence of CVD events was 

Table 5 (column 2-4) shows the results of the NBR, where most key parameters have a linear 

regression coefficient which is significant. The associated R2 value of the estimated NBR is 

0.84 which is acceptable for using the estimated model [34]. Utility of preventive medication 

has the largest coefficient (12.89). In other words, the change in INHB is almost 13 if the utility 

of medication increases with 1. However, in this study the utility of medication varies between 

0.997 and 0.999, hence the influence of this parameter on the INHB is very small. Therefore, 

we determine the 2.5 and 97.5 percentile values for all parameters, based on their respective 

distributions, and use these estimate of the low-INHB (2.5%) and high-INHB (97.5%) value per 

parameter, while keeping all other parameters fixed at their mean value.

Table 5 (column 5-6) shows the results for the estimation of the low-INHB and high-INHB 

values. For example, the expected INHB of 0.22 QALYs (Table 3) is predicted to increase to 0.41 

if the relative risk reduction value changes from 0.70 to 0.49 (i.e. 2.5 percentile value) and to 

decrease to 0.06 if this value changes from 0.70 to 0.88 (i.e. 97.5 percentile value). Parameters 

with substantial influence on the benefits of screening are: treatment effectiveness, 10-year 

adherence rate to medication (for all women), average 10-year CVD risk at 80 years and the 

proportion of women that participate in screening. When, regardless of cost-effectiveness 

and VOI outcomes, more accurate estimates of these screening benefits are desired future 

studies should focus on collecting further evidence on these aspects.

4. DISCUSSION

Modelling may be the only feasible method to estimate the long-term benefits of early 

prevention but it requires a large number of parameters for which evidence is likely to be 

lacking at the time of modelling. In this study, different (sets of) parameters for the long-term 

benefits of early CVD prevention strategies are investigated with regard to their relevance to 

cost-effectiveness outcomes and decision making. Investigating which (sets of) parameters 

are most relevant allows to better focus further research. In our illustration that focuses 

at CVD prevention in women with HPD, the VOI and NBR analyses indicated that the most 

relevant parameters are intervention (treatment) effectiveness and adherence rate to inter-

vention. Despite including substantial and realistic uncertainty in model input parameters, 

the results of our analysis tentatively suggest that early CVD prevention in women with HPD 

may have the potential to improve health outcomes and reduce health care costs.
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Table 1: Preventive screening strategies in young women with HPD

Screening moment Absolute risk threshold

1 50  2%

2 30  2%

3 40 & 50  2%

4 30 & 40  2%

5 30 & 40 & 50  2%

Table 2: Incremental number of CVD events in preventive screening compared to no screening

No screening (N=1,178 CVD events life-long in a cohort of 2,000 women)

Incremental events CVD (N, %)

Preventive screening (risk threshold of 2%)  50 years -141 (11.9%)

 30 years -157 (13.2%)

 40 and 50 years -300 (25.2%)

 30 and 40 years -319 (26.9%)

 30, 40, and 50 years -411 (34.6%)

* the probability to participate in preventive screening is 75%, other value of the initial screening settings can be 
found in Appendix D.

Table 3: Results from the cost effectiveness analyses

Average 
costs (€)

Average health 
benefits (QALY)

No screening 6,396 29.71

Preventive 
screening

Average 
costs (€)

Average health 
benefits (QALY)

Incremental
cost* (€)  
(95% CI)

Incremental health
benefits* (QALY)
(95% CI)

ICER
(€/QALY)

INHB
(95% CI)

50 years  6,223 29,80 -173 (-531;32) 0.086 (-0.01;0.21) Dominant 0.09 (0.01;0.24)

30 years  6,115 29,80 -281 (-981;96) 0.084 (0.00;0.26) Dominant 0.10 (0.00;0.31)

40 and 50 
years

6,044 29,86 -352 (-1,026;46) 0.147 (-0.02;0.36) Dominant 0.16 (0.02;0.42)

30 and 40 
years

 5,950 29,86 -446 (-1,355;107) 0.146 (-0.01;0.39) Dominant 0.17 (0.01;0.47)

30, 40, and  
50 years

 5,852 29,91 -543 (-1,512;89) 0.198 (0.03;0.47) Dominant 0.22 (0.02;0.56)

* compared with no screening. ICER: Incremental Cost-Effectiveness Ratio. QALY: Quality Adjusted Life Year. INHB: 
Incremental Net Health Benefit

modelled; occurrence of other diseases or comorbidities, like chronic kidney disease, or 

migraine, or inflammation, were not taken into account [38, 39]. Also, unrelated medical 

costs in life-years gained were not taken into account. Last, the practical feasibility and 

acceptability of the proposed preventive screening strategies and associated preventive 

medication for individuals and care providers, still needs to be determined. In daily practice, 

young women may not be willing to take medication for prolonged periods due to the risk of 

side-effects. However, the opposite may also be true since these women are increasingly 

aware of their (high) CVD risk after experiencing a complicated pregnancy, which may 

increase their adherence to drug therapy.

Furthermore, with an absolute risk threshold of 2% for treatment selection, preventive 

screening was profitable in terms of health benefits, cost savings, and cost-effective (even 

almost dominant). However, the absolute risk threshold of 2% was chosen and may not be 

the optimal threshold [40].

Conclusion

Decision analytic modelling is crucial in assessing the expected long-term impact of preven-

tive interventions [10]. Moreover, it can play an important role in determining which evidence 

is required for reliable impact assessments to be accurate and thus valuable for decision 

making. Collecting evidence over long periods is time consuming and costly, therefore it 

is important to prioritize research in this area which then contributes to efficient allocation 

of healthcare resources. Finally, after using decision analytic models to explore relevant 

evidence gaps, reusing and updating these models to assess long-term impact is likely to 

be feasible and an efficient use of research time and budgets.
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Figure 3: Cost-effectiveness acceptability curve for different screening scenarios; the dotted line represents the 

WTP threshold of €20,000/QALY.Figure 1: Effect of unknown probability to participate in preventive screening in women below the age of 60.

A line in the lower part presents the number of CVD events in women below the age of 60, and a line in the upper 

part presents the number of predicted events over the entire life span of women with HPD

Figure 2: PSA results for 2,000 simulations and a risk threshold of 2% and the dotted line is the WTP threshold of 

€20,000/QALY. The points in the figure present the difference in effects and costs of a preventive screening versus 

no screening.
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Table 5: Net benefit regression based on all parameters with a willingness-to-pay threshold of €20,000/QALY

Estimate Standard error p-value Low INHB High INHB

Relative risk of CVD when taking medication 
versus without medication

-0.91 0.01 0.00 0.41 0.06

10-years adherence for women ≥ 60 years 0.50 0.01 0.00 0.11 0.34

Relative adherence change (in women < 60 
years compared with > 60 years)

0.13 0.00 0.00 0.16 0.28

Average 10-year CVD risk at 80 years 0.83 0.04 0.00 0.18 0.26

Utility of CHD (sequential year) -0.16 0.01 0.00 0.27 0.21

Proportion of young women that participate 
in early preventive screening

0.19 0.02 0.00 0.20 0.25

Utility of CVA (sequential year) -0.12 0.01 0.00 0.25 0.20

Annual proportion of women ≥ 60 years at 
high CVD risk identified by the GP

-0.36 0.04 0.00 0.24 0.21

Utility of preventive medication 12.89 2.27 0.00 0.21 0.24

Utility of OCVD (sequential year) -0.03 0.01 0.04 0.23 0.22

Relative risk recurrent event (first year) 0.01 0.01 0.08 0.22 0.23

Cost of CVD death 0.00 0.00 0.09 0.23 0.22

Correlation coefficient between 10-year CVD 
risk estimates

-0.01 0.01 0.06 0.23 0.22

Cost of preventive medication 0.00 0.00 0.12 0.23 0.22

Cost of CVA (first year) 0.00 0.00 0.14 0.23 0.22

Cost of recurrent event (first year) 0.00 0.00 0.15 0.22 0.23

Cost of CHD (sequential year) 0.00 0.00 0.16 0.23 0.22

Cost of CHD (first year) 0.00 0.00 0.21 0.23 0.22

Cost of CVA (sequential year) 0.00 0.00 0.30 0.22 0.23

Utility of recurrent event (first year) -0.02 0.02 0.35 0.23 0.22

Relative risk recurrent event (sequential year) 0.00 0.01 0.37 0.22 0.23

Cost of recurrent event (sequential year) 0.00 0.00 0.48 0.22 0.23

Average 10-year CVD risk at 30 years -0.36 0.45 0.42 0.23 0.22

Utility of CHD (first year) 0.01 0.02 0.54 0.22 0.23

Cost of OCVD (first year) 0.00 0.00 0.59 0.22 0.23

Cost of preventive screening 0.00 0.00 0.74 0.22 0.22

Utility of CVA (first year) 0.00 0.02 0.79 0.22 0.22

Cost of OCVD (sequential year) 0.00 0.00 0.88 0.22 0.22

Utility of OCVD (first year) 0.00 0.02 0.89 0.22 0.22

Utility of recurrent event (sequential year) 0.00 0.01 0.93 0.22 0.22

Intercept -11.40 2.37 0.00

R2 0.837

Table 4: Defined sets of parameters for VOI analysis

Set 1 – Predicted CVD risk

 • Average 10-year CVD risk at young age, i.e. 30 years
 • Average 10-year CVD risk at older age, i.e. 80 years
 • Correlation coefficient between 10-year CVD risk estimates

Set 2 – Probability to start preventive medication and stay adherent

 • 10-year adherence for women ≥ 60 years
 • Proportion of young women that participate in early preventive screening
 • Relative adherence change (in women < 60 years compared with > 60 years)
 • Annual proportion of women ≥ 60 years at high CVD risk identified by the GP

Set 3 – Screening and treatment

 • Relative risk of CVD when taking medication versus without medication
 • Disutility due to preventive medication
 • Cost of preventive medication
 • Cost of early preventive screening

Set 4 – Costs

 • Cost of CHD event (first year)
 • Cost of CVA event (first year)
 • Cost of other CVD event (first year)
 • Cost of CVD death
 • Cost of CHD event (sequential years)
 • Cost of CVA event (sequential years)
 • Cost of other CVD event (sequential years)
 • Cost of recurrent CVD event (first year)
 • Cost of recurrent CVD event (sequential year)

Set 5 – Utilities

 • Utility of CHD event (first year)
 • Utility of CVA event (first year)
 • Utility of other CVD event (first year)
 • Utility of CHD event (sequential year)
 • Utility of CVA event (sequential year)
 • Utility of other CVD event (sequential year)
 • Utility of recurrent CVD event (first year)
 • Utility of recurrent CVD event (sequential years)

Set 6 – Relative risk after CVD event

 • Relative risk of recurrent CVD event (first year)
 • Relative risk of recurrent CVD event (sequential year)
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B. PARAMETERS

Appendix B - Table 1: Values for the simulation

Uncertain values with unknown range
Name Mean Range (95% CI) Distribution Source
Marginal correlation between risk 
profiles (per 10 years)

0.50 0.12 - 0.88 uniform Assumption

Proportion of women below the age of 
60 who participate in early preventive 
screening

0.75 0.61 - 0.89 uniform Assumption

Annual proportion of women above the 
age of 60 who are detected at the GP

0.05 0.00 - 0.10 uniform Assumption

Probability of women who are adherent 
to medication after 10 years

0.25 0.01 - 0.50 uniform Assumption

Relative change of adherence rate after 
10 years for women who start with 
preventive screening, i.e. women below 
the age of 60

1.00 0.52 - 1.48 uniform Assumption

Uncertain values but with a certain range/distribution
Name Mean Range (95% CI) Distribution Source
Average 10-year CVD risk at age 30 0.02 0.02 – 0.03 uniform [20, 37]
Average 10-year CVD risk at age 80 0.25 0.20 – 0.30 uniform [20, 37]
Relative risk ratio after first CVD event 
(for all years)

2.14 1.71 – 2.68 gamma [38]

Relative risk after recurrent CVD event 
(for all years)

2.12 1.70 – 2.63 gamma [38]

Relative risk reduction of preventive 
treatment

0.71 0.49 – 0.88 beta [26]

Mean Costs* (95%)
Medication
Standard statin per year (40mg/d) 9 5 – 15 gamma [39, 40]
Early preventive screening# 143 128 - 161  gamma [39]
Event
CHD 5,037 4,985 – 5,085 gamma [39]
CVA 19,473 19,324 – 19,613 gamma [39]
Other CVD 2,980 2,921 – 3,040 gamma [41], range 

assumption
Recurrent CVD event 1,235 1,198 – 1,274 gamma [41], range 

assumption
Fatal CVD event 2,370 2,353 – 2,390 gamma [42]
Post event – annual
CHD 761 729 - 798 gamma [41], [27]
CVA 10,055 9,959 – 10,147 gamma [39]
Other CVD 3,369 3,304 – 3,439 gamma [41], range 

assumption
Recurrent CVD event 686 659 - 715 gamma [41], range 

assumption

A. FLOWCHART OF THE SIMULATION MODEL
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C. CVD RISK ESTIMATES

In our micro simulation model, CVD risk estimates are assumed to be beta distributed. From 

literature, the average 10-year CVD risk and the associated variation at the ages of 30 and 

80 years are determined. Using the average (µ) and variance (σ2) values the corresponding 

alpha (α) and beta (β) values are calculated; see Appendix C - Equation 1 and Appendix 

C - Equation 2. This results in one alpha and one beta value for the risk distribution at the 

age of 30 and another alpha and beta value for the age of 80. The alpha and beta values for 

the decades between 30 and 80 years are smoothly linear interpolated and stay constant 

above the age of 80. In total, we have eight “decade” alpha and beta values corresponding 

with 8 cycles, i.e. 30 until 110.

In the simulation model, risk estimates are correlated between the decades. A single cor-

relation is used to correlate the CVD risk at age X and age X+10. Furthermore, the correlation 

coefficient is varied in the analyses. This insures that CVD risk is correlated over time (age) 

but with a diminishing correlation (age X and age X+20). Therefore, a marginal conditional 

normal distribution is used to simulate the correlation values over time, per woman.

The predicted 10-year CVD risk distribution is divided into intervals where one interval 

represents one woman. For example, the central interval is a woman of whom the predicted 

CVD risk estimate is equal to the average CVD risk estimate. With the estimated correlation 

coefficients for all women and cycles, the intervals are randomly generated for all women.

For each decade, there is an alpha, beta, and interval which are used as input for generating 

a value, i.e. CVD risk estimate, from a beta distribution. A large interval value for cycle one, 

i.e. a relatively high predicted risk estimate, together with a high correlation coefficient, e.g. 

0.90, likely results in relatively high predicted risk estimates in all subsequent decades. Finally, 

there are eight 10-year CVD risk estimates for all women. The 10-year CVD risk estimates are 

converted into 10 annual risk estimates such that the annual risk estimates are increasing 

over time, see Appendix C - Equation 3.

Appendix C - Figure 1 shows the predicted risk estimates of 25 randomly chosen women 

over age, i.e. between the ages 30 to 60 years, with three different correlation coefficients. 

When the correlation coefficient is 0.1, i.e. almost random, the probability of having a relative 

Mean Utilities (95% CI)
Event for whole cycle
CHD 0.77 0.59 – 0.89 beta [41], range 

assumption
CVA 0.63 0.46 – 0.78 beta [41], range 

assumption
Other CVD 0.69 0.52 – 0.83 beta [41], range 

assumption
Recurrent CVD event 0.44 0.29 – 0.61 beta [41], range 

assumption
Post-event
CHD 0.91 0.64 - 0.99 beta [41], range 

assumption
CVA 0.63 0.43 - 0.81 beta [41], range 

assumption
Other CVD 0.69 0.48 - 0.86 beta [41], range 

assumption
Recurrent CVD event 0.66 0.45 - 0.83 beta [41], range 

assumption
Statin use 0.998 0.997 – 0.999 uniform [42]
Parameters reflecting choices rather than uncertainty
Number of individuals 2,000 - -
Discount rate Cost 4% - - [29]
Discount rate Effect 1.5% - - [29]
Quality of life as function of age for 
general population

0.95698 – 
0.00085 * age
– 0.00002 * age2

- - [27, 28]

Start age preventive screening – natural 
history

60 - - -

Start age preventive screening (early 
age)

30, 40, or 50 (with 
all combinations

- - -

* The unit of cost is euro and all costs are updated according to Dutch consumer price indices (2017). # Cost of 
preventive screening includes costs due to a GP visit, pharmacy and laboratory tests.

Appendix B - Table 2: Age dependent event distribution for women

Age CHD
– non fatal

CVA
 – non fatal

OCVD
– non fatal

CHD
– fatal

CVA
 – fatal

OCVD
– fatal

20-30 0.158 0.526 0.263 0.000 0.053 0.000

30-40 0.333 0.333 0.238 0.048 0.048 0.000

40-50 0.475 0.263 0.220 0.008 0.008 0.025

50-60 0.536 0.207 0.197 0.032 0.014 0.015

60-70 0.317 0.307 0.010 0.178 0.030 0.158

70-80 0.326 0.326 0.081 0.140 0.012 0.116

80-90 0.317 0.307 0.010 0.178 0.030 0.158

90-100 0.326 0.326 0.081 0.140 0.012 0.116
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Appendix C - Table 1: Correlation coefficients and interval values for all decades between 30 and 100 years, for the 
first simulated woman.

Age (years) Average 10-year  
CVD risk (95% CI)

Relative risk within the
10-year CVD risk distribution

Individualized  
10-year CVD risk

30 0.03 (0.01; 0.05) 51% 0.03

40 0.04 (0.02; 0.07) 44% 0.04

50 0.07 (0.03; 0.11) 62% 0.07

60 0.10 (0.06; 0.15) 82% 0.12

70 0.16 (0.09; 0.22) 64% 0.17

80 0.25 (0.16; 0.35) 81% 0.29

90 0.25 (0.16; 0.35) 89% 0.31

100 0.25 (0.16; 0.35) 91% 0.32

low predicted risk after a relative high risk is random, hence the lines intersect. For almost 

totally correlated risk estimates within women, i.e. lowest plot with a correlation of 0.9, the 

lines do not intersect. Relatively high risk estimates stay relatively high in this scenario.

Appendix C - Figure 2 shows the predicted 10-year CVD risk estimates from the ages 30 to 

100 years. Here, the influence of the correlation coefficients on the risk estimates is more 

present and the lines intersect more for a low correlation coefficient compared to a high 

coefficient.

Appendix C - Table 2 shows the classification of women into two risk categories based on 

a 2% risk threshold for different correlation coefficients. The number of women who are 

classified into the same risk category, i.e. low-low and high-risk, at the age of 30 and 40 

years is larger when the correlation coefficient is 0.9 compared to a correlation coefficient of 

0.1. For example, for a correlation coefficient of 0.1 or 0.9, 1,464 versus 1,406 women have 

a relatively high predicted risk at both 30 and 40 years.

Example on CVD risk estimation:

Average 10-year CVD risk at 30 years is 0.025 and the standard deviation is 0.01. At the 

age of 80, the average 10-year CVD risk estimate is 0.25 and the standard deviation is 0.05. 

The corresponding alphas are 6.07 and 18.5 for the ages of 30 and 80 respectively, and the 

beta values are 236.7 and 55.5 (Appendix C - Equation 1 and Appendix C - Equation 2). The 

increase in alpha for one decade is 2.5, i.e. 18.5 minus 6.07 divided by 5, and similarly the 

decrease in beta value per decade is 36.2.

The average 10-year CVD risks per age decade for a simulation are shown in column 2 

(Appendix C - Table 1). With an average correlation coefficient of 0.9, i.e. average correlation 

over all women with the same age, the relative risk within this 10-year risk distribution for the 

first simulated woman are shown in column 3 (Appendix C - Table 1). With the 10-year CVD 

risk distribution per age decade and the relative risk within this distribution, the individualized 

10-year CVD risk estimates are generated and shown in column 4 (Appendix C - Table 1).  

From the 10-year CVD risk estimates, the annual CVD risk estimates can be smoothly 

interpolated such that the risk estimates increase over time.
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Appendix C - Equation 1: Formula to estimate alpha value from mean and variance values

Appendix C - Equation 2: Formula to estimate beta values from mean and variance values

Appendix C - Equation 3: Estimation of the annual CVD risk estimate from the 10-year CVD risk estimate

Appendix C - Table 2: Classification table for 10-year CVD risk estimates at 30 and 40 years with an absolute risk 
threshold of 2%.

10-year CVD risk
at 40 years

(average 0.043;
95% CI 0.023;  

0.072)
10-year CVD
risk at 30 years
(average 0.026;
95% CI 0.013; 0.051) Low High

Correlation coefficient of 0.1

Low (N=530) 3 (0.6%) 527 (99.4%)

High (N=1470) 6 (0.4%) 1,464 (99.6%)

Correlation coefficient of 0.5

Low (N=530) 22 (4.2%) 508 (95.8%)

High (N=1470) 5 (0.3%) 1,465 (99.7%)

Correlation coefficient of 0.9

Low (N=594) 48 (8.1%) 546 (91.9%)

High (N=1406) 0 (0%) 1,406 (100%)
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D. IMPACT OF KEY PARAMETERS

The impact of the key parameters, i.e. the parameters with unknown mean and range, is 

discussed in the next paragraphs. The initial parameter settings for the simulation are shown 

below.

Initial parameter settings

The total number of simulated women is 2,000, the average predicted 10-year CVD risk 

at the age of 30 and 80 years is 2.5% and 25% respectively. The correlation coefficient 

applied to the 10-year CVD risks is 0.50, the annual proportion of women aged 60 year or 

older with high CVD risk detected at the GP is 10%. In these women, the adherence rate for 

preventive medication after 10 years is 25%. For the preventive screening, there are five 

screening moments, the probability to participate in preventive screening is 75% and the 

10-year adherence rate in women up to the age of 60 is 25% (i.e. relative change of 1, exactly 

similar to the 10-year adherence rate in women above the age of 60, see Appendix B - Table 

1, row 3-7). The relative risk reduction of taking medication is 25%.

D.1 - Correlation coefficient

Appendix D - Figure 1 shows the relation between the correlation coefficient and the number 

of CVD events. The number of CVD events is hardly affected by the correlation coefficient 

which can be explained by the distribution of CVD risk estimates in the simulated cohort. 

Within the cohort, the predicted risk estimates are distributed differently across women 

for different values of the correlation coefficient, but the same age-specific predicted risk 

estimates are present, and ‘distributed among all women’, regardless of this correlation 

coefficient.

D.2 - Medication adherence rate in older women

Appendix D - Figure 2 shows the relation between the medication adherence rate and the 

number of predicted events. A higher adherence rate over 10 years means that more women 

starting on preventive medication stay adherent resulting in fewer CVD events. Additionally, 

the preventive strategy plays a role. For a similar adherence rate, the number of CVD events 

is lower if there are more screening moments and/or the screening age is lower.
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Appendix D - Figure 1: Effect of unknown correlation on the number of CVD events.

A line in the lower part presents the number of CVD events in women below the age of 60, and a line in the upper 

part presents the number of predicted events over the entire life span of women with HPD.

Appendix D - Figure 2: Effect of uncertain adherence rate in older women on the number of CVD events.

A line in the lower part presents the number of CVD events in women below the age of 60, and a line in the upper 

part presents the number of predicted events over the entire life span of women with HPD.

D.3 - Adherence rate in young women

Appendix D - Figure 3 shows the relation between the medication adherence rate of young 

women, younger than 60 years of age, and the number of CVD events. The number of CVD 

events decreases when the adherence rate increases; more women adherent to medication 

results in fewer CVD events. The decrease in number of CVD events is larger when there are 

more screening moments and/or the screening age is lower.

D.4 - Probability to detect high CVD risk in older women

Appendix D - Figure 4 shows the relation between the annual probability of being identified 

as having high CVD risk in women above the age of 60 and the number of CVD events. The 

number of CVD events decreases if this probability increases from 0 to 0.02. However, the 

number of events stays almost constant for a probability between 0.02 and 0.1. Additionally, 

the preventive strategy influences the relation between this annual probability to be detected 

and number of CVD events. For all five preventive strategies, the number of CVD events 

decreases if the annual probability increases up to 0.02 and remains constant for higher 

probabilities.
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E. COST EFFECTIVENESS ANALYSES

Appendix E - Figure 1: Incremental cost-effectiveness plane

Appendix E - Table 1: Results from the PSA with the incremental results for the preventive screening strategies

Average
Costs
(€)

Average  
benefits
(QALY)

Difference  
in costs*
(€)

Difference  
in benefits*
(QALY)

Incremen- 
tal cost
(€)

Incremen- 
tal benefits
(QALY)

ICER
(€/QALY)

NHB

50 years  6,223 29.80 -173 0.08 0.09

30 years  6,115 29.80 -281 0.09 -108 0.00 Dominated 0.10

40 and  
50 years

 6,044 29.86 -352 0.15 -719 0.06 Dominated 0.16

30 and  
40 years

 5,950 29.86 -446 0.15 -94 0.00 Dominated 0.17

30, 40, and  
50 years

 5,852 29.91 -544 0.20 -197 0.05 Dominated 0.23

* Difference is defined as preventive screening compared to no screening

Appendix D - Figure 3: Effect of uncertain adherence rate in women below the age of 60 on the number of CVD events.

A line in the lower part presents the number of CVD events in women below the age of 60, and a line in the upper 

part presents the number of predicted events over the entire life span of women with HPD.

Appendix D - Figure 4: Effect of unknown probability to detect high CVD risk in women above the age of 60 on the 

number of CVD events.

A line in the lower part presents the number of CVD events in women below the age of 60, and a line in the upper 

part presents the number of predicted events over the entire life span of women with HPD.
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Per Person 
EVPPI (€)

Standard 
Error

Indexed to  
Overall EVPI  
= 1.00

EVPPI
for the  
Netherlands  
Per Year (€)

EVPPI
for the  
Netherlands  
over 10 years (€)

Group parameter EVPPI

Set 1 – Predicted CVD risk 0.00 0.00 0.000 0.000 0.00

Set 2 – Probability to start preventive 
medication and stay adherent

0.00 0.36 0.001 3053.261 30532.61

Set 3 – Screening and treatment 0.71 1.04 0.15 1416 14158

Set 4 – Costs 0.00 1.56 0.00 0.00 0.00

Set 5 – Utilities 0.00 0.41 0.00 0.00 0.00

Set 6 – Relative risk after CVD event 0.00 0.00 0.00 0.00 0.00

F. VALUE OF INFORMATION

Appendix F - Table 1: Value of information results

Per Person 
EVPPI (€)

Standard 
Error

Indexed to  
Overall EVPI  
= 1.00

EVPPI
for the  
Netherlands  
Per Year (€)

EVPPI
for the  
Netherlands  
over 10 years (€)

Single parameter EVPPI

Relative Risk Reduction 0.22 0.70 0.05 443 4429

Young risk 0.00 0.00 0 0.00 0.0

Old risk 0.00 0.00 0 0.00 0.0

Correlation 0.00 0.00 0 0.00 0.0

Adherence older women 0.00 0.00 0 0.00 0.0

Adherence younger women 0.00 0.00 0 0.00 0.0

Cost screen 0.00 0.00 0 0.00 0.0

Cost medication 0.00 0.00 0 0.00 0.0

Utility medication 0.00 0.00 0 0.00 0.0

Cost CHD - first year 0.00 0.00 0 0.00 0.0

Cost CHD - sequential year 0.00 0.00 0 0.00 0.0

Cost CVA - first year 0.00 0.00 0 0.00 0.0

Cost CVA - sequential year 0.00 0.00 0 0.00 0.0

Cost Other CVD - first year 0.00 0.00 0 0.00 0.0

Cost Other CVD - sequential year 0.00 0.00 0 0.00 0.0

Cost Recurrent event - first year 0.00 0.00 0 0.00 0.0

Cost Recurrent event - sequential year 0.00 0.00 0 0.00 0.0

Cost CVD death. 0.00 0.00 0 0.00 0.0

Utility CHD - first year 0.00 0.00 0 0.00 0.0

Utility CHD - sequential year 0.00 0.00 0 0.00 0.0

Utility CVA - first year 0.00 0.00 0 0.00 0.0

Utility CVA - sequential year 0.00 0.00 0 0.00 0.0

Utility OCVD - first year 0.00 0.00 0 0.00 0.0

Utility OCVD - sequential year 0.00 0.00 0 0.00 0.0

Utility Recurrent event - first year 0.00 0.00 0 0.00 0.0

Utility Recurrent event - sequential year 0.00 0.00 0 0.00 0.0

Proportion participate 0.00 0.00 0 0.00 0.0

Annual probability detect 0.00 0.00 0 0.00 0.0

Relative risk – first year 0.00 0.00 0 0.00 0.0

Relative risk – sequential year 0.00 0.00 0 0.00 0.0
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1. INTRODUCTION

Cardiovascular disease (CVD) is the most prevalent cause of death in women worldwide and 

is predominantly caused by long term progression of atherosclerosis [1]. The global burden 

of CVD is associated with lifelong exposure to traditional risk factors, such as hypertension, 

hypercholesterolemia, obesity, smoking and type II diabetes mellitus and is strongly associated 

with a prolonged unhealthy lifestyle [1, 2]. It has been estimated that up to 90% of CVD risk can 

be explained through traditional, and modifiable, risk factors [3]. Over the past decades, long-

term population studies have identified additional female-specific risk factors. Preeclampsia 

is one of the strongest female-specific risk factors for CVD, associated with a two- to seven 

fold increased risk of developing ischemic heart disease and stroke compared to women with 

normotensive pregnancies [4-8].

Several international obstetric guidelines recommend screening for cardiovascular risk 

profiles of women who have a history of preeclampsia, These guidelines classically start 

cardiovascular screening in women at the age of 50 [9-11]. However, the recommendations are 

not yet implemented in the leading cardiovascular prevention guidelines [12-15]. Additionally, 

treatment recommendations are based on risk prediction models that calculate 10-year CVD 

risk and are strongly age-dependent. Shortly after pregnancy, women will not usually reach the 

current risk threshold for preventive measures recommended by these guidelines. For example, 

in women with mean age of 31 (SD 4.5 years), the average 10-year CVD risk according to the 

Framingham Global Risk score is 1.08% (95% CI of 1.04-1.12%) whereas the recommended risk 

threshold is 10% [16]. Current risk-based selection may therefore not be appropriate for these 

young women at relatively high but low absolute risk and a lifetime CVD risk-based approach 

may be preferable [17].

As the timeline during which benefits from preventive intervention in young women accrue is 

long, a randomized or cohort setting is not feasible to assess the full benefits of prevention. 

Here, a model-based approach is valuable, even though collecting the required evidence is chal-

lenging. Two Dutch Markov model-based studies previously showed that early CVD prevention 

in women with previous preeclampsia is likely to be cost-effective [18, 19]. However, authentic 

long-term follow up data from cardiovascular screening including multiple cardiovascular risk 

factors measures, e.g. blood pressure, weight, height, and blood samples, for each participant 

were not available at the time these studies were performed. Furthermore, previous studies 

ABSTRACT

Background: Preeclampsia is a female-specific risk factor for the development of future 

cardiovascular disease (CVD). Whether early preventive CVD risk screening combined with risk-

based lifestyle interventions in women with previous preeclampsia are beneficial and cost-effective 

is unknown.

Methods: A micro-simulation model was developed to assess the life-long impact of preventive 

cardiovascular screening strategies initiated after women experienced preeclampsia. Screening 

was started at the age of 30 or 40 and was repeated every 5 years. 10-year CVD risk estimates 

were calculated according to Framingham Risk Score and multiple absolute risk thresholds (2% 

and 5%) were evaluated for treatment selection, i.e. lifestyle interventions (including smoking 

cessation, weight reduction, increasing physical activity). Screening benefits were assessed in 

terms of costs and quality-adjusted-life-years (QALYs), and incremental cost-effectiveness ratios 

(ICERs) compared to no screening. Probabilistic sensitivity analysis was performed by Monte-Carlo 

simulation and a Value of Information analysis identified parameters that warrant further research.

Results: Expected health outcomes for no screening are 27.35 QALYs and increase to 27.41 QALYs 

(screening at 40 years, both thresholds), and to 27.42 QALYs and 27.43 QALYs (screening at 30 

years with 2% and 5% threshold respectively). The expected costs for no screening are €9,426 

and around €11,600 for screening at 40 years (for both thresholds) and €13,078 and €13,881 

for screening at 30 years (for a 5% and 2% threshold respectively). Preventive screening at 40 

years with a 2% threshold has the most favourable ICER, i.e. €34,996/QALY, compared with other 

preventive screening scenarios and no screening. Probabilistic sensitivity analysis shows that no 

screening has the largest probability to be cost-effective up to a WTP threshold of €57,000/QALY 

(95% for a WTP of €0/QALY to 27% for a WTP of €57,000/QALY) Parameters associated with 

predicted CVD risk have a large impact on the cost-effectiveness of screening scenarios; further 

evidence collection would be merited for these parameters.

Conclusions: Early CVD risk screening followed by risk-based lifestyle interventions can improve 

long term health outcomes in women with a history of preeclampsia. However, the cost-

effectiveness of establishing a lifelong cardiovascular prevention program for women starting 

early after experiencing preeclampsia by risk-based lifestyle advice alone is relatively unfavourable. 

A combination of risk-based lifestyle advice plus medical therapy may be more beneficial.
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2.1 Model development and parameters

A discrete time micro-simulation model was developed to assess the impact of early preventive 

strategies for CVD [23]. The flowchart of this model is presented in Appendix A. The time cycle 

of the model was one year. Women were followed until death and outcomes were aggregated 

at population level, i.e. total CVD events, total costs and health outcomes, expressed in Qual-

ity-Adjusted-Life-Years (QALYs). Appendix B shows an overview of all input parameters that 

were used in the analysis. Estimates for model parameters were based on evidence from the 

literature and partially on expert opinion and consensus. Relatively wide distributions were 

used to properly reflect any parameter uncertainty.

In total, we simulated a hypothetical cohort of 2,000 women as the incidence of early-onset 

preeclampsia is currently about 1-2% amongst a total of approximately 171.000 annual preg-

nancies in the Netherlands [24, 25]. Women entered the simulation model at the average age 

of a first pregnancy in the Netherlands (i.e. 30 years old) [24].

2.2 CVD risk estimates

As CVD risk estimates vary with age, we assumed that CVD risk increased over time for each 

woman. Published long-term data on the development of risk factors was not available for 

this specific group of women with previous preeclampsia. Therefore, we used 10-year CVD 

risk estimates from the two cohorts.

The Framingham Global Risk Score (FRS) was used to estimate 10-year CVD risk at initial 

post-partum screening and at follow-up (CREw-IMAGO study) [26]. Multiple imputation (with 

10 datasets) was performed to handle missing predictor data using the MICE package in R 

[27]. Imputation was based on all other available patient characteristics, such as age, sex, 

blood pressure, and cholesterol levels.

Estimated CVD risk estimates and follow-up time were not the same for all women in the two 

cohorts due to differences in age at screening in both studies. To correct for this, 10-year CVD 

risk estimates were recalculated to risk estimates at the same age. First, by using the data of 

the 49 women with two risk estimates, it was possible to calculate annual change in CVD risk. 

However, using the absolute difference, i.e. linear change, was not possible because; a) risk 

estimates could become negative, and b) risk estimates were based on a power function rather 

used a cohort model that is not able to include treatment decisions on an individual level, 

which is likely to give a less realistic representation of clinical practice.

We present a model-based patient-level simulation (i.e. micro-simulation) of early cardiovas-

cular risk screening combined with risk-based lifestyle interventions to assess health benefits, 

costs, and cost-effectiveness in women with a history of preeclampsia. We incorporated 

individual patient data on cardiovascular risk factor measures, e.g. blood pressure level, 

cholesterol level and smoking status, of an initial cardiovascular screening six months after 

delivery in women with preeclampsia and of screening after 10-20 years follow up to estimate 

10-year CVD risks. A life-long horizon was applied to capture all benefits of screening and 

subsequent lifestyle interventions in these women.

2. METHODS

To assess the impact of early CVD preventive screening strategies, datasets from two studies 

in the Netherlands were combined. Both studies measured cardiovascular risk parameters at 

different time intervals after preeclampsia.

The first dataset comprised initial cardiovascular screening performed in 349 women six 

months after a first pregnancy was complicated by early-onset preeclampsia (mean age 30.8, 

95% range 22.0-39.6). The complete study design has been previously published [16]. In short, 

this study was performed between 1994 and 2007 and recorded BMI, blood pressure and fasting 

blood lipid and glucose levels, as well as the presence of diabetes and chronic hypertension.

Secondly, we used data from the CREw-IMAGO (Cardiovascular Risk Profile: Imaging and 

Gender-Specific Disorders) study where women were screened for cardiovascular parameters 

10-20 years after pregnancy complicated by (early and late onset) preeclampsia (n=291) 

[20]. Women from the first study were also invited to participate in the CREw-IMAGO study. 

The complete design of the CREw-IMAGO study was published previously [5, 20]. In short, 

asymptomatic women, aged 40 to 63 (mean age 46.4, 95% range 40.2-57.8), with a history 

of preeclampsia were assessed for cardiovascular risk factors including BMI, waist circum-

ference, blood pressure, lipid and glucose levels [16, 20-22]. In total, 49 women were included 

in both studies with a mean age of 33.2 at recruitment of the initial post-partum screening 

(95% range 25.7- 40.3).
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2.4 Preventive strategy for CVD

The CVD prevention strategies for women after their preeclampsia were defined as cardio-

vascular risk screening starting at the age of 30 or 40 years, with screening repeated every 

five years and ending at the age of 55, followed by lifestyle advices based on these risks. 

As women were young at enrolment in the model, the current recommended generic risk 

threshold (FRS>10%) was too high, yielding hardly any women in the high risk category. We 

therefore had to apply lower risk thresholds for the purpose of this study (i.e. FRS>2% and 

>5%). We used the response rate of the women invited to participate in the CREw-IMAGO 

study to estimate the proportion that would participate in such a screening programme 

(39%, range 21-60%). Women who already experienced CVD (with one or more CVD 

event(s)) were not considered eligible for (primary) preventive screening, but remained 

in the micro-simulation, potentially experiencing sequential CVD events, until they died. 

Women who were assessed as low-risk at the previous screening or who did not adhere 

to the lifestyle changes were invited to the subsequent screening moment(s) after 5 years.

Lifestyle interventions (including smoking cessation, weight reduction, increasing physical 

activity) were the recommended preventive intervention for women classified as high risk 

(i.e. FRS>2% and >5%), consistent with usual care. As data on adherence was lacking, 

we assumed that the relative change that younger women were adherent to lifestyle 

interventions was equal to the 10-year adherence of 20% in older women (see usual care). 

However, given uncertainty regarding this adherence rate a relative change of 0.9 (lower) 

to 1.1 (higher) to this 20% adherence was used to define at plausible range of values.

2.5 Model parameters

All model parameters are provided in Appendix B. Three CVD event categories are dis-

tinguished in this study; coronary heart disease (CHD), cerebrovascular accident (CVA), 

and other cardiovascular disease (OCVD) events. The CVD events could be either fatal or 

non-fatal, resulting in incorporation of six total CVD event types. The relative occurrence 

of the six event types was age-dependent and based on previous literature (Appendix 

B - Table 2) [17, 32, 33]. When a cardiovascular event occurred, the CVD risk estimate was 

proportionally increased (relative risk ratio 2.1, range 1.7-2.6).

than a linear function. Therefore, the individual relative change in CVD risk was calculated for 

each of these individuals based on the two measures at the corresponding ages. Second, a sta-

tistical distribution was defined based on the observed annual individual relative change values 

of these 49 women. Finally, this distribution was used to draw random values as plausible 

annual relative changes in the women (from the initial post-partum screening and the CREw-

IMAGO study) who were screened only once. For women from the post-partum screening, 

CVD risk estimates were re-estimated to the age of 30 and 40, and for the CREw-IMAGO 

study to the age of 40 and 50. For an example of this recalculation, see Appendix C. Based on 

the 10-year (recalculated) CVD risk estimates at 30, 40, and 50 years, beta distributions were 

defined and used to draw random values (i.e. 2,000 simulated women) as plausible 10-year 

CVD risk estimates for three age-decades. Furthermore, individual annual CVD risks were 

calculated by interpolation (for more details, see appendix C). The 10-year risk estimate at the 

age of 80 was determined by expert opinion and Dutch prevalence data [28]. The risk estimates 

between the age of 50 and 80 were then interpolated and after the age of 80, it was assumed 

that CVD risks stayed constant. To correlate the risk values for each woman over time, a single 

correlation estimate was estimated based on the data of 49 women with two measures and 

used to correlate risk profiles over time within each woman (for more details, see appendix C).

2.3 Usual care

Despite a national multidisciplinary guideline recommending that women who experienced 

preeclampsia should be offered CVD screening by their general practitioner at the age of 50, 

no nationwide primary prevention program is currently offered in the Netherlands [14]. We 

therefore assumed usual care for these women as follows. We presumed that annually 3% 

(range 2-4%) of all women above the age of 60 would get a cardiovascular screening and 

could then be identified as high risk. Usual care applied a risk threshold of 10% (Framingham 

Risk Score) to classify women as high risk [29, 30]. Lifestyle interventions (including smoking 

cessation, weight reduction, increasing physical activity) were recommended to high risk 

women as preventive intervention. Medication was not used as preventive intervention due 

to the young age of the women. For those women adhering to these lifestyle change, we 

used a risk reduction (average 0.91, range 0.84-0.96) in the model [31]. Finally, because 

evidence on long-term adherence rates was not available, we assumed that on average 20% 

of women stayed adherent up to 10 years after initiation of the intervention and derived the 

annual adherence rate through exponential interpolation.
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2.6 Cost-effectiveness analysis

The cost-effectiveness analysis was performed with the incremental cost-effectiveness 

ratio (ICER) as outcome, using a health care perspective. This ratio represents the dif-

ference in lifetime costs divided by the difference in effectiveness, i.e. health outcomes. 

The difference in costs and effectiveness is defined as the difference between the four 

preventive strategy (i.e. screening starting at different age (i.e. 30 and 40 year) and risk 

levels (i.e. 2% and 5%), with subsequent lifestyle interventions) and usual care. Probabilistic 

sensitivity analysis was applied to assess how uncertainty in parameter values resulted in 

uncertainty in the effect and cost outcomes. To determine the differences between strat-

egies, we used 4,500 Monte-Carlo simulations applied to a cohort of 2,000 hypothetical, 

unique women. Furthermore, the probability of a preventive screening to be cost-effective 

compared to alternative strategies and usual care was estimated as a function of the 

WTP and presented in cost-effectiveness-acceptability curves. A commonly applied Dutch 

Willingness-to-Pay (WTP) threshold of € 20,000 per QALY gained is used to determine 

whether a screening strategy is cost-effective or not, and to calculate the incremental Net 

Health Benefits (INHB).

Lastly, we performed a value of information (VOI) analysis to investigate the value of 

collecting additional information on the used parameters to reduce the uncertainty in 

cost-effectiveness outcomes. We used the Sheffield Accelerated Value of Information 

(SAVI) tool to estimate the expected value of perfect information (EVPI) and expected 

value of partial perfect information (EVPPI) [42]. The value of hypothetically resolving 

all uncertainty is reflected by the EVPI whereas the EVPPI indicates what the value is of 

resolving all uncertainty in one parameter or a group of parameters [43].

Although women may experience other outcomes, (e.g. mental or psychosocial problems) 

after preeclampsia, little follow-up data are available regarding these long-term outcomes 

and their effects (and relevance) on quality of life [34, 35]. Therefore, we used quality of life 

values (utilities) available for women from the general population and adjusted for age [36, 

37]. Quality of life (QoL) was proportionally reduced after the occurrence of a CVD event 

[36, 38-40]. The proportional reduction in QoL after a first CVD event depended on the CVD 

event type, but remained the same for similar recurrent CVD events. Also, the decrease in 

utility after a CVD event was lower in the first year compared to consecutive years after 

the event. It was assumed that women with a CVD event would receive medication. We 

did not take side-effects of medication after the occurrence of a CVD event into account. 

Instead, we assumed that these are incorporated in the disutility of CVD events.

Dutch studies and evidence from NICE were used for the estimation of the costs of CVD 

events [36, 38-40]. Similar to the utilities, costs varied over the six different CVD types. 

Costs for recurrent events were assumed to be similar to costs for first-time events. Costs 

of the first year after a CVD event were set higher than costs the subsequent years. Costs 

of the screening programme included a visit to the general practitioner and laboratory 

tests, and were applied to all women who participated in the screening programme. Costs 

of preventive lifestyle interventions were applied to all women who were classified as high 

risk, i.e. women with CVD risk estimates that exceeded the intervention threshold of 2 and 

5%, regardless of their adherence to these lifestyle interventions.

An overview of all utilities and costs together with the distribution for the sensitivity 

analyses is presented in Appendix B - Table 1 (row 14-44). Following Dutch guidelines, a 

discount rate of 4% for costs and 1.5% for health outcomes was applied [41]. As preventive 

screening, CVD events and death due to natural causes can occur at any time during the 

years (instead of only at the start or end of a year) a half-cycle correction was applied in 

the model.
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Table 2 shows the number of women needed to screen to prevent one CVD event. The 

number of screened women is equal for both risk thresholds when preventive screening 

starts at the age of 40. In these two scenarios, all women have a 10-year CVD risk ≥ 2% 

hence in both scenarios everybody will be selected for preventive treatment. The number 

needed to screen to prevent one CVD event is largest when preventive screening starts at 

the age of 30 with a risk threshold of 2%.

Table 3 shows the percentage of women who are classified as high risk at each screenings 

moment. The percentage of high risk women is almost equal at 40 years, it is almost 40% 

(i.e. the chosen probability of women that participate in preventive screening). Hence, all 

women above the age of 40 have a 10-year CVD risk ≥ 2%.

3.3 Cost-effectiveness analysis

Table 4 shows the results of the cost-effectiveness analysis using the chosen risk thresholds 

of 2% and 5%. No screening has slightly lower health outcomes and costs compared to all 

four preventive screening scenarios, i.e. 27.35 QALYs and €9,426 per woman. Screening 

scenarios starting at 40 years have similar health benefits (27.41 QALYs) and the scenario 

with a 5% threshold has slightly higher costs (€11,578 versus €11,561). Screening starting 

at 30 with a 2% threshold has slightly lower health effects (27.42 versus 27.43 QALYs) and 

higher costs (€13,881 versus €13,078) than with a 5% threshold.

When comparing the screening strategies among each other, preventive screening starting 

at 40 and with a 2% threshold is the ‘favourable’ preventive screening in terms of the ICER, 

i.e. €34,996/QALY. Although screening starting at 40 with a 5% threshold is less costly, it has 

less health benefits resulting in a slightly higher ICER. Therefore, screening starting at 40 

with a 5% threshold is dominated by screening starting at 40 with a 2% threshold. However, 

the latter strategy would not be considered cost-effective if a WTP threshold of €20,000/

QALY is applied.

Screening starting at 30 with a 5% threshold is the second ‘best’ screening strategy in 

terms of cost-effectiveness; the ICER is €101,092/QALY, compared with screening starting 

at 40 with a 2% threshold. Screening starting at 30 with a 2% threshold is dominated by 

preventive screening starting at 30 with a 5% threshold due to similar health benefits but 

3. RESULTS

3.1 Study population

Appendix D - Table 1 shows the baseline table of the two cohorts and the number of 

missing data. Figure 1 shows the authentic risk assessment data of women included in 

both cardiovascular screening studies (i.e. post-partum and at follow up). The time period 

between the two real-life screening time points varied significantly within the 49 women who 

attended both screening moments (average 14.3 years, 95% range 6.6-19.2 years). Similarly, 

the 10-year CVD risk estimates differ substantially within the group (Figure 1A).

The annual relative risk change within the group was quite similar with an average of 1.06 

(95% range 1.01- 1.14). There is a substantial variation in CVD risk estimate at similar ages, 

indicating substantial heterogeneity in the expected CVD risk in women with preeclampsia 

(Figure 1B). Furthermore, the overall correlation estimate between the risk profiles at the age 

of 30 and 40 was large (i.e. 0.855). For example, of all women with a predicted risk above 

the 75th percentile at the age of 30, 67% also had a predicted risk above the 75th percentile 

at the age of 40.

Figure 2 shows a histogram of the distribution of the re-estimated 10-year CVD risk eval-

uations for women in all screening cohorts and the projected distributions. The red line 

corresponds with the probability density function of the beta distribution estimated based 

on the re-estimated 10-year CVD risks. Average CVD risk estimates and the 95-percentrange 

for both cohorts are shown in Appendix D - Table 1 (row 11-12).

3.2 Intermediate outcomes

The reduced number of CVD events resulting from preventive screening and intervention 

may be the main driver of the expected impact of preventive screening. Table 1 shows the 

number of CVD events for no screening and the four preventive screening strategies. A 

screening strategy starting at 30 and with a 5% threshold results in the largest decrease 

in CVD events, i.e. 3.2% of all life-long CVD events can be prevented by screening every 5 

years and starting at 30 years.
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4. DISCUSSION

A model-based simulation study enables to show whether early and long-term preventive 

CVD risk screening combined with risk-based lifestyle interventions, may indeed reduce CVD 

burden in women with previous preeclampsia. We found that early (i.e. starting at 30 or 40 

years old) and repeated (5-years) CVD risk screening and risk-based lifestyle interventions after 

preeclampsia potentially reduces CVD risk and improve health outcomes. However, preventive 

CVD risk screening and risk-based lifestyle intervention alone with an absolute risk threshold of 

2% or 5% are not cost-effective. Although different (intervention) strategies were compared, the 

conclusions of this study are somewhat different with those of the (model) development study 

described in chapter 4. That study showed that preventive CVD risk screening starting at age 

of 30, 40, or 50 combined with risk-based preventive medication based on lipid lowering drugs 

(instead of lifestyle interventions as studied in this chapter) led to improved health outcomes 

(i.e. mean incremental benefits of 0.20 QALYs) and costs saving (i.e. mean incremental saving of 

€ 543) compared with usual care. Appendix G presents a comparison between the two studies 

in terms of model parameters, together with a discussion on how two model settings resulted 

in two different conclusions on the (cost-)effectiveness of preventive screening for CVD.

Strengths

The strength of this study is based on the incorporation of actual risk factor data from women 

who underwent cardiovascular screening at several time points after preeclampsia. These 

data gave insight in the risk distribution among women with preeclampsia for different age 

categories. Furthermore, these data were used to estimate the correlation between 10-year 

risk estimates within women over time. A micro-simulation model was used to assess the 

long-term benefits from CVD risk screening combined with risk-based lifestyle advices in 

young women. Using a model with a lifetime horizon is important, as age is a key factor in 

development of CVD. Moreover, the first manifestation of CVD may take two to four decades 

following preeclampsia [44]. We postulate that this model, with simple adjustments, can be 

applied to assess the potential benefits of early CVD risk screening combined with any subse-

quent risk-based intervention in other populations with (female) specific risk factors, such as 

women with polycystic ovarian syndrome (PCOS) or premature ovarian insufficiency (POI) [45, 

46]. Use of such models may provide information to make evidence-based guidelines and deci-

sions for establishing cardiovascular prevention programs for women with a medical history, 

while the evidence of intervention studies in these specific female subgroups is still lacking.

slightly higher costs. Screening starting at 40 with a 5% threshold and screening starting 

at 30 with a 2% threshold are therefore dominated by other strategies (and strikethrough in 

Table 4). Appendix E shows the incremental cost-effectiveness plane for screening starting 

at 40 with a 5% threshold and screening starting at 30 with a 2% threshold. The PSA samples 

of the two scenarios are almost similar.

Figure 3 shows the cost-effectiveness acceptability curve. For a WTP threshold of €20,000/

QALY, no screening has the largest probability to be cost-effective, i.e. probability of 72%. For 

a WTP threshold above €57,000/QALY all screening strategies are more likely to be cost-ef-

fective than no screening, but no single strategy clearly outperforms the other strategies.

3.4 Value of Information analysis

Table 5 shows the main results from the Value of Information (VOI) analysis. The VOI analysis 

indicates that the (annual) overall EVPI per person affected is €5,023 per person, or 0.25 

QALYs per person. Furthermore, the analysis indicates that the average single parameter 

10-year CVD risk at 30 years has the largest EVPI value per person (i.e. €1,568). Further 

investigation of the uncertainty of single parameters shows that collecting more information 

on the treatment effectiveness, the average 10-year CVD risk for older women and cost of 

a CVA event in the first year has added value (see Appendix F - Table 2, row 3 to 31). Given 

that 2,000 women present with HPD in the Netherlands per year, the population EVPI equals 

€10.1 million per year.

Appendix F - Table 1 shows an overview of the groups of associated parameters that are 

used to estimate the group EVPPI. Collecting additional information on parameters related 

to predicted CVD risk (i.e. set 1), has the largest value with an EVPPI of €1,696 per person 

(Table 5, row 8-10).
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At last, we used data from women with both late and early onset preeclampsia for this 

study. Although this gives a relevant overview of women with previous preeclampsia, this 

may underestimate the possible benefits of screening for women with a severe, or early, 

phenotype. Results from our analysis can therefore also not directly be extrapolated to 

women with other pregnancy complications (or specific phenotypes of preeclampsia), as 

the preventive effects are likely to differ in those women. Lastly, we were not able to consider 

comorbidities or the occurrence of other diseases, like auto-immune disorders or impaired 

memory, associated with preeclampsia and affecting the outcome and quality of life in 

these women [51].

Comparison with other studies

Two Dutch studies showed the potential benefits of early hypertension and metabolic 

syndrome detection, including medication and/or lifestyle intervention, in women with a 

history of preeclampsia [18, 19]. These studies concluded that CVD prevention in women 

with preeclampsia is likely to be cost-effective or may save costs without affection quality 

of life for the first 10-20 years. The opposite conclusions of the current study, i.e. CVD 

risk screening and subsequent risk-based lifestyle changes are not cost-effective, and 

the two previous studies may be related to the use of medication as intervention strategy 

following CVD screening in the two previous studies, as medication is much cheaper than an 

intervention targeting at a change in eating, drinking, smoking and physical activity habits.

Both previous studies use the level of (systolic and/or diastolic) blood pressure for treatment 

selection (i.e. ≥ 140/99 mmHg) whereas the treatment selection of our study was risk-based. 

Furthermore, the published studies used a Markov model with a number of “health states” 

with fixed transitions between states, whereas we use an individual patient-level model. 

This provides the opportunity to include CVD risk factors, simulated events and outcomes 

on an individual level which moves closer to individualized care. For the current study, all 

individual CVD risk factors were combined in one risk estimate and the change in expected 

risk was modelled over time. For further research, it is possible to further detail individual 

risk assessment by also incorporating the assessed CVD risk factor levels per individual. 

Furthermore, the use of real-world follow-up data of women at 10-20 years post preeclamp-

sia to estimate the CVD risks and subsequent correlation between risk profiles likely has led 

to more accurate and realistic results, compared to studies making assumptions on risk 

development over time.

Limitations

Our analysis also has limitations. Because evidence on several parameters within the 

model was lacking, certain assumptions had to be made and extrapolation was required. 

To properly reflect the uncertainty in the parameters, we allowed relatively wide distributions 

for most parameters and incorporated expert opinions on behaviour, risks and benefits of 

interventions in this specific group of women. Also, data on CVD risk after 80 years of age 

was lacking and this risk was therefore kept constant beyond this age.

Furthermore, we considered only the preventive intervention of lifestyle changes for both 

young and older women. This approach may not be realistic in clinical practice since lifestyle 

modification is known to be difficult to achieve and the effectiveness is rather low [31, 47, 48]. 

Additionally, lifestyle interventions were not combined with any drug therapies, such as lipid 

lowering or antihypertensive medication, as was done in chapter 4. However, as women were 

young during the post-partum risk evaluation, the use of life long drug therapy from a young 

age onwards is perhaps unrealistic anyhow. Nevertheless, some young women may be 

willing to take medication when becoming aware of their CVD risk after having suffered from 

preeclampsia. For example, the proportion of women that answered “yes” to the question 

‘do you have a prescription of preventive medication’ in the initial cardiovascular screening 

is around 19% (see Appendix D). Additionally, a notable proportion has health complaints 

due to hypertension shortly after pregnancy, making it more likely they would be willing to 

use medical therapy, even at their young age [49].

Recent CVD preventive guidelines have supported treatment of young individuals even 

though evidence from randomized or cohort studies for these implementations are not yet 

available [50]. Taking these possibilities into consideration, the assumption that women in 

our ‘no screening’ scenario are not identified, or treated, before the age of 60 may lead to an 

underestimation of the benefits of usual care in reality. This needs to be evaluated further 

and may need to be taken in to account when performing similar research in the future.

Also, we estimated CVD risk with FRS, which might not be suitable for young women with 

previous preeclampsia. Age is a strong contributor to this score and although women with 

previous preeclampsia develop CVD as soon as 10 years earlier, FRS is often not raised 

above the indicative 10% threshold soon after pregnancy [9, 10]. Unfortunately, there is no 

CVD risk score available that includes a (complicated) obstetric history as predictor.
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Figure 1: 10-year CVD risk estimates according to FRS for 49 women who participated in two cardiovascular 

screening studies at different time-points after pregnancy complicated by preeclampsia.

Plot (A) shows the authentic 10-year CVD risk estimates for 49 women with two CVD screening moments. Plot (B) 

shows the re-estimated CVD risk assessments to a standardized 10-years’ time period.

Clinical implications

Although our model estimates that early CVD risk screening and risk-based lifestyle interven-

tions may lead to very small health benefits and is not cost-effective(with the current model 

settings), some aspects need to be considered for implications in clinical practice. In our 

experience, offering cardiovascular screening to women after (especially early-onset) pre-

eclampsia results in relatively high percentage of women willing to participate. Unfortunately, 

the current cardiovascular screening for these women takes place in the hospital which may 

result in a lower participation rate of these women, i.e. mothers with young children who 

do not attend the half day of in-hospital screening. Although specific risk factors, such as 

familiar hypercholesterolemia, should be treated by a vascular specialist, implementation 

of screening and lifestyle interventions in Dutch primary care would be more efficient. The 

Dutch GP system is well structured and easily accessible, but such a system may not be 

available in some other countries.

In addition, our model only included the health effects gained by reducing cardiovascular 

outcomes. It is likely that the proposed lifestyle interventions (i.e. weight reduction, smoking 

cessation and improving physical activity patterns) have an additional health benefit in 

preventing other (non-cardiovascular) health problems, such as preventing joint problems 

in obese patients and chronic pulmonary problems in smokers. Additionally, the lowering 

of risk factors will likely reduce risk of other long-term events, such as hypertension and 

subsequent renal failure, which were currently not incorporated in the model. This may 

result in further lengthening of life in good health as women age. Taking facts combined, 

we anticipate that, in a real-world setting, more women would, and could, benefit from early 

cardiovascular screening and intervention when they have experienced preeclampsia.

Conclusion

Our model-based impact assessment demonstrates that CVD risk screening combined with 

risk-based lifestyle interventions (without preventive treatment initiation) to prevent CVD 

in women with a history of preeclampsia is not cost-effective. This study shows that for 

establishing a beneficial cardiovascular prevention program for women starting early after 

experiencing preeclampsia, a more effective intervention or combination of interventions 

may be more realistic.



166 167

Impact of preventive lifestyle interventions in women with a history of preeclampsiaCHAPTER 6

6

Table 1: Number of CVD events before the age of 60 in a hypothetical cohort of 2,000 women

No screening Number of CVD events: N=711

Incremental number of
CVD events (N,%)

Preventive screening Screening starting at 40+ 5% threshold -19 (2.6%)

Screening starting at 40 + 2% threshold -19 (2.6%)

Screening starting at 30 + 5% threshold -23 (3.2%)

Screening starting at 30 + 2% threshold -18 (2.5%)

Table 2: Number of women needed to screen to prevent one CVD event

Number to screen

Preventive screening Screening starting at 40 + 5% threshold 134

Screening starting at 40 + 2% threshold 134

Screening starting at 30 + 5% threshold 222

Screening starting at 30 + 2% threshold 186

Table 3: Percentage ^ of women who are classified as high risk

Preventive screening

Screening starting at 40  
+ 5% threshold

Screening starting at 40  
+ 2% threshold

Screening starting at 30
+ 5% threshold

Screening starting at 30  
+ 2% threshold

30 - - 12 (1%) 401 (20%)

35 - - 269 (13%) 781 (39%)

40 695 (35%) 792 (39%) 695 (35%) 792 (40%)

45 768 (39%) 785 (40%) 768 (39%) 784 (40%)

50 758 (39%) 772 (40%) 758 (39%) 772 (40%)

55 720 (39%) 732 (40%) 720 (39%) 731 (40%)

^: percentage of high risk women is estimated through determining the number of high risk women divided by the 
number of women alive at that moment

Figure 2: Histograms of the re-estimated 10-year CVD risk evaluations for all women included in both authentic 

cohorts.

The bars of the histogram represent the density of the 10-year CVD risk estimates of the women included in the 

cohorts. The red line represents the probability density function of the beta distribution that was based on 10-year 

CVD (re-estimated) risks of the included women.

Figure 3: Cost-effectiveness acceptability curves for preventive screening and lifestyle interventions in women with 

a history of preeclampsia
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Mean Utilities

Event for whole cycle

Coronary artery disease (CAD) 0.76 0.72-0.80 beta [38]

Cerebrovascular accident (CVA) 0.63 0.55-0.70 beta [38]

Other CVD (OCVD) 0.68 0.54-0.72 beta [38]

Recurrent CVD event 0.45 0.37-0.53 beta [38],  
range assumption

Post-event

Coronary artery disease (CAD) 0.88 0.85-0.91 beta [38]

Cerebrovascular accident (CVA) 0.63 0.55-0.71 beta [38]

Other CVD (OCVD) 0.68 0.65-0.72 beta [40]

Recurrent CVD event 0.66 0.58-0.74 beta [40]

Modelling choices

Number of individuals 2000 - - [26, 27]

Discount rate Cost 4% - - [41]

Discount rate Effect 1.5% - - [41]

Decrease quality of life over age 0.95698  
-0.00085*Age
-0.00002*Age2

- [36, 37]

^Expert opinion was formed by 5 of the main authors (GL, LB, AF, AM, BR) † The unit of cost is euro and all costs 
are updated according to Dutch consumer price indices (2017) and rounded to whole euros. # Cost of preventive 
screening includes costs due to a GP visit, pharmacy and laboratory tests.
CI, confidence interval; GP, general practitioner; CVD, cardiovascular disease.

Appendix B - Table 2: Age dependent event distribution for women

Age CHD
– non fatal

CVA
 – non fatal

OCVD
– non fatal

CHD
– fatal

CVA
 – fatal

OCVD
– fatal

20-30 0.158 0.526 0.263 0.000 0.053 0.000

30-40 0.333 0.333 0.238 0.048 0.048 0.000

40-50 0.475 0.263 0.220 0.008 0.008 0.025

50-60 0.536 0.207 0.197 0.032 0.014 0.015

60-70 0.317 0.307 0.010 0.178 0.030 0.158

70-80 0.326 0.326 0.081 0.140 0.012 0.116

80-90 0.317 0.307 0.010 0.178 0.030 0.158

90-100 0.326 0.326 0.081 0.140 0.012 0.116

CAD, coronary artery disease; CVA, cerebrovascular accident; OCVD, other cardiovascular disease.

B. PARAMETERS

Appendix B - Table 1: Parameter estimates and values used for the micro simulation model

Uncertain values with unknown range

Name Value 95% CI Distribution Source

Marginal correlation between risk profiles  
(per 10 years)

0.88 0.80-0.96 uniform Data CREw -UMC

Proportion of women below the age of 60 who 
participate in early preventive screening

0.40 0.21-0.59 uniform Data CREw-UMC

Annual proportion of women above the age of 
60 who are detected at the GP

0.03 0.02-0.04 uniform Expert opinion^

Probability of women who are adherent to 
lifestyle advice after 10 years

0.20 0.10-0.30 uniform Expert opinion^

Relative change of adherence rate after 10 years 
for women who start with lifestyle intervention,  
i.e. women below the age of 60

1.00 0.91-1.10 uniform Expert opinion^

Uncertain values but with a certain  
range/distribution

Name Value 95% CI Distribution Source

Average 10-year CVD risk at age 30 0.02 0.00-0.04 uniform Data CREW - UMC

Average 10-year CVD risk at age 80 0.85 0.80-0.90 uniform Expert opinion^

Relative risk ratio after first CVD event  
(for all years)

2.14 1.72-2.66 gamma [50]

Relative risk ratio after recurrent CVD event  
(for all years)

2.14 1.72-2.62 gamma [50]

Relative risk preventive treatment 0.91 0.84-0.96 beta [31, 51]

Mean Costs†

Lifestyle intervention 733 688-779 gamma [52]

Early preventive screening# 143 127-160 gamma [40]

Event – first year

Coronary artery disease (CAD) 5,037 4,989-5,087 gamma [40]

Cerebrovascular accident (CVA) 19,471 19,337-19,606 gamma [40]

Other CVD (OCVD) 2,982 2,922-3,043 gamma [38]

Recurrent CVD event 1,235 1,199-1,274 gamma [38]

Death due to CVD 2,371 2,353-2,390 gamma [39]

Post event – annual

Coronary artery disease (CAD) 763 730-796 gamma [36, 38, 53]

Cerebrovascular accident (CVA) 10,055 9,966-10,144 gamma [40]

Other CVD (OCVD) 3,369 3,304-3,434 gamma [38]

Recurrent CVD event 687 657-715 gamma [38]
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For each decade, there is an alpha, beta, and interval which are used as input for generating 

a value, i.e. CVD risk estimate, from a beta distribution. A large interval value for cycle one, 

i.e. a relatively high predicted risk estimate, together with a high correlation coefficient, e.g. 

0.90, likely results in relatively high predicted risk estimates in all subsequent decades. Finally, 

there are eight 10-year CVD risk estimates for all women. The 10-year CVD risk estimates are 

converted into 10 annual risk estimates such that the annual risk estimates are increasing 

over time, see Appendix C - Equation 3.

Example on CVD risk estimation:

Average 10-year CVD risk at 30 years is 0.025 and the standard deviation is 0.01. At the 

age of 80, the average 10-year CVD risk estimate is 0.25 and the standard deviation is 0.05. 

The corresponding alphas are 6.07 and 18.5 for the ages of 30 and 80 respectively, and the 

beta values are 236.7 and 55.5 (Appendix C - Equation 1 and Appendix C - Equation 2). The 

increase in alpha for one decade is 2.5, i.e. 18.5 minus 6.07 divided by 5, and similarly the 

decrease in beta value per decade is 36.2.

The average 10-year CVD risks per age decade for a simulation are shown in column 2 

(Appendix C - Table 2). With an average correlation coefficient of 0.9, i.e. average correlation 

over all women with the same age, the relative risk within this 10-year risk distribution for the 

first simulated woman are shown in column 3 (Appendix C - Table 2). With the 10-year CVD 

risk distribution per age decade and the relative risk within this distribution, the individualized 

10-year CVD risk estimates are generated and shown in column 4 (Appendix C - Table 2).  

From the 10-year CVD risk estimates, the annual CVD risk estimates can be smoothly 

interpolated such that the risk estimates increase over time.

C. ESTIMATION OF CVD RISK ESTIMATES

Appendix C - Table 1: Example of recalculation of 10-year CVD risk estimates.

Box Description Value Formula

1 Age at inclusion initial CVD screening (years) 34.27

2 Age at inclusion in CREw study (years) 54.00

3 Difference in time (years) 19.73 box 2 – box 1

4 10-year CVD risk at inclusion in initial CVD screening (%) 1.651

5 10-year CVD risk at inclusion in CREw-IMAGO (%) 3.701

6 Absolute difference in 10-year CVD risk 2.050 = box 5 – box 4

7 Relative change in 10-year CVD risk for follow years 2.242 =(box 5)/(box 4)

8 Relative annual change in 10-year CVD risk 1.042 = box 7^(1/box3)

9 New 10-year CVD risk at 30 years (recalculated) (%) 1.386 = box 4*((box8) ^(30-box1))

10 New 10-year CVD risk at 40 years (recalculated) (%) 2.087 = box5*((box8)^(40-box2))

In our micro simulation model, CVD risk estimates are assumed to be beta distributed. From 

literature, the average 10-year CVD risk and the associated variation at the ages of 30 and 

80 years are determined. Using the average (µ) and variance (σ2) values the corresponding 

alpha (α) and beta (β) values are calculated; see Appendix C - Equation 1 and Appendix 

C - Equation 2. This results in one alpha and one beta value for the risk distribution at the 

age of 30 and another alpha and beta value for the age of 80. The alpha and beta values for 

the decades between 30 and 80 years are smoothly linear interpolated and stay constant 

above the age of 80. In total, we have eight “decade” alpha and beta values corresponding 

with 8 cycles, i.e. 30 until 110.

In the simulation model, risk estimates are correlated between the decades. A single cor-

relation is used to correlate the CVD risk at age X and age X+10. Furthermore, the correlation 

coefficient is varied in the analyses. This insures that CVD risk is correlated over time (age) 

but with a diminishing correlation (age X and age X+20). Therefore, a marginal conditional 

normal distribution is used to simulate the correlation values over time, per woman.

The predicted 10-year CVD risk distribution is divided into intervals where one interval 

represents one woman. For example, the central interval is a woman of whom the predicted 

CVD risk estimate is equal to the average CVD risk estimate. With the estimated correlation 

coefficients for all women and cycles, the intervals are randomly generated for all women.
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Appendix C - Table 2: Correlation coefficients and interval values for all decades between 30 and 100 years, for the 
first simulated woman.

Age 
(years)

Average 10-year CVD risk (95% CI) Relative risk within the
10-year CVD risk distribution

Individualized 10-year CVD risk

30 0.03 (0.01; 0.05) 51% 0.03

40 0.04 (0.02; 0.07) 44% 0.04

50 0.07 (0.03; 0.11) 62% 0.07

60 0.10 (0.06; 0.15) 82% 0.12

70 0.16 (0.09; 0.22) 64% 0.17

80 0.25 (0.16; 0.35) 81% 0.29

90 0.25 (0.16; 0.35) 89% 0.31

100 0.25 (0.16; 0.35) 91% 0.32

Appendix C - Equation 1: Formula to estimate alpha value from mean and variance values

Appendix C - Equation 2: Formula to estimate beta values from mean and variance values

Appendix C - Equation 3: Estimation of the annual CVD risk estimate from the 10-year CVD risk estimate
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F. VALUE OF INFORMATION

Appendix F - Table 1: Defined sets of parameters for VOI analysis

Set 1 – Predicted CVD risk

 • Average 10-year CVD risk at young age, i.e. 30 years
 • Average 10-year CVD risk at older age, i.e. 80 years
 • Correlation coefficient between 10-year CVD risk estimates

Set 2 – Probability to start preventive intervention and stay adherent

 • 10-year adherence for women ≥ 60 years
 • Proportion of young women that participate in early preventive screening
 • Relative adherence change (in women < 60 years compared with > 60 years)
 • Annual proportion of women ≥ 60 years at high CVD risk identified by the GP

Set 3 – Screening and treatment

 • Relative risk of CVD when following lifestyle advice versus no lifestyle advice
 • Cost of preventive medication
 • Cost of early preventive screening

Set 4 – Costs

 • Cost of CHD event (first year)
 • Cost of CVA event (first year)
 • Cost of other CVD event (first year)
 • Cost of CVD death
 • Cost of CHD event (sequential years)
 • Cost of CVA event (sequential years)
 • Cost of other CVD event (sequential years)
 • Cost of recurrent CVD event (first year)
 • Cost of recurrent CVD event (sequential year)

Set 5 – Utilities

 • Utility of CHD event (first year)
 • Utility of CVA event (first year)
 • Utility of other CVD event (first year)
 • Utility of CHD event (sequential year)
 • Utility of CVA event (sequential year)
 • Utility of other CVD event (sequential year)
 • Utility of recurrent CVD event (first year)
 • Utility of recurrent CVD event (sequential years)

Set 6 – Relative risk after CVD event

 • Relative risk of recurrent CVD event (first year)
 • Relative risk of recurrent CVD event (sequential year)

E. COST EFFECTIVENESS ANALYSIS

Appendix E - Figure 1 shows the average cost-effectiveness plane with the average health 

effects and costs for the four preventive screening scenarios. Furthermore, Appendix E 

- Figure 1 shows the incremental cost-effectiveness plane where scenario B (preventive 

screening starting at 40 years and a 2% threshold) is compared with no screening (scenario 

0), and preventive screening starting at 30 years and a 5% threshold (scenario D). The dotted 

line in the figure is the WTP threshold of €20,000/QALY.

Appendix E - Figure 1: Results of the probabilistic sensitivity analyses (PSA).
The average health benefits and costs are shown in the cost-effectiveness plane for all four screening scenarios 
(A). The difference in benefits and costs of promising screening scenarios are shown in the incremental cost-
effectiveness plane with a WTP threshold of €20,000/QALY (B).
WTP: Willingness-To-Pay; QALY: Quality-Adjusted-Life-Year.
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Appendix F - Table 2: Value of information results

Per 
Person 
EVPPI (€)

Standard 
Error

Indexed 
to Overall 
EVPI = 1.00

EVPPI for the 
Netherlands  
Per Year (€)

EVPPI for the  
Netherlands  
over 5 years (€)

Single parameter EVPPI

Young risk 1,567.6 129.4 0.3 3,135,000 15,680,000

Old risk 259.7 98.1 0.1 519,400 2,597,000

Cost CVA - first year 44.3 40.1 0.0 88,630 443,100

Relative Risk Reduction 21.0 37.1 0.0 41,930 209,700

Utility OCVD - sequential year 12.2 37.0 0.0 24,300 121,500

Proportion participate 9.4 52.5 0.0 18,870 94,360

Cost Other CVD - sequential year 6.7 28.0 0.0 13,430 67,140

Cost screen 3.4 23.9 0.0 6,858 34,290

Cost Other CVD - first year 1.3 25.7 0.0 2,673 13,370

Utility Recurrent event - first year 1.0 38.8 0.0 1,956 9,779

Cost Recurrent event - sequential year 0.5 22.4 0.0 1,067 5,334

Adherence younger women 0.3 39.9 0.0 618 3,088

Cost Recurrent event - first year 0.1 17.4 0.0 218 1,092

Cost CHD - first year 0.0 13.4 0.0 65 325

Relative risk – first year 0.0 13.2 0.0 42 209

Correlation 0.0 20.7 0.0 0 0

Adherence older women 0.0 48.7 0.0 0 0

Cost medication 0.0 10.3 0.0 0 0

Cost CHD - sequential year 0.0 8.9 0.0 0 0

Cost CVA - sequential year 0.0 7.5 0.0 0 0

Cost CVD death, 0.0 6.6 0.0 0 0

Utility CHD - first year 0.0 11.1 0.0 0 0

Utility CHD - sequential year 0.0 11.5 0.0 0 0

Utility CVA - sequential year 0.0 11.8 0.0 0 0

Utility OCVD - first year 0.0 10.1 0.0 0 0

Utility Recurrent event - sequential year 0.0 13.7 0.0 0 0

Annual probability detect 0.0 28.5 0.0 0 0

Relative risk – sequential year 0.0 10.3 0.0 0 0

Relative change in 10-year adherence  
(young versus older women)

0.0 7.1 0.0 0 0

Group parameter EVPPI

Per 
Person 
EVPPI (€)

Standard 
Error

Indexed 
to Overall 
EVPI = 1.00

EVPPI for the 
Netherlands 
Per Year (€)

EVPPI for the 
Netherlands 
over 5 years (€)

Set 1 – Predicted CVD risk 1,696.3 134.3 0.3 3,392,611 16,963,053

Set 2 – Probability to start preventive 
intervention and stay adherent

142.7 88.7 0.0 285,500 1,427,499

Set 3 – Screening and treatment 71.5 58.1 0.0 143,012 715,062

Set 4 – Costs 242.8 100.8 0.0 485,638 2,428,192

Set 5 – Utilities 296.4 101.8 0.1 592,702 2,963,508

Set 6 – Relative risk after CVD event 12.1 38.7 0.0 24,267 121,334
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1. INTRODUCTION

Diagnostic or prognostic prediction models can be used as decision rules to support 

management decisions such as subsequent testing or treatment. Demonstrating that a 

prediction model has adequate predictive performance in (ideally multiple) external validation 

studies is essential [1-4]. However this does not imply that implementing such a model in 

practice will improve management decisions by care providers, let alone that it will lead to 

improved health outcomes and/or reduction in healthcare costs. The impact of prediction 

models on patient relevant health outcomes and costs can be studied in so-called impact 

studies, such as comparative longitudinal studies (ideally (cluster) randomized trials), in 

which care directed by the prediction model is compared to usual care [5, 6].

Impact studies for prediction models are infrequent, most likely due to their complexity, 

long follow-up (especially when predicting long-term prognostic outcomes), associated 

high costs and lack of regulatory requirements [7-9]. In addition, the benefits observed in 

such impact studies have typically been smaller than expected, or even lacking [10, 11]. A 

recurring explanation for the smaller than expected benefit is the lack of compliance (or 

adherence) with management recommendations linked to model predictions or scores. An 

approach using a decision analytic model, making use of evidence that is available at the 

time a prediction model impact study is being considered, may provide more insight into 

the degree of compliance required to a model’s management recommendations to result in 

favourable health outcomes and/or costs of care when the model is implemented.

Decision analytic modelling is a method that integrates multiple sources to assess the down-

stream cost-effectiveness of applying a prediction model [12, 13]. Constructing a decision 

analytic model (DAM) forces researchers to think about the pathway through which complex 

interventions, such as the interplay between the model predictions and subsequent patient 

management, can lead to clinical or monetary benefit. DAMs also allow for uncertainty to be 

taken into account on parameters related to accuracy of predicted probabilities, costs and 

potential side-effects of diagnostic tests, and costs and effectiveness of any subsequent 

intervention. Additionally, downstream effects of hypothetical scenarios can be analysed, 

assuming one or more values for parameters for which there is little or no evidence. This 

allows for flexible assessment of the potential impact of the prediction model.

ABSTRACT

Introduction: The impact of a prediction model on health outcomes of patients is not only 

determined by the performance of the model, but also by care providers’ compliance with 

management recommendations based on the predictions. We explored how a decision 

analytic model (DAM) can be used to quantify the impact of compliance with management 

recommendations from a prediction model, before conducting a clinical impact study.

Methods: We built a DAM comparing the application of the HEART score, a prediction model 

used for stratifying patients with chest pain according to their risk of having a serious heart 

condition, to usual care. The outcome of interest was missed MACE, defined as MACE in 

patients who were discharged. Only data from the development and external validation of 

the prediction model, and medical consumption studies were used as input for the DAM. 

Costs for diagnostic tests, (re)admission days and MACE were included in the assessment. 

Probabilistic sensitivity analysis was used to assess robustness of impact estimates. 

Impact on patient outcomes and costs was assessed for scenarios in which the degree 

of compliance with HEART score management recommendations, and informed deviation 

(ID) from these recommendations, were varied.

Results: The impact of using the HEART score in a clinical setting is influenced by the 

interplay of compliance and informed deviation. Scenario analysis showed that a compliance 

of 100% (with 0% ID) reduced missed MACE compared to usual care. For a compliance 

of 50% (with 0% ID) there was an increase in missed MACE. When ID was increased to at 

least 25% (with any compliance above 50%), missed MACE were reduced. Costs per patient 

reduced as compliance dropped from 100%, and/or ID increased from 0%.

Conclusion: Decision analytic modelling is a useful approach to assess the potential 

influence of certain factors on the impact of risk prediction model, in case there is limited 

data available on key factors such as compliance. This approach could provide evidence 

for deciding whether or not to conduct a subsequent clinical impact study, or to inform the 

design and conduct of such studies.
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the conduction of this trial were used [19]. This paper aims to illustrate how a DAM can 

be used to assess the effects of compliance to management recommendations from a 

prediction model on actual impact of the model on patients’ health and healthcare costs. 

Its aim is not to replicate the results from the randomized impact trial.

The HEART score is a prediction model that uses routinely collected information from 

patient history and blood tests to predict MACE in patients presenting with chest pain at 

the emergency room, using an easy applicable risk score ranging from 0 to 10 [18]. Patients 

with a low score (i.e. ≤ 3) were considered to have a low risk for MACE within six weeks after 

presentation at the emergency department, and could be discharged. Those with a score 

of 4 or higher would need to undergo further testing. Several external validations studies 

have shown that the HEART score can clearly stratify patients according to their risk of 

having MACE [20-24].

We evaluated the HEART score purely as a diagnostic instrument for MACE, meaning that 

in our model the HEART score and any subsequent actions don’t have an impact on the 

total number of MACE. The potential benefit of the HEART score lies in its ability to stratify 

patients according to their risk of MACE. Physicians are advised to promptly discharge low 

risk patients, thereby reducing utilization of healthcare resources, and to provide a more 

aggressive diagnostic approach in high risk patients, to prevent unnecessary delay in starting 

treatment. MACE found during diagnostic work-up (detected MACE) were considered a 

favourable outcome, whereas MACE after patients were discharged (missed MACE) were 

considered an unfavourable outcome.

2.2 Structure of the model

A DAM comparing usual care to using the diagnostic-management pathway HEART score 

can be found in Figure 1. More details on the usual care pathway can be found in Appendix 

A. In the usual care strategy HEART scores are not available to clinicians and are therefore 

not used to guide management decisions. In the HEART score strategy, we mimicked that 

clinicians at the emergency department would calculate the HEART score, and be given 

clear guidance on subsequent management based on the value of that score. Following 

the original HEART score development and validation studies, the following categories were 

used: low (HEART score 0 to 3), intermediate (HEART score 4 to 6), and high (HEART score 7 

For (complex) therapeutic interventions and diagnostic tests DAMs have been proposed and 

performed before conducting longitudinal comparative trials, [14-16], however only a few 

have been performed on diagnostic or prognostic prediction models [8, 17]. An explanation 

for the lack of DAM assessments on prediction models is that the impact of a prediction 

model is more complex than assessing the impact of an intervention, as such models need 

to include the downstream effects of those predictions, for example on benefits and harms 

of subsequent diagnostic tests and treatments. Additionally, compliance with management 

recommendations from a prediction model and informed deviation to that compliance (i.e. 

whether there is incremental value of a clinician’s experience on top of predictions provided 

by a model) – both difficult parameters to estimate – also influence the impact of using a 

prediction model in practice. These parameters are often not available or carefully consid-

ered before a trial is performed, however this does not need to prevent the construction of a 

sensible DAM producing realistic estimates of impact on health effects and healthcare costs.

In this paper we demonstrate how to assess the potential impact of a prediction model on 

health effects and healthcare costs using a DAM approach, specifically focusing on compli-

ance with management recommendations corresponding to prediction model estimations. 

We will use the HEART score prediction model for diagnosis of major adverse cardiac events 

(MACE) in patients with chest pain as a case study [18]. We will end this paper by providing 

generic guidance on how to perform a model-based assessment of an clinical decision rule 

or prediction model using a decision analytical approach, and how this can be used to inform 

the decision on whether or not to conduct a subsequent prospective comparative prediction 

model impact study, or to inform the design and conduct of such studies.

2. METHODS

2.1 Case study

We compared implementation of the HEART score prediction model to usual care in a DAM 

as an example of how compliance with management recommendations from a prediction 

model influence the impact of that model on patients’ health outcomes, healthcare costs, 

and cost-effectiveness of care. A randomized impact trial has been conducted for the HEART 

score prediction model, however for the DAM only information from sources available before 
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Table 1. Illustration of the interplay between compliance and informed deviation from management recommendations 
from HEART score predictions for the low HEART score category.

MACE No MACE

Discharged  
(proportion of 
patients)

Additional testing
(proportion of 
patients)

Discharged
(proportion of 
patients)

Additional testing
(proportion of 
patients)

Full compliance (100%)
No ID (0%)

100% 0% 100% 0%

Mostly compliance (80%)
No ID (0%)

80% 20% 80% 20%

Mostly compliance (80%)
Partly ID (50%)

40%
= 80% - 80% * 0.5

60%
= 20% + 80% * 0.5

90%
= 80% + 20% * 0.5

10%
= 20% - 20% * 0.5

Mostly compliance (80%)
Full ID (100%)

0%
= 80% - 80% * 1.0

100%
 = 20% + 80% * 1.0

100%
 = 80% * 20% * 1.0

0%
 = 20% - 20% * 1.0

Figure 1. Decision tree for the application of the HEART score prediction model in a group of patients presenting 

with chest pain at the emergency department.

ID = Informed deviation of management recommendations corresponding to HEART score predictions, representing 

the proportion of correctly ignored HEART score recommendations. Euro signs and emoticons represent negative 

effects on costs and health effects respectively.

to 10). Each of the three HEART score categories was also given a subsequent management 

recommendation. Patients in the low, intermediate, and high HEART score categories were 

respectively recommended to be discharged from the hospital without any diagnostic 

testing performed, given non-invasive diagnostic testing (which consists of stress bicycle 

echocardiography, myocardial scintigraphy, coronary CT angiography, and cardiac MRI) or 

given invasive diagnostic testing (coronary angiography, and any of the non-invasive tests). 

Our model allowed for an assistive prediction model approach, meaning physicians were not 

forced to comply with management recommendations [25, 26]. This depicts a situation more 

representative of actual utilization of a prediction model in practice, hence providing more 

realistic assessment of its impact. Therefore, we varied the amount of compliance (i.e. in 

this case study the proportion of patients within a HEART score group in which the specified 

recommendation was followed) in several scenarios (see “Scenario analysis” paragraph).

The focus of our DAM is an evaluation of the impact of compliance with management 

recommendations from HEART score provided by a clinical prediction rule like the HEART 

score on patient relevant health outcomes and costs.

In addition, we allowed clinicians to deviate from recommended management based on 

additional information (e.g. additional signs and symptoms) or expertise, leading to more 

appropriate stratification of management given to patients. This was done by including a 

variable in the model to account for the degree of informed deviation (ID) from management 

recommendations corresponding to HEART score predictions, defined as the proportion of 

patients in whom the physicians correctly decided not to follow HEART score management 

recommendations. ID ranged from 0% (uninformative compliance; compliance is equal in 

patients with and without MACE) to 100% (fully informative compliance; patients with MACE 

follow a diagnostic pathway, patients without MACE are discharged). For further illustration, 

see Table 1.
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Healthcare costs

The measurement of HEART score relies on readily available predictors, hence there is no extra 

cost associated with the collection of these predictors when compared to (current) usual care. 

The costs of MACE events were calculated based on a weighted average of costs and probability 

of each individual MACE component, derived from scientific literature. [27, 29-32] Costs for 

individual diagnostic tests were incorporated in the non-invasive and invasive testing path-

ways. Count data for the average number of individual diagnostic procedures per patient were 

extracted, meaning a patient could receive multiple diagnostic tests during the six week period of 

follow-up [27]. The average number of tests per patient was multiplied with their respective costs, 

yielding the average cost a patient generated when entering that specific diagnostic pathway. 

Similarly, the average number of admission and re-admission days were calculated per HEART 

score category for each of the diagnostic pathways were. Complication rates in non-invasive 

and invasive testing pathways are not explicitly included in the model. However, the expected 

frequency of severe complications for procedures included in the DAM is low and expected costs 

of complications are largely captured by the number of (re)admission days [33-35].

2.4 Analyses

We used data from previous studies as input for the parameters included in the DAM. A prob-

abilistic sensitivity analysis was performed, in which a series of simulations were ran to take 

into account uncertainty surrounding the parameters in the DAM. Furthermore, hypothetical 

scenarios are considered in which compliance and ID were varied.

Scenario analysis

Scenario analysis focused on comparing different compliances to HEART score management 

recommendations, combined with varying degrees of ID with those compliances. The influence 

of compliance on missed MACE and costs was investigated in three different scenarios: low 

(50%), medium, (75%), and full (100%) compliance. Furthermore, four scenarios were defined 

for ID: (0%), low (25%), medium (50%), and high (75%) ID.

For each scenario, the incremental proportion of missed MACE, healthcare costs, and cost 

per missed MACE will be given per HEART score category, and for all HEART score categories 

combined, compared with usual care. Cost-effectiveness planes will be provided to give insight in 

the distribution of missed MACE and healthcare costs in the presence of parameter uncertainty.

2.3 Input parameters for decision analytic model

To operationalize the DAM, each parameter requires an input value. Three types of input 

parameters are considered. Firstly, transition probabilities, which are the probabilities to 

transit from one (health) state to another, are defined (marked in Figure 1 by the orange 

arrows). Secondly, defining the health outcomes that the prediction model aims to prevent 

are set. Finally, input values for the intended and unintended effects and costs of any 

subsequent tests, treatments, and/or conditions need to be determined. See Appendix B 

for an overview of all input parameters, for instance the distribution of patients across the 

different HEART score categories.

Transition probabilities

The distribution of targeted patient population across the HEART score categories and 

MACE rates per HEART score category were derived from the development, and multiple 

external validation studies of the HEART score [20-22]. Values for compliance and ID were 

on the scenarios described in the “Scenario analysis” section of this paper. Transition prob-

abilities for non-invasive and invasive diagnostic testing pathways, as well as the likelihood 

of receiving specific diagnostic tests (e.g. a stress bicycle echocardiography), were derived 

from a medical consumption study [27].

Health outcomes

The health outcome of interest was defined as the proportion of missed MACE, i.e. patients 

with a MACE who were (initially) discharged without any subsequent work-up. MACE that 

was detected during or occurred after diagnostic workup was not included as an adverse 

outcome, as this would have been found in a clinical setting, in which it could be managed 

accordingly. In usual care, the proportion of patients with a missed MACE was 0.4% (95% CI), 

2.5% (95% CI), and 2.0% (95% CI), for the low, intermediate and high HEART score categories 

respectively [27]. All MACE (detected and missed) were defined as the occurrence of any 

of the following events or interventions: acute myocardial infarction (both ST- and non-ST-

segment elevation), unstable angina, percutaneous coronary intervention (PCI), coronary 

artery bypass grafting (CABG), significant stenosis (>50%) managed conservatively, and 

death due to any cause [28].
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counteract the higher proportion of missed MACE in the low HEART score category, and 

increase reduction of missed MACE in the intermediate and high categories, by selection 

of MACE patients to refer them for diagnostic testing, and selection of non-MACE patients 

and discharging them.

Costs

Table 3 shows the average difference in costs per patient between the HEART score strategy 

and usual care. Costs declined for the low and intermediate HEART score category when 

compliance and ID increase. A different pattern is observed when the high HEART score 

category is taken into consideration, where a higher compliance led to higher costs. ID 

counteracts the increase in this group. For the total group there is a cost increase when ID 

is 50% or lower. Only at higher levels did the costs decrease compared to usual care.

Missed MACE / costs ratio

To gain insight in the investment that needs to be made for reducing missed MACE, the ratio 

between the difference in costs and missed MACE between HEART categories and usual 

care is calculated. Difference estimates of compliance to management recommendations 

for the HEART categories may be slightly strange, e.g. combining 50% compliance with 0% 

ID in the low category and 75% compliance with 50% in intermediate and high categories. 

Therefore, the ratio between costs and missed MACE is only calculated for the total patient 

population. Table 4 shows the results for the different scenarios of compliance and informed 

deviation. The impact of introducing the HEART score strategy on cost per missed MACE 

event depended greatly on the interplay between compliance and ID. When the HEART 

score is mostly ignored (ID of 75%), the resulting decisions reduce costs and missed MACE, 

resulting in a promising (i.e. cost-effective) strategy. At some point (i.e. 100%, not so far from 

the 75% mentioned here) there is no HEART score intervention at play anymore.

Cost-effectiveness ratios are provided within a HEART score category and for the total 

population. HEART score strategy is inferior when there are both extra costs and more 

missed MACE compared to usual care. HEART score strategy is dominant when there are 

less costs and fewer missed MACE compared to usual care.

Probabilistic sensitivity analysis

Monte-Carlo simulation was used to assess the robustness in health and economic 

outcomes based on uncertainty surrounding parameter estimates. A series of 10,000 

simulations were run per scenario, each with a patient population of 200,000, reflective of 

the annual Dutch population visiting the emergency department with chest pain [36]. Param-

eter uncertainty was reflected by calculating standard errors from the data, and defining 

appropriate statistical distributions for each parameter. Beta and Dirichlet distributions were 

used to account for uncertainty in transition probabilities. Gamma distributions were used 

for uncertainty surrounding costs (see Appendix B).

3. RESULTS

The impact of compliance and informed deviation on the number of missed mace (i.e. 

effects), costs and ratio between costs and effects are investigated with pre-defined sce-

narios. The impact on these three different impact estimates within the different scenarios 

of compliance and informed deviation is shown. Because our interest is in missed MACE 

events, results may be slightly contraindicative as negative numbers now indicate to a more 

desirable outcome (less missed MACE). The values in the results are therefore coloured 

in green (reduction in MACE event or costs) or red (increase in missed MACE or costs). 

Additional to the scenario analyses is the robustness of the outcome estimates (i.e. effects 

and costs) investigated and presented in a cost-effectiveness plane with the most extreme 

scenarios (that is compliance of 50% / 100% and ID of 0% / 75%).

Missed MACE

Table 2 shows the average difference in missed MACE (per person) for each of the HEART 

score categories and the total patient population, compared with usual care. The low HEART 

score category shows an increase in the proportion of missed MACE events as compliance 

increases, whereas in the intermediate and high HEART categories there is an inverse 

relation. This can be explained by the different management recommendations associated 

with each HEART score category. Compliance in the low HEART score category leads to 

more patients being discharged, running the risk of missing MACE in these patients. On the 

other hand, compliance in the intermediate and high HEART score categories leads to more 

diagnostic testing and prolonged hospital stay, reducing the risk of missed MACE. ID can 
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Table 3. Average difference in costs between HEART score strategy and usual care

Compliance Informed deviation (ID)

0% 25% 50% 75%

Usual Care

€ 1,456

HEART score 
0-3

50% € 27 -€ 55 -€ 137 -€ 218

75% -€ 148 -€ 186 -€224 -€ 262

100% -€ 323 -€ 317 -€ 312 -€ 306

HEART score 
4-6

50% € 7 -€ 48 -€ 102 -€ 156

75% -€ 102 -€ 130 -€ 156 -€ 184

100% -€ 211 -€ 211 -€ 211 -€ 211

HEART score 
7-10

50% € 537 € 159 -€ 221 -€ 599

75% € 1,465 € 1,081 € 697 € 311

100% € 2,393 € 2,003 € 1,615 € 1,223

Total 50% € 96 -€ 19 -€ 135 -€ 251

75% € 124 € 38 -€ 50 -€ 137

100% € 151 € 94 € 35 -€ 24

Table 4. Average difference in cost per missed MACE between HEART score strategy and usual care.

Compliance Informed deviation (ID)

0% 25% 50% 75%

Total 50% € 23,395* € 14,981^  € 22,307^ € 23,160^

75% -€ 63,250 -€ 6,954  € 5,681^ € 11,256^

100% -€ 20,305 -€ 9,909 -€ 2,992 € 1,770^

* inferior; more missed mace and larger costs; ^ dominant; less missed mace event and cost saving.

Uncertainty analysis

Figure 2 shows the incremental cost-effectiveness plane of four scenarios (compliance of 

50% / 100% and ID of 0% / 75%) of the HEART score strategy compared to usual care (for 

10,000 simulations). In a scenario where compliance to management recommendations 

from the HEART score is only 50% (with 0% ID), 68% of the simulations showed an inferior 

outcome. An inferior outcome means that there are more missed MACE events higher costs 

compared to usual care. When 100% compliance (and 0%) to the HEART score strategy was 

assumed there was no reduction in missed MACE but with costs savings per patient. For 

the scenarios with a positive ID of 75%, 99% and 78% of the simulations result in a reduction 

in missed MACE events and cost savings (for 50% and 100% compliance respectively).

Table 2. Average difference in missed MACE per person between a HEART score strategy and usual care.

Compliance Informed deviation (ID)

0% 25% 50% 75%

Usual  
care

0.016

HEART score
0-3

50% 0.006 0.004 0.001 -0.001

75% 0.011 0.007 0.004 0.000

100% 0.016 0.011 0.006 0.001

HEART score
4-6

50% 0.002 -0.005 -0.012 -0.018

75% -0.012 -0.015 -0.018 -0.021

100% -0.025 -0.025 -0.025 -0.025

HEART score
7-10

50% 0.003 -0.003 -0.009 -0.014

75% -0.009 -0.012 -0.014 -0.017

100% -0.020 -0.020 -0.020 -0.020

Total 50% 0.004 -0.001 -0.006 -0.011

75% -0.002 -0.005 -0.009 -0.012

100% -0.008 -0.010 -0.012 -0.014

A negative number represents a reduction in missed MACE.
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considered, to gain more insight and reduce uncertainty on the parameter of interest? The 

DAM can be updated with additional information from for example a pilot study, allowing 

researchers to re-assess the potential impact of the prediction model. Ultimately the DAM 

can be used for optimizing the sample size calculation and the design and conduct (like 

the amount of attention on compliance) for an (potential) upcoming impact study [17, 38]. 

Additionally, the DAM can aid researchers in understanding how parameters influence the 

health effects and costs of an impact trial [39].

Feasibility of a DAM before an impact study has been performed depends on the availability 

of data on risk stratification of patients, consumption of healthcare resources, effectiveness 

of patient management, and potential health benefits for patients in each risk category. 

Table 5 provides an overview for general guidance on how to set-up a model-based impact 

assessment of a prediction model.

Strengths

This is one of the first examples in which a DAM was used for impact assessment of a 

prediction model, using solely data before implementation in clinical practice. We demon-

strated methods that can be used for evaluation of a prediction model, providing insight in 

the influence of particular input parameters on the impact on clinical outcomes and/or costs. 

Compared to a clinical trial, modelling assessments such as the one demonstrated in this 

paper, require a fraction of the time and cost, and could help improve design and conduct of 

an impact trial. This paper demonstrates the feasibility of such an assessment using data 

from only a few publications in scientific literature (see Appendix B).

Limitations

There are a few considerations to fully appreciate the findings of the impact assessment 

in this paper. The use of healthcare resources in our model was based on the first 6 weeks 

of medical consumption [27]. It is likely that negative consequences from a MACE event 

will last beyond this timeframe. Markov chain modelling could account for these long-term 

effects, however reliable data for these effects were lacking [46]. Only in-hospital costs were 

incorporated in the assessment. Visits to the general practitioner, specifics on medication 

usage, and non-hospital based costs (e.g. labour productivity losses, traveling expenses) 

were not included in the assessment. Although these might influence the results when 

Figure 2. Incremental cost-effectiveness planes for 10,000 simulations comparing the HEART score strategy to 

usual care for the following scenarios

Note that negative numbers indicate a more desirable outcome (less missed MACE and/or reduction in costs).

4. DISCUSSION

In this paper we show how compliance and ID, as a measure for incremental value of expe-

rience of a clinician, affect the potential impact of using the HEART score on health effects 

and healthcare costs using a DAM. This illustrates how a DAM can be used to estimate the 

impact of a prediction model, using only data and information available before performing 

an impact trial.

Generating a DAM for impact assessment of a prediction model forces researchers to 

think about the ultimate goals of the prediction model (e.g. reducing the primary outcome, 

reducing side-effects, optimizing diagnostic and treatment pathways) and how it aims to 

achieve these goals. DAMs can help to demonstrate under which conditions a longitudinal 

comparative (ideally randomized) impact study is likely to have the desired impact on health 

effects and/or costs. If those conditions are deemed unlikely, then one should consider 

whether investment in a large-scale impact trial is justified [37]. Should those conditions be 

deemed plausible, a pilot study or qualitative assessments with experts in the field might be 
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were not evaluated. DAM assessments have also been used to calculate the potential of a 

novel innovation using the headroom method. Headroom analysis is a method that has been 

used in scientific research to assess the likelihood of cost-effectiveness of an intervention, 

given a willingness to pay threshold [14, 41-45]. Similar to the assessment in this paper, 

these analyses also make use of data before implementation of an innovation, and assess 

potential benefit. However, the goal of headroom analysis is to assess at a very early stage of 

development whether an innovation has the potential to be cost-effective. In a model-based 

impact analysis, costs and effects of an innovation are being estimated for a series of 

(realistic) scenarios. Although a headroom approach is feasible for prediction models, to 

our knowledge there are no articles on this topic described in literature.

Conclusion

Using DAM for impact assessment of the implementation of a prediction model, using 

solely data available before an impact study is conducted, can aid researchers in under-

standing what value of certain parameters should achieve to have a positive effect on health 

effects and/or costs. Based on the likelihood of observing such a value (in our example, 

50% compliance, 75% ID), they can decide whether an impact trial is necessary, and if so, 

under what conditions such a trial is likely to reduce costs and/or reduce outcomes. Efforts 

can be directed at improving the design of an impact trial to prevent disappointing results. 

DAMs can help provide general insight in the mechanism through which the prediction 

model can lead to desired results, and expose potentials flaws in mechanistic pathways, 

allowing researchers to adapt the design of a trial beforehand. Ultimately model-based 

impact assessments have the potential to reduce research waste, by more efficient selection 

and design of impact trials.

considering a societal perspective, it is expected that the impact on incremental costs and 

health effects are likely to be limited.

We viewed the HEART score purely as a diagnostic tool. This implies that MACE is not 

prevented by using the HEART score. What the HEART score can only achieve is to stratify 

patients correctly and streamline subsequent management. Because MACE is not prevented, 

the natural outcomes is missed MACE, leading to poorer outcome and additional costs. 

Others have argued that the HEART score can also be used to predict MACE in the future, 

opening the opportunity to prevent MACE. This would of course lead to a rather different 

DAM. We chose not to do this because HEART was used in an acute care setting, patients 

with chest pain presenting at the emergency department which is a clear diagnostic setting.

Comparison with other studies

It is first worth comparing the results of our analysis to the impact trial that was eventually 

performed by Poldervaart et al [19]. Although not the main goal of this paper, a comparison 

with the results from the impact trial can provide insight in the validity of our model. The 

trial demonstrated 82.3% compliance to HEART score recommendations, which we could 

have been used as input for the DAM to compare health effects and costs. Unfortunately 

health effects could not be compared, because a different primary outcome was used in 

the impact trial compared to the outcome used in the DAM (missed MACE vs. any MACE). 

Furthermore, cost data were collected over a 3 month time horizon, different from the 6 

week time horizon used in literature. Still, the impact of non-compliance in the DAM can be 

translated to the actual HEART impact trial. Non-compliance without informative deviation 

in patients with low HEART score has a detrimental effect on potential cost savings. This is 

in line with the main finding of the actual HEART impact trial: substantial non-compliance 

in the low HEART score category resulted in small differences in total cost between HEART 

and usual care.

Few model-based assessments have been previously performed that assess the potential 

of prediction models before an impact study has been executed. One study assessed the 

value of a prediction model for predicting shoulder pain in patients with early stage oral 

cavity squamous cell carcinoma after surgical removal of lymph nodes [40]. Although the 

analysis did focus on specific scenarios regarding the accuracy of the predictions, explicit 

consideration of compliance or additional clinical expertise on top of the prediction model, 
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B. MODEL PARAMETERS

Appendix B - Table 1: Overview of the used model parameters for the decision analytic model

Average value 95% CI Distribution Source

Probabilities

HEART score 0-3 0.400 0.363-0.438 Dirichlet [27]

Probability at least one MACE < 6 weeks 0.020 0.006-0.041 Beta [27]

 • Compliance

 › Discharged 1.000 - Consequential

 › Average # of MACE events 1.000 0.905-1.095 Uniform [27]

 • Non-compliance

 › Non-invasive testing 0.750 0.236-0.997 Beta [27]

 › Average # of MACE events 1.333 1.206-1.460 Gamma [27]

 › Invasive testing 0.250 0.003-0.764 Beta [27]

 › Average # of MACE events 1.000 0.905-1.095 Uniform [27]

Probability of no MACE < 6 weeks 0.980 0.959-0.994 Beta [27]

 • Compliance

 › Discharged 1.000 0.905-1.095 Uniform Consequential

 • Non-compliance

 › Non-invasive testing 0.948 0.898-0.981 Beta [27]

 › Invasive testing 0.052 0.019 -0.102 Beta [27]

HEART score 4-6 0.444 0.309-0.490 Dirichlet [27]

Probability at least one MACE < 6 weeks 0.236 0.188-0.287 Beta [27]

 • Compliance

 › Non-invasive testing 1.000 - Consequential

 › Average # of MACE events 1.194 1.081-1.308 Gamma [27]

 • Non-compliance

 › Discharged 0.226 0.099-0.388 Beta [27]

 › Average # of MACE events 1.000 0.905-1.095 Uniform [27]

 › Invasive testing 0.774 0.612-0.901 Beta [27]

 › Average # of MACE events 1.167 1.057-1.278 Gamma [27]

Probability of no MACE < 6 weeks 0.764 0.713-0.812 Beta [27]

 • Compliance

 › Non-invasive testing 1.000 - Consequential

 • Non-compliance

 › Discharged 0.806 0.719-0.880 Beta [27]

 › Invasive testing 0.194 0.120-0.281 Beta [27]

APPENDICES

A. Description of usual care 208

B. Model parameters 209

A. DESCRIPTION OF USUAL CARE

Usual care strategy for the decision tree. Compliance and IDC have been removed compared 

to the HEART score strategy. HEART scores in the strategy can be calculated, but are not 

provided to clinicians, nor are the management recommendations attached to these scores.

Appendix A - Figure 1: Visual representation of the usual care strategy
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Average value 95% CI Distribution Source

Probabilities

HEART score 7-10 0.156 0.130-0.184 Dirichlet [27]

Probability at least one MACE < 6 weeks 0.590 0.495-0.683 Beta [27]

 • Compliance

 › Non-invasive testing 1.000 0.905-1.095 Uniform Consequential

 › Average # of MACE events 1.333 Gamma [27]

 • Non-compliance

 › Discharged 0.077 0.009-0.205 Beta [27]

 › Average # of MACE events 1.000 0.905-1.095 Uniform [27]

 › Invasive testing 0.923 0.795-0.991 Beta [27]

 › Average # of MACE events 1.458 1.319-1.597 Gamma [27]

Probability of no MACE < 6 weeks 0.410 0.317-0.505 Beta [27]

 • Compliance

 › Non-invasive testing 1.000 - Consequential

 • Non-compliance

 › Discharged 0.132 0.045-0.258 Beta [27]

 › Invasive testing 0.868 0.742-0.955 Beta [27]

Costs

HEART score 0-3

 • Non-invasive testing € 558 540-576 Gamma [27]

 • Invasive testing € 2,900 2843-2958 Gamma [27]

HEART score 4-6

 • Non-invasive testing € 1,458 1,434-1,482 Gamma [27]

 • Invasive testing € 5,729 5,679-5,778 Gamma [27]

HEART score 7-10

 • Non-invasive testing € 2,701 2,668-2,734 Gamma [27]

 • Invasive testing € 6,145 6,103-6,186 Gamma [27]

MACE event € 5,484 Gamma Weight. 
average
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The content included in this thesis aimed to explore the challenges and solutions for deci-

sion analytical impact assessments of prediction models. This thesis ends with a general 

discussion and overview of these challenges and solutions.

Prediction models may address diagnosis and prognosis of individuals. Diagnostic prediction 

models calculate the probability that an individual suspected to have a certain disorder 

actually has that disorder, for example to guide referral to more advanced testing. Prognostic 

prediction models calculate the probability of the future occurrence of a particular outcome 

in individuals with a certain health state (e.g. with a certain diagnosis) to guide, for example, 

patient counselling or therapeutic management decisions. Numerous guidelines and books 

have proposed some kind of a stepwise process in prediction modelling before the model 

is implemented in daily practice or recommended in clinical guidelines [1-7]. The first step 

is model development, i.e. to identify important predictors and estimate the weights per 

predictor, typically using some form of multivariable analysis. The model development is 

followed by model validation, i.e. to evaluate the predictive performance of the developed 

model in patient-level data that was not used to develop the model. If indicated by the results 

of the validation study, the model may need to be further tailored or updated to the validation 

setting at hand. Finally, one needs to quantify to what extent the actual use of a successfully 

validated prediction model, as compared to not using the model, indeed impacts decision 

making and subsequently the health outcomes of the targeted individuals, the costs and 

the cost-effectiveness of care [2, 5, 8].

Alike every diagnostic or prognostic test or device, prediction models are ‘information gener-

ating tools’ that only indirectly impact health and healthcare outcomes [2, 4, 8-10]. They are 

not effective or therapeutic by themselves. Prediction models typically provide a probability 

of some outcome occurrence, that is supposed to guide decision making and subsequent 

preventive or therapeutic actions, which in turn – if properly indicated and effective - impact 

health outcomes and cost-effectiveness of care. Examples of such actions are healthcare 

providers administering drugs or other type of interventions or encouraging patients to 

improve their lifestyle to lower their prognostic outcome risk [11]. The use of prediction 

models themselves also comes with burden and costs, as they incorporate test, device 

or biomarker results as predictors, whereas the interpretation of predicted risks by care 

professionals and subsequent counselling requires time and thus also is not free of costs.

ABSTRACT

Risk prediction models are useful tools to estimate the risk of the presence (diagnosis) or 

future occurrence (prognosis) of a particular outcome using a combination of an individual’s 

characteristics.

The process of prediction model development, validation and additional updating or tailoring 

to the target population is described extensively. Unfortunately, the prediction model evalu-

ation process typically stops after these steps. Accurate predictive performance of a model 

is often assumed to be sufficient for implementation of the model in guidelines or even daily 

clinical practice. However, good predictive performance does not imply that implementing 

the model will impact treatment decisions, and consequently improve the health outcomes 

of the targeted individuals. Quantification of this impact of using a prediction model com-

pared to not using the model is just as necessary as its development and validation.

To assess the impact of prediction models, one may perform a study in a randomised com-

parative design. Such studies are often time consuming, costly and sometimes infeasible 

if the predicted outcome occurs over a long time period (e.g. 30 years). An alternative is 

a decision analytic modelling approach, where evidence of the predictive accuracy of the 

model and effects of and adherence to subsequent treatments is linked. Decision analytic 

models are less time consuming and costly, may evaluate more than two model-treatment 

strategies at once, address the differential effects of treatment, address costs and side 

effects of considered treatments, address long term outcomes, and are ideal in situations 

with low number of outcome events. There are also disadvantages of using a decision 

analytic model, for example, they may require evidence which is lacking, limited, or available 

only in poor quality, such as information on actual prediction model use and actual treatment 

adherence.

This paper gives an overview of the advantages and disadvantages of a model-based 

approach to assess the impact of prediction models, without performing a prospective 

comparative study first. Two examples of impact studies of a prediction model with a mod-

el-based approach are described in detail, and guidance on how to perform a model-based 

impact assessment is discussed.
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Decision analytic modelling approaches

An efficient alternative to empirical longitudinal impact studies is to use decision analytic model-

ling approaches, based on so-called linked evidence approaches or evidence synthesis methods 

[19-21]. In general, such evidence synthesis methods link the evidence from different sources or 

study types. One source contains the evidence that the prediction model shows good predictive 

performance across various validation studies. A second source includes the estimated effects 

and effectiveness of the interventions that are supposed to be administered by the predicted risks 

of the model – ideally obtained from randomised studies on these interventions. A third source 

includes evidence of the undesired events and (monetary) costs of using these interventions 

and prediction model [4, 19, 22-24]. For example, data on well-developed and validated models 

predicting the 10-year risk of CVD in middle aged males with mild hypercholesterolemia, and 

the estimated effects of interventions for treating middle aged males with this condition (from 

randomised trials) can be linked in a decision analytic model to estimate the impact of introducing 

such models with subsequent risk-based treatment in daily care [25].

In contrast to longitudinal (randomised or non-randomised) prospective studies, such decision 

analytical modelling approaches may more easily compare more than one prediction model, 

compare different risk thresholds for treatment selection, include the effects of different treat-

ments and estimate the effects across relevant subgroups. Of course, such decision analytic 

model approaches also come with challenges and disadvantages. For example, there may yet 

be limited empirical evidence on the predictive accuracy of a model from multiple validation 

studies; on which therapeutic/preventive action is indicated at which risk thresholds; on the (long 

term) effectiveness of alternative therapeutic/preventive strategies from randomised studies; 

adverse events and costs of these strategies; the different patient relevant outcomes or the 

adherence to each intervention.

Indeed, decision analytic approaches cannot fully replace well designed, long term, comprehen-

sive cluster randomised trials of prediction models where all necessary data can be prospectively 

collected, and potential biases can be prevented by design and analysis. But given the numerous 

existing prediction models and the attractive extra possibilities of decision analytic approaches, 

this method is suitable for at least separating the chaff from the wheat, indicating which validated 

models are most promising in a certain field and might undergo further evaluation of their 

impact in empirical comparative studies. However, despite their advantages, model based impact 

evaluations of prediction models are still rarely performed [26].

Prediction model impact studies

As is common for any health intervention, to study the effectiveness or impact of the use 

of a prediction model, with acceptable performance in (several) validation studies, typically 

requires a comparative design, ideally a randomised comparative design. In the index group, 

the prediction model is used and individuals are managed based on their predicted risks 

(e.g. treat individuals above a certain risk threshold and not treating anyone below that 

risk threshold), and in the control group the prediction model is not used and individuals 

are managed by prevailing care [2, 4, 8]. The observed patient (health) outcomes in both 

groups are then compared. Ideally, these impact studies follow a parallel cluster design, as 

randomisation at the individual participant level may lead to learning effects in the healthcare 

worker applying the prediction model [2, 4, 8]. Randomised stepped wedge designs may be 

particularly attractive given the typically limited de-implementation costs in case the index 

prediction model appears to have no favourable impact and needs to be de-implemented 

in the clusters that were randomised to the index group [12]. Also, less cumbersome but 

also more susceptible to bias, non-randomised longitudinal comparative designs may be 

used, such as before-after studies (comparing the outcomes observed in a period before 

introducing a prediction model into a particular healthcare practice with outcomes observed 

after its introduction) or geographical comparison studies (compare different centres that 

have or have not introduced the prediction model) [2, 4, 8].

To different extents, all these longitudinal impact studies are time consuming, costly, and 

quickly become almost infeasible, especially for prognostic models that predict outcomes 

over a longer period of time. An additional complicating factor for proper evaluation is that 

massive numbers of new prediction models have been published over the past two decades. 

For example, there are over 100 models to predict outcome after brain trauma [13], over 60 

models for breast cancer prognosis [14], over 350 models predicting CVD risk in the general 

population [15, 16], over 45 models for cardiovascular events after being diagnosed with 

diabetes [17] and over 40 models for predicting prevalent and incident type 2 diabetes [18]. 

Hence there is a large amount of prediction models among which numerous for the same 

outcome or target population. Moreover, with the abundance of models for some indications, 

it becomes more urgent to compare models among each other, to select the model with the 

highest impact on health outcomes or the most favourable cost-effectiveness.
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Step 1: Development, validation and updating of the  
prediction model

a.   The prediction model

The prediction model needs to be developed and validated for, or otherwise tailored to the 

targeted population and setting, as acknowledged by many papers and books (we cite a few)

[4, 6, 7, 33-35]. Although a properly validated and updated model does not automatically lead 

to improved health outcomes and cost savings, the predictive performance of the model 

needs to be accurate since the predicted probabilities need to be correct (i.e. good model 

calibration). Poor predictive performance, i.e. poor calibration, leads to poor risk estimates 

and thus misclassification of individuals according to their (poorly) predicted probabilities, 

which in turn may result in unnecessarily treated (i.e. over-treated) individuals and incorrectly 

not-treated individuals.

b.   Uncertainty in predicted risk estimates

The individuals’ predicted risk estimates of the considered model are the input values for 

the decision analytic model. A perfectly calibrated and discriminating prediction model 

is utopic since there is always uncertainty in the predictor-outcome associations (i.e. the 

predictor weights), which in turn leads to uncertainty in the risk predictions by the model. 

The uncertainty in the risk predictions needs to be included in the decision analytic model, 

as it impacts the effectiveness of the use of the model on decision making and thus on 

individuals’ health outcomes. Hence, it is preferred that some statistical distribution around 

the model’s predicted risk estimates is defined based on individual patient data from devel-

opment and/or validation study, or that individual patient data is available.

Step 2: Development of the decision analytic model

a. Selecting an appropriate structure

The choice of an appropriate structure for the decision analytic model depends on multiple 

considerations. A few important ones are explained below, for the other consideration we 

conclude with references to literature.

First, the structure of the decision analytic model depends on whether individuals are 

represented as a group, i.e. a cohort, or as individuals. The main advantage of an individual 

The aim of this paper is not to provide all details on how to perform decision analytical modelling 

– for this we will refer to the literature [27-30]. We rather provide a gentle overview of the strengths 

and weaknesses of such approaches when applied to assess and appraise the impact and 

cost-effectiveness of prediction models. This paper is not only suitable and useful for prediction 

model researchers, but is also informative for health policy makers and guideline developers to 

help understanding to what extent decision analytical approaches can be directive for deciding 

which prediction model or risk based approach might be advocated into guidelines or practice.

Advantages and disadvantages of the decision analytic approach

As partially discussed in the previous section, a decision analytic modelling approach to 

assess the impact of prediction models has advantages over a trial-based approach, but 

also has disadvantages. Both approaches address very different aspects or dimensions that 

are not easily weighed and compared. For example, decision analytic modelling approach 

in general has the advantage of being less costly than a trial-based approach, but also 

generates lower level evidence, as defined in evidence hierarchies [31, 32]. A comprehen-

sive overview of the main advantages and disadvantages of a decision analytic modelling 

approach for impact assessment of prediction models is provided in Box 1. Box 2 shows 

different scenarios in which using a decision analytic modelling approach may be worthwhile 

for the impact assessment of prediction models.

Guidance on the impact assessment of a prediction model

Guidance on how to assess the impact of a prediction model without performing a large 

scale prospective comparative study is described in three steps below. Table 1 summarizes 

the different steps, with corresponding references to the literature.
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b. Collect values for model parameter estimates

After selecting an appropriate design, it is important to obtain the necessary evidence from 

the literature to use as input values for the model. The following input estimates for the 

model parameters need to be considered.

I. Probability estimates

 ›   Transition probabilities

These parameters represent the probability to transit into each possible outcome 

state.

A very important transition is the probability to transit from a “healthy” state to an 

“outcome” state. This probability is represented by the predicted outcome risks of 

the prediction model. Preferably, individual patient data from the prediction model 

development study are available to get detailed information on the predicted risks 

distribution of the targeted patients. Other transition probabilities are estimates 

of the disease progression without treatment, taking into account survival data to 

estimate the probability to die from natural causes.

 ›   Health state probabilities

Other important probabilities for the decision analytical model are probability 

estimates within a state, e.g. probabilities for the considered treatments’ intended 

effects, adverse effects, and treatment adherence. Evidence on these probabilities 

can be obtained from randomised treatment studies, observational (long term) 

cohorts, (inter)national guidelines, or by expert elicitation.

II. Impact estimates health state

Besides the occurrence of the above defined outcome events in the pre-defined 

health states, also the (average) health effects and monetary costs within the 

health states are important elements of long term decision analytic models.

 ›   Health effects

The (average) quality of life (QoL) of the considered individuals, the decrease of 

QoL due to (stages of) a disease, outcomes and/or complications of the treatment, 

and health effects of treatment are important health effects to incorporate in the 

based model is the possibility to include individuals in the decision analytic model based 

on their characteristics. For example, individuals can be selected on a particular predicted 

risk level (e.g. all with a predicted probability of 10% or higher), or on a combination of risk 

level and predictor values (e.g. a predicted risk above 10% or a systolic blood pressure of 180 

mmHg or higher) [36]. In a cohort based model, a whole (sub) group is selected or not and 

moreover, all individuals get the same treatment (with the same treatment effectiveness) 

regardless of their individual characteristics. In cohort models, heterogeneity beyond age 

and gender, in terms of individuals’ characteristics and (medical) history, may not be fully 

captured. Decision tree approaches and Markov-chain models [37-39] are examples of a 

cohort-based model, whereas a so-called micro-simulation model represents an individual 

based approach [40, 41].

Second, the prediction horizon plays a role in selecting the right structure of the model. If 

there is a short time horizon, a decision tree approach is useful whereas for a longer time 

horizon, a state-transition modelling is more appropriate, e.g. a Markov chain model or a 

micro-simulation model [28]. A decision tree approach is a simple model and is mainly 

used for acute conditions or diagnostic models where the probability of occurrence of an 

event is constant over time, and typically only a limited number of (subsequent or recursive) 

events are included. A state-transition model is a recursive model where outcome events 

can occur repeatedly and outcome probabilities can change over time, e.g. due to ageing 

or undergoing treatments or changing lifestyle. This type of model is more appropriate for 

chronic diseases, e.g. heart disease, cancer, and diabetes.

Third, the definition of the health states (i.e. outcome) plays a role. The defined health states 

in the decision analytic model need to correspond to the underlying disease process or 

to the health status, and need to reflect the clinical classification of the disease. Different 

health states are for example, the stages of cancer or different types of CVD events (stroke, 

heart failure).

For more details on decision model characteristics and guidance on selecting the most 

appropriate structure for the decision analytic model, we refer to the literature [27-30].
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Step 3: Compare different strategies

Assessing the impact of the use of the prediction model as compared to not using the model 

is in fact a comparison between an index and a control (care as usual) strategy [46]. Decision 

modelling approaches have the advantages that multiple strategies can be compared. One 

may compare different index strategies, i.e. using different treatment probability thresholds, 

or different potential treatment strategies that are administered at different probability 

thresholds [24, 47]. For example, different screening strategies due to using different risk 

thresholds or a combination of different thresholds for osteoporosis in postmenopausal 

women [48]. Furthermore, it is possible to determine the ‘optimal’ impact (e.g. minimize 

complications or maximize health outcomes) of a prediction model by gradually selecting 

more individuals for treatment (i.e. gradually lowering risk thresholds) [24].

decision analytic model. Evidence on these health effects can also be obtained 

from the literature or from individual patient data.

 ›   Costs

Costs of different treatments, of complications due to an intervention, and of tests 

or biomarkers that are incorporated as predictor in the prediction model are exam-

ples of monetary costs. Preferably, all parameters considering costs (if possible 

and available) are taken into account: the number of hospital admission days, 

subsequent (laboratory) tests, medication, visits to therapists, or rehabilitation. 

It is even possible to consider costs from outside the hospital, e.g. visits to an 

acupuncturist or ‘over-the-counter’ medication.

Evidence on costs can be obtained from financial hospital records or guidelines on 

costs, measured in RCTs via cost-diaries, or calculated from count data (electronic 

health records or medical consumption data) and unit prices.

c. Uncertainty of model parameter estimates

Since all above described parameter estimates are empirical research based, they inherently 

have imprecision. It is important to explore the robustness of the estimated impact of the 

use of a prediction model by addressing the uncertainty of the decision analytical model 

parameter estimates. Uncertainty analyses can be performed in a deterministic way (i.e. a 

deterministic sensitivity analysis (DSA)) where model parameters are varied manually to test 

the sensitivity of the model impact estimates to specific parameters or sets of parameters. 

Alternatively, a probabilistic sensitivity analysis (PSA) can be performed where parameters 

are sampled from pre-defined statistical distributions around these model parameters and 

varied simultaneously within a large number of simulations. The outcomes of a PSA are 

confidence intervals of the impact estimates or cost-effectiveness estimates [42], and can 

be used to perform a so-called value of information (VOI) analysis. A VOI analysis can be 

used to investigate the value of collecting additional data to reduce the uncertainty in impact 

outcomes and thereby potentially aid decision making regarding the implementation of the 

prediction model in practice [43-45].
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c. Uncertainty in model parameter estimates
Uncertainty analysis can be performed in a deterministic or a probabilistic way;

 › Deterministic sensitivity analyses, i.e. varying explicit model parameters manually 
(e.g. sensitivity of diagnostic test) lead to evaluation of different cases of the 
outcome estimates related to the value of the model parameter estimate.

 › Probabilistic sensitivity analyses, i.e. allowing variation in all model parameters 
(i.e. parameters with a statistical distribution), lead to confidence intervals of all 
outcome estimates (e.g. impact and cost-effectiveness).

[42]
[49]

[49, 50]

3. Compare strategies [24, 46, 47]

 › Compare use of the prediction model to care as usual
 › Compare different strategies, for example different starting moments for 

screening, different screening intervals, or different risk thresholds for treatment 
selection.

 › Potentially optimize risk thresholds to determine the optimal impact of a 
prediction model instead of the average impact.

Empirical Examples

Below we illustrate the possibilities and the interpretation of decision analytic approaches 

for estimating the impact of prediction models, using two empirical examples, one for a 

prognostic and one for a diagnostic model. The first example concerns the impact of using 

a risk prediction model for coronary heart disease (CHD). To determine the indication for pre-

ventive drug treatment in a healthy general population, information from carotid ultrasound 

is added to the conventionally used Framingham CHD risk prediction model (without this 

new test added) [39, 51]. The second example concerns the impact of a diagnostic strategy 

including D-dimer testing to rule out deep venous thrombosis (DVT) in patients suspected of 

this disorder, as compared to care as usual, i.e. all patients are referred for ultrasound [52-54].

Case study 1: Impact of a prognostic prediction model

The impact of an updated CHD risk prediction model (PM), incorporating conventional 

predictors plus results from ultrasound on the carotid intima-media thickness (CIMT-PM; 

index group), was estimated using a decision analytical technique, as compared with usual 

care in which the conventional Framingham CHD risk prediction model was used (FRS-PM; 

control group) [39]. In the usual care strategy, individuals were classified conform prevailing 

guidelines into very low (<5%), low (5-10%), intermediate (10-20%), and high (>20%) 10-year 

CHD risk according to FRS-PM. Individuals at intermediate and high risk were considered eli-

gible for preventive pharmacological treatment (e.g. lipid lowering or blood pressure lowering 

Table 1: Guidance on how to perform a model-based impact assessment of a prediction model

Step Description Sources

1. Development, validation and updating of the prediction model

a. The prediction model
 › Prediction model is developed and validated for, or otherwise tailored to targeted 

population.
 › Prediction model has a high predictive performance, i.e. good calibration and 

discrimination.

[4, 6, 7, 
33-35]

b. Uncertainty in predicted risk estimates
 › Defined distribution around model’s predicted risk based on individual patient 

data from the development and/or validation study, or individual patient data set 
is available.

2. Development of the decision analytic model [27]

a. Select an appropriate structure for the model
The structure depends on different consideration;

 › Representation of individuals;
Level of details required for the predictors of the prediction model indirectly 
influence choice of representation of patients; small low level of details (i.e. 
decision rule or homogeneous patient group) versus high (i.e. blood pressure or a 
heterogeneous patient group) results in cohort versus individual based decision 
analytic model.

 › Time horizon of the modelled outcomes;
Diagnostic models often have a short time horizon whereas prognostic models 
have a long horizon; this may impact the choice for a decision tree approach 
versus a state-transition approach (i.e. Markov chain model)

 › Definition of the health states
The defined states need to correspond to the underlying disease process, health 
status, or a combination of both, e.g. the detected stages of cancer.

[27, 28]

b. Collect values for model parameter estimates
Obtain necessary evidence from literature. The following estimates need to be considered:

I. Probability estimates
 › Transition probabilities

Probability to transit between health states, e.g. to transit from ‘healthy’ state to 
‘outcome’ state.

 › Health state probabilities
Probabilities within a health state, e.g. to experience treatment effects, adherence 
to treatment, or adverse side-effects of the treatment.

II. Impact estimates health state
 › Health effects

Change in quality of life due to the disease, adverse side-effects or health effects 
of the treatment.

 › Costs
All possible and available cost estimates need to be incorporated e.g. cost of a 
new predictor in the prediction model, cost concerning treatment, or costs due to 
adverse side-effects of the treatment.
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The fraction of treated men in both scenarios was similar whereas the fraction of treated 

women was slightly higher in the CIMT-PM scenario compared to the FRS-PH scenario. One 

in two men and one in eleven women had an intermediate or high risk, and were reclassified 

by the new index strategy. Reclassification of these individuals with CIMT-PM would result 

in a different preventive treatment decisions in 15.8% of these men, and in 16.0% of these 

women.

Using a 10 year time horizon, health outcomes in terms of QALYs were similar when using 

FRS-PM or CIMT-PM, whereas CIMT-PM resulted in +0.02 QALYs on average in men, and 

+0.05 QALYs on average in women, when a 30 year time horizon was used. Using CIMT-PM 

resulted in additional costs of $100 for men, and cost saving of $200–300 for women, 

compared to using only FRS-PM. The strategy using CIMT-PM had a 25% probability of being 

cost-effective within 10 years for men, and 87% probability for women. For a time horizon 

of 30 years, the probabilities increased to 93% and 98% for men and women respectively.

The authors concluded that applying CIMT measurements resulted in a small health benefit 

for men and women Further analysis with more optimistic (e.g. relative risk of 0.55) or 

pessimistic (e.g. relative risk of 0.80) estimates of the effectiveness of the pharmacological 

treatments, indicated that these effectiveness estimates had only very limited influence on 

results and did not alter the conclusions.

Interpretation:

This model-based study showed that measurements of CIMT to stratify patients at potential 

high risk for cardiovascular disease is promising in terms of health benefits but it takes time 

for the health benefits to outweigh the costs of CIMT measurements. Therefore, imple-

menting CIMT measurements in combination with a prediction model in clinical practice 

is not favourable currently. Nevertheless, when the costs of a single CIMT measurement 

would decrease, or the treatment effectiveness would increase, a strategy with CIMT mea-

surements to select patients for preventive CVD treatment may become very promising. 

Investigating the influence of a more opportunistic or conservative effect of treatment within 

a RCT would have taken many years, since CVD events occur over a long-time period.

drugs) to reduce CHD risk. Individuals in the very low and low risk group did not receive 

any treatment. In the index group, it was considered that the individuals with an estimated 

intermediate and high risk (according to FRS-PM) were further reclassified according to 

their estimated 10-year CHD probabilities after using the CIMT-PM.

Evidence on the incidence and CHD event occurrences in each of the four risk categories, 

and the reclassification table of CIMT-PM and FRS-PM, was then used as input for the 

observed health outcomes in each strategy, and included in a so-called Markov model (See 

appendix A).

In the used Markov model, the following different outcomes (health states) were defined: 

Healthy, First Myocardial Infarction (MI), Second MI, Ischemic Stroke, Hemorrhagic Stroke, 

Gastrointestinal Bleeding, and Death. Accordingly, both the intended and unintended effects 

(i.e. bleedings) of the interventions were addressed, as well as the consequences of a CHD.

Costs due to treatment and occurrence of all potential events were included as well as the 

cost of a single CIMT-measurement. Additionally, non-adherence to medication was taken 

into account by shrinking the actual treatment effect with 50%. A probabilistic sensitivity 

analysis was applied to investigate the uncertainty in model outcomes.

A hypothetical cohort of 100,000 individuals (age 50 – 59 years), i.e. men or women, was 

then simulated, where individuals had their risk estimated according to FRS-PM, or FRS-PM 

followed by CIMT-PM, and were then treated if their final 10-year CHD risk estimated 

exceeded 10%. Individuals entered the model (in the Healthy state) and every year after 

start of the simulation could move to other health states.

The impact of adding the CIMT-PH prediction model to the FRS-PM prediction model, along 

with the consequences of changes in the prescription of pharmacological treatment for 

reducing CHD risk was evaluated, over a 10, 20, and 30 year time horizon.

Ultimately, the two prediction models were compared on their: 1. fractions of treated indi-

viduals; 2. Frequency of CHD events; 3. Frequency of adverse events from treatment; 4. 

Average costs; 5. Average health outcomes expressed in quality-adjusted-life-years (QALYs). 

All estimates were derived separately for men and women.
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A hypothetical cohort of 1,002 patients, i.e. the number of patients from a previous empirical 

longitudinal diagnostic study in the same field, in which the safety and efficiency of the 

AMUSE strategy in primary care was evaluated, was simulated in which individuals could 

move between the health states every 6 months. The impact of these three different strategies 

on health effects, costs, and cost-effectiveness was assessed over a 5-year time horizon.

The AMUSE strategy in primary care had both slightly lower health effects and costs compared 

to the other strategies, i.e. 3.853 QALYs and €3,589. The hospital AMUSE strategy has similar 

health effects, i.e. 3.586 QALYs, and lower costs, i.e. €3,727 versus €3,768, compared with the 

hospital strategy. The AMUSE strategy compared with the hospital AMUSE strategy results in 

an average health loss of -0.003 QALY and cost saving of € 138, and an estimated ICER of 

55,753 €/QALY.

The incremental difference in health benefits and costs of the hospital AMUSE strategy 

compared with the hospital strategy is a health benefit of 0.0005 QALYs and cost saving 

of €41, i.e. ICER of 89, 956 €/QALY. Assuming a willingness-to-pay threshold of 80,000 €/

QALY, the AMUSE strategy is preferred above the other strategies. In other words, referral to 

ultrasound for patients, suspected of DVT, with a AMUSE score ≥ 4 is preferred above referral 

of all patients to ultrasound (hospital strategy) or referral of patients with an AMUSE score ≥ 

2 and an elevated D-timer test.

Authors concluded that a diagnostic management based on the clinical decision rule and 

D-dimer test is likely to be cost-effective compared with the other strategies [53]. Further anal-

ysis with lower and higher costs for the incorporated health states did not have an influence 

on the results. However, analyses with a more conservative sensitivity of the D-dimer test (i.e. 

0.9032 versus 0.9265) showed a slightly decrease in health effects and costs.

Interpretation:

This model-based study showed a comparison of three strategies to diagnose DVT in clinical 

practice and the influence of different parameters on the results within just one investigation. 

Comparing these three strategies in terms of (cost-)effectiveness and investigating the 

influence of uncertain parameters on (cost-)effectiveness in a RCT would have required 

substantial time, funds, and inclusion of many patients.

Case study 2: Impact of a diagnostic prediction model

Recently, rapid point-of-care D-dimer assays were introduced which, in combination with a 

diagnostic prediction model, made it possible to realize an efficient diagnostic work-up for 

patients suspected of having deep venous thrombosis (DVT) in primary care. The impact of a 

diagnostic prediction model (AMUSE model) combined with a point-of-care D-dimer test, was 

assessed compared to care as usual (UC) to stratify patient suspected of DVT [53].

Usual care was defined as referral to the hospital, i.e. including an ultrasound, for all primary 

care patients suspected of DVT (hospital strategy). Two different diagnostic strategies were 

compared with this hospital strategy. The first strategy was applying the AMUSE model in 

primary care, which was defined as stratifying primary care patients suspected of DVT with an 

absolute threshold of 4, i.e. patients were classified as high risk when their AMUSE score was ≥ 

4 (AMUSE strategy). These high risk individuals were referred to the hospital for ultrasound and 

received anticoagulant treatment. The second diagnostic strategy was referral to the hospital 

for all primary care patients suspected of DVT with application of the AMUSE model at the 

emergency department (instead of the primary care practice). Subsequently, D-dimer test was 

performed in patients with an AMUSE score of 2 or higher and an additional ultrasound was 

evaluated if the D-dimer test was elevated (hospital AMUSE strategy).

A Markov model was developed to simulate the course of events of patients suspected of DVT 

(see appendix B). The model included different health states; no previous DVT, post venous 

thrombosis (post VTE), post thrombotic syndrome (PTS), central nervous system bleeding 

(CNS), and death.

The events that could occur were; DVT, pulmonary embolism (PE), major (gastrointestinal) 

bleeding and CNS bleed (see also appendix B). Evidence on the probabilities of the transition 

between health states and on the consequences of the treatment, was based on the literature 

[54].

The costs of the three strategies included costs of medical care (i.e. events, potential ER visit 

and/or ultrasound), travel costs to the GP and/or hospital, and costs to perform a D-dimer 

test (i.e. cost of the test, GP time. Adherence to medication was not taken into account in the 

analyses. Uncertainty of the parameters was assessed with probabilistic sensitivity analyses.
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We conclude therefore that when the aim is to assess the impact or effectiveness of the use 

of a validated and promising prediction model to guide clinical decision making it is better 

to model first and to trial later.

Box 1: Advantages and disadvantages of decision analytical modelling techniques to quantify the impact and cost-
effectiveness of the use of prediction models to guide clinical management.

Advantages
1.  Impact assessment of the prediction model can be performed quickly and at low cost.

 › For example, when the number of (low risk) individuals that needs to be included to observe 
actual events in that subgroup is high, an empirical study would be very large and thus expensive.

2. Decision modelling techniques can provide estimates of long term effects of the use of the model on 
individual health outcomes and costs-effectiveness of care that would not be observable in empirical 
studies.
 › For example, for prognostic models predicting 10 year or even life time outcome risks, any 

empirical study on the effectiveness of the use of such model on the occurrence of these 
outcomes, would be very cumbersome, expensive and indeed perhaps unfeasible.

3.  Updating a model-based impact assessment is straightforward and requires relatively little time.
 › For example, when a prediction model is updated with a new predictor, or a new prediction model 

is developed and validated, an empirical study would be expensive whereas a decision analytic 
model can be re-used and updated.

4.  Different strategies can be compared (incrementally) regarding the actual use of a prediction model.
 › For example, one can compare the impact of the use of different risk thresholds for treatment 

administration or abstention; one can explore the impact of many different treatments, at many 
different treatment adherence rates and in many different patient subgroups.

5.  Different strategies can be compared (incrementally) regarding one patient group.
 › For example, one can compare the impact of the use of different prediction models in one patient 

group; one can explore the use of different prediction models in different patient subgroups.

Disadvantages
1. Evidence is required on which predicted risks actually should be used to guide treatment 
management decisions in practice.

 › For example, there are 350 prediction models for CVD in primary care, each with different 
predictors in the risk equation and different CVD event types in the (composite) endpoints, 
resulting in a wide variation of predicted risks.

2. Uncertainty in model parameters is often unknown, hence assumptions need to be made, which may 
lead to incorrect impact outcome estimates.

 › For example, uncertainty in the risk estimates, i.e. output of the prediction model, may lead to 
incorrect risk classification, treatment decisions and therefore health loss or extra costs.

3. Estimating health outcomes requires evidence on the effects of the possible treatments, preferably as 
function of the baseline risk of individuals.

 › For example, overall estimates of the effects of a treatment in an entire patient population, may 
not apply to individuals in every risk category.

4. Decision analytic modelling requires assumptions on behavioural changes that individuals would 
make following application of a prediction model.

 › For example, effect of treatment is influenced by the adherence to the treatment. However, (long-
term) evidence on adherence to medication or lifestyle changes is lacking.

5. When the targeted outcome is a composite outcome, this composite outcome needs to be unravelled 
into all its separate components as each event typically has a different impact on health outcomes 
and costs.
 › For example, a CVD event comprising stroke, myocardial infarction, and heart failure may require 

different treatments, with different effects, and each event may have different consequences in 
terms of quality of life and health care costs.

Concluding remarks

Assessments of the impact or effectiveness of the use of risk guided management using 

prediction models are scarce. This is simply due to the fact that the typical required com-

parative longitudinal, randomised study design is often considered too time consuming, too 

cumbersome, and also limited in the number of strategies that can be compared. Moreover, 

there are simply too many prediction models to assess their impact with a randomised study.

This paper aims to increase the awareness that a decision analytic approach can be a 

valid and useful alternative to performing randomized trials for the assessment of the 

effectiveness and value of prediction models to guide clinical decision making [19, 24]. 

Decision analytic approaches are relatively limited in costs and time, although it does require 

a multidisciplinary team with clinical, epidemiological and mathematical expertise [55]. 

Impact assessment of prediction models by decision analytic models will become even 

more relevant with the advancement of artificial intelligence techniques that are increasingly 

used for the development of prediction models.

Still, challenges do remain when decision analytic approaches are applied to assess the 

impact of prediction models, as summarised in Box 1 [26]. Furthermore, comprehensive 

validation of decision analytic model is recommended to ensure the validity of the model 

itself and the model outcomes [56, 57]. Nevertheless, we believe that before jumping into the 

design and conduct of an empirical long term, large scale randomised comparative study in 

order to quantify the impact of the use of prediction models on actual health outcomes and 

cost-effectiveness of care, a linked evidence approach using some type of decision analytical 

model is useful. Such an approach can indicate which models should never be empirically 

studied on their impact or cost-effectiveness, despite good performance in several validation 

studies. For example, because care-as-usual is already very effective, the long term effects 

of subsequent treatment are too low or because costs and adverse effects of the use of the 

prediction model outweighs its benefits. Furthermore, when an empirical study is planned 

based on the results of a preceding modelling approach, the design and analysis of such 

an empirical study can be fed by the results of the model study. For example, the modelling 

study may indicate which subgroups benefit more from a risk based management approach 

or what the minimal adherence to the predicted risks and subsequent treatments should be.
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A. EMPIRICAL CASE STUDY 1

Appendix A - Figure 1: Flowchart of the analytic procedure [39].

FRS = Framingham Risk SCORE; CIMT = carotid intima-media thickness; CHD = coronary heart disease; QALY = 

Quality-Adjusted-Life-Year
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B. EMPIRICAL CASE STUDY 2

Appendix B - Figure 1: Flowchart of the process of referral in the different strategies.Appendix A - Figure 2: Representation of the Markov model [39].

FRS = Framingham Risk SCORE; MI; myocardial infarction.

Health states are presented by the rectangular boxes and event by the ellipses. High-risk individuals (i.e. risk 

estimate>20%) received statin treatment and could experience side-effects, i.e. mild or severe complications 

including death.
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Appendix B - Figure 2: Structure of the Markov model [53].

DVT = deep venous thrombosis; post VTE = post venous thrombosis; PTS = post thrombotic syndrome; CNS; central 

nervous system bleeding.

The events that could occur were; DVT, pulmonary embolism (PE), major (gastrointestinal) bleeding and CNS bleed. 

Evidence on the probabilities of the transition between health states and on the consequences of the treatment, 

was based on the literature [54].
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Prediction models are often used to recommend treatment for individuals with a risk 

estimate above a certain risk threshold, and no treatment otherwise. However, when there 

are competing prediction models for the same targeted population, the same individuals 

can be classified differently according to their predicted risk by different models. In order 

to investigate if the use of different prediction models may actually lead to variation of 

selection of high risk individuals, four CVD prediction models and a Dutch cohort (similar as 

in Chapter 2) are used to investigate this hypothesis in Chapter 4. Besides the variation of 

the predicted risks according to the four models, the recommended treatment thresholds are 

also different. Given the variation in predicted risks and treatment thresholds, the percentage 

of selected individuals for preventive treatment varies between 0.2% and 14.9%. Widely used 

CVD prediction models vary substantially regarding their outcomes and associated absolute 

risk estimates. Consequently, absolute predicted 10-year risks from different prediction 

models cannot be compared directly. In addition, treatment decisions often depend on which 

prediction model is applied and its recommended risk threshold, introducing unwanted 

practice variation into risk-based preventive strategies for CVD. 

To assess the impact of prediction models, using a long-term randomized study may not 

always be feasible. For example, manifestation of CVD at old(er) age can sometimes be 

traced back to non-traditional risk factor levels at young(er) age. To reduce the burden of CVD, 

it may be beneficial to intervene at young(er) age. However long-term impact assessment of 

an early preventive intervention is almost infeasible in a randomized trial due to the long-term 

period. Conversely a modelling approach may be more feasible. As evidence on the impact 

of prevention at young age is very limited, in Chapter 5, we studied which parameters and 

assumptions influence the expected long-term benefits of preventive strategies at young 

age most. A micro-simulation model with a lifetime horizon is developed to explore the 

influence of parameters on the long-term impact assessment of preventive strategies for 

CVD. Women with hypertensive pregnancy disorder (HPD) are used as a case study and 

screening at 30, 40 or 50 years is investigated as preventive strategy. Additionally, a Value 

of Information analysis and net benefit regression are performed to identify parameters 

that warrant future further research and that have a large influence on the health benefits. 

Results show that in the case of prevention of CVD in women with HPD, it would be crucial 

to further study risk reduction of preventive treatment and the long-term adherence rate of 

medication in women. 

SUMMARY 

Impact assessment of prediction models is complex and rarely performed. The included 

content in this thesis aims to explore the challenges and solutions for the impact assess-

ment of prediction models. This thesis is separated in two parts; the challenges of different 

used endpoints in competing prediction models and the challenges in the design of impact 

assessment of prediction models. 

Different prediction models may predict multiple endpoints, using a so-called composite end-

point. The predicted risks are thus related to the combination of endpoints, which each in turn 

have different associated impact, i.e. health outcomes and costs, and may require different 

decision making and management. In Chapter 2, we explored the extent of the differences in 

definitions of composite endpoints and assessed how these differences influence estimates 

of cardiovascular disease (CVD) risk and burden. Data from a Dutch cohort study was used 

to calculate 10-year risks and health burden according to four CVD prediction models; ATP-III, 

Framingham (FRS), Pooled Cohort Equations (PCE) and SCORE. The investigated CVD risk 

prediction models showed huge variation in definition of composite endpoints, 10-year CVD 

risks and associated health burden. Therefore, health consequences related to predicted 

risks cannot be readily compared across prediction models, and estimates of burden of 

disease depend crucially on the prediction model used. 

CVD prevention is commonly focused on providing individuals at high predicted CVD risk, i.e. 

often elderly individuals, with preventive medication. However, the lifelong (preventable) con-

sequences of CVD events may be larger in younger individuals. In Chapter 3, we investigated 

if the health benefits from preventive treatment for CVD might increase when the selection 

strategy was burden rather than risk based. Data from three Dutch cohorts was combined 

and used to calculate 10-year CVD risk and burden estimates according to the Framingham 

Global Risk Score (FRS). When individuals were selected based on their expected CVD 

burden, rather than their expected CVD risk, the additional health benefits estimates from 

preventive treatment were larger. Selecting individuals for preventive treatment based 

on their expected CVD burden will provide more younger and less older individuals with 

treatment, and will reduce the overall CVD burden. Improvement of the selection approach 

of individuals can help to further reduce the CVD burden. 
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Assessing the impact of prediction models in a randomised comparative design are often 

time consuming, costly and sometimes infeasible if the predicted outcome occurs over a 

long time period (e.g. 30 years). An alternative is a decision analytic modelling approach, 

where evidence of the predictive accuracy of the model and effects of and adherence to 

subsequent treatments is linked. There are many advantages of using a decision analytic 

model for the impact assessment of prediction models, there are also disadvantages of 

using a decision analytic model. An overview of the advantages and disadvantages of a 

model-based approach to assess the impact of prediction models, without performing a 

prospective comparative study first, is presented in Chapter 8. Two examples of impact 

studies of a prediction model with a model-based approach are described in detail, and 

guidance on how to perform a model-based impact assessment is discussed. 

In Chapter 6, we investigated whether early preventive CVD risk screening combined with 

risk-based lifestyle intervention in women with previous preeclampsia are beneficial and 

cost-effective. A micro-simulation model (similar as in Chapter 5), was applied to two Dutch 

datasets measuring CVD risk parameters in women at different time intervals after pre-

eclampsia. Screening was started at the age of 30 or 40 and repeated every 5 years. 10-year 

CVD risk estimates were calculated according to FRS and two absolute risk thresholds (2% 

and 5%) were evaluated for treatment selection, i.e. lifestyle interventions (including smoking 

cessation, weight reduction and increasing physical activity). Results show that early CVD 

risk screening followed by risk-based lifestyle interventions can improve long-term health 

outcomes in women with a history of preeclampsia. However, the cost-effectiveness of 

establishing a lifelong cardiovascular prevention program for women starting early after 

experiencing preeclampsia by risk-based lifestyle advice alone is relatively unfavourable. 

A combination of risk-based lifestyle advice plus medical therapy may be more beneficial. 

The impact of a prediction model on health outcomes of patients is not only determined by 

the performance of the model, but also by care providers’ compliance with management 

recommendations based on the predictions. In Chapter 7, we assessed the impact of 

compliance with management recommendations from a prediction model, on the number 

of missed major adverse cardiac (MACE) events in an emergency setting. A decision tree 

model was developed to compare the application of the prediction model (i.e. HEART 

score) to usual care. Impact on patient outcomes (missed MACE events) and costs was 

assessed for scenarios in which the degree of compliance with HEART score management 

recommendations, and informed deviation (ID) from these recommendations, were varied. 

Results show that the impact of using the HEART score in a clinical setting is influenced by 

the interplay of compliance and informed deviation. Scenario analysis showed that 100% 

compliance (and 0% ID) reduces the number of missed MACE events compared to usual 

care. When ID gets influence, to at least 25% (with any compliance above 50%), missed 

events are reduced. 

Decision analytic modelling is a useful approach to assess the potential influence of certain 

factors on the impact of risk prediction model, in case there is limited data available on key 

factors such as compliance. This approach could provide evidence for deciding whether 

or not to conduct a subsequent clinical impact study, or to inform the design and conduct 

of such studies. 
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werden op ziektelast in plaats van op risico. Het selecteren op basis van ziektelast leidde 

ertoe dat er meer jonge mensen en minder oudere mensen behandeld werden en dat de 

totale ziektelast daalde. Het verbeteren van de selectiestrategie kan een hulpmiddel zijn 

in het verminderen van de HVZ ziektelast . 

Voor het schatten van een risico worden vaak predictiemodellen gebruikt, waarbij het risico 

vervolgens wordt gebruikt voor het voorschrijven van een preventieve behandeling voor 

mensen van wie het risico boven een bepaalde drempelwaarde ligt. Echter, er zijn verschil-

lende (concurrerende) predictiemodellen voor dezelfde populatie. Dit kan ertoe leiden dat 

dezelfde mensen anders gegroepeerd worden op basis van hun geschatte risico, wanneer 

verschillende predictiemodellen gebruikt worden. Vier predictiemodellen (dezelfde als in 

Hoofdstuk 2) en een Nederlandse dataset (dezelfde als in Hoofdstuk 2) zijn gebruikt om 

in Hoofdstuk 4 te onderzoeken of het gebruik van verschillende predictiemodellen leidt 

tot variatie in de groep mensen met een hoog risico op HVZ. Naast een grote spreiding in 

geschatte risico’s zijn de aanbevolen drempelwaardes voor behandeling volgens de vier 

modellen ook verschillend. Vanwege de verschillen in zowel risico’s als drempelwaardes 

varieert het percentage mensen met een hoog risico op HVZ tussen de 0.2% en 14.9% 

voor de vier gebruikte predictiemodellen. Predictiemodellen voor HVZ worden gebruikt 

over de hele wereld maar verschillen onderling aanzienlijk met betrekking tot de samenge-

stelde eindpunten en de daaraan gerelateerde risico’s. Dit heeft tot gevolg dat de 10-jaar 

risico’s van verschillende predictiemodellen niet onderling vergeleken kunnen worden. 

Hierdoor is de beslissing om een individu wel/niet te behandelen sterk afhankelijk van het 

gebruikte predictiemodel en de bijbehorende drempelwaarde. Oftewel, de groep mensen 

met een hoog risico op HVZ dat preventieve behandeling krijgt, kan mogelijk variëren per 

zorginstelling. 

Voor het bepalen van de klinische impact van predictiemodellen is het niet altijd mogelijk 

om een gerandomiseerde studie uit te voeren. Het krijgen van HVZ bij oude(re) mensen 

bijvoorbeeld, kan soms herleid worden tot bepaalde eigenschappen die sinds jonge 

leeftijd aanwezig zijn. Ingrijpen en mogelijk aanpassen van deze eigenschappen op jonge 

leeftijd kan de ziektelast van HVZ op oudere leeftijd verlagen. Echter, het bepalen van de 

klinische impact van deze vroegtijdige preventieve interventie is vervolgens een lastige 

opgave en bijna onmogelijk in een gerandomiseerde studie vanwege de lange doorlooptijd. 

Een aanpak op basis van (wiskundige) modellering is daarentegen een goed alternatief. 

SAMENVATTING  

Het bepalen van de impact van predictiemodellen is complex en wordt helaas nog weinig 

gedaan. De inhoud van dit proefschrift beschrijft de uitdagingen en mogelijke oplossingen 

bij het bepalen van de impact van predictiemodellen. Het proefschrift is opgesplitst in 

twee delen; de uitdagingen voortkomend uit het gebruik van verschillende eindpunten in 

concurrerende predictiemodellen en de uitdagingen voortkomend uit de verschillende 

manieren voor het bepalen van de impact van predictiemodellen.

Verschillende predictiemodellen kunnen verschillende en meerdere eindpunten voorspellen, 

zogenaamde ‘samengestelde eindpunten’. De voorspelde risico’s van een predictiemodel 

zijn dus gerelateerd aan de samenstelling van de gebruikte eindpunten, ieder met mogelijk 

verschillende consequenties, zowel in termen van gezondheidsuitkomsten als kosten, en 

mogelijk verschillende besluitvorming. In Hoofdstuk 2 is onderzocht hoe het verschil in de 

definities van samengestelde eindpunten en hoe deze verschillen de risicoschatting voor, 

en de ziektelast van hart- en vaatziekten (HVZ) beïnvloeden. Data van een Nederlands 

cohort is gebruikt om 10-jaar risico’s en bijbehorende ziektelast van HVZ te schatten op 

basis van vier verschillende predictiemodellen; ATP-III, Framhingham (FRS), Pooled Cohort 

Equations (PCE) en SCORE. De definities van de (samengestelde) eindpunten van deze 

vier predictiemodellen verschilden flink wat leidde tot zeer uiteenlopende 10-jaar risico’s 

op, en levenslange ziektelasten van HVZ. Hieruit valt te concluderen dat het vergelijken 

van voorspelde risico’s en hun gerelateerde gezondheidseffecten over verschillende 

predictiemodellen niet evident is. Daarnaast is het schatten van ziektelast op basis van 

risico’s bijna volledig afhankelijk van het gebruikte predictiemodel. 

Preventie van HVZ focust meestal op het selecteren en preventief behandelen van 

mensen met een hoog risico op HVZ. In bijna alle gevallen zijn mensen met een hoog 

risico mensen met een hoge leeftijd. Echter, de levenslange (en mogelijk te voorkomen) 

consequenties van HVZ zijn hoger bij jonge mensen. In Hoofdstuk 3 is onderzocht of de 

gezondheidswinst van een preventieve behandeling voor HVZ mogelijk hoger zou zijn 

als de selectie van mensen gebaseerd was op ziektelast in plaats van op risico. Data van 

drie verschillende Nederlandse cohorten zijn gebruikt om met het FRS predictiemodel de 

10-jaar risico’s op en levenslange ziektelast van HVZ te schatten,. De gezondheidswinst 

van een preventieve behandeling was (inderdaad) hoger wanneer mensen geselecteerd 
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De impact van een predictiemodel op klinische uitkomsten van patiënten wordt bepaald 

door de statistische prestatie van het model, maar ook door de meegaandheid van zorg-

verleners op de voorgeschreven aanbevelingen met betrekking tot de geschatte risico’s. In 

Hoofdstuk 7 is onderzocht wat de invloed is van de meegaandheid van zorgverleners op 

de voorgeschreven aanbevelingen met betrekking tot een predictiemodel (HEART-score 

model). Dit predictiemodel voorspelt de kans op een grote cardiale voorval (MACE-event) 

op de spoedeisende hulp. Met behulp van een zelf ontwikkeld beslismodel is het gebruik 

van de HEART-score model een vergeleken met de gebruikelijke zorg. Voor verschillende 

scenario’s waarin de meegaandheid van zorgverleners en hun geïnformeerde afwijking op 

de meegaandheid zijn gevarieerd, is de invloed op het aantal gemiste MACE voorvallen en 

de bijbehorende kosten berekend. De resultaten lieten zien dat de consequenties van het 

gebruik van het predictiemodel beïnvloed worden door een samenspel van meegaandheid 

en de afwijking op de meegaandheid van zorgverleners. De analyses van de verschillende 

scenario’s lieten zien dat als de meegaandheid 100% (met 0% afwijking) was, dat het aantal 

gemiste MACE voorvallen daalde vergeleken met de gebruikelijke zorg. Op het moment 

dat de afwijking (> 25%) een rol ging spelen (met meegaandheid > 50%), daalde ook het 

aantal gemiste MACE voorvallen. Het modelleren van besluitvorming is een zeer waardevolle 

methodiek om de potentiële invloed van bepaalde factoren op de klinische impact van een 

predictiemodel te bepalen. Deze methodiek biedt ook mogelijkheden als er maar weinig 

data beschikbaar is van belangrijke parameters, zoals de meegaandheid van zorgverleners. 

Daarbij kan deze methodiek handvatten bieden bij het besluit om wel/niet een opeenvolgend 

klinisch onderzoek te gaan uitvoeren, of bij het ontwerp van zo’n klinisch onderzoek. 

Het bepalen van de klinische impact van een predictiemodel in een gerandomiseerd ontwerp 

kost vaak veel tijd en geld en is soms onmogelijk als de voorspelde uitkomst pas over vele 

jaren plaatsvindt. Een goed alternatief is het uitvoeren van een analytisch beslismodel. In 

zo’n model worden bewijsstukken uit verschillende gebieden met elkaar gecombineerd, 

zoals de statistische prestatie van het predictiemodel met de effecten van en trouwheid 

van patiënten aan een bepaalde behandeling. Naast de vele voordelen van het gebruik van 

zulke analytisch beslismodellen zijn er zeker ook nadelen. Een overzicht van de belangrijkste 

voor- en nadelen voor het bepalen van de klinische impact van een predictiemodel met een 

analytisch beslismodel (zonder het uitvoeren van een klinische studie) zijn weergegeven in 

Hoofdstuk 8. Twee voorbeelden van studies naar de klinische impact van een predictiemodel 

met behulp van een analytisch beslismodel zijn beschreven in detail. Daarnaast wordt er in 

een begeleidende tabel weergegeven hoe je een modelmatige impact studie kunt uitvoeren. 

Bewijsstukken omtrent de klinische impact van preventieve interventies op jonge leeftijd 

zijn vaak beperkt. In Hoofstuk 5 is onderzocht welke parameters en variabelen de ver-

wachte (lange-termijn) effecten van een preventieve behandeling het meest beïnvloeden. 

Hiervoor is een model ontwikkeld om de (levenslange) effecten van een preventieve behan-

deling voor HVZ te simuleren. Vrouwen, die tijdens een zwangerschap een hoge bloeddruk 

hadden, zijn gebruikt als voorbeeld en zij werden gescreend (en behandeld) op 30-, 40-, en 

50-jarige leeftijd. Er is een tweetal analyses uitgevoerd om de parameters met de grootste 

invloed op de gezondheidsuitkomsten te identificeren. In het geval van vrouwen. Die een 

hoge bloeddruk tijdens de zwangerschap doormaakten, lieten de analyses zien dat twee 

parameters belangrijk zijn om verder te onderzoeken: a) het verlagen van het risico op 

HVZ door behandeling, oftewel de effectiviteit van de behandeling, en b) het percentage 

vrouwen dat op lange termijn nog steeds trouw is aan de behandeling. 

Het ondervinden van zwangerschapsvergiftiging is een niet-traditionele risico eigenschap 

die op latere leeftijd kan bijdragen tot het krijgen van HVZ. In Hoofdstuk 6 is onderzocht of 

vroege preventieve screening op een hoog risico op HVZ gecombineerd met een bijbeho-

rende levensstijl aanpassing gunstig en kosteneffectief is voor vrouwen met een geschie-

denis van zwangerschapsvergiftiging. Hiervoor is een simulatiemodel gebruikt (dezelfde 

als in Hoofdstuk 5) in combinatie met twee Nederlandse datasets. Deze datasets bevatten 

de metingen van risico eigenschappen voor HVZ (gedaan op meerdere tijdsmomenten) 

van vrouwen met een geschiedenis van zwangerschapsvergiftiging. Het screenen van deze 

vrouwen startte op de leeftijd van 30 of 40 jaar, en werd iedere 5 jaar herhaald. De bijbeho-

rende risico’s van deze vrouwen was berekend met het FRS-predictiemodel gecombineerd 

met twee absolute drempelwaardes (i.e. 2% en 5%) voor het selecteren van “hoog risico” 

vrouwen. De preventieve behandeling was een levensstijl aanpassing met verschillende 

facetten, zoals stoppen met roken, afvallen en meer lichamelijke beweging stimuleren. 

Resultaten van de studie lieten zien dat het vroeg screenen op risico gevolgd door (op risico 

gebaseerde) levensstijl aanpassingen op de lange termijn gezondheidsuitkomsten kan 

verbeteren voor vrouwen met een geschiedenis van zwangerschapsvergiftiging. Echter, 

de kosteneffectiviteit van het levenslang screenen van vrouwen, direct startend na een 

zwangerschap met zwangerschapsvergiftiging, gevolgd door een levensstijl aanpassing 

is ongunstig. Een combinatie van levensstijl aanpassing en medicatie zou een beter 

alternatief zijn, vanuit een kosteneffectiviteitsoogpunt. 
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