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Scenarios of the energy–economy–land system can facili-
tate the integrated assessment of the impacts and mitigation 
of climate change. For the Fifth Assessment Report (AR5) 

of the Intergovernmental Panel on Climate Change (IPCC), four 
Representative Concentration Pathways1 (RCPs) have provided cli-
mate researchers with a set of consistent climate forcings2–4. More 
recently, the Shared Socio-economic Pathways (SSPs) have been 
developed5,6. SSPs provide a socio-economic dimension to the inte-
grative work started by the RCPs7. This framework provides a basis 
of internally consistent socio-economic assumptions that represent 
development along five distinct storylines8: development under 
a green-growth paradigm9 (SSP1); a middle-of-the-road develop-
ment along historical patterns10 (SSP2); a regionally heterogeneous 
development11 (SSP3); a development that results in both geograph-
ical and social inequalities12 (SSP4); and a development path that is 
dominated by high energy demand supplied by extensive fossil-fuel 
use13 (SSP5).

Prior to 2015, international climate policy under the United 
Nations Framework Convention on Climate Change focused on the 
goal of keeping the global-mean temperature increase below 2 °C 
relative to pre-industrial levels14. The Paris Agreement reset this 
long-term goal to holding the increase well below 2 °C and pursuing 
efforts to limit it to 1.5 °C15. In this study, we present a set of strin-
gent climate change mitigation scenarios consistent with an increase 
of 1.5 °C in 2100. Six integrated assessment models were included 
in this study (AIM, the Asia–pacific Integrated Model11; GCAM4, 
the Global Change Assessment Model12; IMAGE, the Integrated 

Model to Assess the Global Environment9; MESSAGE-GLOBIOM, 
the Model for Energy Supply Strategy Alternatives and their 
GeneralEnvironmental Impact combined with the Global Biosphere 
Management Model10; REMIND-MAgPIE, the Regionalized Model 
of Investments and Development combined with the Model of 
Agricultural Production and its Impact on the Environment13; and 
WITCH-GLOBIOM, the World Induced Technical Change Hybrid 
model combined with GLOBIOM16), with which we attempted 
to model scenarios that limit end-of-century radiative forcing 
to 1.9 W m−2 under various SSPs (hereafter called ‘SSPx–1.9’ sce-
narios, with SSPx indicating the specific SSP assumed by the sce-
nario and 1.9 the radiative forcing target in 2100, Methods). This 
scenario set allows the structured exploration of climate change 
at a level consistent with limiting the global-mean temperature 
increase in 2100 to 1.5 °C with approximately 66% probability (see 
Fig. 1 and results described below). Overall, all teams were able to 
produce 1.9 W m−2 scenarios in SSP1, and four teams were suc-
cessful in SSP2. Of the three and four modelling frameworks that 
attempted to model 1.9 W m−2 scenarios in SSP4 and SSP5, one and 
two were successful, respectively (see Methods, Supplementary 
Table 1, Supplementary Fig. 1, Supplementary Text  2). From this 
set of 1.9 W m−2 scenarios, a further, stringent climate mitigation 
scenario has been selected for inclusion in the Scenario Model 
Intercomparison Project17 (ScenarioMIP) of the Sixth Phase of 
the Coupled Model Intercomparison Project18 (CMIP6), as well as 
other CMIP6 MIPs (for example, refs 19,20, Fig. 1a, Supplementary  
Text 1, Methods).
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Emission and climate-related outcomes
CO2 and other greenhouse gas (GHG) emissions peak before 2030 
and decline rapidly over the next two to three decades in SSPx-
1.9 scenarios (Fig. 1, see Supplementary Figs. 2–6 for other emis-
sions). By 2050, annual CO2 and GHG emissions are in the range 
of − 9–6 and 1–13 billion tons of CO2-equivalent emissions (gigaton 
GtCO2e yr−1, Methods), respectively, across all available scenarios. 
Underlying these reductions is a phase-out of industry and energy-
related CO2 production at a rate of 0.2–7.1% yr−1 (median: 3.0% yr−1, 
see Supplementary Tables 2, 3 for a complete overview), combined 
with rapid upscaling of carbon capture and storage (CCS) and 
carbon-dioxide removal (CDR, see section on system transforma-
tions below). Near-term emissions vary across the SSPs, because, 
in contrast to SSP1, the effectiveness of near-term climate policies 
is assumed to be limited in other SSPs (defined by so-called Shared 
Policy Assumptions5,21). In that case, global mitigation is regionally 

scattered and accelerates slower over the next few decades,requiring 
it to accelerate faster later on.

All scenarios presented here lead to 1.9 W m−2 radiative forc-
ing in 2100 within rounding precision (Supplementary Fig. 7), but 
they differ in their likelihood of limiting warming below specific 
temperature levels. All scenarios keep warming to below 2 °C with 
more than 66% probability (Fig. 1d), and maximum (peak) median 
temperature estimates vary from 1.5 °C to 1.8 °C. Near-term mitiga-
tion has a determining role here: higher 2030 emissions come with 
a temperature penalty (Supplementary Fig. 8). The probability of 
limiting peak warming to below 1.5 °C relative to pre-industrial 
levels is approximately halved and peak temperature about 0.2 °C 
higher if emissions are at the high (> 45 GtCO2e yr−1) instead of the 
low (< 30 GtCO2e yr−1) end of the available range in 2030 (Fig. 1e). 
By 2100, this variation disappears and all scenarios limit warming 
below 1.5 °C with about 66% probability (Supplementary Figs. 8, 9). 
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Fig. 1 | Emission and temperature characteristics of 1.9 W m−2 scenarios under various SSPs. a, Global CO2 emissions of SSP scenarios with the selected 
CMIP6 ScenarioMIP subset highlighted. Historical emission from ref. 52. All other panels show 1.9 W m−2 scenario data only. b, Global Kyoto GHG 
emissions. Shaded areas show the range per SSP, solid lines the marker scenarios for each SSP and dashed lines single scenarios that are not markers. 
Single model detail is provided in Supplementary Fig. 2. c, Non-CO2 GHGs per scenario in 2100. d, Exceedance probability of various temperature limits 
for the 1.9 W m−2 scenarios with bars showing the full range over all available scenarios per SSP. Except for the first sub-panel, all other panels give 
the exceedance probability over the entire twenty-first century. e, Probability of peak warming versus 2030 GHG emissions in 1.9 W m−2 scenarios. f, 
Dependence of cumulative CO2 emissions on non-CO2 radiative forcing in 2100.
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Whether these pathways provide an acceptable interpretation of the 
Paris Agreement long-term temperature goal is not a scientific but a 
political question22,23, which we do not address here.

Across all 13 available scenarios, net zero GHG emissions are 
reached around 2055–2075 (rounded to the nearest 5 years). Net 
zero CO2 emissions are reached earlier (Supplementary Table 2). 
The year of reaching net zero GHG emissions is inversely correlated 
with emissions in 2030. For example, scenarios with 2030 GHG 
emissions higher than 40 GtCO2e yr−1 reach global net zero GHG 
emissions before 2060 (Supplementary Fig. 10). Cumulative CO2 
emissions over the 2016–2100 period range from − 175 to 475 GtCO2 
(SSP2 median: 250 GtCO2, rounded to the nearest 25 GtCO2). End-
of-century non-CO2 radiative forcing strongly influences the varia-
tion across this range24 (Fig. 1f). These values are consistent with 
earlier published estimates24–27 (Supplementary Text 3) and lead to 
2100 atmospheric CO2 concentrations in the 350–390 p.p.m. range. 
Potential feedbacks that are currently not included, such as CO2 and 
CH4 release from permafrost thawing or changes in other natural 
sources, can reduce carbon budgets further28,29 and therefore alter 
the presented climate outcomes.

Even in these very stringent mitigation pathways, sizeable 
remaining CH4 and N2O emissions are projected by all models  
(Fig. 1c, Supplementary Fig. 6), and in 2100, respectively, 53–85% 
and 59–95% of these emissions originate from agriculture. The 
uncertainty in CH4 and N2O emissions is large with inter-model 
variations dominating inter-SSP variations. High and low estimates 
for 2100 differ by a factor of 2–3, mainly owing to uncertainties in 
how emissions from agriculture are treated and can be mitigated in 
different models30,31. Important uncertainties also remain in the CO2 
mitigation contribution of the land-use sector31 (Supplementary 
Fig. 5). Here, emissions decline over the long term, but whether and 
to what degree the land-use sector becomes a global sink is very 
model-dependent (Supplementary Text 4).

System transformations
Achieving pronounced emission reductions requires a transforma-
tion of the global economy. Previous studies have discussed the 
implications of such a global transformation for the energy and 
land-use system32, highlighting the importance of limiting future 
energy demand32 to keep warming to below 1.5 °C and of changing 
consumption patterns33 combined with sustainable intensification 
of agriculture34. We here focus on confirming these characteristics 
and exploring the extent to which they vary across SSPs.

All 1.9 W m−2 scenarios in this study strongly limit energy 
demand growth (Fig. 2d, Supplementary Fig. 11), with energy 
intensity reduction rates of 2–4% yr−1 from 2020 to 2050 (Fig. 2d). 
In SSP2, final energy demand in 2050 is limited to 10–40% above 
2010 levels (rounded to the nearest 5%). This compares to 10% 
below to 30% above, and 45–75% above 2010 levels in SSP1 and 
SSP5, respectively. Energy conservation is therefore a common 
strategy in stringent mitigation scenarios, but it also has limits.

Energy supply also has to be transformed to achieve reductions in 
deep emissions. This includes upscaling of bioenergy and renewable 
energy technologies, shifting away from freely emitting fossil-fuel 
use, and the deployment of CDR, such as Bioenergy with Carbon 
Capture and Sequestration (BECCS) or large-scale afforestation 
(see Supplementary Text 5 for a discussion of CDR in SSPx-1.9 sce-
narios). Non-biomass renewables (solar, wind, hydro and geother-
mal energy) scale up rapidly over the twenty-first century (Fig. 2a), 
reaching mid-century electricity shares of 60–80% and 32–79% in 
SSP1 and SSP2, respectively (Supplementary Fig. 12). In the marker 
SSP scenarios, these shares are 79%, 60% and 61% in SSP1, SSP2 and 
SSP5, respectively. Both solar and wind energy is projected to scale 
up consistently across the different SSPs (Supplementary Fig. 13). 
Particularly for wind energy, inter-model variations dominate over 
differences induced by different SSPs, a feature also present in less 

stringent mitigation pathways35 (Supplementary Table 4). SSP2 and 
SSP5 1.9 W m−2 scenarios see a strong upscaling of nuclear power, 
whereas in SSP1, and particularly its marker implementation, the 
contribution of nuclear energy use decreases compared to today’s 
levels (Supplementary Fig. 13).

Under all SSPs, 1.9 W m−2 scenarios show a clear shift away from 
unabated fossil fuels (that is, without CCS, Fig. 2c), and a phase-
out of all fossil fuels. The marker implementations exhibit rapidly 
declining contributions of coal until 2040 (less than about 20% of its 
2010 contribution in 2040), followed by a phase-out of oil until 2060 
(Supplementary Figs. 14, 15). The potential contribution of natural 
gas to the primary energy mix is the most uncertain, with mid-cen-
tury contributions ranging from 22 to 267 exajoules (EJ) yr−1 across 
all scenarios compared to about 100–110 EJ yr−1 in 2010. Differences 
in preferences for gas supply across models here dominate the varia-
tion in costs and availability assumptions owing to alternative socio-
economic pathways (Supplementary Table 4, Supplementary Fig. 16).

Bioenergy is used in large amounts in all 1.9 W m−2 scenarios, 
and this can raise concerns for food security or biodiversity36–38. 
These concerns depend both on how and how much bioenergy is 
produced. Bioenergy demands can be met through dedicated energy 
crops or through residues. The latter option comes with fewer trade-
offs than dedicated bioenergy crops38. Models, however, project very 
different shares for the use of residues (Supplementary Table 5), and 
further research clarifying its potential would be essential. For 2050, 
global technical bioenergy potentials (including energy crops and 
residues) were identified ranging from < 50 to > 500 EJ yr−1. High, 
medium and low agreement was attributed to potentials of 100, 
300 and > 300 EJ yr−1, respectively36. Bioenergy use is increased by 
1–5% per year between 2020 and 2050 in 1.9 W m−2 scenarios. Total 
bioenergy use in 2050 is kept below about 300 EJ yr−1, and in most 
cases below 150 EJ yr−1 (Supplementary Fig. 17). In a green-growth 
SSP1 world, markedly lower bioenergy contributions are projected 
compared to an SSP2 world that continues the historical experience 
(34–112 EJ yr−1 lower in 2050). Putting this into context, scenar-
ios project approximately 100 EJ yr−1 of bioenergy use (full range: 
38–112, with important variations across SSPs) in baseline scenar-
ios without any climate policy (Supplementary Fig. 17).

In 1.9 W m−2 scenarios, land for energy crops and forest area is gen-
erally projected to expand during the twenty-first century, with large 
variations across models, and this can impact land for agriculture 
and water availability39,40 (Fig. 2f, Supplementary Fig. 18). However, 
in SSP1 the decrease in agricultural land in 1.9 W m−2 scenarios is 
reasonably similar to what is projected in a no-climate-policy base-
line merely owing to low demand for agricultural commodities and 
high agricultural intensification. Pasture is one of the activities most 
affected by expanding other land uses and declines robustly across 
models and SSPs (Supplementary Fig. 19). In the middle-of-the-road 
SSP2 world, pastures decreases by 1–20% in 2050 compared to 2010 
levels, and in SSP1, pastures also decrease by 8–16%. In a fossil-fuel 
intensive SSP5 scenario, it declines by 15–25%. It is important to note 
that SSP1 baseline scenarios already project a pasture-land decrease 
of 1–11% due to shifts towards less meat-intensive diets, limited food 
waste and a return of the world population to 7 billion people by 
21005,9,31. This reaffirms the important role that changes in food con-
sumption in combination with sustainable intensification of agricul-
ture have for stringent mitigation31,34,41.

Large-scale afforestation and reforestation can make an impor-
tant contribution to the overall CDR effort. In the sustainable 
SSP1 world, pressure on land is relatively low, and the forest area 
in 2050 can therefore expand by 0–24% relative to 2010. However, 
in the middle-of-the-road SSP2 scenarios, results are mixed, with 
some models projecting forest area to decrease by 2% and oth-
ers report an increase of up to 18%. SSP5 sees a change of 0–16% 
(Supplementary Table 6). Not all models explicitly include affores-
tation as a mitigation option and ranges therefore span results that 
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are not fully comparable across models. However, in all 1.9 W m−2 
scenarios climate policy leads to a net forest expansion compared 
to no-climate-policy baselines (Fig. 2e). Integrated policy packages 
are required that ensure food security is achieved together with 
 climate change mitigation42.

BECCS contributes the largest part of CDR in 1.9 W m−2 scenar-
ios (Supplementary Fig. 20). Between 150–1,200 GtCO2 (rounded 
to nearest 25 GtCO2), equivalent to about 4–30 years of current 
annual emissions, is removed from the atmosphere via BECCS 
during the twenty-first century, with important variation between 
models and across SSPs (Fig. 3a, d). SSP1 shows the lowest BECCS 
deployment over the twenty-first century (150–700 GtCO2) owing 
to its lower final energy demand and baseline emissions, compared 
to SSP2 (400–975 GtCO2) and SSP5 (950–1,200 GtCO2). None of 
the SSPx-1.9 scenarios explicitly attempted to limit the contribu-
tion from BECCS. The numbers reported here therefore represent 
projections of estimated cost-effective BECCS deployment in 1.9 
W m−2 scenarios, but do not represent minimum BECCS require-
ments in a strict sense.

Abated fossil fuels—that is, fossil fuels combined with CCS (fos-
sil–CCS)—are often used in models as a bridging solution. However, 
fossil–CCS still results in residual CH4 emissions from coal mining 
or gas handling, and CO2 emissions due to imperfect capture and 
leakage. These emissions can become too substantial for very strin-
gent mitigation transitions. Indeed, almost all 1.9 W m−2 scenarios 
deploy less cumulative fossil–CCS than weaker mitigation scenar-
ios (Fig. 3c). Optimal 1.9 W m−2 strategies are therefore not merely 

‘more of the same’. Overall, the BECCS share of total CCS increases 
(Supplementary Fig. 20). CDR is thus preferred over fossil–CCS in 
very stringent mitigation scenarios.

Differential mitigation
A previous study43 has identified characteristics of 1.5 °C pathways in 
comparison to 2 °C pathways. These characteristics were (i) greater 
mitigation efforts on the demand side; (ii) energy efficiency improve-
ments; (iii) CO2 reductions beyond global net zero; (iv) additional 
GHG reductions mainly from CO2; (v) rapid and profound near-term 
decarbonization of energy supply; (vi) higher mitigation costs; and 
(vii) comprehensive emission reductions implemented in the com-
ing decade. Using our 1.9 W m−2 and 2.6 W m−2 scenarios as prox-
ies for 1.5 °C and 2 °C pathways, these characteristics still hold when 
assessed with four additional models and varying socio-economic 
assumptions (Fig. 4, Supplementary Text 6, and results above). None 
of the 1.9 W m−2 scenarios show a peak of emissions after 2020, and 
82–98% of additional cumulative mitigation over the 2020–2100 
period is achieved through CO2 reductions (Supplementary Fig. 21). 
Fig. 4 further illustrates the relatively stronger demand-side mitiga-
tion efforts in 1.9 W m−2 scenarios, particularly in the transport and 
building sectors (see also Supplementary Figs. 22–24).

Mitigation costs increase substantially between 1.9 and 
2.6 W m−2 scenarios reflecting higher marginal abatement costs 
(Figs. 4,5). The relative carbon price increase is largest in SSP2 
(Fig. 4) and also SSP1 sees large relative increases across all models 
(Supplementary Figs. 22–24). However, in absolute terms, carbon 
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prices (Fig. 5), consumption losses and energy supply mitigation 
investments (Supplementary Fig. 26) are highest when assuming the 
less favourable socio-economic conditions of SSP2, SSP4 and SSP5. 
For instance, the average discounted carbon prices (discounted to 
2010 over the 2020–2100 period; Fig. 5) are estimated to be about  
50–165 US$ per tCO2e in SSP2 (rounded to the nearest 5). They 
are approximately 35–65% lower in SSP1, and for the two reported 
SSP5 scenarios the change is − 30% and + 5%, respectively. The large 
range of carbon prices is mainly driven by model uncertainties, 
which were already identified for 2.6 W m−2 scenarios5, but are more 
pronounced here owing to the more stringent target.

Enabling and disabling factors
Our results show that some socio-economic developments and 
assumptions about policy effectiveness preclude achieving strin-
gent mitigation futures (Fig. 5). Such failures were anticipated 

for SSP3, in which very heterogeneous regional development and 
debilitating policy assumptions already rendered limiting end-of-
century radiative forcing to 2.6 W m−2 unachievable in the models5 
(Supplementary Text 2). However, in SSP4 and SSP5 limiting radia-
tive forcing to 1.9 W m−2 proved difficult too. In SSP4, a world that 
promotes both geographical and social inequalities, only one out of 
three models attempting a 1.9 W m−2 scenario was successful. Weak 
mitigation is achieved rather easily in SSP45,12. However, the lack 
of control over land-related emissions in developing countries and 
lower acceptability of CCS in developed countries in SSP4 make 
very low emissions pathways unachievable12. Also in SSP5, a world 
dominated by high economic growth and fossil-fuel development, 
challenges to mitigation are high13. Finally, under a middle-of-the-
road development (SSP2) and under a green-growth paradigm 
(SSP1) four and six models, respectively, were able to produce a 
1.9 W m−2 scenario (Supplementary Table 1).

AIM/CGE

60 45 34 26 19
0

1 1

GCAM4

60 45 34 26 19
0

IMAGE

60 45 34 26 19
0

0.5

MESSAGE-GLOBIOM

60 45 34 26 19
0

0.5

REMIND-MAgPIE

60 45 34 26 19
0

1

WITCH-GLOBIOM

60 45 34 26 19
0

1

2000 2020 2040 2060

Time (years)

2080 2100
0

5

10

15

20

25

30

35

A
nn

ua
l C

O
2 

se
qu

es
te

re
d 

by
 C

C
S

ac
ro

ss
 1

.9
 W

 m
–2

 s
ce

na
rio

s 
(G

tC
O

2 
yr

–1
)

a

SSP1
SSP colours:

SSP4
SSP2

SSP5

Cumulative CO2 stored by bioenergy with CCS
(BECCS) in twenty-first century (in 1,000 GtCO2)

dCumulative CO2 stored by fossil fuels with CCS
(Fossil–CCS) in twenty-first century (in 1,000 GtCO2)

c

Cumulative CO2 stored by CCS
in twenty-first century (1000 GtCO2)

b

Baseline

AIM/CGE

60 45 34 26 19
0

1

2

GCAM4

60 45 34 26 19
0

1

2

IMAGE

60 45 34 26 19
0

1

MESSAGE-GLOBIOM

60 45 34 26 19
0

1

REMIND-MAgPIE

60 45 34 26 19
0

1

WITCH-GLOBIOM

60 45 34 26 19
0

1

AIM/CGE

60 45 34 26 19
0

1

GCAM4

60 45 34 26 19
0

1

IMAGE

60 45 34 26 19
0

0.6

MESSAGE-GLOBIOM

60 45 34 26 19
0

1

1

REMIND-MAgPIE

60 45 34 26 19
0

WITCH-GLOBIOM

60 45 34 26 19
0

0.6

SSP5

SSP3

SSP2

SSP4

SSP1

Baseline Baseline

BaselineBaselineBaseline

Baseline Baseline Baseline

BaselineBaselineBaseline

Baseline Baseline

BaselineBaseline Baseline

Baseline

Fig. 3 | BECCS, fossil–CCS and CCS across SSPs and across climate targets. a, Annual amount of CO2 stored by CCS in 1.9 W m−2 scenarios. Shaded areas 
show the range per SSP, solid lines the marker scenarios for each SSP and dashed lines single scenarios that are not markers. b, Variation per modelling 
framework and per SSP of cumulative CO2 stored by CCS during the twenty-first century when moving from a world in the absence of climate policy 
(baseline) to increasingly more stringent climate targets (6.0, 4.5, 3.4, 2.6 and 1.9 W m−2) c,d, As b but for fossil–CCS and BECCS, respectively. Note that 
axis limits vary across models.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATuRE CLiMATE CHANGE | VOL 8 | APRIL 2018 | 325–332 | www.nature.com/natureclimatechange 329

http://www.nature.com/natureclimatechange


Articles Nature Climate ChaNge

Mitigation challenges for achieving a 1.9 W m−2 target thus dif-
fer strongly across the SSPs, as illustrated in Fig. 6. For example, 
the amount of CO2 emission that has to be avoided varies by a 
factor of two between SSP1 and SSP5 worlds in 1.9 W m−2 scenar-
ios (Fig. 6a). The projected use of BECCS varies by a factor 2 to 
almost 3 between SSP1, and SSP2 and SSP5, respectively (Fig. 6c), 
and also land-use CO2 mitigation contributions vary massively yet 
less distinctly (Fig. 6b). Furthermore, the shift away from baseline 
development implied by the energy system transformation is also 
markedly smaller in SSP1 than in SSP2 or SSP5 (Fig. 6d–f), and 
therefore comes with potentially lower overall societal hurdles. 
Even when overcoming these differences in starting points, the dif-
ficulty or facility of achieving deep mitigation remains very diverse 
across SSPs. In particular, the lower level of final energy demand 
that can be achieved in SSP1 implies a smaller energy supply 
 system5,35 (Fig. 6g) and thus also a smaller amount of investment 
needs to decarbonize it (Fig. 6h). Finally, also residual emissions 
from agriculture and the emission intensity of food production dif-
fer strongly between SSPs (Fig. 6i,j) highlighting that challenges 
have to be overcome in all sectors. Each of these dimensions identi-
fies possibilities for potential policy intervention.

interpretation and feasibility
What can SSPx-1.9 scenarios teach us about the feasibility of limit-
ing warming to 1.5 °C? Typically, feasibility refers to a multi-dimen-
sional concept that considers aspects of geophysics, technology, 
economics, societal acceptance, institutions and politics, among 
other disciplines. In this context, integrated scenarios provide 
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insights about the technological and economic assumptions under 
which a global climate goal could or could not be achieved. However, 
because models are stylized, imperfect representations of the world, 
feasible dynamics in a model might be infeasible in the real world, 
while vice versa infeasibility in a model might not mean that an out-
come is infeasible in reality.

For example, modelled energy transition pathways assume broad 
social acceptance, convergence towards global cooperation, and 
limited political inertia or institutional barriers—conditions that 
are different in reality. At the same time, reality can also move faster 
than assumed in models44. Advanced and pervasive information 
technologies that dominate our lives today would not have been 
considered feasible half a century ago, and also recent real-world 
cost reductions for renewable energy technologies exceeded expec-
tations even of the more optimistic scenarios from 20 years ago.

Earlier studies have highlighted the importance of deriving 
insights from scenarios that are able to reach the intended target, 
and scenarios that indicate under which conditions a target can-
not be met45. This has led to the development of more sophisticated 
interpretations of structured scenario ensembles, which suggest 
that the proportion of successful scenario results can be used as an 
indicator of infeasibility risk46. In this context, our scenarios can 
illustrate that multiple technologically salient options are available 
for limiting warming increase to 1.5 °C, but that the risk of failure 
increases markedly in the high growth, unequal and/or energy-
intensive worlds of SSP3, SSP4 and SSP5. Any interpretation of 
models that are unable to reach a certain target comes with cave-
ats, because models, including IAMs, are coarse approximations of 
reality. Real-world feasibility of a particular scenario also depends 
on factors that are not covered by current IAMs (such as social 
support) or enabling factors (such as rapid technological develop-
ments). These might shift assessments of feasibility in either a more 
positive or negative direction.

The policy scenarios reported here thus inform certain aspects, 
but should not be considered as an absolute statement on feasibil-
ity32. Policy analysts and advisors still need to translate the insights 
of this and other related studies39,43,47–51 into a more complete assess-
ment of feasibility, which accounts for the broader context of soci-
etal preferences, politics and recent real-world trends.

Going forward
This study aimed to develop a set of stringent integrated commu-
nity scenarios that can facilitate the assessment of climate impacts, 
mitigation and adaptation challenges in the context of the Paris 
Agreement. However, continued research is needed. A  stronger 
involvement of the social sciences that study how societies change 
and transform can provide valuable complementary insights. 
To  facilitate such further analyses, data presented here are made 
available to the wider community. Finally, the SSP1-1.9 marker 
implementation will be included as a very low climate change sce-
nario in CMIP6 ScenarioMIP (Supplementary Text 1), and detailed 
climate data for these scenarios will become available  during the 
2018–2020 time period17,18.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41558-018-0091-3.
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Methods
Methodological context. The IPCC AR5 assessed pathways that limited radiative 
forcing in 2100 to 2.6 W m−2, allowing a higher level during the century32. This level 
was deemed likely (> 66% probability) to limit global-mean temperature rise to 
below 2 °C relative to pre-industrial levels by 210053. There are various motivations 
to explore even more stringent scenarios. For example, in several regions and 
particular subsystems, such as tropical coral reefs, the impacts for a global average 
temperature rise of 2 °C can already be considerably large54,55. Recent research 
has also reported discernible differences in climate impacts between a world 
that is 1.5 °C or 2 °C warmer56, and these future impacts depend on the evolution 
of both the climate and the socio-economic system. Our scenarios provide a 
quantification of these dimensions for worlds that are 1.5 °C warmer, and can serve 
as a starting point for further research by other communities, such as, for example, 
the adaptation, water or sustainable development communities. The scenarios 
presented here are an extension of efforts to provide scenarios for the integrated 
assessment of climate-change-related challenges5,6,57: the SSP scenario matrix 
framework7. Studies already use these narratives to explore the actions required to 
limit radiative forcing in 2100 to levels varying from 8.5 W m−2 down to 2.6 W m−2 
(refs 5,9–13,16,31,35,47), and their detailed emissions and land-use developments5 serve as 
inputs for CMIP6 ScenarioMIP17, as well as other MIPs19,20.

Modelling protocol. Participating modelling teams were asked to provide 
scenarios that comply with specific modelling characteristics and that are derived 
with the same models, model versions and assumptions as used for the SSPs5 
(see below). The modelling protocol consisted of a set of simulations in which 
total anthropogenic radiative forcing in 2100 is limited to 1.9 W m−2. The limit of 
1.9 W m−2 is evaluated with the simple carbon-cycle and climate model MAGICC 
(Model for the Assessment of Greenhouse Gas Induced Climate Change)58 in a 
setup comparable to the initial setup used for the RCPs4. The 1.9 W m−2 limit was 
selected to result in at least 0.3 °C of global mean temperature increase difference 
with corresponding 2.6 W m−2 scenarios, which would be consistent with at least 
50% of the global land surface experiencing statistically significant changes in 
temperatures59. The 1.9 W m−2 limit is achieved in the IAMs by adjusting the 
CO2-equivalent carbon price. This means that the radiative forcing target is 
achieved through reductions in GHG emissions and related co-emissions, but not 
through intentional increases in aerosol emissions or solar radiation management. 
Scenarios are run for all SSPs available in each respective modelling framework, 
and with their corresponding Shared Climate Policy Assumptions21, which 
influence the regional and sectorial application of CO2-equivalent carbon prices 
(see appendices in ref. 5). Scenarios are labelled with the forcing target identifier 
'1.9' in combination with the respective SSP identifier, for example, SSP1–1.9 for a 
1.9 W m−2 scenario with SSP1 assumptions. For each SSP, a marker implementation 
was selected, which represents the characteristics of that SSP particularly well5. 
If appropriate, insights are drawn from a comparison of marker scenarios only. 
As was the case with RCP and SSP construction, no account of climate feedbacks 
to human activities and associated emissions is taken into account in the 
scenarios reported here.

Model participation. Six modelling frameworks were included in this study:  
AIM/CGE11, GCAM412, IMAGE9, MESSAGE-GLOBIOM10, REMIND-MAgPIE13 
and WITCH-GLOBIOM16. To ensure consistency and comparability, the study 
was carried out with the same model versions and setup as used for the other SSP–
RCP work5. Detailed descriptions of the SSP implementations in all participating 
frameworks are available as part of a special issue on the quantification of the 
SSPs9–13,16, with overview papers showing a comparison of results5 as well as a 
synthesis of key insights related to the energy system35 and land use31. An overview 
of model documentation, including the native regional resolution of the models 
and extensive references, is available in appendix D of ref. 5. Supplementary Table 1 
provides a succinct overview of the modelling frameworks and key references.

Two modelling frameworks have slight updates to their model setups since 
earlier publication of the SSP-RCP work5: (i) GCAM: The implementation of 
near-term policy restrictions as dictated by the Shared Policy Assumptions5,21 
has been modified for 'F2' (see ref. 5) by ensuring that a linear carbon–price 
trajectory is followed between 2020 and 2040. GCAM’s agricultural assumptions 
in 2020 have been adjusted to better align emissions with observations. 
In particular, agricultural productivity estimates from 2011 to 2020 have been 
reduced. (ii) WITCH: A recalibration in the supply cost curves of Storage and 
Transportation of CO2 has been carried out. On the basis of the regional storage 
cost curves of ref. 60, availability curves per region have been fitted to provide better 
cost estimates as the amount of stored CO2 increases markedly, and to ensure the 
estimated storage potential is in line with more recent publications.

Not all modelling teams attempted to model all SSPs, and many only 
implemented a subset, either because their model was not appropriate to represent 
the particularities of a specific SSP or because of time and resource constraints. 
No SSP3–1.9 scenarios have been reported as reaching a 2.6 W m−2 target was, under 
these assumptions, already not possible5 (Supplementary Table 1, Supplementary  

Fig. 1, Supplementary Text 2). Marker implementations are available for the 
1.9 W m−2 scenarios for SSP1, SSP2 and SSP5.

The set of modelling frameworks participating in this study represents an 
ensemble of opportunity. However, it nevertheless represents a wide variety of 
modelling approaches and model behaviour. Several different model types are 
represented, including Computable General Equilibrium (CGE) models, partial 
equilibrium models and hybrid models that combine a systems dynamics or 
a systems engineering model with a CGE (see Supplementary Table 1). 
Three frameworks are intertemporal optimization frameworks, and the other 
three are recursive dynamic frameworks (see table 1 of ref. 5). The set of modelling 
frameworks spans the whole spectrum of model response classes as identified 
in ref. 61, that is, from low (WITCH) to high response (for example, REMIND, 
GCAM and MESSAGE). Considering these various dimensions, the ensemble of 
opportunities described by modelling frameworks participating in this study spans 
a wide diversity of the models that are available.

The scenarios presented here do not consider all potential CDR options 
(for example, they do not include direct air capture, enhanced weathering, biochar, 
soil organic carbon or ocean fertilization) and exclude solar radiation management. 
In these scenarios, CDR is thus mainly achieved by BECCS or afforestation.

Emission and temperature assessment. GHG emissions here always refer to 
the gases of the Kyoto basket (that is, CO2, CH4, N2O, HFCs, PFC and SF6 
but excluding the recently added gas NF3)62, aggregated with 100-year Global 
Warming Potentials from the IPCC Fourth Assessment Report63. Global-
mean temperature change is reported relative to the 1850–1900 base period, 
here referred to as the pre-industrial period. Exceedance probabilities are 
computed with a probabilistic setup of the MAGICC model64,65 similar to 
the setup used in the IPCC AR5 Working Group III contribution32. The 
distribution of equilibrium climate sensitivity assumed in this setup is derived 
from the climate sensitivity assessment of the IPCC Fourth Assessment Report 
and hence fully consistent with this Report65. Our setup has similar results 
when updated to the values of the IPCC’s most recent assessment (see ref. 66). 
The implied transient climate-response distribution has a median of 1.7 °C 
with a 5–95% range of 1.2–2.4 °C. The performance of this model setup 
is compared to the response of complex general circulation models  
in fig. 6.12 of ref. 32.

Data availability. Scenario data for all SSPx–1.9 scenarios will be made accessible 
online via the SSP Database portal: https://tntcat.iiasa.ac.at/SspDb/.
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