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Air pollution is associated with a broad range
of adverse health effects, including mortality
and morbidity due to cardio- and cerebrovascu-
lar diseases (CCVD), but the molecular mecha-
nisms involved are not entirely understood. This

study aims to investigate the involvement of oxi-
dative stress and inflammation in the causal
chain, and to identify intermediate biomarkers
that are associated retrospectively with the
exposure and prospectively with the disease.
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We designed a case-control study on CCVD
nested in a cohort of 18,982 individuals from
the EPIC-Italy study. We measured air pollution,
inflammatory biomarkers, and whole-genome
DNA methylation in blood collected up to 17
years before the diagnosis. The study sample
includes all the incident CCVD cases among
former- and never-smokers, with available stored
blood sample, that arose in the cohort during
the follow-up. We identified enrichment of
altered DNA methylation in “ROS/Glutathione/
Cytotoxic granules” and “Cytokine signaling”
pathways related genes, associated with both
air pollution (multiple comparisons adjusted p
for enrichment ranging from 0.01 to 0.03
depending on pollutant) and with CCVD risk

(P 5 0.04 and P 5 0.03, respectively). Also,
Interleukin-17 was associated with higher expo-
sure to NO2 (P 5 0.0004), NOx (P 5 0.0005),
and CCVD risk (OR 5 1.79; CI 1.04–3.11;
P 5 0.04 comparing extreme tertiles). Our find-
ings indicate that chronic exposure to air pollu-
tion can lead to oxidative stress, which in turn
activates a cascade of inflammatory responses
mainly involving the “Cytokine signaling” path-
way, leading to increased risk of CCVD. Inflam-
matory proteins and DNA methylation
alterations can be detected several years before
CCVD diagnosis in blood samples, being prom-
ising preclinical biomarkers. Environ. Mol. Muta-
gen. 59:234–246, 2018. VC 2017 Wiley

Periodicals, Inc.
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INTRODUCTION

Cardio- and cerebrovascular diseases (CCVD) are among

the leading causes of death and disability worldwide (Guil-

bert, 2003; Vos et al., 2016; Wang et al., 2016). Exposure to

ambient air pollution, particularly fine coarse (PM2.5) and

thoracic (PM10) particulate matters, nitrogen oxide (NOx),

nitrogen dioxide (NO2), and elemental carbon, has been

linked to a wide range of adverse health effects. Epidemio-

logical studies have increasingly shown that air pollution is

associated with not only respiratory diseases (Chung et al.,

2011, 2016; Li et al., 2016; Cox, 2017) but also coronary

artery disease (Wolf et al., 2015; McGuinn et al., 2016), car-

diovascular diseases (Brook et al., 2010; Franklin et al.,

2015), and cerebrovascular diseases (Stafoggia et al., 2014)

including ischemic stroke (Chung et al., 2017; Cox, 2017).

In a recent meta-analysis, including eleven European

cohorts from the “European Study of Cohorts for Air Pollu-

tion Effects” (ESCAPE) project, in which 5,157 individuals

experienced incident coronary events, a 5 lg/m3 increase in

estimated annual mean PM2.5 was associated with a 13%

increased risk of coronary fatal events, and a 10 lg/m3

increase in estimated annual mean PM10 was associated

with a 12% increased risk of coronary events (Cesaroni

et al., 2014). An independent study conducted within the

same cohorts reported 26% and 4% increased risk for cere-

brovascular diseases for each 5 lg/m3 increase in PM2.5

and 10 lg/m3 increase in NO2 respectively (Stafoggia et al.,

2014). Interestingly, an increased risk was also detected

considering exposures below the current annual European

limit value of 25 lg/m3 for PM2.5 and 40 lg/m3 for PM10

(Cesaroni et al., 2014; Stafoggia et al., 2014).

Several mechanistic explanations have been put forward

to explain these associations, particularly oxidative stress

and inflammation (Uzoigwe et al., 2013; Newby et al.,

2015). There is, in fact, evidence that air pollution can

induce both patterns, and both patterns have been associ-

ated with CCVD (Cosselman et al., 2015; Munzel et al.,

2016a,b). In an ESCAPE cross-sectional study, living close

to busy traffic was associated with increased C-reactive

protein concentrations, a known inflammatory biomarker

and risk indicator for CCVD (Lanki et al., 2015). Also,

long-term exposure to NOx was associated with decreased

levels of circulating Interleukin 8, another inflammation

marker (Mostafavi et al., 2015). DNA methylation

(DNAm) dysregulation, in turn, was described in relation to

long-term air pollution exposure. Air pollution has been

hypothesized to be related to CCVD through deregulation

of genes coding for both pro-inflammatory and anti-

inflammatory cytokines (Chi et al., 2016). Also, reduced

methylation of mitochondrial DNA (that is one of the pri-

mary targets of oxidative stress) was associated with expo-

sure to fine particulate PM2.5 and modified the adverse

relationships between PM2.5 exposure and heart rate vari-

ability outcomes (Byun et al., 2016). Associations of

DNAm levels of single CpG sites with CCVD biomarkers

including homocysteine (Ingrosso et al., 2003) and C-

reactive protein (Fu et al., 2007), or with CCVD risk factors

like smoking (Guida et al., 2015) and obesity (Dick et al.,

2014) were recently described. Other studies focused on

specific pathways (Fiorito et al., 2014) or showed decreased

methylation in Long Interspersed Nuclear Elements 1

(LINE 1) in blood, in association with CCVD (Baccarelli

et al., 2010; Guarrera et al., 2015).

No study to date has assessed mediation of the relation-

ship between air pollution and CCVD by intermediate

biomarkers with a longitudinal design. This study aimed

to investigate the hypothesis of the involvement of

inflammatory pathways and oxidative stress in the causal

chain and to identify intermediate biomarkers that are

associated retrospectively with the exposure and prospec-

tively with the disease in the same subjects. We measured

a set of inflammatory proteins and whole-genome DNA

methylation in a case-control study nested in the Turin

and Varese EPIC cohorts. The study sample includes
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nonsmoking CCVD incident cases (and matched controls)

only, since it has been shown that smoking habits could

confound the association of air pollution with CCVD

(Sheppard et al., 2012) and the association of air pollution

with inflammation (Essouma and Noubiap, 2015).

METHODS

Study Population

Study participants were part of the Italian component (Turin and

Varese centers) of the EPICOR study (Bendinelli et al., 2011), that is the

cardiovascular section of the European Prospective Investigation into Can-

cer and Nutrition (EPIC) cohort (Palli et al., 2003). In the period 1993–

1998, EPIC Italy completed the recruitment of 47,749 volunteers (15,171

men and 32,578 women). The Turin and Varese cohorts include 10,604

and 12,083 participants respectively, all aged 35–65 years (men and

women). From hospital discharge records, we have identified all newly

diagnosed cases of CCVD and revascularization, which arose in the cohort

during 12.2 years of follow-up on average. Subjects with suspected CCVD

were identified according to the criteria of the International Classification

of Diseases (ICD-10) codes I21, I46, I63, Z95 or the procedure codes for

coronary revascularization. Suspected CCVD events were confirmed when

acute myocardial infarction, acute coronary syndrome, coronary revascu-

larization or ischemic stroke were present, supported by information on

onset symptoms, levels of cardiac enzymes and troponins, imaging, and

electrocardiographic data coded according to the Minnesota Code. Cases

were cross-checked with mortality files to identify fatal and nonfatal cases

(the latter defined as alive 28 days after diagnosis). Study participants with

CCVD at or before cohort entry were identified from the baseline ques-

tionnaire, from linkage with hospital discharge records, or by direct exam-

ination of clinical records, and were excluded from this study. Details on

covariate acquisition are reported in Supporting Information methods.

This study complies with the Declaration of Helsinki principles and

conforms to ethical requirements. All volunteers signed an informed

consent form at enrollment. The EPIC study protocol was approved by

Ethics Committees at the International Agency for Research on Cancer

(Lyon, France) and the Human Genetics Foundation (Turin, Italy).

Case-Control Study Nested in the Cohort

We designed a case-control study nested in the cohort including 386

samples (193 matched case-control pairs) for biomarker analyses, using

the incident density sampling method (Richardson, 2004). We selected

all the incident CCVD cases which arose in the cohort during the

follow-up period (up to 17 years) fulfilling the following conditions:—

never smokers or former smokers for at least one year;—archived blood

samples (serum and buffy coat collected at recruitment) available and

stored in liquid nitrogen;—existence of at least one matched control.

Criteria for case-control matching based on baseline characteristics

were: one-to-one matching by smoking (never/time since quitting), gen-

der, age (no more than 2.5 years difference at recruitment), season and

year of recruitment in the cohort.

Exposure Assessment

We have estimated exposures to NO2, NOx, and PM2.5. The first two

measures were developed in the context of the ESCAPE study and

extensively described elsewhere (Eeftens et al., 2012; Beelen et al.,

2013). Briefly, in ESCAPE Land Use Regression (LUR) models were

developed and used to estimate air pollution concentrations at the home

address of all study participants, using GIS (Geographic Information

System) procedures. The LURs describe the spatial distribution of the

annual mean concentrations taken as a proxy for the long-term averages

for all exposure indicators. For PM2.5 we used a bespoke Western Euro-

pean model based on Satellite-derived measurements and chemical trans-

port models nested within LUR models (de Hoogh et al., 2016; Nunen

et al., 2017). For the latter, estimates were provided for 100*100 m

grids, whereas for the ESCAPE models, estimates were provided for

points (address coordinates).

Back ExtrapolatedMeasures

Since the EPIC cohort was recruited between 1993 and 1998, base-

line clinical measurements, blood drawing, and interviews occurred up

to 17 years before the ESCAPE measurement campaigns performed in

2010 in Turin and Varese. In light of the substantial changes in air pol-

lution during these decades, estimated exposure values were back-

extrapolated to the year of recruitment for each individual, to correct for

time trends of pollution. Back extrapolation was conducted by assuming

constant within-city spatial patterns. Individual estimates of ambient

concentrations were adjusted (calibrated) for the long-term trends using

a procedure developed during the ESCAPE project (Stafoggia et al.,

2014). We obtained annual extrapolated exposures based on the compar-

ison of the concentration measured at the routine background monitor in

each year of the recruitment period (1993–1998) with the yearly average

during 2010 (year of sampling campaign). A detailed description of the

back-extrapolation procedure can be found at “www.escapeproject.eu”.

Back extrapolation procedure was not possible for PM2.5 due to the

absence of historical data.

Biomarker Measurements

DNA Methylation

Details for DNA extraction, array design, bisulfite conversion, and

methylation analyses are reported in Supporting Information Methods.

Raw fluorescence intensities data were extracted from “idat” files using

the “minfi” package in R statistical environment (Aryee et al., 2014). Back-

ground subtraction, color bias adjustment, and fluorescence intensities nor-

malization were performed using the Subset-quantile Within Array

Normalization (SWAN) procedure described by Maksimovic et al. (Maksi-

movic et al., 2012). Samples were excluded if the bisulfite conversion fluo-

rescence intensity was less than 10,000 for both type I and type II probes.

Methylation measures were set to missing if the detection P-value was

higher than 0.01. Additionally, the set of cross-reactive or polymorphic

(with minor allele frequency greater than 0.01 in Europeans) CpGs

(N 5 39,238) described by Chen et al. (Chen et al., 2013) was excluded

due to the low reliability of methylation measures. CpGs and samples were

excluded if the total call rate was less than 95%. Control samples whose

matched CCVD case was excluded were also removed from the analyses.

DNAm levels were expressed as the ratio of the intensities of methyl-

ated cytosines over the total intensities (b values). For statistical analy-

ses, a logarithmic transformation of b values was used M5log2
b

12b
as

recommended by Du et al. (Du et al., 2010). Probe design bias was cor-

rected using the BMIQ function in the “wateRmelon” package in R sta-

tistical environment (Teschendorff et al., 2013). Known batch effect by

plate and position on the Illumina Beadchip was removed before statisti-

cal analyses using the ComBat algorithm described by Johnson et al.

(Johnson et al., 2007). In Supporting Information Figure S1, the average

beta values by plate and position on the Beadchip before and after Com-

Bat normalization are reported. Finally, we have analyzed DNAm data

for 320 individuals (160 matched CCVD case-control pairs).

In£ammatory Proteins

Targeted proteomics has been performed by the Luminex Multiana-

lyte Profiling platform for plasmatic inflammation-related proteins for a

total of 23 signals per sample. Samples and inflammatory biomarkers
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with low call rate (less than 40%) were excluded from the analysis.

Imputation of missing values has been applied for inflammatory markers

that had at least 40% detectable samples measurement per study group,

based on maximum likelihood estimation procedure (Lubin et al., 2004).

To allow for plate to plate variation we imputed values based on each

plate-specific limit of quantification and included the plate as one of the

predictor variables in the imputation model. After quality controls, bio-

markers and sample filtering, we have analyzed data for 372 samples

(186 CCVD cases and one-to-one matched controls), and thirteen inflam-

matory biomarkers: C-reactive protein (CRP), Epidermal Growth Factor

(EGF), Eotaxin, Interleukin 17 (IL17), Interleukin 1 receptor Antagonist

(IL-1rA), Interleukin (IL-8), Interferon-g–inducible protein 10 (IP-10),

Monocyte Chemoattractant protein 1 (MCP-1), Human Macrophage–

derived Chemokine (MDC), Macrophage Inflammatory protein 1

(MIP1), Myeloperoxidase (MPO), Periostin, and Vascular Endothelial

Growth Factor (VEGF).

Figure 1 reports a summary of the timeline for the collection of rele-

vant variables (Fig. 1A) and a schematic description of the study

hypothesis (Fig. 1B). Descriptive statistics of the study sample are

reported in Table I. The present study complies with international estab-

lished STROBE guidelines for observational studies (Little et al., 2009).

Statistical Analyses

Work£ow

We performed the statistical analysis in two steps. Initially, we have

estimated the risk for CCVD conferred by chronic exposure to air pollu-

tion (NO2, NOx, and PM2.5) in the full cohort (N 5 18,982; 948 CCVD

events), and performed a sensitivity analysis in former- and never-

smokers (N 5 14,712; 661 CCVD events). Then, we examined the asso-

ciation of biomarkers with air pollution exposure and, independently,

with CCVD risk within the case-control study nested in the cohort. For

DNAm biomarkers analysis, instead of the classical epigenome-wide

association analysis, we have investigated enrichment of altered DNAm

levels in 17 a priori defined inflammatory pathways (DNAmIPs). The

relationships between protein and DNAmIPs was also investigated to

understand whether DNAm in inflammatory genes could regulate protein

expressions. Below, we describe in detail the statistical methods used in

each step.

Association of Air Pollution with CCVD Risk

In the full cohort, Cox proportional hazard regression models with

age as the time variable were used to estimate hazard ratios (HRs) and

95% confidence intervals (CIs) for the association of chronic exposure

to air pollution (NO2, NOx, and PM2.5) with the risk of CCVD. Hazard

ratios were expressed for each 10 mg/m3 increase in NO2 and NOx, and

for each 5 mg/m3 increase in PM2.5. Covariates included in the models

were gender, center of recruitment, season of pollutant measurements (as

a proxy for the weather conditions), BMI (continuous), smoking habits

(categorical: never, former, current smokers), alcohol intake (categorical:

no-moderate: less than 28 g/day, habitual drinker: more than 28 g/day),

Mediterranean diet score (ordinal categorical score from 0 to 10), physi-

cal activity (ordinal categorical: inactive, low, medium, high), educa-

tional level (as proxy for the socio-economic status, categorical: low,

medium, high), prevalent diabetes, hypertension, and hyperlipidemia. In

the subset selected for biomarker analysis (case-control study nested in

the cohort), we used logistic regression models adjusting for the same

set of confounders.

Biomarker Analysis: In£ammatory Proteins

Protein concentration values were transformed to correct for skewness

in the data, using the Box-Cox nonlinear transformation (Han and Kron-

mal, 2004). Linear regression models were used to investigate the asso-

ciation of protein concentrations in blood with air pollution exposure;

logistic regression models were used to examine the association of pro-

teins with CCVD risk. Covariates included in the models were age,

Fig.1. Timeline for collection of the relevant variables and exposure estimates (A), and study hypothesis (B). We aimed

to identify biological pathways associated with both chronic exposure to air pollution and incident CCVD according to a

meet-in-the-middle (MITM) design.
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gender, smoking habits, center, season, and year of recruitment. Addi-

tionally, for the proteins that resulted significantly associated with

CCVD risk, we have investigated the association of biomarkers with the

time lag between recruitment and the CCVD event, named “time to dis-

ease” (TTD). In this analysis, the differences between case and the

matched control biomarker values were the predictors and TTD the out-

come in linear regression models adjusting for the same set of confound-

ers as previously described. To take into account correction for multiple

comparisons, we have estimated the number of independent tests through

a principal component analysis (PCA) based procedure described in Sup-

porting Information Material.

Biomarker Analysis: DNAmIPs

For DNAm we focused on genes pertaining to 17 inflammation-

related pathways described by Loza and colleagues (Loza et al., 2007).

For each pathway, we tested for overrepresentation of significant sig-

nals in association with air pollution and with CCVD risk, with a

weighted Kolmogorov-Smirnov (WKS) enrichment test. The complete

list of all the genes included in each pathway, according to the authors,

is reported in Supporting Information Table SI. In this classification, no

genes are annotated in multiple pathways, avoiding bias due to redun-

dancy in the enrichment analysis. The algorithm for enrichment analysis

is described in detail in Supporting Information material and by

Charmpi and Ycart (Charmpi and Ycart, 2015). Briefly, it is composed

of two main steps: 1) a genome-wide scan to evaluate the association

of each CpG with the exposure (or with the disease) using linear regres-

sion models adjusting for matching variables and white blood cell

(WBC) percentages, the latter estimated using the Houseman algorithm

(Houseman et al., 2012); 2) a comparison of the observed distribution

of P-values (or equivalently the Z statistics), for the set of probes of

interest, with the empirical distribution expected under the null hypoth-

esis of no enrichment, the latter being estimated from genome-wide

results. The Kolmogorov-Smirnov test rejects the null hypothesis (i.e.,

no enrichment) when the estimated effects for CpGs in the pathway are

lower than (or equal to) those expected by chance. The overall proce-

dure includes a stringent permutation-based correction for multiple

testing.

TABLE I. Descriptive Statistics of Study Participants after Quality Controls and Sample Filtering

Overall cohort Selected subset for biomarker analyses

Variable

Controls

(N 5 18,034)

CCVD cases

(N 5 948)

Controls

(N 5 193)

CCVD cases

(N 5 193)

Gender (men)a 6,468 498 80 80

Age at recruitment (years)a 50.59 (7.8) 55.7 (7.6) 54.9 (7.1) 54.8 (7.4)

Centre of recruitment

Varese 9,699 530 98 98

Turin 8,335 418 95 95

BMI (Kg/m2)a 25.5 (3.9) 26.6 (3.9) 26.4 (3.9) 27.1 (4.3)

Smoking statusa

Current 3,983 287 0 0

Former 4,811 260 68 68

Never 9,240 401 125 125

Alcohol (habitual drinkers)a 2,689 211 32 28

Physical activitya

Inactive 3,380 219 39 38

Moderately inactive 7,002 353 68 71

Moderately active 4,230 195 31 45

Active 3,422 181 28 28

Mediterranean diet score 3.9 (1.8) 3.8 (1.8) 4.1 (1.2) 3.9 (1.8)

Educationa

Low 9,329 581 92 112

Medium 6,810 298 48 57

High 1,877 66 26 13

Prevalent diabetesa 282 58 4 16

Prevalent hypertensiona 3,885 346 47 82

Prevalent hyperlipidemiaa 4,457 365 47 80

CCVD event

AMI/ACS - 200 - 37

Coronary angioplasty - 267 - 36

AMI/ACS 1 coronary angioplasty - 302 - 52

Ischemic stroke - 112 - 49

Carotid angioplasty - 33 - 10

Fatal coronary event - 34 - 9

Air pollution (mg/m3)

NO2
a 48.3 (16.0) 50.2 (15.1) 49.5 (16) 50.1 (15.6)

NOx
a 92.0 (36.3) 96.5 (34.8) 93.6 (35.6) 96.1 (36.2)

PM2.5
a 21.7 (1.9) 22.0 (1.9) 21.7 (1.9) 21.9 (1.8)

Mean and standard deviation are reported for continuous variables, the number of individuals in each group are reported for categorical variables.
at-test (for continuous variables)/Chi-squared test (for categorical variables) P-value< 0.001.
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The WKS enrichment analyses were performed to investigate the

association between protein and DNAmIPs. That is, we performed 13

additional genome-wide analyses (one for each inflammatory proteins),

and then we ran the WKS enrichment algorithm to investigate whether

DNAm in inflammation-related genes could regulate protein expressions.

All the statistical analyses were conducted using the R software

v.3.3.2 (R-Core-Team, 2016).

RESULTS

Association of Air Pollution with CCVD Risk

In the overall cohort study (N 5 18,982; 948 CCVD

cases), exposure to NO2, NOx, and PM2.5 were signifi-

cantly associated with an increased risk of future CCVD

events. The estimated risks were comparable when evalu-

ated in nonsmokers only, and statistically significant for

NO2 and PM2.5 (Table II).

For NO2, the HRs were 1.04 (95% CI 1.01–1.08,

P 5 0.003) in the overall cohort and 1.04 (95% CI 1.00–

1.07, P 5 0.04) in nonsmokers, for each increase of 10

mg/m3. For NOx, the HRs were 1.01 (95% CI 1.00–1.03,

P 5 0.02) in the overall cohort and 1.01 (95% CI 0.99–

1.03, P 5 0.08) in nonsmokers, for each increase of 10

mg/m3. Finally, For PM2.5, the HRs were 1.29 (95% CI

1.08–1.55, P 5 0.006) in the overall cohort and 1.29

(95% CI 1.05–1.60, P 5 0.02) in nonsmokers, for each

increase of 5 mg/m3. The ORs estimated in the subset of

individuals selected for biomarker analysis (193 CCVD

cases and matched controls) were comparable to those

estimated in the whole cohort, though associations were

not significant due to reduced statistical power (Table II).

DNAm in Inflammatory Pathways Related Genes

In the probe-by-probe analyses none of the CpGs was

significantly associated with NO2, NOx, PM2.5 nor with

case-control status after false discovery rate (FDR) for

multiple testing. Supporting Information Figure S2 shows

a summary of the genome-wide results using volcano
plots. The top 100 CpGs for each EWAS analysis are

listed in Supporting Information material.

P-values for the WKS enrichment tests are reported in

Table III. Four out of the seventeen DNAm inflammatory

pathways showed enrichment of significant signals in

association with the risk of future CCVD events. Specifi-

cally, the “Cytokine signaling” pathway (P 5 0.03),

“Innate pathogen detection” pathway (P 5 0.02),

“Phagocytosis-Antigen presentation” pathway (P 5 0.02),

and the “Reactive Oxygen Species (ROS)/Glutathione/

Cytotoxic granules” pathway (P 5 0.04). Interestingly,

“Cytokine signaling” pathway was associated with NO2

and PM2.5 also (P 5 0.02 and P 5 0.03, respectively),

whereas “ROS/Glutathione/Cytotoxic granules” pathway

was associated with PM2.5 also (P 5 0.04). No pathways

were associated with the exposure to NOx. In Supporting

Information Figures S3–S19 the comparisons of the

observed vs. expected (estimated from genome-wide

results) distributions of P-values for each inflammatory

pathway are reported.

Inflammatory Proteins

Association with Air Pollution

Seven out of thirteen inflammatory proteins (Eotaxin,

IL17, EGF, IL-8, MIP1, MPO, and VEGF) were associ-

ated with at least one air pollutant (NO2, NOx, PM2.5)

with nominal P-values ranging from 0.004 to 0.04.

Among those, Eotaxin, IL17, IL-8, and EGF were signifi-

cantly associated with air pollution after correction for

multiple testing (FDR threshold of significance 5 0.006).

Higher concentrations of Eotaxin and IL17 were observed

with higher exposures whereas, lower concentrations of

EGF and IL-8 were associated to higher exposure to pol-

lutants (Table IV).

Association with CCVD Risk

Higher concentrations of CRP, IL17, IL-1rA, and IP-10

were nominally associated with increased risk of CCVD.

No significant associations were found after FDR correc-

tion for multiple testing.

TABLE II. Association of Exposure to Air Pollutants with the Risk of CCVD

Overall cohort (N 5 18,982) Nonsmokers (N 5 14,712)

Subset selected for biomarker

analyses (N 5 386)

Exposure HR (95% CI) P HR (95% CI) P OR (95% CI) P

NO2 1.04 (1.01–1.08) 0.0032 1.04 (1.00–1.07) 0.0374 1.03 (0.94–1.14) 0.4972

NOx 1.01 (1.00–1.03) 0.0225 1.01 (0.99–1.03) 0.0844 1.01 (0.97–1.06) 0.4892

PM2.5 1.29 (1.08–1.55) 0.0061 1.29 (1.05–1.60) 0.0173 1.33 (0.72–2.50) 0.3685

Hazard ratios (HRs) and confidence intervals (CIs) were estimated in the overall cohort (948 CCVD events), in non-smokers (661 CCVD events),

and in the subset of subjects selected for biomarker analyses (193 CCVD events). Covariates included in the models were gender, center of recruit-

ment, season of pollutant measurements (as a proxy for the weather conditions), BMI (continuous), smoking habits (categorical: never, former, cur-

rent smokers), alcohol intake (categorical: no-moderate: less than 28 g/day, habitual drinker: more than 28 g/day), Mediterranean diet score (ordinal

categorical score from 0 to 10), physical activity (ordinal categorical: inactive, low, medium, high), educational level (as proxy for the socio-

economic status, categorical: low, medium, high), prevalent diabetes, hypertension, and hyperlipidemia.
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For CRP, the ORs were 1.72 (95% CI 1.03; 2.87, P 5 0.04)

and 1.96 (95% CI 1.18; 3.29, P 5 0.001) comparing the 2nd ter-

tile and the 3rd tertile with the reference (1st tertile), respectively.

For IL17, the corresponding ORs were 1.24 (95% CI

0.75; 2.06, P 5 0.4) and 1.79 (95% CI 1.04; 3.11,

P 5 0.04). For IL-1rA, ORs were 1.52 (95% CI 0.91; 2.55,

TABLE IV. Association of Inflammatory Proteins with Air Pollutants and Case-Control Status

NO2 NOx PM2.5 Case - control status

b (95% CI) P b (95% CI) P b (95% CI) P OR (95% CI) P

CRP 20.08 (–0.18; 0.02) 0.1343 20.03 (–0.08; 0.01) 0.1494 20.35 (–1.02; 0.32) 0.3091 2nd tertile 1.72 (1.03; 2.87) 0.038

3rd tertile 1.96 (1.18; 3.29) 0.0099

EGF –0.93 (–1.51; –0.34) 0.0021 –0.39 (–0.65; –0.14) 0.003 22.82 (–6.63; 0.98) 0.1471 2nd tertile 0.96 (0.57; 1.61) 0.8766

3rd tertile 0.84 (0.50; 1.41) 0.5185

Eotaxin 0.09 (0.03; 0.14) 0.0012 0.03 (0.01; 0.05) 0.0094 0.49 (0.16; 0.82) 0.0041 2nd tertile 1.04 (0.62; 1.74) 0.8769

3rd tertile 1.08 (0.65; 1.80) 0.7754

IL17 0.08 (0.03; 0.12) 0.0004 0.03 (0.01; 0.05) 0.0005 0.16 (–0.12; 0.43) 0.2618 2nd tertile 1.24 (0.75; 2.06) 0.4062

3rd tertile 1.79 (1.04; 3.11) 0.0374

IL-1rA –0.01 (–0.02; 0.00) 0.0379 0.00 (–0.01; 0.00) 0.036 20.05 (–0.10; 0.01) 0.0845 2nd tertile 1.52 (0.91; 2.55) 0.109

3rd tertile 1.70 (1.01; 2.89) 0.0464

IL-8 –0.08 (–0.13; –0.03) 0.0024 –0.03 (–0.06; –0.01) 0.0032 20.32 (–0.66; 0.02) 0.0626 2nd tertile 0.70 (0.42; 1.18) 0.1804

3rd tertile 0.66 (0.38; 1.13) 0.1344

IP-10 0.01 (–0.01; 0.02) 0.3526 0.00 (0.00; 0.01) 0.3423 0.04 (–0.03; 0.11) 0.2699 2nd tertile 1.94 (1.16; 3.29) 0.0124

3rd tertile 1.52 (0.90; 2.59) 0.1222

MCP-1 0.01 (–0.06; 0.08) 0.7407 0.00 (–0.03; 0.03) 0.8425 0.09 (–0.36; 0.54) 0.6883 2nd tertile 1.61 (0.95; 2.76) 0.0804

3rd tertile 1.26 (0.71; 2.24) 0.4402

MDC 0.00 (–0.16; 0.16) 0.9853 0.01 (–0.06; 0.08) 0.8442 20.18 (–1.20; 0.84) 0.7284 2nd tertile 1.26 (0.76; 2.10) 0.3628

3rd tertile 1.19 (0.71; 2.03) 0.507

MIP1 –0.21 (–0.37; –0.06) 0.0082 –0.10 (–0.16; –0.03) 0.0068 –1.24 (–2.25; –0.23) 0.0162 2nd tertile 0.85 (0.51; 1.41) 0.5237

3rd tertile 0.97 (0.58; 1.61) 0.901

MPO 20.54 (–1.24; 0.16) 0.1336 20.26 (–0.57; 0.05) 0.1016 23.81 (–8.32; 0.70) 0.0991 2nd tertile 1.63 (0.99; 2.70) 0.0574

3rd tertile 1.35 (0.80; 2.28) 0.2622

Periostin 0.24 (–0.34; 0.82) 0.4117 0.03 (–0.22; 0.29) 0.7923 20.15 (–3.86; 3.57) 0.9376 2nd tertile 1.03 (0.62; 1.71) 0.9155

3rd tertile 0.87 (0.52; 1.46) 0.5993

VEGF 0.09 (0.00; 0.18) 0.0616 0.04 (0.00; 0.08) 0.033 0.11 (–0.49; 0.70) 0.7259 2nd tertile 1.04 (0.63; 1.72) 0.8763

3rd tertile 1.32 (0.79; 2.20) 0.2907

Significant results (P-value< 0.05) are highlighted in bold. b (regression coefficients) indicates to the increase/decrease in Box-Cox transformed protein

levels per unit increase in air pollution; OR (odds ratio) refers to the first tertile used as the reference category; CI indicates the 95% confidence interval

TABLE III. Weighted Kolmogorov-Smirnov (WKS) Pathway Enrichment Analyses for 17 Pathways Involved in Inflammation
(from reference: Loza et al. 2007)

Inflammatory pathway # Genes # CpGs NO2 NOx PM2.5 Case-control status

Adhesion-Extravasation-Migration 142 1,045 0.27 0.62 0.07 0.57

Apoptosis signaling 68 504 0.88 0.08 0.65 0.96

Calcium signaling 14 267 0.46 0.32 0.75 0.58

Complement Cascade 40 423 0.18 0.44 0.70 0.26

Cytokine signaling 172 1,120 0.02 0.13 0.03 0.03

Eicosanoid signaling 39 276 0.69 0.34 0.85 0.32

Glucocorticoid/PPAR signaling 21 255 0.29 0.46 0.19 0.45

G-Protein Coupled Receptor signaling 42 716 0.20 0.53 0.77 0.84

Innate pathogen detection 50 305 0.69 0.61 0.66 0.02

Leukocyte signaling 121 1,342 0.56 0.82 0.93 0.51

MAPK signaling 118 1,667 0.97 0.83 0.25 0.30

Natural Killer Cell signaling 31 198 0.47 0.22 0.60 0.55

NF-kB signaling 33 455 0.33 0.14 0.69 0.41

Phagocytosis-Antigen presentation 39 434 0.54 0.99 0.84 0.02

PI3K/AKT signaling 37 478 0.93 0.87 0.88 0.37

ROS/Glutathione/Cytotoxic granules 22 90 0.45 0.37 0.01 0.04

TNF Superfamily signaling 38 390 0.96 0.96 1.00 0.57

The table shows P-values for enrichment adjusted for multiple comparisons using a 10,000 permutations based procedure. Significant enrichments

are highlighted in bold. # Genes 5 number of genes in the pathway; # CpGs 5 number of CpG sites in the pathway.
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P 5 0.1) and 1.70 (95% CI 1.01; 2.89, P 5 0.05). Finally,

for IP-10, ORs were 1.94 (95% CI 1.16; 3.29, P 5 0.01)

and 1.52 (95% CI 0.90; 2.59, P 5 0.1) (Table IV).

Among the four proteins related with increased CCVD

risk, IL17 had a significant association with the TTD

also: b 5 20.60 (95% CI 21.13; 20.06, P 5 0.03).

Identification of Intermediate Biomarkers

Based on the results described above, we identified one

inflammatory protein (IL17) and two DNAmIPs

(“Cytokine signaling” and “ROS/Glutathione/Cytotoxic

granules”) that were independently associated with at

least one pollutant and the risk of CCVD. For intermedi-

ate biomarkers, we have evaluated the reduction in the

estimated effect on CCVD risk due to the inclusion of air

pollution measure as a covariate in the statistical model.

The inclusion of NO2 as a covariate in the logistic

regression model only partially reduced the magnitude

(and significance) of the association of IL17 with CCVD

risk. The ORs after including exposure to NO2 in the

model were 1.19 (95% CI 0.68; 1.70, P 5 0.60) compar-

ing the 2nd tertile with the 1st tertile and 1.70 (95% CI

1.00; 2.91, P 5 0.05) comparing the 3rd tertile with the 1st

tertile.

Similarly, for the DNAmIP enrichment analysis, we

repeated the enrichment analysis using the WKS method.

The first step of the algorithm (the genome-wide scan)

was modified by including NO2 as a covariate in the

logistic regression models. The procedure resulted in a

slight increase of the enrichment P-values that were still

significant after a permutation-based correction for multi-

ple testing. P-values for enrichment were 0.05 for “ROS/

Glutathione/Cytotoxic granules” and 0.04 for “Cytokine

signaling” pathways respectively. We repeated the

described procedures using NOx and PM2.5 instead of

NO2 as relevant exposure, obtaining comparable results

due to the high correlation among air pollution measures

(Supporting Information Table SII).

Association of Protein Biomarkers with DNAm in
Inflammation-Related Genes

To investigate whether DNAm could regulate inflam-

matory protein concentrations in blood, we repeated the

WKS enrichment algorithm using the 13 inflammatory

proteins as the outcome. All but two protein biomarkers

(Eotaxin and MIP1) resulted significantly associated with

at least one DNAmIP (Supporting Information Table

SIII). Particularly, IL17 was independently associated

with 11 DNAmIPs (p range from 0.03 to 0.0004, Support-

ing Information Table SIII) including “Cytokine signal-

ing” (P 5 0.0004) and “ROS/Glutathione/Cytotoxic

granules” pathways (P 5 0.001), whereas MPO was inde-

pendently associated with 10 DNAmIPs (P range from

0.048 to 0.0004, Supporting Information Table SIII).

Details on further sensitivity analyses using other esti-

mates of air pollution and considering cardiovascular out-

comes only (i.e., excluding ischemic strokes) are reported

in Supporting Information material.

DISCUSSION

We have investigated the relationships between expo-

sure to air pollution, inflammatory biomarkers, and inci-

dent coronary and cerebrovascular diseases longitudinally

in the same set of data. Previous studies investigated the

associations of biomarkers either with air pollutants or

with CCVD separately, thus limiting causal interpretation.

As a first step, we have replicated previous observa-

tions of the positive association between chronic exposure

to air pollution (NO2, NOx, both back-extrapolated, and

PM2.5) and CCVD risk (Cesaroni et al., 2014; Peng et al.,

2016). We used an update of the ESCAPE estimates,

based on Europe-wide models (Nunen et al., 2017) in

addition to the previously developed LUR models.

The main aim of this study was to elucidate the biolog-

ical mechanisms linking exposure to air pollution to

CCVD risk and to identify intermediate biomarkers. With

these goals, we designed a case-control study nested in

the EPIC Turin and Varese cohort. Since it has been

shown that smoking habits confound the association of air

pollution with CCVD (Sheppard et al., 2012), our study

sample includes nonsmoking CCVD incident cases (and

matched controls) only. Specifically, we selected all the

nonsmokers (including never and former smokers for at

least one year) experiencing a CCVD event during the

follow-up period (up to 17 years), for whom archived

blood sample was available, and at least one matched

control existed in the cohort. We measured a set of

inflammatory proteins and whole-genome DNA methyla-

tion in blood collected several years (between 3 months

and 17 years; 12 years on average) before CCVD diagno-

sis. We have applied a longitudinal design, previously

defined as “meet-in-the-middle” approach (Vineis et al.,

2013) to investigate the relationship between air pollution,

inflammatory biomarkers and CCVD onset. The “meet-in-

the-middle” analysis aims to identify biomarkers associ-

ated with both air pollution measures (retrospectively)

and the risk of CCVD (prospectively), the latter associa-

tion being adjusted for air pollution measures.

DNAMethylation Biomarkers

For epigenetic biomarkers analysis, we focused on 17 a
priori defined inflammatory pathways (DNAmIPs) and we

tested for overrepresentation (enrichment) of altered

DNAm levels, compared with those expected by chance.

We have chosen this approach because we had limited

statistical power to identify single methylation probes

associated to CCVD and air pollutants in a genome-wide
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study. According to the study by Tsai and Bell (Tsai and

Bell, 2015), our sample size (less than 200 case-control

matched pairs) allowed us to reach a statistical power of

at least 80% (that is 20% probability of type II error),

only with differences in DNAm b values higher than

10%, considering the genome-wide significance level.

Such difference is highly unlikely to be observed in a

prospective study (all the individuals were healthy at the

time of sample collection) conducted on blood samples.

As an example, a systematic review on the role of epige-

netic modifications in cardiovascular disease by Muka

et al. (Muka et al., 2016) indicates the association

between hypo-methylation in F2RL3 gene and the risk of

CVD mortality as the most consistent epigenetic associa-

tion (related to CVD) found in the recent literature so far.

However, the average differences between cases and

healthy controls were lower than 10%. Further, hypo-

methylation at F2RL3 gene was strongly associated with

smoking habits (Zhang et al., 2014; Allione et al., 2015;

Fasanelli et al., 2015), a known risk factor for CCVD,

suggesting F2RL3 gene as a potential mediator in the

association of smoking with CCVD (Breitling et al.,

2012). The evidence above suggested us to consider the

results of the single CpG analyses carefully. Instead, we

hypothesized that a general dysregulation of DNAm lev-

els in genes related to oxidative stress and inflammation

occurs as a consequence of exposure to pollutants and

that, in turn, such dysregulation could be associated with

an increased risk of CCVD. To test this hypothesis, we

selected candidate genes based on a list of the main

inflammation-related genes proposed by Loza et al. (Loza

et al., 2007). They reviewed various phases of inflamma-

tion responses, including the development of immune

cells, sensing of danger, influx of cells to sites of insult,

activation and functional responses of immune and non-

immune cells, and resolution of the immune response,

and identified 17 functional pathways that are involved in

one or multiple stages. In the case our hypothesis is cor-

rect, although we have not the power to detect a single

differentially methylated CpG, we expected to find an

overrepresentation of nominally significant CpGs among

those pertaining to the genes described by Loza et al.,

compared with the CpGs distributed in the rest of the

genome. Given the above, a suitable way to test our a
priori hypothesis was to run enrichment analyses on the

set of candidate pathways. Recently, Geeleher and col-

leagues reported strong bias for gene set analyses when

applied to methylation data (Geeleher et al., 2013). The

most popular available tools for gene set enrichment

(Subramanian et al., 2007; Huang da et al., 2009) were

built for the analysis of gene expression experiments and

are severely biased when applied to methylation data, as

a result of differences in the numbers of CpG sites associ-

ated with different classes of genes and gene promoters.

Moreover not all the changes in DNA methylation are

clearly associated with changes in gene expression of the

same transcript, but the relationship is much more com-

plex (van Eijk et al., 2012). An alternative method to test

for over-representation of significant signals in a set of

probes of interest was proposed by Charmpi and Ycart

(Charmpi and Ycart, 2015). This method compares the

distribution of the test statistics for a set of probes of

interest with the empirical distribution estimated under

the null hypothesis of no association, the latter being esti-

mated from genome-wide results. We chose this approach

because it takes into account correlation patterns among

probes, it is not biased when used for DNA methylation

data, and above all, allowed us to test for enrichment of

user-defined pathways.

Results of enrichment analysis highlighted two DNA-

mIPs associated with both air pollution and CCVD, spe-

cifically “ROS/Glutathione/Cytotoxic granules” and

“Cytokine signaling” pathways. Both pathways are

strongly related to oxidative damage and are relevant in

the light of previously proposed mechanisms (Reuter

et al., 2010; Muralidharan and Mandrekar, 2013). Accord-

ing to the review by Newby and colleagues (Newby

et al., 2015), during exposure to airborne pollutants the

normal phagocytes of the lung surfaces and, to an extent,

the epithelial cells generate oxygen radicals and can

become oxidatively stressed. We showed that not only

these pathways were associated in a statistically signifi-

cant manner to exposure to air pollutants, but they were

also associated with the onset of CCVD longitudinally.

Protein Biomarkers

Among the inflammatory proteins we have investigated,

Interleukin 17 (IL17) in circulating plasma was identified

as an intermediate biomarker, being higher concentrations

associated with both CCVD risk and exposure to pollu-

tants. Interestingly, IL17 was also significantly inversely

associated with time to disease (TTD), indicating an

increasing difference in circulating levels of IL17

between cases and matched controls with decreasing time

between the date of blood sampling and the date of the

CCVD event (in cases). IL17 belongs to the “Cytokine

signaling” pathway according to Loza and colleagues

(Loza et al., 2007), confirming the results obtained using

DNAm data. The involvement of IL17 in the pathogene-

sis of CCVD was recently explained via amplification of

the inflammation induced by other cytokines (Ding et al.,

2012). It was also showed that IL17 plays a role in the

atherosclerotic process (Chen et al., 2010; Gong et al.,

2015), that is in turn related to CCVD onset.

Association between Protein and DNAm Biomarkers

Finally, we have investigated the association of protein

and DNAm biomarkers, using the same statistical

approach described to study the relationship of DNAm
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with air pollution exposure and CCVD risk (i.e., the

WKS enrichment algorithm). We found several statisti-

cally significant associations, being all but two out of 13

protein biomarkers associated with at least one DNAmIP

(Supporting Information Table SIII). Our results reinforce

previous knowledge about DNAm regulation of inflamma-

tory biomarkers (Sabunciyan et al., 2015; Ligthart et al.,

2016; van Otterdijk et al., 2017), including cytokines

(Verschoor et al., 2017) and interleukins (Takahashi

et al., 2015), and support the usefulness of omic profiling

in peripheral blood, for the early identification of disease-

related perturbations caused by toxic exposures (Georgia-

dis et al., 2016).

Strengths and Limitations

This study has limitations: the small sample size lim-

ited the standard EWAS analysis looking for single CpGs

associated with air pollution. This investigation is ongo-

ing in the context of the EXPOsOMICS project in which

we have the appropriate sample size to identify robust

DNA methylation signals associated with air pollution

exposure. Further, knowing the role of inflammation in

allergic/respiratory diseases (Galli et al., 2008; Murdoch

and Lloyd, 2010), and the co-morbidity with CCVD

(Triggiani et al., 2008; Iribarren et al., 2012; Bellocchia

et al., 2013), we cannot exclude that our findings could

be partly related to allergic- and respiratory-related epige-

netic alterations.

The study also has strengths, particularly the inclusion

of all incident cases (with available archived blood sam-

ple) arising in 17 years of follow-up of the EPIC study

among never smokers or former smokers, and the use of

prediagnostic blood samples for biomarker analysis help-

ing causal interpretation of the results.

CONCLUSIONS

We focused on the a priori hypothesis that oxidative

stress-induced inflammation is one of the principal mech-

anisms involved in the association of air pollution with

CCVD. Our findings help in the understanding of the

causal chain linking chronic exposure to air pollution

with CCVD risk, suggesting oxidative stress as the pri-

mary pathway, that in turn activates a series of inflamma-

tory responses, mainly involving the “Cytokine signaling”

pathway. DNA methylation dysregulation induced by

chronic exposure to pollutants contribute to inflammatory

proteins (above all cytokines and interleukins) alterations.

This study results contribute to disentangle the relation-

ship between exposure to air pollution and increased risk

for CCVD, and provide evidence that altered levels of

cytokine inflammatory proteins and changes in DNAm of

key inflammatory genes can be detected several years

before CCVD diagnosis in blood samples, being promis-

ing preclinical biomarkers for CCVD.
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