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Abstract

With the advent of high-throughput proteomics, the type and amount of data pose a significant challenge to statistical
approaches used to validate current quantitative analysis. Whereas many studies focus on the analysis at the protein level,
the analysis of peptide-level data provides insight into changes at the sub-protein level, including splice variants, isoforms
and a range of post-translational modifications. Statistical evaluation of liquid chromatography–mass spectrometry/mass
spectrometry peptide-based label-free differential data is most commonly performed using a t-test or analysis of variance,
often after the application of data imputation to reduce the number of missing values. In high-throughput proteomics, stat-
istical analysis methods and imputation techniques are difficult to evaluate, given the lack of gold standard data sets. Here,
we use experimental and resampled data to evaluate the performance of four statistical analysis methods and the added
value of imputation, for different numbers of biological replicates. We find that three or four replicates are the minimum re-
quirement for high-throughput data analysis and confident assignment of significant changes. Data imputation does in-
crease sensitivity in some cases, but leads to a much higher actual false discovery rate. Additionally, we find that empirical
Bayes method (limma) achieves the highest sensitivity, and we thus recommend its use for performing differential expres-
sion analysis at the peptide level.
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Introduction

Proteomics is the large-scale investigation of proteins that is in-
creasingly being used to investigate a range of biological sys-
tems at the protein level [1–9]. Major technological advances in
the field of mass spectrometry (MS) have been realized over the

past few years, including high-throughput proteomics that is
used to obtain a comprehensive view of quantitative protein
changes in response to disease and treatment [10, 11].
Proteomics can be used to investigate a range of protein-based
changes, including identification and characterization of
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specific isoforms of a protein, detecting changes in whole pro-
tein expression induced by a specific treatment, or the phos-
phorylation status of specific position within a protein
(phosphoproteomics), or other post-translational modifications
[12–15].

Application and integration of proteomics data

Whereas proteomics has until now been a separate discipline, it
is now increasingly being combined with other -omics technolo-
gies. Previously, we have seen that proteome and messenger
RNA profiling provides valuable but distinct information on dis-
ease induced by a vaccination-challenge experiment on respira-
tory syncytial virus [16] (our unpublished observations). By
investigating samples with multiple technologies, more accur-
ate predictions on protein isoforms and location can be made,
which greatly enhances the understanding of a biological sys-
tem more than any single technology could. Database depos-
ition of published proteomics and other -omics data sets allows
for maximal dissemination and reutilization of raw data, and
facilitates integration of proteomics with other -omics data
sets. The optimal storage and dissemination of proteomics data
are handled by databases including ProteomeScout [17], PRIDE
[18], MassIVE (massive.ucsd.edu), jPOST [19] and PASSEL [20];
many of these databases participate in the ProteomeXchange
project [21] (for a review, see [22]).

Until now, proteomics analyses have focused mostly on
protein-level data. However, peptide-level analysis is increas-
ingly being applied to study a number of sub-protein problems,
including gene isoforms, detecting novel somatic mutations
and splice variants in the cancer field and post-translational
modifications [23] (Figure 1). Recent developments include the
integration of genomics and proteomics data generated from a
single sample (‘proteogenomics’), which is particularly powerful
for the identification of specific disease-related gene isoforms
and refining gene models in different circumstances [24–28].
Owing to the increasing sensitivity and accuracy of the instru-
mentation, personalized proteomes have now become possible,
which holds great promise for personalized medicine [29–32].

Proteomics data processing

High-throughput or shotgun profiling of a protein sample in-
volves a number of steps, including digestion, fractionation, MS
measurement, followed by processing steps to obtain the final
protein measurement. Proteins in the samples are denatured
and digested into peptides. This large pool of peptides is typic-
ally separated into several peptide fractions by liquid chroma-
tography to improve the resolution of the method. The peptide
fractions are then quantified by data-dependent acquisition,
which is the most prevalent method to produce peptide-level
data. The spectra produced provide information on the quantity
and sequence of the peptide liquid chromatography–mass spec-
trometry/mass spectrometry (LC-MS/MS—for an overview,
see [24]).

After acquiring the MS that represent the raw proteome
data, several computational processing steps are needed to in-
terpret the data: identification, quantification and summariza-
tion of the peptides values into protein expressions. Peptide
identification is most commonly done using a database of the-
oretical spectra that is been generated from a database of rele-
vant protein sequences, such as a database of annotated
protein sequences, or a proteome predicted from DNA se-
quences. Identified proteins can be quantified by counting the

number of hits to a particular protein in the database as a meas-
ure for abundance, i.e. ‘spectral counts’. Alternatively, the signal
intensity generated by a peptide in the MS can be used to quan-
tify peptide expression level. To compare these levels across ex-
periments, normalization of the values is typically required, in
particular for the signal-based data [33, 34]. Subsequently, the
counts or signals can be integrated to obtain a protein expres-
sion value; the summarization of multiple peptides into a single
protein value has the added advantage of reducing the variance
and improving the accuracy of the expression estimate [35].
However, for some applications, such as phosphoproteomics,
the proteome data cannot be summarized and are interpreted
at the peptide level, typically using signal expression data
(Figure 1).

The missing value problem

A specific characteristic of signal-based LC-MS/MS approaches
is the stochastic nature of the peptide sequencing, resulting in
proteins and peptides not being quantified in all treatments
and/or replicates of an experiment. As these datapoints are not
quantified (i.e. ‘missing’), statistical analysis can often only be
performed on a small subset of peptides. This problem is exa-
cerbated as the number of conditions in an experiment in-
creases. To overcome this limitation, these missing values
can be substituted to alleviate the missing data problem.
Substitution of missing values, i.e. data imputation, is routinely
applied in the statistical analysis of LC-MS/MS signal intensity
data. Imputation can be done by substituting a run-specific
background value into all missing values (i.e. assuming that all
missing values are below detection limit, ‘halfLocal’) [36, 37].
Alternatively, missing values are substituted fitting the appar-
ent truncation of the normal distribution, i.e. supplementing
the apparent left-censored data from a restricted normal distri-
bution (random tail imputation, RTI) [38, 39]. In addition, there
are imputation techniques, such as multiple imputation, that
try to estimate the missing value by substituting values from
similar datapoints while taking the uncertainty of the imput-
ation into account [40, 41]. Replacing the missing values in the
data set with estimates allows more peptides to be tested and
will hence increase the ‘yield’ of an experiment, which trans-
lates to a higher sensitivity. However, if these estimates are in-
accurate, this approach may lead to incorrect experimental
results.

Challenges in the statistical analysis of high-throughput
proteomics data

After processing the spectra into quantitative proteome data,
differential expression analysis for signal intensity data is typic-
ally performed. The processing and analysis of proteomics data
have been debated extensively over the past 15 years, and many
processing methods are known and used within the field.
Spectral count data are now frequently analysed using count-
based RNA sequencing methods [33]. For signal intensity data,
classical statistical methodology such as analysis of variance
(ANOVA) or a t-test is often used. These techniques may not be
optimal for proteomics data, in particular when combined with
imputing with background values [10, 26]. Alternative statistical
analysis strategies have been proposed ([42, 43], for a review,
see [33]), including the recently introduced MSstats [44] that
uses a linear mixed model approach to model MS data. Methods
that have been applied successfully in other fields include
limma [45], which was developed for the microarray platform,
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but which is now also used for other types of -omics data,
including high-throughput proteomics data [46]. Validation of
these techniques has been difficult, especially for peptide-level
data interpretation. In particular, the application of imputation
techniques in combination with statistical analysis has not
been studied. Furthermore, the lack of gold standard data sets
with a sufficient number of replicates hampers benchmarking
efforts. As the volume of data and the reuse of data from protein
databases increase, the challenge to establish good practice
data processing and analysis methods from both single experi-
ments and meta-analysis studies remains open.

Aim

In this review, we benchmark peptide-level differential statis-
tical analysis methods combined with different imputation
techniques to recommend the ‘best’ method for signal
intensity-based LC-MS/MS peptide-level data. Given that there
may well be trade-offs between imputation success and the
number of replicates [47], or that a particular imputation

technique enhances the performance of a specific statistical
analysis method, we evaluated all combinations of several im-
putation techniques and statistical analysis methods.
To evaluate these factors, we use published empirical data sets
[15, 34] and introduce a new resampling-based technique that
allows for gold standard data sets to be generated and
evaluated.

Materials and methods
Statistical methods

Different statistical methods can be used to infer which pep-
tides/proteins are differentially expressed in a LC-MS/MS data
set. They differ in the underlying assumptions that are being
used and the minimal amount of data required to run the test.
Next, we briefly describe the statistical methods we used in this
work.

Figure 1. Schematic overview of high-throughput proteomic analysis at the peptide level. Sample protein extracts are digested and (if required) fractionated to obtain

peptides. These peptides are subsequently analysed using LC-MS/MS. Peptides are identified by using a reference database of protein sequences. This database con-

tains known or putative sequences, or, in the case of proteogenomics, proteins predicted from the genome or transcriptome of the same individual. Protein-level

expression analysis provides information on the protein as a whole; peptide-level analysis provides additional insight into mutations, splice variants, alternative iso-

forms and a range of post-translational modifications.
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Two-sample t-test
Student’s t-test or the two-sample test is a statistical test in
which the equality of means from two sample populations is
tested. The main underlying assumption is that both popula-
tions have been drawn from a normal distribution, which can
be either group-specific or pooled across the experiment. In this
study, pooled variance was assumed. Furthermore, the test is
limited to cases in which at least two samples are available in
both populations. For three-group comparisons, we use ANOVA,
which is the multi-group equivalent of the t-test.

Empirical Bayes test (limma)
The empirical Bayes method in the Limma R library is similar to
a two-sample t-test, except that a moderated t-statistic is calcu-
lated in which posterior residual SDs replace ordinary SDs [45].
By calculating a trend line on peptide means versus variances, a
new variance is interpolated for each individual peptide meas-
ured. This effectively squeezes the variance of peptides with
similar means towards a common value. Compared with the
two-sample t-test, statistical interference should be more stable
when only few measurements are available. And the test is ap-
plicable even to peptides for which only a single measurement
is available in each class/treatment. Significant differences be-
tween peptides, i.e. P-values, are calculated from the
moderated t-statistic. Please see the Supplementary Material for
an example of the application of limma analysis to peptide
data.

MSstats
Recently, the MSstats package has been developed for statistical
inference of differentially expressed proteins and peptides in
LC-MS/MS data [44]. MSstats customizes models generated with
the R functions lm and lmer. The particular choice of model and
its parameters is automatically chosen based on the experimen-
tal design (group comparison or time series) and type of LC-MS/
MS data supplied (labelled or label-free). MSstats has advanced
functionality, such as roll-up from peptide to protein level.
Analysis at the protein level would prohibit comparison with
the other methods. Therefore, in this project, MSstats is used in
its most basic form, using its default settings for label-free LC-
MS/MS data.

Generalized linear model with a gamma distribution. When it cannot
be assumed that data are normally distributed, generalized lin-
ear models (GLMs) provide a framework, which extends linear
models to other types of distributions [48]. In contrast to linear
models, a GLM is still appropriate when the variance of a vari-
able, e.g. peptide intensity, has a dependence on the mean.
Preliminary statistical analysis of the data sets used here
showed that a gamma distribution provided a better fit than did
a normal distribution (Supplementary Figure S1C). Hence, a
gamma distribution was chosen to provide a better fit on a
skewed peptide intensity distribution, i.e. in case the peptide in-
tensity distribution would deviate from the normal distribution.

For all statistical methods used, a fixed false discovery rate
(FDR) was calculated using the procedure by Benjamini and
Hochberg [49].

Construction of data sets

Assessment of differential peptide expression can be performed
by a number of statistical methods. To evaluate the ability of
these methods to detect differentially expressed peptides, we

generated verifiable (i.e. ‘gold standard’) data sets by simulation

and resampling procedures (Figure 2).

Ab initio proteomics simulation
To have full control on the properties of a simulated proteomics
data set and to allow for more biological replicates, an ab initio

method was developed. Data are simulated by sampling from a
multivariate normal distribution. The covariance matrix is con-
structed from a correlation matrix and a variance vector. The
number of runs is two times the number of replicates. Each pep-
tide has a mean sampled from a normal distribution, which
then varies across runs according to the covariance matrix. The
correlations were sampled from a normal distribution (l¼0;
r ¼ 0.4), and peptide variances were sampled from an exponen-
tial distribution (rate ¼ 8). Three clusters of (up-regulated,
down-regulated and noisy) peptides were generated. A range
from 2–15 biological replicates was simulated to validate the
performance of the four statistical methods. In total, 100 simu-
lations were averaged for each number of biological replicates
investigated, and each simulation had 3000 peptides of which
300 were differentially expressed with an absolute log2 fold
change of 1–4, randomly drawn from a uniform distribution
[U(1,4)] (for pseudo-code, see Supplementary Material). The re-
sulting data were subjected to a combination of random and
intensity-dependent censoring of values to mimic the missing
values typically observed in LC-MS/MS data. Although this ap-
proach may not perfectly match MS data generation mechan-
ism, its main advantage is that as many samples as required
can be generated.

Figure 2. The ab initio simulation approach and data set resampling procedures

used to generate validation data sets. The PGE2 and AROM data sets are used as

input. After simulation/resampling, a fold change is projected onto the data to

create differences in peptide expression between groups of samples. Statistical

methods of interest can be used to call differentially expressed peptides, which

can subsequently be checked against the set of projected changes to compute

the sensitivity and actual FDR.
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Resampling-based simulation
As our simulation approach does not take into account all sour-
ces of variability in real LC-MS/MS data, we also resampled
real-life data sets, including the prostaglandin E2 (PGE2) data set
consisting of phosphoproteomic profiling of Jurkat T cells
stimulated with PGE2 [15], and the ‘AROM’ data set consisting of
proteomic profiling of male mice overexpressing human P450
aromatase (AROM) [34]. The PGE2 data set was processed as in
the original publication. Briefly, raw data were processed with
MaxQuant. MS and MS/MS spectra were searched against con-
catenated forward-decoy Swiss-Prot Homo sapiens database ver-
sion 2012 09 (40 992 sequences) using the Andromeda search
engine. Normalization was performed by subtracting the me-
dian of log-transformed intensities for each nano-LC-MS/MS
run. The spectra from the AROM data set were searched against
the UniProtkB/Swiss-Prot mouse database (16 686 sequences)
using the Mascot search engine. Further, filtering and normal-
ization by median scaling were performed in Progenesis 4.0 as
described in the original publication [34]. A resampling-based
method was developed to retain as many properties of real data
as possible. We selected samples from a single treatment group
within a data set in such a way that the correlations between
peptides and the structure and position of missing values re-
mained unaltered. As we only sample from a single treatment
in an experiment, fold changes between treatments cannot play
a role. Subsequently, we applied a fold change to part of these
samples to create test data sets (Figure 2). Although this ap-
proach comes close to real LC-MS/MS data, it is limited by the
number of samples in a treatment group (i.e. replicates) that is
available in a data set. As we are constructing two artificial test
sets from a single treatment group, the maximum test set size
is at most half of the number of replicates in the original data
set, i.e. an experiment with six replicates can be used to con-
struct two test sets of three samples. All simulation and resam-
pling were carried out 100 times to obtain a robust estimate of
methods’ performance. Two LC-MS/MS data sets, the PGE2 data
set and AROM data set were used as a basis for the resampling
procedure (for pseudo-code, see Supplementary Material).

Data imputation

Data imputation is used to postulate the missing values in the
data set with estimates that are obtained through a number of
different methods. Most of these methods have been applied to
MS data and are briefly described below:

halfLocal
The halfLocal (also called localMinimum) method replaces
missing values with a run-specific value; here, we use half of
the detection limit. All missing values are replaced by this value
[37, 50].

Random tail imputation
RTI is a method to provide an estimate for values that are miss-
ing because of low expression [38]. These missing values are
replaced by random values from a normal distribution around
the detection limit. An advantage of this method over halfLocal
is that a range of values, rather than a single value, is substi-
tuted instead of the missing values.

Multiple imputation
Multiple imputation tries to estimate missing values by substi-
tuting values from other samples that are similar [40, 41]. Data
were imputed using predictive mean matching method from

the mice package [51]. This method uses non-missing peptide
values from the same datapoint to identify datapoints that are
similar. From these similar datapoints, a value is randomly se-
lected to impute the missing value. This is done multiple times
(10 times in our study) to assess the robustness of a single
imputation.

Evaluation of statistical and imputation methods

To evaluate the statistical analysis and imputation methods,
every comparison was summarized by computing the sensitiv-
ity, i.e. the fraction of the 300 differentially expressed peptides
that was recovered by an analysis method. For all statistical
tests performed, a fixed FDR cut-off of 0.05 was applied.
Furthermore, we evaluated the specificity of statistical tests by
calculating the actual FDR for each of the 100 simulated or
resampled data sets. Because we simulate the protein changes,
we can definitively identify a differentially expressed peptide as
true positives (TPs) or false positive (FP), and hence determine
the actual FDR of a test. Good methods have high sensitivity
and an actual FDR that is close to the fixed FDR cut-off that is
used (i.e. high specificity). Tukey box plots used to depict the re-
sults, where the dark line represents the median, the box repre-
sents the interquartile range (IQR) and the whisters represent
the last datapoint that is within 1.5*IQR away from the box.

Results and discussion

To assess which statistical analysis methods would be appro-
priate for LC-MS/MS peptide-level data, we investigated the dis-
tribution of our test data sets. Although log-transformed LC-MS/
MS data are typically assumed to be normally distributed, this
may not always be the case. The simulated ab initio data were
sampled from a multivariate normal distribution, so is normally
distributed as expected (Supplementary Figure S1A). The PGE2
data set is normally distributed, but the AROM data set
distribution is better approximated by a gamma function
(Supplementary Figure S1B and C). To accommodate these
different data distributions, we opted to also evaluate a general-
ized linear model with a gamma regression approach (GLM-
gamma) in addition to the common methodologies applied
to peptide-level data, including t-tests, limma [45] and
MSstats [44].

All methods are validated on simulated LC-MS/MS data sets.
These simulated data sets are designed to simultaneously dem-
onstrate the strengths and weaknesses of each method. With a
large number of replicates and high fold change between pep-
tides, all methods should be able to perform well. Conversely,
when the number of replicates is limited and applying only a
low fold change between peptides, all methods are expected to
perform poorly.

Comparing two treatments

To evaluate all methods for their performance in a comparison
of a treatment and control situation, we first quantify sensitiv-
ity of all the methods, given a specific number of replicates. As
expected, we see that sensitivity increases as the groups con-
tain more replicates (Figure 3). Although the sensitivity varies
per data set, comparing two groups of two replicates does not
give appreciable sensitivity in any data set, meaning that two
replicates are too little to detect any differentially expressed
peptides in these data sets (Figure 3). MSstats shows the lowest
sensitivity overall, in particular for the ab initio data set. This
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suggests that the data structure of the simulated data differs
from that of resampled data. Furthermore, we observe that
limma achieves the highest sensitivity, in particular when the
number of replicates is low. Two-sample t-test and gamma re-
gression perform about equally well, but have a lower sensitiv-
ity than limma in all comparisons. These findings also hold
when the fixed FDR is changed (Supplementary Figure S2), or
when the fraction of differentially expressed peptides is varied
(Supplementary Figure S3). Sensitivity for limma is particularly
high in the case where there are few replicates; as the number
of replicates increases, the difference between limma, t-tests
and gamma regression decreases. This can be explained by the
fact that the error sharing among peptides likely improves the
accuracy of the peptide variance estimate, which enhances test
performance [35]. Furthermore, error sharing allows limma to
perform tests with fewer available values than other methods.
As expected, these effects diminish as the number of replicates
increases.

In addition to evaluating the sensitivity of the different
methods, we would also like to check for the correctness of the
results (i.e. specificity), given by evaluating the actual FDR. All
methods were set to allow for 5% false discoveries (fixed
FDR � 0:05), and hence all methods should on average have an
actual FDR of �0:05. This is indeed what we observe for most
methods and replicates (Figure 4). For two replicates, the actual
FDR tends to be much higher, probably because of the low num-
ber of differentially expressed peptides identified. For three rep-
licates, all methods tend to control the actual FDR to � 0:05,
although MSstats does have many instances where the actual
FDR is much >0:05 in the ab initio data set. When these results
are combined with the sensitivity, limma is the best method for
detecting differentially expressed peptides in a two-group
comparison.

The better performance of limma can be explained by the
error sharing across peptides, which is a key feature of limma
that increases the degrees of freedom as compared with other
tests. As it needs fewer degrees of freedom to evaluate a protein,

limma should be able to perform tests in peptides that have
many missing values, where other methods have too little in-
formation. Indeed, we observe that limma is able to test more
peptides leading to a higher sensitivity (Supplementary
Figure S4).

Multi-group comparisons

In addition to two-group comparisons, many high-throughput
proteomics experiments tend to have more treatment groups.
Many statistical methods, including those tested here (or their
multi-group equivalents), make use of all samples to estimate
the peptide variability, and thus a comparison between two
groups can be affected by other treatment groups. To evaluate
the effect of having more than two treatment groups, we
resampled the PGE2 data set as before to have three groups of
up to six replicates each. The three groups have differing num-
bers of differentially expressed peptides between them, with
the treatment A versus control and treatment B versus control
having 300 and 100 differentially expressed peptides, respect-
ively (Figure 5, inset). Our results show that the statistical ana-
lysis methods benefit from having extra treatments, in
particular for comparisons with a low number of replicates. For
instance, the application of limma to two groups of three sam-
ples has a median sensitivity of 0:33, while the three-group
comparison has a sensitivity of 0:4. When there are fewer dif-
ferences between the groups as in treatment B versus control,
the sensitivity is lower and the actual FDR is higher, which is ex-
pected, given the smaller difference between treatment and
control. As before, two replicates are not sufficient for perform-
ing statistical analysis in these data sets. In all cases, limma
outperforms the other methods in terms of sensitivity, in par-
ticular for the case with few replicates (Figure 5). ANOVA ana-
lysis does slightly better than GLM-gamma, while MSstats has
the lowest sensitivity. In summary, limma is the best statistical
analysis method for multi-group experimental designs.

A

B C

Figure 3. Sensitivity for two-group comparisons, given a particular number of replicates in ab initio (A), AROM (B) or PGE2 (C) data. The two-sample t-test, limma,

GLM-gamma and MSstats were each evaluated 100 times.
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Evaluating data imputation

One of the hallmarks of LC-MS/MS data acquired in data-de-
pendent mode is that it has many missing values because pep-
tides are typically not detected in all runs. As a result, none of
the evaluated methods recovers all of the differentially ex-
pressed peptides projected onto the data sets, even if a large
number of replicates are available; for some peptides, there is
simply too little data to perform a test on differential expression
(Supplementary Figure S4). Although limma manages to per-
form more tests than the other statistical analysis methods, a

large number of peptides cannot be tested for differential ex-
pression because of missing values. For instance, a peptide
could be highly expressed in only one treatment but not in the
other; this would lead to high peptide expression in one treat-
ment and missing expressions in the other, and hence, a test
cannot be performed. This has led to the application of imput-
ation techniques to ‘fill in’ these missing values in the data set.
After the application of imputation techniques, all 3000 pep-
tides can be tested by all analysis methods, which is expected to
result in an increase in sensitivity.

A

B C

Figure 4. Actual FDR for two-group comparisons, given a particular number of replicates in ab initio (A), AROM (B) or PGE2 (C) data. The two-sample t-test, limma,

GLM-gamma and MSstats were each evaluated 100 times. All methods were evaluated with a fixed FDR set to 0.05 (red line).

Figure 5. Sensitivity and actual FDR for three-group comparisons, given a particular number of replicates using the resampled PGE2 data set. ANOVA, limma,

GLM-gamma and MSstats (red, green, cyan and purple, respectively) were each evaluated 100 times.
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To test different imputation methods, we used our resam-
pling approach on the PGE2 data set to mimic a normal data
set as closely as possible. By applying imputation before
performing differentially expression analysis and by evaluat-
ing the sensitivity and actual FDR, imputation methods can
be compared in terms of increase in sensitivity and control of
the actual FDR. Differential expression analysis on data
imputed using localMinimum or RTI generally lead to lower
sensitivity than when no imputation is applied, regardless of
which statistical analysis method is used (Supplementary
Figure S5A, B and D). Multiple imputation has a slightly higher
sensitivity compared with non-imputed data (Supplementary
Figure S5C and D), but the actual FDR is no longer controlled
by any of the analysis methods (Supplementary Figure S5G
and H).

To evaluate the net effect of imputation on the total number
of differential peptides, we looked at the median number of TPs,
FPs and false negatives (FNs) after imputation with different
methods (Figure 6). We observe that the localMinimum and RTI
imputation methods generally do not lead to an increase in the
number of differentially expressed peptides found by any statis-
tical analysis method, but lead to a decrease in sensitivity
(Supplementary Figure S5A and B versus D). Multiple imput-
ation considerably increases the number of differentially ex-
pressed peptides that is identified, regardless of the statistic
test that is used. This does not translate to an increase in sensi-
tivity, which only increases marginally (Supplementary Figure
S5C versus D). The majority of this gain in differentially ex-
pressed peptides is in fact derived from FP hits (red bars). This
results in an actual FDR of around 0.2 where 0.05 is used as a
cut-off (Supplementary Figure S5G). Overall, we observe that
limma finds the highest number of differentially expressed pep-
tides, in particular when the number of replicates is low. In
summary, left-tail imputation methods RTI and localMinimum
generally do not give better results than when no imputation is
applied. Multiple imputation leads to a small increase in the
number of TP peptides found, but at the expense of large num-
bers of FPs (Figure 6).

The effectiveness of imputation techniques has been
questioned by several studies that point out the mixed origin
of the missing values in LC-MS/MS data [36, 41]. Values can be
missing for at least one or two reasons: (1) the peptide may
not be selected for quantitation by the MS, which leads to the
peptide being absent (missing completely at random, MCAR);
or (2) the protein or peptide may not be present or have a low
abundance in the sample, and can therefore not be detected
(not missing at random, NMAR). Although it is generally
thought that Option (1) is less likely compared with Option
(2), one cannot determine which of these mechanisms are re-
sponsible for a particular missing value. For example, in the
case of NMAR, where a peptide is highly expressed in one
treatment, but low in another, imputation by filling in a back-
ground value will allow a test to be performed and more ac-
tual result to be recovered from the experiment. Conversely,
if a peptide is expressed at moderate levels across all treat-
ments, but happens by chance to be measured in only one
treatment (MCAR), then the application of background imput-
ation techniques will lead to a FP test result. Therefore, the
mechanism by which a missing datapoint should be imputed
cannot assume either one or the other case, but should ac-
count for both MCAR and NMAR. As all variabilities in our test
data are derived exclusively from either biological or tech-
nical variation to which we have applied fixed fold changes,
we are able to definitively identify FPs. With this setup, we

see no added value of the application of imputation tech-
niques to LC-MS/MS data.

Conclusions

In this study, we have evaluated several methods for their abil-
ity to detect differentially expressed peptides in LC-MS/MS pep-
tide data. Using a simulation and a resampling approach,
we are able to definitively measure sensitivity and the
actual FDR of both the statistical methods and imputation tech-
niques. We show that limma generally outperforms the other
methods while still controlling the actual FDR, both for two-
and three-group comparisons. Two replicates are generally in-
sufficient for differential peptide detection, and therefore, we
recommend performing experiments with at least three or four
replicates. Data imputation leads to a larger number of discov-
eries in the results, but many are FPs, while the gain in the
number of TPs is negligible. Hence, data imputation does not
lead to better results in our data resampling evaluation
procedure.

While testing the statistical analysis methods and imput-
ation techniques, we tested all combinations of these methods
to see if there are particular synergistic imputation technique—
analysis method combinations. We have not found such com-
binations, and we generally see a constant effect of analysis
methods, imputation techniques and number of replicates. As
expected, we do see that including more replicates leads to a
higher sensitivity. We observe that limma has a relatively high
sensitivity for a low number of replicates. That is why we rec-
ommend limma as first choice for performing peptide-level
analysis. For an example of the application of limma on a clin-
ical proteomics data set [52], please see the Supplementary
Material.

Evaluation of statistical analysis methods is difficult, as
there are a limited number of data sets with known TPs and
large biological replicates. We addressed this problem in two
ways: (1) by simulating data ab initio from a multivariate normal
distribution and (2) by using actual proteomics data sets and
projecting significant fold changes onto these data sets. Our
pure simulation approach illustrates that this approach does
not completely capture the structure of real-life data. We
think that it is the structure of the missing value distribution in
particular that leads to these discordant results between ab initio
simulations and resampling. In reality, the missing values in
LC/MS-MS data are partly induced by intensity (i.e. peptides
from non-expressed proteins cannot be measured), and partly
by sampling effects (i.e. not all peptides in the sample are
measured in every run) and perhaps by other yet unknown
mechanisms. Other evaluation methods make use of resam-
pling residuals in linear modelling approaches, but these
methods do not account for missing values or any structure
therein. Our resampling approach uses only the biological and
technical variability from within a single treatment in a data
set, which precludes the influence of the original experiment
design in our results. By applying synthetic fold changes onto
this data set of genuine biological and technical variability, we
leave intact the number, position and structure of the missing
values, and can hence evaluate the effectiveness of data
imputation.

Our results also illustrate that there is variability in per-
formance between resampled data sets derived from the
same data set. This illustrates that a method’s performance
may differ across data sets. However, such performance can-
not be verified in a single data set but only in a simulation or
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resampling setting such as this one. As such, new method-
ology being introduced into the field should therefore be vali-
dated with an approach such as this to ensure that it
generally improves on current practice. Here, we show that
the application of imputation to peptide-level data leads to
less reliable results. Conversely, the application of limma
leads to a major improvement in differential peptide
detection, and hence, we recommend its use for the statis-
tical analysis of peptide-level high-throughput proteomics
data.

Key Points
• High-throughput proteomics peptide-level data can

best be analysed using limma when compared with
t-tests, ANOVA, gamma regression and MSstats.

• A minimum of three or four replicates is required for
achieving acceptable sensitivity and specificity.

• Imputation techniques have no added value, or greatly
increase the number of FPs in the results.

Figure 6. The effect of imputation on the number of TPs (green), FPs (red) and FNs (orange) that the analysis methods detect. As before, there are 300 differentially ex-

pressed peptides with a log-fold change of 1–4 of 3000 resampled peptides in two groups of between three and nine replicates. Each bar represents the median of 100

resampled and imputed data sets. The FDR was limited to 0.05, i.e. having 5% FPs (15 peptides) are considered acceptable.
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Supplementary Data

Supplementary data are available online at BRIBIO online..
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