
Prognostic research in treated populations

Romin Pajouheshnia



Prognostic research in treated populations.

PhD thesis. Julius Center for Health Sciences and Primary Care, University Medical 
Center Utrecht, Utrecht, the Netherlands

Author 	Romin Pajouheshnia

The studies in this thesis were funded by the Netherlands Organization for Scientific 
Research (projects 9120.8004 and 918.10.615). Financial support by the Julius Center 
for Health Sciences and Primary Care for the publication of this thesis is gratefully 
acknowledged.

ISBN 978-94-93019-95-9
Design ProefschriftMaken | proefschriftmaken.nl
Printed by ProefschriftMaken | proefschriftmaken.nl



Prognostic research in treated populations

Prognostische onderzoek met behandelde populaties
(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof. dr. H.R.B.M. Kummeling,

ingevolge het besluit van het colege voor promoties
in het openbaar te verdedigen op

dinsdag 30 oktober 2018
des middags te 4:15 uur

door
Romin Pajouheshnia

geboren op 21 oktober 1988
te Plymouth, United Kingdom



Promotor:		  Prof. dr. K.G.M. Moons

Copromotoren:		 Dr. L.M. Peelen
			   Dr. R.H.H. Groenwold



Contents

Chapter 1 General introduction 7

Chapter 2 Performance of the Framingham risk models and Pooled 
Cohort Equations for predicting 10-year risk of cardiovascular 
disease: a systematic review and meta-analysis

17

Chapter 3 Treatment use in prognostic model research: a systematic 
review of cardiovascular prognostic studies

83

Chapter 4 Accounting for treatment use when validating a prognostic 
model: a simulation study

123

Chapter 5 Accounting for time-varying treatment use when developing 
a prognostic model from observational data: a comparison of 
approaches

151

Chapter 6 Measurement error impacts on the discriminative ability and 
transportability of a prediction model

171

Chapter 7 Reducing research waste: when and how to use data from 
randomized trials to develop or validate prognostic 
prediction models

185

Chapter 8

Appendices

General discussion

Summary
Samenvatting
Dankwoord
List of publications
About the author

203

213
219
227
233
237





CHAPTER 1

General introduction 



Chapter 1

8



General introduction

9

What are clinical prediction models?

Prediction models are an important tool in modern, evidence-based clinical practice.1-5 
Prediction models can be broadly divided into two categories, either diagnostic- to 
predict the presence of a condition or health status or prognostic- to predict the future 
occurrence of a health outcome or a health trajectory.6, 7 In both cases, the models combine 
and weight clinical and demographic information from an individual to commonly 
provide an estimated probability of having or developing a certain outcome.8, 9 The 
predicted probabilities provided by such models can be used to guide or support the 
decisions made by health professionals and patients. Several studies have demonstrated 
the added value of using model-based predictions over clinical gestalt, with gains in 
accuracy, efficiency, consistency and cost-effectiveness frequently cited as a potential 
benefits.10-12

The evidence basis for prediction models is founded on the use of (large) data sets from 
relevant populations and settings for their development and validation.13 The study 
populations in prediction model studies should be representative of individuals for 
whom predictions will be made in practice- the “target population” for the prediction 
model. Once a model has been developed, the model must be externally validated, i.e. 
tested or evaluated in terms of its predictive accuracy,14-17 before being assessed in terms 
of its impact on clinical decisions and the health of individuals, and finally implemented 
in routine practice.

What do we expect from a good prediction model?
When validating a prediction model, there are a number of metrics that are commonly 
considered.4, 18 A summary of these measures is presented in Table 1. In essence, 
predictions made by the model should be as accurate as possible, in order to improve 
decision making or patient counselling.

Crucially, a prediction model should not only perform well for the study participants 
from whose data the model was derived, but also in other individuals, usually from the 
model’s target population. These individuals may come from a different geographical 
location or a different health setting with a different standard of care (e.g. primary 
care vs. secondary care),19 and thus may come from a population with a substantially 
different distribution of risk factors.16, 20, 21 As a result, the goal of developing prediction 
models that can be generalized to future individuals remains challenging.
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Table 1: A summary of common measures of prediction model performance.

Performance criteria Explanation Common metrics

Discrimination How well a prediction model can correctly 
separate cases (do/will have the outcome) 
from non-cases (do not /will not have the 
outcome).

• �Area under the ROC curve 
(AUC) or c-statistic

• D-statistic 
• Discrimination slope

Calibration The agreement between the predicted 
probabilities provided by the model and 
actual outcomes of individuals.

• Calibration intercept, slope 
• Observed:expected ratio

Overall performance The overall accuracy of predictions or 
degree to which the model fits the data.

• R2

• Brier score
Clinical utility The benefit of using a prediction model in 

decision making.
• Decision curve 
• Net benefit

The problem: heterogeneous and sub-optimal model performance
In recent years, a number of systematic reviews of prediction models have been published, 
across a range of medical areas. Common findings of these studies include poorer 
performance of prediction models when validated in external data sets and considerable 
heterogeneity in the performance of prediction models from study to study.22, 23 Clearly, 
poor performance across populations in terms of the measures listed in Table 1 can 
seriously limit the usefulness of a prediction model. Similarly, heterogeneity in the 
performance of a prediction model poses a substantial challenge for end-users (e.g. 
health care professionals and policy makers) when trying to determine whether or not a 
prediction model is suitable for use. As a result, when considering a particular prediction 
model, end-users are left struggling with the following questions:

•	 Will the model provide accurate predictions for future individuals? 
•	 For which patients is the prediction model most suitable?
•	 Will the model transport well to different settings?
•	� If there are competing models, which model should be preferred for a specific 

patient?

Heterogeneity in the performance of prediction models is commonly attributed to 
differences in the associations between predictors and outcomes across populations, 
and variation in participant characteristics or “case-mix” in the presence of interactions 
between these characteristics and unmeasured variables, a phenomenon that has been 
termed the “spectrum effect”.24 As a consequence, recommendations have been made 
for the interpretation of the findings of prediction model performance in the presence 
of case-mix variation across model validation studies.25-29 However, there is a growing 
body of evidence that additional factors influence prediction model performance when 
evaluated across different study populations.23, 30-33 An issue of primary concern is bias in 
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the development and validation of prediction models due to mismatches between what 
studies intend to estimate, and the methods and data used in the studies. 

Treatment use in prediction studies
Typically, the data used to develop or validate clinical prediction models come from 
individuals who receive treatment (e.g. medication or surgical procedures) or health 
interventions (e.g. changes in care or monitoring, or lifestyle changes), especially in 
the context of disease prevention. Treatment can be considered as one aspect of the 
case-mix of a population, and can vary greatly depending from setting to setting, 
depending on a number of factors such as the policy or protocols within a setting, 
cultural preferences or trends (over time), or the availability of certain interventions. On 
top of this, concerns have been raised over the use of treatments in prognostic prediction 
studies when interest lies in making predictions of the risk of certain future outcomes if 
treatment were withheld- to estimate “natural prognosis”, for instance.34-38 In this case, 
there is an urgent need for a greater understanding of how such treatments, alongside 
other poorly understood factors such as differences in the way predictors are measured 
across populations and differences in the distribution and effects of predictors across 
populations in the presence of interactions with unmeasured variables, could affect the 
performance of prognostic models

Outline of this thesis

This thesis aims to develop and improve methodology for prediction model research, 
with a focus on prognostic model studies, and in turn address a number of ongoing 
research questions:

•	 When does treatment use in a prognostic study lead to bias? 
•	� What additional factors can cause prediction model performance to vary across 

populations?
•	� When and how should treatment use and other factors that affect prediction 

model performance be taken into account when developing or validating a 
prediction model?

Chapter 2 provides an example of the heterogeneity seen in prognostic model 
performance across populations. A systematic review and meta-analysis of the predictive 
performance of three cardiovascular risk prediction models is presented. Risk of bias 
is assessed and meta-regression analysis is used to identify sources of heterogeneity in 
model performance between the studies. 
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Chapters 3, 4 and 5 address the challenge that treatment use creates for prediction- 
particularly prognostic- model research. In chapter 3, a typology for treatments used 
in prognostic model studies is proposed, in order to better understand when and how 
they should be taken into account. Existing practices when handling treatment use in 
prognostic research are identified in a systematic review of cardiovascular prediction 
model studies. Chapter 4 specifically addresses the impact of the use of treatments 
when validating a prognostic model. The consequences of ignoring treatment use in a 
validation sample are explained, and methods to correct for the use of treatments are 
explored theoretically and tested using simulated data. Chapter 5 compares statistical 
methods to account for the effects of time-varying treatment use when developing a 
prognostic model using observational data from patients who received beta-blocker 
treatment during follow-up.

In chapter 6, a second source of heterogeneity in prediction model performance is 
investigated, namely, differences in the measurement of predictors across settings. The 
effect of variation in how a predictor is measured from sample to sample (considered 
formally in terms of “measurement errors”) on the AUC of a prediction model is 
described analytically and examined in a case study of a diagnostic prediction model.

Chapter 7 builds on the findings from previous chapters to provide recommendations 
for “best practices” when developing or validating prognostic models using data from 
randomized trials. Special attention is given to factors that could compromise the validity 
and generalizability of prognostic model research conducted using data from RCTs.

Finally, this thesis ends with the proposal of a framework of “prediction estimands”, with 
the dual aim of improving the interpretation of prediction models and the heterogeneity 
in their performance, as well as the quality of future prediction model research.
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Abstract

Background 
The Framingham risk models and Pooled Cohort Equations (PCE) are widely used 
and advocated in guidelines for predicting the 10-year risk of developing coronary 
heart disease (CHD) and cardiovascular disease (CVD), respectively, in the general 
population. Over the past few decades, these models have been extensively validated 
within different populations. Our objective is to systematically review and summarize 
the predictive performance of three widely advocated cardiovascular risk prediction 
models (Framingham Wilson 1998, Framingham ATP III 2002 and PCE 2013) in 
men and women separately, and to assess the generalizability of performance across 
different subgroups and geographical regions and determine sources of heterogeneity in 
the findings across studies. 

Methods
A search was performed in October 2017, to identify studies investigating the predictive 
performance of the aforementioned models. Studies were included if they externally 
validated one or more of the original models in the general population for men and 
women for the same outcome as the original model. We assessed risk of bias for each 
validation and extracted data on population characteristics and model performance. 
Performance estimates (observed expected (OE) ratio and c-statistic) were summarized 
using random effects models and sources of heterogeneity were explored with meta-
regression.

Results
The search identified 1585 studies, of which 38 were included, describing a total of 112 
external validations. Results indicate that, on average, all three models overestimate the 
10-year risk of CHD and CVD (pooled OE ratio ranged from 0.58 (95% CI 0.43-
0.73; Wilson men) to 0.79 (95% CI 0.60-0.97; ATP III women)). Overestimation 
was most pronounced for high-risk individuals, and European populations. Further, 
discriminative performance was better in women for all models. There was considerable 
heterogeneity in the c-statistic between studies, likely due to differences in eligibility 
criteria, and population characteristics.

Conclusions
The Framingham Wilson, Framingham ATP III and PCE discriminate comparably well, 
but all overestimate the risk of developing CVD, especially in high-risk populations. 
Because the extent of miscalibration substantially varied across settings, we highly 
recommend that researchers further explore reasons for overprediction and that the 
models be updated for specific populations before using them in clinical practice.



Performance of the Framingham risk models and Pooled Cohort Equations for predicting 
10-year risk of cardiovascular disease: a systematic review and meta-analysis

19

Introduction

Cardiovascular disease (CVD) is a major health burden, accounting for 17.5 million 
deaths worldwide in 2012.1 Various strategies, ranging from lifestyle advice to the use of 
blood pressure or lipid-lowering drugs, are currently being used for timely prevention 
of CVD.2-4 To effectively and efficiently implement these preventive measures, early 
identification of high risk individuals for targeted intervention using so-called CVD 
risk prediction models or risk scores is widely advocated.5 Evidently, it is crucial that 
CVD risk predictions made by these models are sufficiently accurate. Inappropriate 
risk based management may lead to overtreatment or undertreatment, resulting in 
either unnecessary costs or disease burden that could have been prevented if risks were 
accurately predicted.

Clinical guidelines from the National Cholesterol Education Program previously 
advised using the Framingham Adult Treatment Panel (ATP) III model.6 Currently, 
the American College of Cardiology and American Heart Association (AHA) jointly 
developed and advocated the Pooled Cohort Equations (PCE) to predict 10-year risk 
of CVD for all individuals 40 years or older.5 Interestingly, the Framingham Wilson 
model7 is, to our best knowledge, not mentioned in clinical guidelines, although it is 
the model that has been most extensively studied in the field of CVD risk prediction.8

All three models have been externally validated numerous times across different 
populations, and most studies showed predicted risks are overestimated (i.e. poor 
calibration, see Box 1).9-12 However, some reports have presented contrasting results and 
conclusions showing adequate calibration for these same models.13, 14 

Despite the heterogeneity found between the results and conclusions of these external 
validation studies, a comprehensive systematic overview and meta-analysis of all existing 
evidence on the predictive performance of the Framingham Wilson, ATP III, and PCE 
models has not yet been performed. Such evidence syntheses have become a vital tool in 
the cycle of prediction model development, validation and updating15 and clearly help 
researchers, policy makers and clinicians to evaluate which models can be advocated in 
guidelines for use in daily practice. Although Framingham Wilson is not mentioned in 
clinical guidelines, it is relevant to review this prediction model, since many studies in 
the field of CVD risk prediction have externally validated this prediction model, and 
have used it to assess the incremental value of new predictors, or for comparison with 
newly developed prediction models.8 Preferably, a meta-analysis of the performance of 
a prediction model should be performed to quantify the performance and to investigate 
sources of heterogeneity, to better understand how the model can be used in clinical 
practice.
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Box 1: Terminology 

Definition

Case-mix Characteristics of the study population (e.g. age, gender distribution)
Prediction horizon Time frame in which the model predicts the outcome (e.g. predicting 10-

year risk of developing a CVD event).
External validation Estimating the predictive performance of an existing prediction model 

in a dataset or study population other than the dataset from which the 
model was developed.

Predictive performance Accuracy of the predictions made by a prediction model, often expressed 
in terms of discrimination or calibration.

Discrimination Ability of the model to distinguish between people who did and did not 
develop the event of interest, often quantified by the c-statistic.

Concordance (c)-statistic Statistic that quantifies the chance that for any two individuals of which 
one developed the outcome and the other did not, the former has a 
higher predicted probability according to the model than the latter. A 
c-statistic of 1 means perfect discriminative ability, whereas a model with 
a c-statistic of 0.5 is not better than flipping a coin.71

Calibration Agreement between observed event risks and event risks predicted by the 
model.

Observed Expected (OE) ratio The ratio of the total number of outcome events that occurred (e.g. in 10 
years) and the total number of events predicted by the model.

Calibration slope Measure that gives an indication of the strength of the predictor effects. 
The calibration slope ideally equals 1. A calibration slope <1 indicates 
that predictions are too extreme (low risk individuals have a predicted 
risk that is too low, and high risk individuals are given a predicted risk 
that is too high). Conversely, a slope >1 indicates that predictions are too 
moderate.72, 73

Model updating / 
recalibration

When externally validating a prediction model, adjusting the model to 
the dataset in which the model is validated, to improve the predictive 
performance of the model.

Updating the baseline hazard 
or risk

When externally validating a prediction model, adapting the original 
baseline hazard or intercept of the prediction model to the dataset 
in which the model is validated. This updating method corrects 
for differences in observed outcome incidence between the original 
development and external validation dataset.

Updating the common slope When externally validating a prediction model, adapting the beta 
coefficients of the model using a single correction factor, to proportionally 
adjust for changes in predictor outcome associations.74

Model revision Taking the predictors of an existing, previously developed model and 
fitting these in the external dataset by estimating the new predictor-
outcome associations (e.g. regression coefficients).
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We, therefore, compared the predictive performance of the Framingham Wilson, 
Framingham ATP III, and PCE models (see Supplement 1 for details on these 
prediction models and our review question). We conducted a systematic review, 
including critical appraisal, of all published studies that externally validated one or more 
of these three models, followed by a formal meta-analysis to summarize and compare the 
overall predictive performance of these models, and the predictive performance across 
pre-defined subgroups. We explicitly did not intend to review all existing CVD risk 
prediction models but focused on these three most widely advocated and used models 
in the United States.

Methods

We conducted our review based on the steps described in the CHecklist for critical 
Appraisal and data extraction for systematic Reviews of prediction Modelling Studies 
(CHARMS)16 and in a recently published guidance paper on the systematic review and 
meta-analysis of prediction models.15 

Search and selection
We started with studies published before June 2013 that were already identified in 
two previously published systematic reviews.8, 17 Studies published after June 2013 
were identified according to the following strategy. First, a search was performed in 
MEDLINE and Embase (October 25, 2017, Supplement 2.1.1). In addition, a citation 
search in Scopus and Web of Science was performed to find all studies published 
between 2013 and 2017 that cited the studies in which the development of one of the 
original models was described (Supplement 2.1.2). All studies that were identified both 
by the search in MEDLINE and Embase, and the citation search were screened for 
eligibility, first on title and abstract by one reviewer and subsequently on full text by two 
independent reviewers. Disagreements were solved in group discussions. The reference 
lists of systematic reviews identified by our search were screened to identify additional 
studies. 

Eligibility criteria
Studies were eligible for inclusion if they described the external validation of Framingham 
Wilson 1998,7 Framingham ATP III 2002,6 and/or PCE 2013.18 Studies were included 
if they externally validated these models for fatal or nonfatal coronary heart disease 
(CHD) in the case of Framingham Wilson and ATP III, and hard atherosclerotic CVD 
(here referred to as fatal or nonfatal CVD) in the case of PCE, separately for men and 
women, in a general (unselected) population setting. Studies regarding specific patient 
populations (e.g. patients with diabetes) were excluded. Studies in which the model was 
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updated or altered (e.g. recalibration or model revision,19,20 see Box 1) before external 
validation were excluded if they did not provide any information on the original model’s 
performance. Studies in which the models for men and women were combined in one 
validation (with one performance measure reported for men and women together 
instead of two separate performance measures) were excluded. Studies that assessed the 
incremental value of an additional predictor on top of the original model were also 
excluded, unless the authors explicitly reported on the external validity of the original 
model before adding the extra predictor. When a study population was used multiple 
times to validate the same model (i.e. multiple publications describing a certain study 
cohort), the external validation with eligibility criteria and predicted outcome that 
most closely resembled our review question (Supplement 1.1) was included, to avoid 
introducing bias because of duplicate data.21 

Data extraction and critical appraisal
For each included study, data were extracted on study design, population characteristics, 
participant enrolment, study dates, prediction horizon, predicted outcomes, predictors, 
sample size, model updating methods, and model performance (Supplement 2.2). 
Risk of bias was assessed based on a combination of the CHARMS checklist 16 and a 
preliminary version of the Cochrane Prediction study Risk Of Bias Assessment Tool 
(PROBAST).22, 23 Risk of bias was assessed for each validation, across five domains: 
participant selection (e.g. study design, in- and exclusions), predictors (e.g. differences 
in predictor definitions), outcome (e.g. same definition and assessment for every 
participant), sample size and participant flow (e.g. handling of missing data), and 
analyses (e.g. handling of censoring). After several rounds of piloting and adjusting the 
data extraction form in teams of three reviewers, data were extracted by one of the three 
reviewers. Risk of bias was independently assessed by pairs of reviewers. Disagreements 
were solved after discussion or by a third reviewer. 

Information was extracted on model discrimination and calibration, before and, if 
reported, after model updating, in terms of the reported concordance (c)-statistic and 
total observed versus expected (OE) ratio. If relevant information was missing (e.g. 
standard error of performance measure or population characteristics), we contacted the 
authors of the corresponding study. If no additional information could be obtained, 
we approximated missing information using formulas described by Debray et al.15 
(Supplement 2.3). If reported, calibration was also extracted for different risk categories. 
If the OE ratio was reported for shorter time intervals (e.g. 5 years) we extrapolated this 
to 10 years assuming a Poisson distribution (Supplement 2.3).
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Statistical analyses
We performed meta-analyses of the 10-year total OE ratio and the c-statistic. Based 
on previous recommendations,15, 24 we pooled the log OE ratio and logit c-statistic 
using random-effects meta-analysis. Further, we stratified the meta-analysis by model 
and gender, resulting in six main groups: Wilson men, Wilson women, ATP III men, 
ATP III women, PCE men, PCE women. We calculated 95% confidence intervals 
(CI) and (approximate) 95% prediction intervals (PI) to quantify uncertainty and the 
presence of between-study heterogeneity. The CI indicates the precision of the summary 
performance estimate and the PI provides boundaries on the likely performance in 
future model validation studies that are comparable to the studies included in the meta-
analysis, and can thus be seen as an indication of model generalizability (Supplement 
2.4.1).25 The observed and predicted probabilities in risk categories were plotted against 
each other and combined into a summary estimate of the calibration slope using mixed 
effects models (Supplement 2.4.2). 

Since between-study heterogeneity in estimates of predictive performance is expected 
due to differences in the design and execution of validation studies,15 we investigated 
whether the c-statistic differed between validation studies with different eligibility 
criteria or actual case-mix. Furthermore, we performed univariable random effects 
meta-regression analyses to investigate the influence of case-mix differences (e.g. due 
to differences in eligibility criteria) on the OE ratio and c-statistic (Supplement 2.4.3). 
Several pre-specified sensitivity analyses were performed in which we studied the 
influence of risk of bias and alternative weighting methods in the meta-analysis on our 
findings (Supplement 2.4.4). All analyses were performed in R version 3.3.2,26 using the 
packages metafor,27 mvmeta,28 metamisc,29 and lme4.30 

Results

Identification and selection of studies
We first identified 100 potentially eligible studies from previously conducted systematic 
reviews. An additional search identified 1585 studies since June 2013 (Figure 1). Of 
these 1685 studies, 304 studies were screened on full-text and data were extracted for 
61 studies, describing 167 validations of the performance of one or more of the three 
models. Finally, 38 studies (112 validations) met our eligibility criteria.

Description of included validations
In 112 validations (Supplement 3.3), the Framingham Wilson model was validated 38 
times (men: 23, women: 15), Framingham ATP III 13 times (men: 7, women: 6), and 
PCE 61 times (men: 30, women: 31). Study participants were recruited between 
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Figure 1: Flow diagram of selected studies. 

Two searches were performed; one in MEDLINE and Embase and one in Scopus and Web of 
Science. Only studies identifi ed by both searches were screened for eligibility, supplemented with 
records identifi ed from previous systematic reviews. One study could describe more than one external 
validation (e.g. one for men and one for women) therefore, 61 studies described 167 external 
validations. Calibration was available for 94 validations (41 directly reported, 19 provided by the 
authors on request, 34 estimated from calibration tables and calibration plots), and discrimination for 
103 validations (91 c-statistics directly reported, 12 provided by the authors on request. Precision of 
c-statistic: 45 directly reported, 24 provided by the authors, 32 estimated from the sample size, and 2 
not reported). Some external validations were excluded because cohorts were used more than once to 
validate the same model (Supplement 3.2). * E.g. no cardiovascular outcome, not written in English.
†Th e Framingham Wilson and ATP III models were developed to predict the risk of fatal or nonfatal coronary 
heart disease and the PCE model was developed to predict the risk of fatal or nonfatal cardiovascular disease. 
External validations that used a diff erent outcome were excluded from the analyses (Supplement 3.1).
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1965 and 2008, and originated from North America (56), Europe (29), Asia (25), 
and Australia (2). We excluded 18 and 9 external validations because the OE ratio 
and c-statistic, respectively, were not available, and subsequently excluded 20 and 26 
external validations for the OE ratio and c-statistic, respectively, because cohorts were 
used multiple times to validate the same model. This resulted in the inclusion of 74 
validations in the analyses of the OE ratio and 77 validations in the analyses of the 
c-statistic (Figure 1).

Risk of bias
For participant selection, most validations scored low risk of bias (n=60 (81%) and n=64 
(83%) for validations reporting OE ratio and c-statistic, respectively. Figure 2). Risk of 
bias for predictors was often unclear (n=22 (30%) and n=24 (31%), for OE ratio and 
c-statistic), due to poor reporting of predictor definitions and measurement methods. 
Most validations scored low risk of bias on outcome (n=53 (72%), n=59 (77%)). 
More than three quarters of the validations scored high risk of bias for sample size and 
participant flow (n=59 (80%) and n=60 (78%)), often due to inadequate handling of 
missing data (i.e. simply ignoring). Low risk of bias for analysis was scored in 51 (70%) 
and 50 (65%) validations, for OE ratio and c-statistic respectively. In total, 62 (84%) 
and 63 (82%) validations scored high risk of bias for at least one domain, and 4 (5%) 
and 6 (8%) validations scored low risk of bias for all five domains, for OE ratio and 
c-statistic respectively.

Figure 2: Summary of risk of bias assessments for validations included in the meta-analyses of OE 
ratio (74 validations) and c-statistic (77 validations).
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Calibration
Figure 3 shows the calibration of the six main models, as depicted by their 10-year total 
OE ratio. For 24 out of 74 validations (32%), maximum follow-up was shorter than 
10 years. For 20 out of these 24 (83%), information was available to extrapolate the 
OE ratio to 10 years. Most studies showed overprediction, indicating that 10-year risk 
predictions provided by the models were typically higher than observed in the validation 
datasets. For the Wilson model, the number of events predicted by the model was lower 
than the actual number of events in two studies (one in healthy siblings of patients with 
premature coronary artery disease,31 and one in community-dwelling individuals aged 
70–7932). For PCE, underestimation of the number of events occurred in Chinese33 and 
Korean34 populations. 

Meta-analysis revealed a considerable degree of between-study heterogeneity in OE 
ratios (Figure 3), but with clear overprediction, as summary OE ratios ranged from 
0.58 (Wilson men and ATP III men) to 0.79 (ATP III women). Additional analyses 
revealed that overprediction is more pronounced in high-risk patients, for all models 
(Figure 4).35 The results of the summary calibration slope suggest that miscalibration 
of the Framingham Wilson and ATP III models, and PCE men model was mostly 
related to heterogeneity in baseline risk (as the summary calibration slope is close to 1), 
while for PCE women we found a slope of around 0.8, suggesting that these models 
were overfitted or do not transport well to new populations (Supplement 3.4). For 38 
validations the model was subsequently updated, of which 24 reported the OE ratio 
after updating. The OE ratio improved after updating (0.65 (IQR 0.46-0.86) before vs. 
0.84 (IQR 0.70-0.91) after updating).

Discrimination
For all models, discriminative performance was slightly better for women than for men, 
although there was considerable variation between studies (Figure 5). For 40 out of 74 
validations model updating was performed, of which 13 reported the c-statistic after 
update. Results indicate that the c-statistic did not change after updating (median 0.71 
(IQR 0.66-0.72) before vs. 0.72 (IQR 0.69-0.76) after update).

Sensitivity analyses
Sensitivity analyses revealed no effect of study quality and different weighting strategies 
on the pooled performance of the models, both for calibration and discrimination 
(Supplement 3.5). 
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Figure 3: Meta-analysis of the OE ratio in external validations, with 95% confidence intervals and 
95% prediction intervals per model.

The performance of the model in the development study is shown in the first rows (only reported for PCE). 
This estimate is not included in calculating the pooled estimate of performance. *Performance of the model 
in the development population after internal validation. The first row contains the performance of the 
model for Whites, the second for African Americans. **Standard error was not available. CHD: Coronary 
heart disease, CVD: cardiovascular disease.
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Figure 4: Calibration plots of the Framingham Wilson, ATP III and PCE models. Each line represents 
one external validation. 

The diagonal line represents perfect agreement between observed and predicted risks. All points below 
that line indicate that more events were predicted than observed (overprediction) and points above 
the line indicate fewer events were predicted than observed (underprediction). The vertical black line 
represents a treatment threshold of 7.5%.35 CI: confidence interval, PI: prediction interval.
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Figure 5: C-statistic in external validations, with 95% confidence intervals and 95% prediction 
intervals per model. 

The performance of the model in the development study is shown in the first row(s) (not reported for 
ATP III) and is not included in the pooled estimate of performance. *Performance of the model in the 
development population (Wilson (no standard error reported)) and after 10x10 cross-validation (PCE). For 
PCE, the first row contains the performance of the White model, the second the African American model. 
**Standard error was not available. CHD: coronary heart disease, CVD: cardiovascular disease. 
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Factors that influence performance of the models 
For women, the highest c-statistics were reported in studies with large variety in case-
mix. For men, such a trend was not visible (Figure 6). The OE ratio for the Wilson 
model in the United States was closer to 1 compared to Europe, but the number of 
external validations per subgroup was very small (Supplement 3.6.1). Furthermore, the 
OE ratio appeared to decrease (further away from 1, i.e. more overprediction) with 
increasing mean total cholesterol. No evidence was found of an association between 
the OE ratio and other case-mix variables or start date of participant recruitment. The 
c-statistic appeared to decrease with increasing mean age, mean systolic blood pressure 
and standard deviation of HDL cholesterol, and to increase with increasing standard 
deviation of age and total cholesterol (Supplement 3.6.2). No statistically significant 
associations were found between the c-statistic and other variables.

Discussion

Summary of findings
We systematically reviewed the performance of the Framingham Wilson, Framingham 
ATP III, and PCE models for predicting 10-year risk of CHD or CVD for men and 
women separately in the general population. We found only small differences in pooled 
performance between the three models, but large differences in performance between 
validations of the same model. Although we mostly had to rely on indirect comparisons 
of the models, we found that performance of all three models was consistently better 
in women than in men for both discrimination and calibration. This can probably be 
attributed to a stronger association between risk factors and CVD in women compared to 
men.36 In agreement with previous studies,17, 37-39 we found that all models overestimated 
the risk of CHD or CVD, and this overestimation was more pronounced in European 
populations compared to the United States. Overprediction clearly declined when the 
validated models were adjusted (e.g. via updating the baseline hazard) to the validation 
setting at hand. This indicates that the prediction models should not simply be advocated 
or applied in guidelines or clinical practice, but first tailored to the setting in which 
they are to be applied. Although it was not possible to identify statistically significant 
sources of heterogeneity, we found that discriminative performance tends to increase as 
populations become more diverse, i.e. with a wider case-mix.This effect has previously 
been explained.40-42 
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Figure 6: C-statistic for different combinations of eligibility criteria. 

Open squares, circles and triangles represent validations of the ATP III, PCE and Wilson model, respectively. 
Black circles and triangles represent the studies that developed the PCE models for Whites and African-
Americans, and the Wilson model. 
Lower panel. Age: white- broad age range included (upper - lower age limit >30 years), black- narrow 
age range included (upper - lower age limit ≤30 years), grey- age not reported. CVD: white- no exclusion 
of people with CHD/ CVD, grey- people with previous CHD events were excluded, black- people with 
previous CVD events were excluded. Diabetes, cancer, major disease: white- no exclusions reported, black- 
people with these conditions were excluded. Treatment: white- no exclusions, black- people on CVD risk-
lowering treatment (e.g. antihypertensives) were excluded.
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Reasons for overprediction
There could be several reasons for the observed overprediction, which have also 
extensively been discussed previously with regards to the PCE.39, 43, 44 First, differences 
in eligibility criteria (e.g. the exclusion of participants with previous CVD events) 
across validation studies may have affected calibration. Second, the three prediction 
models have been (partly) developed using data from the 1970s and since then 
treatment of people at high risk for a CVD event has changed considerably, such as 
the introduction of statins in 1987.45 The increased use of effective treatments over 
time aimed at preventing CVD events will lower the observed number of events in 
more recent validation studies, resulting in overestimation of risk in these validation 
populations.46-48 This would also explain why overprediction was most pronounced in 
high-risk individuals and why we found more overprediction in studies with increasing 
mean total cholesterol levels. We hypothesized that the degree of overprediction would 
increase over the years,17, 37 however this could not be confirmed statistically. About one 
third of validations of the PCE excluded participants receiving treatment to lower CVD 
risk at baseline, but we found no difference in performance between validations that did 
or did not exclude these participants. However, as the use of risk-lowering medication 
during follow-up was rarely reported in these studies, we cannot rule out an effect of 
incident treatment use on model performance.48 Third, we found more overestimation 
of risk in European populations compared to those of the United States, whereas in 
some Asian populations an underestimation was seen. Both suggest that differences 
between these populations in, for example, unmeasured CVD risk factors and in the 
use of preventive CVD strategies (e.g. medical treatment or lifestyle programs), are 
responsible. Following the recently issued Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis (TRIPOD) guideline,49, 50 and 
the guidance on adjusting for treatment use in prediction modelling studies,47, 48, 51 we 
also strongly recommend investigators of future prediction model studies to record the 
use of treatment during follow-up. Finally, rather than overprediction by the models, 
there could also be issues in the design of the external validation studies that give rise 
to a lower number of identified events. Underascertainment or misclassification of 
outcome events, unusually high rates of people receiving treatment, short follow-up 
duration, and inclusion of ethnicities not included in development of the models, have 
been mentioned as reasons for the overprediction we observe.52-56 Others have however 
shown that the overestimation could not be fully explained by treatment use and missed 
outcome events.46, 57

Implications for practice and research
According to the ACC-AHA guidelines,5 risk lowering treatment is considered in people 
40-75 years old, without diabetes, with LDL cholesterol levels between 70 and 189 
mg/dl and 10-year predicted risk of CVD ≥ 7.5%. After a discussion between clinician 
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and patient about adverse effects and patient preferences, it is decided whether risk 
lowering treatment is initiated. The observed overprediction is problematic as this 
might change the population eligible for risk lowering treatment. Unfortunately, this 
is true for all three CVD risk prediction models. As the meta-analysis indicates that 
overprediction does not consistently occur across different settings and populations, 
there is no simple solution to address this problem. From the studies that provided data 
on calibration in subgroups, we found that overestimation was more pronounced in 
high-risk individuals. When the (over)estimation of the absolute risk is already beyond 
the treatment probability threshold, it will not influence treatment decisions, although 
overestimated risk estimations might still influence the intensity (dose and frequency) of 
administered treatments. For people at lower risk this might, however, result in crossing 
the treatment probability boundary when, actually, they are at lower risk.

In general, the performance of prediction models tends to vary substantially across 
different settings and populations, due to differences in case-mix and health care systems.58 
Hence, one external validation may not be sufficient to claim adequate performance and 
multiple validations are necessary to get an insight in the generalizability of prediction 
models.42 Based on this review, it can be concluded that none of the models offer reliable 
predictions unless (at least) their baseline risk or hazard (and, if applicable, population 
means of the predictors in the model) are recalibrated to the local setting. Studies that 
reported performance of the model before and after update showed that performance 
indeed improves after update. 11, 13, 14, 34, 59, 60 As previously emphasized, more extensive 
revision methods are often not needed.19, 20, 61 Hence, it appears that conventional 
predictors, such as age, smoking, diabetes, blood pressure and cholesterol, are still relevant 
indicators of 10-year CHD or CVD risk, and their association with CVD events have 
largely remained stable. The need for updating CVD risk prediction models has already 
been discussed more than 15 years ago,14, 62 but still nothing has changed. We believe 
this should change now, especially since nowadays applying simple model updating is 
becoming increasingly possible, due to improvements in the storage of the information 
required to update a model. A nice example of tailoring CVD risk prediction models to 
specific populations, is the Globorisk prediction model which can easily be tailored to 
different countries using country-specific data on the population prevalence of outcomes 
and predictors,63 and the SCORE model which has been tailored to many European 
countries using national mortality statistics.64-67 These suggestions, however, offer no 
short-term solution for practitioners currently using the three reviewed prediction 
models. Fortunately, a systematic review has shown that the prevalence of common 
CVD risk factors decreases (e.g. cholesterol levels drop) in populations where CVD 
risk prediction models and their corresponding treatment guidance are being used.68 
Furthermore, statins have been proven effective with limited adverse events.4 Finally, 
we advise practitioners to choose a model that predicts a clinically relevant outcome 
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(for example (according to the AHA), CVD rather than only CHD, since stroke and 
CHD share pathophysiological mechanisms18, 69), consists of predictors available in their 
situation, and is developed or updated in a setting that closely resembles their setting. 

Limitations
This study has several limitations. Firstly, we focused on the three most validated and used 
prediction models in the United States, while in Europe many more prediction models 
are currently used for predicting cardiovascular risk, such as QRISK370 and SCORE.64 
The differences between all these models are, however, limited, as most models include 
the same core set of predictors. Therefore, we believe our results can be generalized to 
other prediction models. Secondly, we had to rely on what is reported by the authors 
of primary validation studies and we unfortunately had to exclude relevant validations 
from our meta-analyses because of unreported information which we could not obtain 
from the authors. Only 19 out of 61 authors were able to provide us with additional 
information and we had to exclude 9 validations for the c-statistic and 18 for the OE 
ratio. Thirdly, the total OE ratio, while commonly reported, only provides an overall 
measure of calibration. To overcome this problem, we extracted information on the OE 
ratio in categories of predicted risk, which showed there was more overestimation of risk 
in the highest categories of predicted risk. Based on this information, we calculated the 
calibration slope, which suggested that miscalibration of the Framingham Wilson and 
ATP III models and PCE men model was mostly related to heterogeneity in baseline 
risk, while for PCE women the model is overfitted or does not transport well to new 
populations. In addition, more clinically relevant measures, such as net benefit, could 
not be considered in this meta-analysis due to the lack of reporting of these measures.8 
Fourthly, because of the low number of external validation studies, especially for the ATP 
III model, we did not perform meta-regression analyses for this model. Unfortunately, 
the relatively small sample size makes it difficult to draw firm conclusions on the sources 
of observed heterogeneity. Fifthly, the exclusion of non-English studies could have 
influenced the geographical representation. However, since only 1 full-text article was 
excluded for this reason, we believe the effect on our results is limited. 

Conclusion

The Framingham Wilson, Framingham ATP III and PCE prediction models, perform 
equally well in predicting the risk of CHD or CVD, but there is large variation between 
validations. All three prediction models overestimate the risk of CHD or CVD, which 
could lead to overtreatment. Therefore, before advocating their use in a clinical guideline 
or practice, we recommend to first further investigate reasons for overprediction 
and subsequently tailor or recalibrate the model to the setting at hand. Investigators 
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and guidelines should focus on offering health care professionals the right tools and 
information on how to tailor these existing models to their specific settings,19, 20, 61 rather 
than providing yet another CVD risk model for another specific subpopulation.
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1 Supplementary introduction

1.1 Review question and PICOTS components

Review question - “What is the predictive performance of the Framingham Wilson, 
ATP III and PCE models in men and women separately for predicting 10-year risk 
of coronary heart disease (CHD) or cardiovascular disease (CVD) in the general 
population?”

Patients - General population, divided by gender. Include population based and primary 
care cohorts; exclude cohorts in which specific patient populations were excluded

Intervention and Comparators - Framingham Wilson 1998, Framingham ATP III 
2003, PCE 2013, for men and women separately

Outcome - Outcome for which the original models were developed (fatal or nonfatal 
CHD for ATP III and Wilson, fatal or nonfatal CVD for PCE)

Timing/prediction horizon - 10 years

Setting - Primary care and public health
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1.2 Overview of Framingham prediction models and PCE 

Framingham Wilson1 Framingham ATP III2, 3 PCE4

Development 
cohort(s)

- Framingham Heart Study: 
11th examination of the 
original Framingham cohort 
or initial examination of 
the Framingham Offspring 
Study

- Framingham Heart Study - Framingham Heart Study: 
original and offspring cohorts.
- Atherosclerosis Risk in 
Communities (ARIC) study
- Cardiovascular Health Study 
(CHS)
- Coronary Artery Risk 
Development in Young Adults 
(CARDIA) study

In/exclusion 
criteria

People aged 30 to 74 years 
old at the time of their 
Framingham Heart Study 
examination in 1971 to 
1974. Persons with overt 
CHD at the baseline 
examination were excluded.

People aged 20 to 79 
without diabetes.

People aged 40 to 79, 
apparently healthy, African 
American or White, and free 
of a previous history of MI 
(recognized or unrecognized), 
stroke, congestive heart 
failure, percutaneous coronary 
intervention, coronary bypass 
surgery, or atrial fibrillation.

Predictors Age
Smoking
Diabetes
Systolic blood pressure
Diastolic blood pressure
Total or LDL cholesterol
HDL cholesterol

Age
Smoking
Systolic blood pressure
Treatment of blood 
pressure
Total cholesterol
HDL cholesterol

Age
Smoking
Diabetes
Systolic blood pressure
Treatment of blood pressure
Total cholesterol
HDL cholesterol

Predicted 
outcome

Fatal or nonfatal CHD, 
defined as angina 
pectoris, recognized and 
unrecognized myocardial 
infarction, coronary 
insufficiency, and coronary 
heart disease death.

Fatal or nonfatal CHD, 
defined as myocardial 
infarction or CHD death.

Atherosclerotic CVD defined 
as nonfatal myocardial 
infarction or coronary heart 
disease death, or fatal or 
nonfatal stroke.

Prediction 
horizon

10 years 10 years 10 years
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2 Supplementary methods

2.1 Search strategy
2.1.1 MEDLINE search strategy

1	 chd risk assessment$.mp.
2	 cvd risk assessment$.mp.
3	 heart disease risk assessment$.mp.
4	 coronary disease risk assessment$.mp.
5	 cardiovascular disease risk assessment$.mp.
6	 cardiovascular risk assessment$.mp.
7	 cv risk assessment$.mp.
8	 cardiovascular disease$ risk assessment$.mp.
9	 coronary risk assessment$.mp.
10	 coronary risk scor$.mp.
11	 heart disease risk scor$.mp.
12	 chd risk scor$.mp.
13	 cardiovascular risk scor$.mp.
14	 cardiovascular disease$ risk scor$.mp.
15	 cvd risk scor$.mp.
16	 cv risk scor$.mp.
17	 or/1-16
18	 cardiovascular diseases/
19	 coronary disease/
20	 cardiovascular disease$.mp.
21	 heart disease$.mp.
22	 coronary disease$.mp.
23	 cardiovascular risk?.mp.
24	 coronary risk?.mp.
25	 exp hypertension/
26	 exp hyperlipidemia/
27	 or/18-26
28	 risk function.mp.
29	 Risk Assessment/mt
30	 risk functions.mp.
31	 risk equation$.mp.
32	 risk chart?.mp.
33	 (risk adj3 tool$).mp.
34	 risk assessment function?.mp.
35	 risk assessor.mp.
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36	 risk appraisal$.mp.
37	 risk calculation$.mp.
38	 risk calculator$.mp.
39	 risk factor$ calculator$.mp.
40	 risk factor$ calculation$.mp.
41	 risk engine$.mp.
42	 risk equation$.mp.
43	 risk table$.mp.
44	 risk threshold$.mp.
45	 risk disc?.mp.
46	 risk disk?.mp.
47	 risk scoring method?.mp.
48	 scoring scheme?.mp.
49	 risk scoring system?.mp.
50	 risk prediction?.mp.
51	 predictive instrument?.mp.
52	 project$ risk?.mp.
53	 cdss.mp.
54	 or/28-53
55	 27 and 54
56	 17 or 55
57	 new zealand chart$.mp.
58	 sheffield table$.mp.
59	 procam.mp.
60	 General Rule to Enable Atheroma Treatment.mp.
61	 dundee guideline$.mp.
62	 shaper scor$.mp.
63	 (brhs adj3 score$).mp.
64	 (brhs adj3 risk$).mp.
65	 copenhagen risk.mp.
66	 precard.mp.
67	 (framingham adj1 (function or functions)).mp.
68	 (framingham adj2 risk).mp.
69	 framingham equation.mp.
70	 framingham model$.mp.
71	 (busselton adj2 risk$).mp.
72	 (busselton adj2 score$).mp.
73	 erica risk score$.mp.
74	 framingham scor$.mp.
75	 dundee scor$.mp.
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76	 brhs scor$.mp.
77	 British Regional Heart study risk scor$.mp.
78	 brhs risk scor$.mp.
79	 dundee risk scor$.mp.
80	 framingham guideline$.mp.
81	 framingham risk?.mp.
82	 new zealand table$.mp.
83	 ncep guideline?.mp.
84	 smac guideline?.mp.
85	 copenhagen risk?.mp.
86	 or/57-85
87	 56 or 86
88	 exp decision support techniques/
89	 Diagnosis, Computer-Assisted/
90	 Decision Support Systems,Clinical/
91	 algorithms/
92	 algorithm?.mp.
93	 algorythm?.mp.
94	 decision support?.mp.
95	 predictive model?.mp.
96	 treatment decision?.mp.
97	 scoring method$.mp.
98	 (prediction$ adj3 method$).mp.
99	 or/88-98
100	 Risk Factors/
101	 exp Risk Assessment/
102	 (risk? adj1 assess$).mp.
103	 risk factor?.mp.
104	 or/100-103
105	 27 and 99 and 104
106	 87 or 105
107	 stroke.mp. 
108	 exp Stroke/
109	 cerebrovascular.mp. or exp Cerebrovascular Circulation/
110	 limit 106 to ed=20040101-20130601
111	 107 or 108 or 109
112	 111 and 54
113	 111 and 99 and 104
114	 112 or 113
115	 106 or 114 
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2.1.2 Citation search
Web of Science and Scopus were searched for studies citing the following references:

Wilson
- Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel 
WB. Prediction of coronary heart disease using risk factor categories. Circulation 
1998;97(18):1837-47.

ATP III
- Third Report of the National Cholesterol Education Program (NCEP) Expert Panel 
on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult 
Treatment Panel III) final report. Circulation 2002;106(25):3143-421.
- Executive Summary of The Third Report of The National Cholesterol Education 
Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood 
Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001;285(19):2486-97.

PCE
- Goff DC, Jr., Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the 
assessment of cardiovascular risk: a report of the American College of Cardiology/
American Heart Association Task Force on Practice Guidelines. Circulation 2014;129(25 
Suppl 2):S49-73.
- Goff DC, Jr., Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the 
assessment of cardiovascular risk: a report of the American College of Cardiology/
American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 
2014;63(25 Pt B):2935-59
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2.2 Items for data extraction
List of items for which data were extracted.

Item Description / examples

Validated model Framingham Wilson, Framingham ATPIII, PCE; men or women; 
race (PCE); LDL or total cholesterol (Framingham Wilson).

Study type Only external validation; external validation and development of a 
new model; external validation and incremental value assessment.

Study design Cohort, randomized controlled trial

Eligibility criteria for participants Age, (exclusion of ) comorbidities, treatment, race.

Study dates Inclusion dates, end of follow-up, follow-up time.

Prediction horizon Time period for which predictions were made, e.g. 10 years.

Geographical location Country and continent.

Case-mix Information on the frequency, or mean/median and spread of 
the following population characteristics of the validation study: 
age, gender, smoking, diabetes, treatment, hypertension, systolic 
blood pressure, diastolic blood pressure, total cholesterol, LDL 
cholesterol, HDL cholesterol, race, other diseases, linear predictor, 
10-year predicted survival probability.

Predictors Full definition, measurement method, blinding of measurements.

Predicted outcome Full definition, including ICD-codes.

Sample size Number of participants, number of events, Kaplan-Meier 10-year 
survival probability.

Performance C-statistic, 10-year total observed/expected ratio, standard error, 
95% confidence intervals, calibration plot, calibration table. 
Performance of the original model and after updating the model 
were extracted.

2.3 Formulas used to estimate missing quantitative information

2.3.1 Casemix variables
For the casemix variables age, systolic blood pressure (SBP), HDL cholesterol and total 
cholesterol, we needed the mean and standard deviation (sd) for our analyses, however 
some studies only reported the median and 25th and 75th percentiles, or the minimum 
and maximum. If the median and percentiles were reported, we used equation 14 from 
a paper by Wan et al. to approximate the mean, and equation 16 to approximate the sd.5 
If only the range was reported, we used equation 5 from the same paper to approximate 
the sd. One study reported the number of participants in SBP, HDL cholesterol and 
total cholesterol categories.6 To estimate the mean and sd, we took bootstrap samples 
from a uniform distribution per category, with sample size equal to the number of 
participants in the original categories, and calculated the mean and sd of this sample. 
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This process was repeated 1000 times, and subsequently the overall (average) mean and 
sd were calculated.

2.3.2 C-statistic
If the precision of the c-statistic was not reported, we estimated this from the c-statistic 
and sample size of the study, using the formula described by Newcombe and Hanley.7, 8

2.3.3 OE ratio
Various equations were used to estimate the standard error of the OE ratio, depending 
on which information was reported. All equations (as numbered) are described in the 
appendix of Debray et al.9 If the SE of the OE ratio was reported, we used equation 16 
to estimate the SE of ln(OE), if the observed event risk (Po), the expected event risk 
(Pe), and the SE of Po were reported, we used equation 51, and if only Po and Pe were 
reported we used equation 27. 

If the OE ratio was reported for a prediction horizon shorter than 10 years, we 
extrapolated Po and Pe separately to 10 years using the following equation based on the 
Poisson distribution:

SKM,10=exp 10 ln (SKM,l)

l

where SKM,10 is the Kaplan Meier estimate of survival at 10 years, and SKM,l the 
Kaplan Meier survival estimate at time l. Po can be calculated by taking 1 - SKM,10.

2.4 Statistical analyses
2.4.1 Meta-analysis
The logit c-statistic and log OE ratio were pooled using random-effects meta-analyses 
accounting for the presence of between-study heterogeneity, weighted by the inverse 
of the variance. The Hartung-Knapp-Sidik-Jonkman (HKSJ) method was used when 
calculating 95% confidence intervals.10 The 95% prediction interval was calculated 
using the equation described by Debray et al.9 
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2.4.2 Calibration slope
The calibration slope can be calculated as follows:

Oij  ~ Binom(Nij,pij )
logit(Pij )= αi+ βi logit(PE,ij )

βi  ~ N(μcal.slope,τcal.slope )
2

Where Oij is the number of observed events in subgroup j of study i, modeled using a 
binomial distribution with event probability pij. The calibration slope is given by cal.slope.

2.4.3 Meta-regression
To investigate if the performance of the six models was influenced by differences in, for 
example, study populations, we fitted meta-regression models with a single covariate. 
The following categorical covariates were considered: 
- �age range of included participants: comparable (if both the upper and lower limit 

were within 5 years of the age range in the development population), narrower (if the 
lower limit was more than 5 years higher and/or the upper limit was more than 5 years 
lower), younger (if the lower limit was more than 5 years lower), older (if the upper 
limit was more than 5 years higher) or not reported (NR),

- �in- or exclusion of participants with diabetes at baseline, 
- �in- or exclusion of participants with CHD or CVD at baseline, 
- continent, 
- prediction horizon: <10 year, 10 year, >10 year or NR, 
- �type of model used: for Wilson LDL or total cholesterol, for PCE white and others, or 

African American. 
The following continuous covariates were included: mean and standard deviation of 
age, systolic blood pressure, HDL and total cholesterol, year in which the recruitment 
of participants for the study started, and the prediction horizon.

2.4.4 Sensitivity analyses
We performed several sensitivity analyses. Firstly, we excluded all external validations 
with high risk of bias for at least one domain. Secondly, since almost all validations 
scored high risk of bias for either the domain sample size and participant flow or 
analysis, we performed a second analysis in which we only excluded external validations 
with high risk of bias for any of the three domains: participant selection, predictors, or 
outcome. Thirdly, we used the number of events rather than the inverse of the variance as 
weighting factor in the meta-analysis, as suggested by Pennells et al. to increase statistical 
power.11 Fourthly, we fitted a bivariate model with both the c-statistic and the 10-year 
total OE ratio as outcomes.12 Fifthly, we repeated the analyses with the original OE ratio 
without extrapolating it to 10 years.
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3 Supplementary results

3.1 Description of excluded outcomes
The table below gives an overview of the validations that were excluded because the 
outcome definition differed too much from the definition used in model development.

Model Reference Outcome Definition

Wilson men Lee 200813 Fatal CVD            All deaths due to ischaemic heart disease (ICD-9 
410-414) and cerebrovascular accidents (ICD-9 
430-438).                                                                                                                                       

Stork 200614 Fatal CVD            Not reported                                                                                                                                         

Barroso 201015 Fatal or nonfatal 
CVD

Angina and myocardial infarction (fatal and non-
fatal), and fatal cardiovascular disease (cardiac 
death of coronary and non-coronary origin, death 
of cerebrovascular origin, and deaths from other 
cardiovascular causes).                                       

Wilson 
women         

Lee 200813 Fatal CVD            All deaths due to ischaemic heart disease (ICD-9 
410-414) and cerebrovascular accidents (ICD-9 
430-438).                                                                                                                                       

Barroso 201015 Fatal or nonfatal 
CVD

Angina and myocardial infarction (fatal and non-
fatal), and fatal cardiovascular disease (cardiac 
death of coronary and non-coronary origin, death 
of cerebrovascular origin, and deaths from other 
cardiovascular causes).                                       

Ridker 200716 Fatal or nonfatal 
CVD

Myocardial infarction, ischemic stroke, coronary 
revascularization, and cardiovascular deaths                                                                                                                                          

Ridker 200716 Fatal or nonfatal 
CVD

Myocardial infarction, ischemic stroke, coronary 
revascularization, and cardiovascular deaths                                                                                                                                          

ATP III 
men

Berry 200717 Fatal CHD            Coronary heart disease mortality                                                                                                                                        
                                                                                       

Berry 200717 Fatal CHD            Coronary heart disease mortality                                                                                                                                        
                                                                                       

Berry 200717 Fatal CHD            Coronary heart disease mortality                                                                                                                                        
                                                                                       

Berry 200717 Fatal CHD            Coronary heart disease mortality                                                                                                                                        
                                                                                       

Dunder 200418 Fatal or nonfatal 
MI 

Hospitalization or death due to myocardial 
infarction 
(ICD 410/I 21).                                   

Ridker 200716 Fatal or nonfatal 
CVD

Myocardial infarction, ischemic stroke, coronary 
revascularization, and cardiovascular deaths                                                                                                                                           
                       

CVD: Cardiovascular disease, ICD: International Classification of Diseases, CHD: coronary heart disease, 
ATP: Adult treatment panel, MI: myocardial infarction
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3.2 Cohorts used multiple times to validate the same model
Below an overview is given of the cohorts that were used more than once to validate 
the same model, with rationale for the choice of cohort that was kept in the analyses, 
separately for validations included in the meta-analyses of calibration and discrimination.

OE ratio
Reference Cohort Model Excluded Explanation

Jung 201519 Korean Heart Study                                                                                  PCE men African 
American                

Excluded AHA guidelines advice 
to use the white model 
for this group of people 

Jung 201519 PCE men white                           Included

Jung 201519 Korean Heart Study                                                                                  PCE women 
African American              

Excluded AHA guidelines advice 
to use the white model 
for this group of people 

Jung 201519 PCE women white                         Included

De Filippis 201520 MESA study                                                                                          PCE men                                 Excluded Most general 
population, fits review 
question best, most up-
to-date population

De Filippis 201721 PCE men Included

Goff 20144 PCE men African 
American                

Excluded

Goff 20144 PCE men white                           Excluded

De Filippis 201520 MESA study                                                                                          PCE women                               Excluded Most general 
population, 

De Filippis 201721 PCE women Included fits review question 
best, most up-to-date 
population

Goff 20144 PCE women 
African American              

Excluded

Goff 20144 PCE women white                         Excluded

Muntner 201422 REGARDS study                                                                                       PCE men                                 Included Most general 
population, fits review 
question best

Goff 20144 PCE men African 
American                

Excluded

Goff 20144 PCE men white                           Excluded

Muntner 201422 REGARDS study                                                                                       PCE women                               Included Most general 
population, fits review 
question best

Goff 20144 PCE women 
African American              

Excluded

Goff 20144 PCE women white                         Excluded

Yang 201623 China MUCA (1992) PCE men African 
American

Excluded AHA guidelines advice 
to use the white model 
for this group of peopleYang 201623 PCE men white Included

Yang 201623 China MUCA (1992) PCE women 
African American

Excluded AHA guidelines advice 
to use the white model 
for this group of peopleYang 201623 PCE women white Included
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Yang 201623 CIMIC PCE men African 
American

Excluded AHA guidelines advice 
to use the white model 
for this group of peopleYang 201623 PCE men white Included

Yang 201623 CIMIC PCE women 
African American

Excluded AHA guidelines advice 
to use the white model 
for this group of people 

Yang 201623 PCE women white Included

Yang 201623 InterASIA and China 
MUCA 

PCE men African 
American

Excluded AHA guidelines advice 
to use the white model 
for this group of people

Yang 201623 (1998) PCE men white Included

Yang 201623 InterASIA and China 
MUCA 

PCE women 
African American

Excluded AHA guidelines advice 
to use the white model 
for this group of peopleYang 201623 (1998) PCE women white Included

Mortensen 201524 Copenhagen General PCE men Excluded Most recent data

Mortensen 201725 Population Study PCE men Included

Mortensen 201524 Copenhagen General PCE women Excluded Most recent data

Mortensen 201725 Population Study PCE women Included

C-statistic
Reference Cohort Model Excluded Explanation for decision

Mainous 20076 ARIC study                                                                                          Wilson men Total 
cholesterol            

Included Most general population, 
fits review question best

D’Agostino 200126 Wilson men Total 
cholesterol            

Excluded

D’Agostino 200126 Wilson men Total 
cholesterol            

Excluded

Mainous 20076 ARIC study                                                                                          Wilson women 
Total cholesterol          

Included Most general population, 
fits review question best

D’Agostino 200126 Wilson women 
Total cholesterol          

Excluded

D’Agostino 200126 Wilson women 
Total cholesterol          

Excluded

Jung 201519 Korean Heart St
udy                                                                                  

PCE men African 
American                

Excluded AHA guidelines advice to 
use the white model for this 
group of peopleJung 201519 PCE men white                           Included

Jung 201519 Korean Heart St
udy                                                                                  

PCE women 
African American              

Excluded AHA guidelines advice to 
use the white model for this 
group of peopleJung 201519 PCE women white                         Included

DeFilippis 201520 MESA study                                                                                          PCE men                                 Excluded Most general population, 
fits review question best, 
most up-to-date population
 
 

De Filippis 201721 PCE men Included

Goff 20144 PCE men African 
American                

Excluded

Goff 20144 PCE men white                           Excluded
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DeFilippis 201520 MESA study                                                                                          PCE women                               Excluded Most general population, 
fits review question best, 
most up-to-date population
 
 

De Filippis 201721 PCE women Included

Goff 20144 PCE women 
African American              

Excluded

Goff 20144 PCE women white                         Excluded

Muntner 201422 REGARDS study                                                                                       PCE men                                 Included Most general population, 
fits review question bestGoff 20144 PCE men African 

American                
Excluded

Goff 20144 PCE men white                           Excluded

Muntner 201422 REGARDS study                                                                                       PCE women                               Included Most general population, 
fits review question bestGoff 20144 PCE women 

African American              
Excluded

Goff 20144 PCE women white                         Excluded

Koller 201227 Rotterdam Study                                                                                     ATP III men                             Included Most recent publication

Koller 200728 ATP III men                             Excluded  

Koller 201227 Rotterdam Study                                                                                     ATP III women                           Included Most recent publication

Koller 200728 ATP III women                           Excluded

Yang 201623 China MUCA 
(1992)

PCE men African 
American

Excluded AHA guidelines advice to 
use the white model for this 
group of people

Yang 201623 PCE men white Included

Yang 201623 China MUCA 
(1992)

PCE women 
African American

Excluded AHA guidelines advice to 
use the white model for this 
group of peopleYang 201623 PCE women white Included

Yang 201623 CIMIC PCE men African 
American

Excluded AHA guidelines advice to 
use the white model for this 
group of peopleYang 201623 PCE men white Included

Yang 201623 CIMIC PCE women 
African American

Excluded AHA guidelines advice to 
use the white model for this 
group of peopleYang 201623 PCE women white Included

Yang 201623 InterASIA and 
China 

PCE men African 
American

Excluded AHA guidelines advice to 
use the white model for this 
group of peopleYang 201623 MUCA (1998) PCE men white Included

Yang 201623 InterASIA and 
China 

PCE women 
African American

Excluded AHA guidelines advice to 
use the white model for this 
group of peopleYang 201623 MUCA (1998) PCE women white Included

Mortensen 201524 Copenhagen 
General 

PCE men Excluded Most recent data

Mortensen 201725 Population Study PCE men Included

Mortensen 201524 Copenhagen 
General 

PCE women Excluded Most recent data

Mortensen 201725 Population Study PCE women Included
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3.4 Summary calibration slope

Table S3: Results of summary calibration slope

Model Calibration slope 95% CI 95% PI

Wilson men 1.01 0.95-1.07 0.95-1.07
Wilson women 0.97 0.71-1.22 -0.06-2.00
ATP III men 1.29 0.97-1.82 0.14-2.45
ATP III women 0.95 Not estimable 0.87-1.03
PCE men 0.95 0.79-1.10 -0.19-2.07
PCE women 0.82 0.77-0.86 0.28-1.35

CI: confidence interval, PI: prediction interval

Meta-analysis of stratified OE ratios indicated that miscalibration of the Framingham 
models was mostly related to heterogeneity in baseline risk, as the summary calibration 
slope is close to 1. A calibration slope between 0 and 1 indicates predictions are too 
extreme, e.g. too low for low-risk people and too high for high-risk people. A calibration 
slope >1 indicates there is not enough variability in predicted risks.55 
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3.6 Meta-regression analyses

3.6.1 OE ratio

Figure S1: Results of meta-regression for the OE ratio for categorical variables (A and B) and 
continuous variables (C). 

For C, Every line represents one model: Wilson men, Wilson women, PCE men or PCE women. ATP 
III is not plotted because of the low number of external validations, but the triangles represent the 
individual validations for the ATP III models. The grey areas represent the confidence intervals around the 
lines, and the circles represent the individual external validations. CHD: coronary heart disease, CVD: 
cardiovascular disease, AA: African American, SD: standard deviation, SBP: systolic blood pressure, HDL: 
high-density lipoprotein.
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3.6.2 C-statistic

Figure S2: Results of meta-regression for the c-statistic for categorical variables (A and B) and 
continuous variables (C). 

For C, Every line represents one model: Wilson men, Wilson women, PCE men or PCE women. ATP III 
is not plotted because of the low number of external validations, but the triangles represent the individual 
validations for the ATP III models. The grey areas represent the confidence intervals around the lines, and 
the circles represent the individual external validations. 
CHD: coronary heart disease, CVD: cardiovascular disease, AA: African American, SD: standard 
deviation, SBP: systolic blood pressure, HDL: high-density lipoprotein.
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Abstract

Background
Ignoring treatments in prognostic model development or validation can affect the 
accuracy and transportability of models. We aim to quantify the extent to which the 
effects of treatment have been addressed in existing prognostic model research and 
provide recommendations for the handling and reporting of treatment use in future 
studies.

Methods
We first describe how and when the use of treatments by individuals in a prognostic 
study can influence the development or validation of a prognostic model. We 
subsequently conducted a systematic review of the handling and reporting of treatment 
use in prognostic model studies in cardiovascular medicine. Data on treatment use (e.g. 
medications, surgeries, lifestyle interventions), the timing of their use, and the handling 
of such treatment use in the analyses were extracted and summarised.

Results
302 articles were included in the review. Treatment use was not mentioned in 91 (30%) 
articles. One hundred forty-six (48%) reported specific information about treatment 
use in their studies; 78 (26%) provided information about multiple treatments. Three 
articles (1%) reported changes in medication use (“treatment drop-in”) during follow-
up. Seventy-nine articles (26%) excluded treated individuals from their analysis, 80 
articles (26%) modelled treatment as an outcome, and of the 155 articles that developed 
a model, 86 (55%) modelled treatment use, almost exclusively at baseline, as a predictor.

Conclusions
The use of treatments has been partly considered by the majority of CVD prognostic 
model studies. Detailed accounts including, for example, information on treatment 
drop-in were rare. Where relevant, the use of treatments should be considered in the 
analysis of prognostic model studies, particularly when a prognostic model is designed 
to guide the use of certain treatments and these treatments have been used by the study 
participants. Future prognostic model studies should clearly report the use of treatments 
by study participants and consider the potential impact of treatment use on the study 
findings.
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Introduction

An important part of prognostic research is the development and validation of prognostic 
models or risk scores. These models can be used to make individualised predictions of 
a person’s absolute risk of developing a specific health outcome1, 2 and can, for example, 
be used to inform different aspects of clinical decision-making. A notable example of 
this is in cardiovascular medicine: if a patient’s risk of a cardiovascular event is predicted 
to be above a specific probability threshold, lifestyle changes are recommended, with or 
without initiation of preventative medication.3-5

Concerns have been raised that the use of treatments, such as pharmacological therapy or 
diet and lifestyle-related interventions, may have an unwanted impact when patient data 
(e.g. from a cohort or registry) is used to develop or validate a prognostic model.6-8 In 
order to develop or validate prognostic models that predict an individual’s probability of 
developing an outcome in the absence of a certain treatment (i.e. their untreated health 
course), one should ideally include people who have not received that treatment before 
or during follow-up.1, 6 In practice, however, such prognostic models are often derived 
from or validated in data sets where a proportion of the individuals has received that 
specific treatment. If, for example, treatments were administered in a study according 
to individuals’ predicted risks (either implicitly or explicitly), a model developed using 
this data will likely underestimate the risk of the predicted outcome in the absence of 
treatment and could thus lead to under-treatment when such a model is used in future 
individuals.8, 9

In this manuscript, we aim to provide insight into the problems that arise when 
treatment use is ignored when developing or validating a prognostic model. First, we 
elaborate on how and when treatment use could negatively impact prognostic modelling. 
Following this, we provide evidence of the scale of this issue in published studies by 
means of a systematic literature review of the reporting and handling of treatment use 
in cardiovascular prognostic model research. We conclude with suggestions for the 
handling and reporting of treatment use in prognostic model research.

Methods

What do we mean by “treatment” and when is it a problem?
Herein, we use “treatment” to refer to any intervention, medical (e.g. medication, 
surgery, therapy) or non-medical (e.g. quit smoking or do more exercise), undertaken 
by an individual that lowers their risk of  a certain outcome. We also include in this 
definition modifications that an individual makes to their behaviour or lifestyle 
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that reduce their risk of  a specifi c outcome. We propose two categories of  
treatment: “guided” and “background”. The term “guided treatments” refers to 
treatments that one intends to guide or direct by means of  the prognostic model 
being developed or validated. For example, CVD prediction models are used to 
guide the prescription of  lipid-lowering medication, as well as direct targeted 
advice about lifestyle changes to high-risk individuals. “Background treatments” 
refer to any other treatment that an individual receives during a prognostic study. 
This could, for example, include treatments that are part of  routine medical care 
or changes an individual makes to their lifestyle. Figure 1 outlines the different 
stages where treatments may be used in a prognostic study.

Figure 1: The ti ming of treatment use in a prognosti c study 
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Guided treatments
Prognostic models are often used to guide or direct the initiation of certain treatments 
or interventions. In this case, a prognostic model should estimate the risk of developing 
a certain outcome if individuals were to remain untreated with this particular treatment 
(so-called untreated risk prediction).1, 8, 10 If this particular, “guided” treatment is given to 
study participants after the predictors are measured but before the ascertainment of the 
outcome (henceforth, we refer to this as “treatment drop-in”, see Figure 1), the chance 
of treated individuals developing the outcome of interest will be decreased. Crucially, 
the outcomes measured in the study will no longer represent the untreated outcomes 
that the model is designed to predict. It follows that models developed using data 
from individuals who received guided treatments will provide biased underestimates of 
(untreated) risks in future individuals, if treatment use is ignored.8 In validation studies, 
models will incorrectly appear to overestimate risk if applied in individuals that receive 
the specifi c guided treatment.8, 11
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Background treatments
Participants in a prognostic study commonly receive risk-lowering treatments during 
follow-up as a part of routine care. As in the case of guided treatments, if these “background” 
treatments are eff ective in lowering the risk of the outcome under prediction, we can 
expect a reduction in the probability of treated individuals developing the outcome of 
interest. However, unlike with guided treatments, the outcomes measured in the study 
still refl ect the outcome under prediction. Background treatments should instead be 
considered to be a part of the case-mix of participants in study. Provided the pattern of 
treatment use, and the eff ect of the treatment on the outcome risk, is consistent across 
populations, diff erences between model performance in the development cohort new 
populations should not be due to treatment use. However, background treatment use 
and eff ectiveness may vary between settings. For example, a model developed in a setting 
where everyone received some standard (eff ective) treatment during follow-up may 
not be transportable to a diff erent population where that intervention is not available, 
or a less eff ective alternative treatment is routinely used. In this case, the predicted 
probabilities provided by the model in this new population will be too low.

Examples
We illustrate the distinction between diff erent types of treatment with two hypothetical 
examples, from two diff erent clinical domains.

Example 1
A model is developed to predict six-month mortality risk in patients with end-stage 
renal disease (ERD) in the absence of a kidney transplantation. Th e model will be used 
to help decide which future patients will receive a kidney transplant. In the development 
cohort, all patients began risk-lowering haemodialysis after enrolment as a part of routine 
care, and a subset of patients additionally received a kidney transplant.

Example 2
A validation study is conducted to evaluate an existing prognostic model for the 
prediction of fi ve-year CVD risk in the general population. Th e model is used in practice 
to decide whether lipid-lowering drugs (statins) will be prescribed. Several individuals in 
the study were prescribed risk-lowering statins and were recommended to modify their 
lifestyle based on their predicted CVD risk. In addition, a number of patients took other 
risk-lowering medications (e.g. aspirin) as a part of routine care.

In both examples, some study participants initiated one or more treatments or 
interventions after predictor measurements were taken. In example 1, we can consider 
haemodialysis to be a “background” treatment, as described above, which requires 
no further consideration for model development. However, the model may need to 
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be recalibrated for settings where haemodialysis is not a part of usual care or where a 
substantial proportion of patients receive some other type of (e.g. peritoneal) dialysis. 
In contrast, kidney transplant, a treatment guided by predictions made by the model, 
could bias model development. The outcomes measured in individuals who received a 
transplant during follow-up do not reflect our outcome of interest: six-month mortality 
without kidney transplantation. Not taking this into account in model development 
will lead to a prediction model that actually underestimates the risk of mortality without 
transplantation in future patients with ERD.

In example 2, the use of medications such as aspirin can be considered as background 
treatment that will not affect the validity of the validation study. It may however explain 
model miscalibration in the validation cohort if the pattern of use or the effectiveness 
of these treatments is different from those of the development cohort. With regard to 
lipid-lowering medication, ideally one would validate the model in individuals who 
have not received lipid-lowering medication during follow-up. As high-risk individuals 
received statins in the study, their risk of a CVD event in the study is lower than it 
would have been, had they remained untreated. In this example, lifestyle changes merit 
separate attention. If the model is used in practice, as with statins, to help target lifestyle 
advice to high-risk individuals, this treatment should not be ignored in the validation 
study. However, many individuals may have modified their lifestyles independent of 
any targeted advice, in which case, lifestyle changes could be viewed as a background 
treatment.

To summarise, when treatments are initiated in participants after the moment of 
prognostication (see Figure 1), the risk-lowering effects of these treatments may impact 
on model development or validation. We propose that the intended use and this kind of 
risk predictions a model aims to provide (i.e. prognosis with or without treatment), as 
well as the types of treatments (guided or background) used in a data set or study, are key 
factors that determine how treatments may impact on prognostic model development 
or validation. For further details on the challenges of treatment use and how to account 
for them in prognostic model development and validation, see8,11 and further guidance 
can be found in Table 1 (see below).

A review of treatment use in published prognostic model studies
To provide insight into the extent to which treatment use has been addressed in the 
development and validation of prognostic models, we used a previously conducted 
systematic review of the reporting and analysis of prognostic models for predicting the 
risk of the future occurrence of CVD outcomes in the general population.12



Treatment use in prognostic model research: 
a systematic review of cardiovascular prognostic studies

89

Table 1: General characteristics of the included articles

Characteristics of included studies (n = 302)

Study type*
     Development 124
     Validation 146
     Incremental value assessment 135
          Over a set of core predictors 81
Design of study used for prognostic modelling
   Observational 286
   Randomised trial 16
Follow-up period (years) 10, (6, 12); 15%a

Prediction horizon (years) 10, (8, 10); 12%a

* �One article may have multiple study types (e.g. the development and validation of a model); thus values 
do not sum to the total number of included articlesa �Values represent as follows: median (lower quartile, upper quartile), percentage of studies that did not 
report this information

Data sources, search, and study selection
In brief, a search was performed on 1 June 2013 in MEDLINE and EMBASE to 
identify original research articles reporting the development (derivation of a new 
model) or external validation (evaluation of an existing model in a new population) of 
a prognostic model and “incremental value studies”, in which the additional value of a 
certain predictor or (bio)marker was assessed on top of either an existing risk score or a 
model consisting of a core set of conventional predictors (e.g. age, sex, smoking, systolic 
blood pressure, cholesterol, diabetes).

Titles and abstracts were first screened for eligibility, and subsequent full-text screening 
was conducted. Publications were considered for inclusion if they were original articles 
that reported cardiovascular risk prognostic modelling in a general population setting. 
Full details of the search strategy and in-/exclusion criteria can be found in the original 
review.12

Data extraction
Directed by the CHARMS checklist,13 a list of key items (Supplement 1) for extraction 
was derived for the current review by one author (RP) and updated after group 
consideration (RP, LMP, RHHG, JAAGD, KGMM). As the aim of this review is to 
provide an overview of research practice and reporting, study quality and risk of bias 
assessment was not conducted. Independent data extraction was piloted among three 
authors (RP, JAAGD, RHHG). The remaining data extraction was conducted by one 
author (RP), and any queries were discussed primarily with one author (JAAGD), and 
then two other authors (LMP, RHHG) until a consensus was reached.
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General study characteristics were extracted for each article, including the study 
design used to collect data, the start and end dates of participant data collection and 
the prediction horizons of reported models. Relevant treatments or interventions for 
cardiovascular disease prevention were defined prior to data extraction and broadly 
divided into three classes: pharmacological treatments (notably antihypertensive, lipid-
lowering and antithrombotic medication), cardiovascular surgical interventions (e.g. 
coronary revascularization, carotid endarterectomy), and lifestyle interventions. While 
the term “lifestyle interventions” can refer to changes in a diverse range of modifiable 
risk factors, we defined this in our review as the reporting of active modifications to 
exercise, nutritional or smoking habits, as a part of a programme or following physician 
recommendations. All reported information on treatment use and how it was considered 
in the analysis was extracted (for full details, see Supplement 1).

Results of the literature review

General characteristics of included articles
The search of the original systematic review identified 9965 unique records, of which 
1388 were found to be relevant following title and abstract screening, as previously 
reported.12 After full-text screening for eligibility, 302 articles were included for review 
(Supplement 2). A summary of the article inclusion process is presented in Figure 2. The 
final set of articles includes publications from 102 different journals. Publication dates 
ranged from 1967 to 2013 and 157 articles (52%) were published from 2009 onwards. 
Participant data collection ranged from as early as 1948 until 2011. Further details are 
presented in Table 2.

Reporting and handling of treatment use
Overall, nearly one-third (91 articles, 30%) of the 302 included articles did not report 
any information about relevant preventative or therapeutic treatments. The reporting 
of treatments in prognostic modelling articles has increased over time, as illustrated 
in Figure 3. Just over half of the articles published up until 2008 (81 articles, 56%) 
reported information about treatment, whereas from 2009 to June 2013, this increased 
(130 articles, 83%). Summaries of the reporting and handling of information about 
treatment use are presented in Tables 3 and 4, respectively.

Development studies
Of the 124 articles that reported the development of a new prognostic model, baseline 
information on treatment use was reported in 43 articles (35%). Six articles (5%) reported 
treatment use during follow-up, two (2%) reported changes in medication use during 
follow-up, four (3%) described incident surgical procedures (cardiovascular surgeries 
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occurring after the study baseline) and in 11 articles (9%), the timing of treatments 
was unclear. Two articles reported that information on treatment was not available. 
Treatment use was most often accounted for in analyses by modelling treatment as a 
predictor (54 articles, 44%). Twenty articles (15%) excluded treated individuals from 
the analysis. Changes in treatment use during follow-up were not modelled.

Figure 2: A fl ow diagram of arti cle inclusion and exclusion
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Figure 3: Reporti ng of treatment in CVD prognosti c modelling studies over ti me. 

Articles were classifi ed as having reported information on treatment if the use of at least one potentially 
risk-lowering treatment in the study was reported, or if the eff ect of a treatment on the study fi ndings was 
discussed. 
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* Articles were included up to June 2013; this column only represents treatment reporting during the fi rst 
half of 2013.

Table 2. Reporti ng of treatment use by study type.

Reported treatment Overall 

(n=302) (%)a

Development studies 

(n = 124) (%)

Incremental value 
studies 
(n = 135) (%)

Validation studies 

(n = 146) (%)
Medication use (any) 135 (45) 45 (36) 73 (54) 62 (41)
 Antihypertensive 122 (41) 40 (32) 66 (49) 58 (38)
 Lipid-lowering 81 (27) 24 (19) 47 (33) 38 (26)
 Antithrombotic/
    anticoagulant

17 (6) 2 (2) 15 (11) 7 (5)

Lifestyle interventions 2 (1) 1 (1) 0 1 (1)
Surgical interventions 39 (13) 9 (7) 26 (19) 15 (11)

a One article may have multiple study types (e.g. the development and validation of a model); thus values 
in individual columns do not sum to the overall number of included articles. Articles may have reported 
multiple treatments and thus percentages in each column should not necessarily sum to 100%
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Table 3: Handling of treatment in the analyses of prognostic model studies.

Approach taken to account for treatment use Development 
studies 
n = 124 (%)

Incremental 
value studies 
n = 135 (%)

Validation 
studies 
n = 146 (%)

Treated patients excluded 20 (15) 53 (39) 38 (26)
  Antihypertensive medication users 4 (3) 6 (4) 6 (4)
  Lipid-lowering medication users 6 (5) 10 (7) 16 (11)
  Other medication users 1 (1) 2 (1) 1 (1)
  Lifestyle interventions 0 0 0
  Patients who received surgery 14 (10) 39 (29) 22 (15)
Exclusion as a sensitivity analysis 9 (7) 5 (4) 4 (3)
Stratification by treatment 1 (1) 0 0
Treatment included in the outcome 23 (19) 58 (43) 35 (24)
Treatment modelled as a predictor 54 (44) 48 (59)a –
  Antihypertensives 49 (40) 44 (54)a –
  Lipid-lowering agents 12 (10) 15 (11)a –
  Other medications 2 (2) 5 (4)a –
  Lifestyle interventions 1 (1) 0a –
  Surgical interventions 0 0a –
    Modelled directly (not a compositeb) 37 (30) 44 (54)a –
  Baseline treatment modelled 41 (33) 36 (44)a –
  Changes in treatment 
    during follow-up modelled

0 0a –

  Treatment at end of study modelled 0 1 (1)a –
  Not clearly reported 12 (10) 11 (8) –
    Treatment interactions considered 21 (17) 7 (5)a –

aOnly studies that assessed incremental value over a core set of individual predictors (n = 81) and thus 
had the opportunity to include treatment variables within the core set of predictors; studies that assessed 
incremental value over an existing prognostic model or risk score did not derive a new prediction model 
and are not included in the calculation bComposite predictors are here defined as the combination of two 
or more variables (including treatment use) into a single predictor

Incremental value studies
In articles that reported the evaluation of the incremental value of a predictor over either 
a core set of predictors or an existing model, baseline information about treatment use 
was reported for 74 articles (55%). Changes in medication use were reported in three 
articles, and surgical procedures that occurred during follow-up were reported in 15 
articles (11%). Five articles (4%) reported that information on treatment use was not 
available. Where incremental value was assessed over a set of core predictors, treatment 
use was accounted for most often by including treatment as one of the core predictors 
(48 articles, 59%). Fifty-three articles (39%) excluded treated individuals from analyses. 
Surgical outcomes were frequently modelled as a part of a composite endpoint (58 
articles, 43%).
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Validation studies
In studies that externally validated (evaluated) an existing CVD prognostic model, 
where reported, most information about treatment use was measured at baseline only 
(55 articles, 37%). No articles reported changes in medication use during follow-
up. Four articles reported a lack of available data on treatment use. In addition, five 
articles (3%) presented information about treatment use in the population in which the 
model was originally developed, of which two reported differences of more than 10% 
in the proportion of baseline treatment users between the development study and the 
validation study. Another five articles (3%) commented on how differences between 
treatment use in the development and validation populations could have contributed 
to poor performance of the model upon validation. Medication use was accounted for 
exclusively by restricting analyses to untreated patients (38 articles, 26%). In addition, 
35 articles (24%) accounted for incident surgical procedures by including surgery within 
the composite endpoint of their study.

Discussion

Findings from the literature review
The use of treatments in prognostic modelling studies has not been widely addressed 
in cardiovascular preventative medicine. While reporting has improved over the last 
decade, and the majority of cardiovascular prognostic modelling studies (211 articles, 
70%) made at least one reference to treatment use, we found great heterogeneity in the 
kinds of information and level of detail that have been reported. Only 52% of studies 
that developed a model reported specific information about the use of risk-lowering 
treatments, similar to findings from a previous review in the field of cardiovascular 
medicine.6 We also confirm that information beyond baseline antihypertensive 
medication use, information about other treatments, and changes in treatment use 
during follow-up are frequently not reported. In addition, we found the reporting 
or discussion of any differences between treatment use in validation studies and their 
respective development studies was poorer than that observed in an earlier review of 
external model validation studies, which found that 40% (31/78) of articles under study 
discussed differences in case-mix.14

There are several possible explanations for the findings of the review. First, several articles 
used data collected during the pre-statin era,15 which may explain why the lipid-lowering 
medications were scarcely reported. However, effective medications such as aspirin 
and blood pressure-lowering medication have long been available, along with lifestyle 
interventions and some surgical procedures, which are also relevant to these studies. 
In addition, many articles reported a low prevalence of statin use at study baseline; 
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in those situations, it may have been assumed that treatment would not have greatly 
influenced the predicted probabilities. However, treatment use can greatly change over 
time, as shown by one study validating the AHA/ACC Pooled Cohort Equations,16 
which reported increases in antihypertensive medication use and statin use from 59.9 to 
82.4% and 9.7 to 63.7%, respectively, over a 10-year follow-up period (1998–2007).17 
Second, while only nine articles reported that data on treatments were not available in 
their studies, it might be that more studies were unable to obtain such data, especially 
follow-up information, as this may be more costly or difficult to collect. Finally, in some 
studies, treatments may not have been considered by the authors to be relevant to the 
prognostic question being addressed. One article did not model treatment effects on the 
grounds that “The prediction of initial CHD [coronary heart disease] events in a free-
living population not on medication is emphasized”,18 i.e. the model was designed for 
use in individuals who are not already on treatment. However, as already discussed, this 
rationale does not take into account treatment drop-in that may have occurred during 
the follow-up period of the study.

The review is, to our knowledge, the first to give an overview of how treatment information 
has been reported and handled in prognostic model research. While other studies have 
broadly addressed related methodological issues,14 or have focussed on a single aspect of 
CVD modelling, such as model development,6 we provide comprehensive coverage of 
CVD prediction model studies and support this with a conceptual framework describing 
when and how treatments can affect a prognostic study. However, there are limitations 
within this study.

First, as the findings presented in the review are based on articles identified through a 
previously conducted systematic review, we are limited to providing information up to 
June 2013; more recent trends in cardiovascular prognostic modelling are not presented. 
Three important developments in the past 4 years include the ACC/AHA Pooled Cohort 
equation,16 the Globorisk CVD assessment tool,19 and the Qrisk-3 calculator,20 each 
developed as tools for the prediction of CVD in the general population. Among these 
three currently implemented CVD risk estimators, there is no clear consensus over how 
treatments should be taken into account in prognostic models for CVD; treatment use 
at baseline is modelled differently in each of the prognostic models, and none of the 
studies accounted for the effects of treatment drop-in. Thus, questions have been raised 
regarding the validity of these models and their respective validation studies,9, 21 and 
treatment use remains an issue at present. Furthermore, owing to the large number of 
included articles (> 100) published from 2009 onwards, our study provides a more up-
to-date overview than previous findings.6 As the CVD domain is a highly active field in 
prognostic model research, the presented results are likely optimistic for other clinical 
domains; we speculate that in other clinical domains, treatment use has received less 
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attention. Second, this review focusses on a set of preventative and therapeutic treatments 
that modify cardiovascular risk, but may not describe all interventions that affect CVD 
risk. However, a detailed description is presented for the major classes of cardiovascular 
preventative treatments, particularly those recommended by medical guidelines. Third, 
as this is a review of reporting, we rely on what the authors decided to mention within 
the article and we cannot be entirely sure how treatment information has been collected 
in studies and the extent to which it has been considered by researchers. For example, 
limited information could be extracted about changes in lifestyle that may have affected 
prognostic modelling, as this was almost never explicitly reported.

Suggestions for dealing with and reporting treatment use in prognostic model studies
Treatment use can potentially have a great impact on the reported accuracy of developed 
and validated prognostic models. Our review has identified that information about the 
use of treatments is often reported with insufficient detail to allow other researchers to 
evaluate the effect it may have had on the reported study findings, notably the expected 
predictive accuracy model in future populations. The TRIPOD statement22, 23 has already 
made recommendations for the reporting of information on treatment use in prognostic 
model studies (Item 5c), but these can be strengthened on this aspect. We provide 
additional recommendations for the design, analysis, and reporting of prognostic model 
studies, to help improve the way that treatment use, in particular during follow-up, is 
addressed (Table 4).

Starting with the design of future prognostic studies, we suggest that information 
should be collected on both treatment use at the study baseline and during follow-
up, to record any changes in treatment use over time that may have impacted on the 
prognosis of study participants. Existing databases should contain information with 
enough detail to allow researchers to account for treatment use in their analyses, where 
necessary (see section: “What do we mean by “treatment” and when is it a problem?”). 
We provide initial recommendations on how different kinds of treatments can be taken 
into account when developing or validating a prediction model. This advice is based 
on a limited number of simulation studies, and in the absence of further simulations 
and empirical evidence, researchers must judge which approach will be most valid for 
their research. We do not provide specific guidance on how to account for complex 
changes in treatment use in a prognostic study, as more research is needed into the 
suitability of existing statistical methods. Finally, Table 1 provides, in accordance with 
the TRIPOD guidelines,23 recommendations for the minimum amount of detail that
should be presented in reports of prognostic model studies. We encourage researchers
to discuss the potential impact that treatment use in their study could have had on their 
results, including the expected accuracy of newly developed models.
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Table 4: Addressing and reporting treatment use in prognostic model studies.

“Treatment” refers to any medical or non-medical intervention undertaken by an individual that lowers 
their risk of a certain outcome.

Design
  Collect information on treatments used at the study baseline (see Figure 1)

  Collect information on treatment drop-in or discontinuation during follow-up 
    (see Figure 1).

  If using readily available data (e.g. from an existing cohort or register), 
    consider whether sufficient information on treatment use has been recorded.

Analysis
Model development
  Guided treatments: Consider explicitly including treatment use in the 
    prognostic model. If a treatment was randomly allocated (e.g. data from an 
    RCT), consider using only the subset of untreated individuals.8

Model validation

  Guided treatments: If treatments were randomly allocated, exclude treated 
    individuals from the analysis. If treatment use is non-random (e.g. data from
    an observational study or register), consider first using inverse treatment 
    probability weighting before validating the model in the untreated subset.11

  Background treatments: Consider differences in treatment use between the 
    development and validation cohorts when exploring the impact of case-mix 
    on model performance.24, 25, 26

Reporting
  Report information on treatment use at baseline. List any treatments that may 
    have affected the prognosis of individuals in the study and the absolute 
    number (%) treated.

  Report information on effective treatments used during follow-up and, where 
    relevant, the duration of treatment use.

  Discuss the potential impact of treatment use on the validity and 
    transportability of the developed prognostic model or estimates of model 
    performance.
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Conclusion

In conclusion, treatment use, if ignored, can raise concerns for the transportability and 
validity of prognostic models. Our review shows that while the importance of treatments 
for prognostic prediction has been recognised in many studies, reporting rarely covers 
all relevant treatments, and changes in treatment have hardly been acknowledged. 
Furthermore, we found no clear consensus within the published literature over how 
treatments should be considered in the analyses of prognostic studies. Efforts should 
be made to collect and report detailed information about treatment use, to allow future 
researchers and end users of prognostic models to more clearly identify any potential 
issues that treatment use may have introduced and to understand how a model should 
be validated and used in practice.
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Supplemental material

Supplement 1. List of items for data extraction

1. General study information
i) General study aims.
ii) Study type.
iii) For incremental value (IV) studies: 
Is IV assessed over an existing model or a new model containing conventional predictors?

iv) Study design.
v) Start of data collection.

vi) End of data collection.
vii) Length of follow-up.
viii) Intended prediction horizon.

2. Reporting of treatment-specific information
i) Where in the article is information about treatment reported?

ii) Is a treatment included within the definition of the outcome?
-	 If so, give details.

iii) Is a treatment included within the definition of a predictor variable (composite predictor)?
-	 If so, give details.

iv) Is use of any of the following treatments reported (E.g. proportion of users)?
-	 Cholesterol/lipid-lowering medication.
-	 Blood pressure-lowering/antihypertensive medication.
-	 Antithrombotic/anticoagulant medication.
-	 Lifestyle modification advice/programmes.
-	 Cardiovascular procedure/surgery.

v) If no specific details about treatment use are reported, is the collection of information about 
treatment use clearly reported (I.e. in the methods)?

vi) At which stage of data collection was reported information measured (E.g. at baseline or during 
follow-up)?

vii) If follow-up information is reported,
-	 Are incident surgical procedures reported?
-	 Are changes in medication use during follow-up reported?

viii) Is treatment explicitly mentioned as part of the participant eligibility criteria?
-	 If so, which treatments?

ix) Is the relevance of treatment explicitly discussed (with reference to the performance or 
generalizability of the model)?

-	 If so, provide details.
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x) For validation studies:
Is treatment uses explicitly reported for both validation study population and the original development 
study population?

-	 If so, is there a difference in treatment use between the two sets (difference in proportion 
treated greater than 10%)?

-	 Are the implications of any differences discussed? Give details.

3. Accounting for treatment use in the analysis
i) If treatments are not accounted for in the analysis, is a reason given for why this is so?

-	 If so, give details.

ii) Is the analysis restricted according to use of a treatment (i.e. are treated individuals excluded?)?
-	 If so,

o	 Restricted on which treatment?
o	 Is restriction based on baseline status or treatment during follow-up?
o	 Is this a part of a sensitivity analysis?

iii) Is treatment modelled as a predictor?
-	 If so, which treatments are modelled? Give details on the exact definition.
-	 Is treatment modelled within a composite predictor?
-	 Which kind of treatment information is modelled: baseline, follow-up, both?
-	 Is treatment modelled using more advanced statistical techniques (e.g. as a time-varying 

covariate)? Give details.
-	 Are treatment interactions with other variables modelled?
-	 Is treatment included as a predictor in the final model?, If not, why not?
-	 Is a treatment modelled alongside any associated condition (i.e. blood pressure-lowering 

medication and blood pressure)?

iv) Are analyses stratified according to treatment use?

v) For validation studies:
Is the existing model recalibrated/updated with the specific aim of accounting for treatment use?
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Abstract

Background
Prognostic models often show poor performance when applied to independent validation 
data sets. We illustrate how treatment use in a validation set can affect measures of 
model performance and present the uses and limitations of available analytical methods 
to account for this using simulated data.

Methods
We outline how the use of risk-lowering treatments in a validation set can lead to an 
apparent overestimation of risk by a prognostic model that was developed in a treatment-
naïve cohort to make predictions of risk without treatment. Potential methods to correct 
for the effects of treatment use when testing or validating a prognostic model are discussed 
from a theoretical perspective. Subsequently, we assess in simulated data sets, the impact 
of excluding treated individuals and the use of inverse probability weighting (IPW) on 
the estimated model discrimination (c-index) and calibration (observed:expected ratio 
and calibration plots) in scenarios with different patterns and effects of treatment use.

Results
Ignoring the use of effective treatments in a validation data set leads to poorer model 
discrimination and calibration than would be observed in the untreated target 
population for the model. Excluding treated individuals provided correct estimates of 
model performance only when treatment was randomly allocated, although this reduced 
the precision of the estimates. When the assumptions of IPW were met, IPW followed 
by exclusion of the treated individuals provided correct estimates of model performance 
in data sets where treatment use was either random or moderately associated with an 
individual’s risk. IPW followed by exclusion yielded incorrect estimates in the presence 
of non-positivity or an unobserved confounder.

Conclusions
When validating a prognostic model developed to make predictions of risk without 
treatment, treatment use in the validation set can bias estimates of the performance of 
the model in future targeted individuals, and should not be ignored. When treatment use 
is random, treated individuals can be excluded from the analysis. When treatment use 
is non-random, IPW followed by the exclusion of treated individuals is recommended, 
however, this method is sensitive to violations of its assumptions.
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Introduction

Prognostic models have a range of applications, from risk stratification, to use in 
making individualized predictions to help counsel patients or guide healthcare providers 
when deciding whether or not to recommend a certain treatment or intervention.1-3 
Before prognostic models can be used in practice, their predictive performance (e.g. 
discrimination and calibration)- in short, performance - should be evaluated in a set 
of individuals who are representative of future targeted individuals. In studies that use 
independent data to validate a previously developed prognostic model, performance is 
often considerably worse than in the development set.4 This may be due to, for example, 
overfitting of the model in the development data set5, 6 or differences in case-mix 
(between the development set and validation sets.7-10

One aspect that can vary considerably between data sets used for model development 
and validation is the use of treatments or preventative interventions that affect 
(reduce) the occurrence of the outcomes under prediction. Although a difference in 
the use of treatments between a development and validation set is generally viewed as 
a difference in case-mix characteristics, treatment use in a validation set can actually 
lead to further problems. When additional treatment use in a validation set (compared 
to the development set) results in a markedly lower incidence of the outcome under 
prediction, the predictive performance of the model will likely be affected. A challenge 
arises when a prognostic model has originally been developed in order to make 
predictions of “untreated risks”, i.e. predictions of an individual’s prognosis without 
certain treatments, to guide the decision to initiate those treatments in future targeted 
individuals. Ideally these models should be validated in data sets in which individuals 
remain untreated with those specific treatments throughout follow-up - so-called 
treatment-naïve populations. However, the use of such treatment-naïve populations is 
uncommon and poor performance of a prognostic model seen in a validation study 
could be directly attributed to treatment use in the validation data set.11, 12

Ignoring the effects of treatment use in the development phase of a prognostic model 
for the prediction of untreated risks has already been shown to lead to a model that 
underestimates this risk in future targeted individuals.13 However, it is not clear to what 
extent treatment use in a validation set might influence the observed performance of a 
prognostic model that was developed in a treatment-naïve population. In addition, how 
to account for treatment use in a treated validation set in order to correctly estimate how 
a prognostic model would perform in its target (untreated) population, remains unclear.

In this paper, we provide a detailed explanation of when and how treatment use in 
a validation set can bias the estimation of the performance of a prognostic model in 
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future targeted (untreated) individuals and compare different analytical approaches to 
correctly estimate the performance of a model using a partly treated validation data set 
in a simulation study.

Methods

Problems with ignoring treatment use in a validation study
If individuals in a validation set receive an effective treatment during follow-up, their risk 
of developing the outcome will decrease. Figures 1a and b show the effect of treatment use 
on the distribution of risks in data sets that represent data from a randomized trial (RCT) 
and a non-randomized study (e.g. routine care data or data from an observational cohort 
study) in which treatment use was more likely in high-risk individuals. In the event of 
the use of an effective treatment, fewer individuals will develop the outcome than would 
have, had they remained untreated, and thus the observed outcome frequencies will 
be lower than the predicted “untreated” outcome frequencies. As a result, a prognostic 
model developed for making predictions of risk without that treatment (i.e. models used 
to guide the initiation of a certain treatment) will erroneously appear to overestimate 
risk in a partially treated validation set, regardless of how treatments have been allocated. 
As the aim, in this case, is to estimate the performance of the model when used for 
future, untreated individuals, measures of model discrimination and calibration will 
give a biased representation of the performance of the model when used in practice for 
making untreated outcome predictions, if treatment use in the validation set is ignored.

The effect that treatment use will have on measures of model performance in a 
validation study will depend on a number of factors, including the strength of the effect 
of treatment on the outcome risk, the proportion of individuals receiving treatment, 
and the underlying pattern of treatment use. If a treatment has a weak effect on the 
outcome risk or only a small proportion of individuals are treated in a validation set, the 
impact on model discrimination and calibration will be relatively small. Furthermore, 
the way in which treatments are allocated to individuals, whether treatment is allocated 
randomly, as in data from a RCT, or non-randomly and treatment use is rather based 
on an individual’s risk-profile or according to strict treatment guidelines, will influence 
the impact that treatment use will have in a validation study. If, for example, high-risk 
individuals are selectively treated, we can anticipate an even greater impact of treatment 
use on measures of model performance. In this case, the distribution of observed risks 
will become narrower, due to the risk-lowering effects of treatment in the high-risk 
individuals (see Figure 1b), making it more difficult for the model to discriminate 
between individuals who will or will not develop the outcome, and the calibration in 
high-risk individuals will be most greatly affected.
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Figure 1 a-b: Risk distributions in two simulated validation sets. 

50% of individuals received an effective treatment (relative odds reduction on treatment: 0.5), (see Table 
2 scenarios 2 and 1, respectively, for details). a: the model was validated on the combined treatment and 
control group of a randomised trial. b: the model was validated using data from a non-randomised setting 
where the probability of receiving treatment depended on an individual’s (untreated) outcome risk. Black 
lines represent the observed risks in the validation set, after treatment. Grey lines represent the risks of the 
same individuals had they (hypothetically) remained untreated

0.0 0.1 0.2 0.3 0.4 0.5 0.6

a) Randomized treatment

Observed risk

All untreated
50% treated

0.0 0.1 0.2 0.3 0.4 0.5 0.6

b) Non−random treatment

Observed risk

All untreated
50% treated

Methods to account for treatment use
In this section we describe possible approaches to account for treatment use in a 
validation study. For each method, the rationale, expected result of its use, and potential 
issues are outlined. A summary of the methods, including additional technical details 
can be found in Table 1.
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Table 1: Possible methods to account for the effects of treatment in a validation set.

Approach Implementation Key considerations

1. Exclude treated 
individuals 

1. Exclude any individual who received treatment 
between the point of prediction and the 
assessment of the outcome from the analysis.

2. Estimate model performance in only the 
untreated subset.

- Provides correct estimates of 
performance in the (untreated) 
target population if treatment 
use is not associated with other 
prognostic factors.†
- Decreases the effective sample 
size.

2. Inverse probability 
weighting

1. Fit a propensity score (PS) model for treatment 
in the validation set using logistic regression:
logit(Tri) = α0+∑i=1(αi Xi)

n

2. Calculate PS for individuals using the estimates 
from the fitted PS model:
PSi =∑i=1(αi Xi)

n

3. Calculate inverse probability weights (wi) 
for each untreated individual based on their 
individual PS:
wi = 1 / (1 - PSi).

14 

4. Exclude treated individuals from the analysis set.

5. (optional) Truncate weights.15

6. Estimate weighted measures of model 
performance in only the untreated subset.

- Provides correct estimates of 
performance in (untreated) 
target population if treatment 
use is or is not associated 
with other prognostic factors, 
provided key assumptions of 
IPW are met.†
- Does not provide correct 
estimates in the presence of 
non-positivity, or when there 
are unobserved predictors that 
are strongly associated with 
both the outcome and use of 
treatment.16, 17   
- Exclusion of treated 
individuals decreases the 
effective sample size.
- Extreme weights can further 
reduce precision and introduce 
bias.

3. Recalibration 1. Calculate the linear predictor of the prognostic 
model:
LP0i = ∑i=1(βi Xi)

n

2.Re-estimate the model intercept in the full 
validation data.18, 19

logit(Yi) = γ0 + offset(LP0i)

3. Calculate the updated linear predictor. 
LP1i =γ0 + LP0i

4. Estimate model performance using LP1.

- Does not affect 
discrimination.
- Not sufficient to correct 
calibration if relative treatment 
effects are heterogeneous 
or use is associated with an 
individual’s risk. 
- Adjusts for other differences 
in case-mix leading to 
misleading estimates of the 
calibration of the original 
model.
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4. Model treatment 1. Refit the original prognostic model using the 
full validation data, including an indicator term 
for treatment use and treatment interaction terms.
i) with recalibration of the intercept:
logit(Yi) =γ0 + offset(LP0i) + γTr  Tri *

ii) with a full refit of the original model:
logit(Yi) =γ0 + ∑i=1(γi Xi)  + γTrTri *

2. Calculate the updated linear predictor.
i) LP2i = γ0+ ∑i=1(βi Xi)  + γTrTri *

ii) LP3i = γ0 + ∑i=1(γi Xi)  + γTrTri *
3. Estimate model performance using LP2 or LP3.

- Can lead to an over-
estimation of model 
discrimination.
- Adjusts for other differences 
in case-mix leading to 
misleading estimates of the 
calibration of the original 
model.

Abbreviations: Xi: design matrix (predictor values) for individual i; Yi: outcome for individual i; LP: linear 
predictor; PS: propensity score; Tr: treatment.
αi  represent coefficients of the treatment propensity model for individual i.
βi  represent coefficients of the original prognostic model for individual i.
γi  represent coefficients of the updated prognostic model for individual i.
* Interaction terms between treatment use and predictors should be included where necessary.
† Estimates will be correct providing all other modelling assumptions are met.

Exclusion of treated individuals from the analysis
A common and straightforward approach to remove the effects of treatment is to exclude 
from the analysis individuals in the validation data set who received treatment. In doing 
this, one assumes that the untreated subset will resemble the untreated target population 
for the model.

As Figure 2a shows, in settings where treatment is randomly allocated (Table 2, scenario 
2), the exclusion of treated individuals will result in a validation set that is indeed still 
representative of the target population. As a result, measures of discrimination and 
calibration are the same as they would be had all individuals remained untreated, and 
thus are correct estimates of the performance of the model in its target population. 
However, the effective sample size is reduced, (e.g. a 50% reduction in the case of a RCT 
with 1:1 randomization).

Figure 2b represents a study where treatment allocation was non-random and high-risk 
individuals had a higher probability of being treated (Table 2, scenario 1). If treatments 
were initiated between the moment of making a prediction and the assessment of the 
outcome, the exclusion of treated individuals results in a subset of individuals with a 
lower risk on average than in the untreated target population. As a result, the case-
mix (in terms of risk profile) in the data set will become more homogenous, and 
one can expect measures of discrimination to decrease,9, 14 underestimating the true 
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discriminative ability of the model in future targeted individuals. While this approach 
may appear to provide correct estimates of calibration, the interpretation of these 
measures is limited due to the inherent selection bias. The non-randomly untreated 
individuals only represent a portion of the total target population. Hence, estimates of 
model performance may provide little information about how well calibrated the model 
is for high-risk individuals, as these have been actively excluded.

Inverse probability weighting
An alternative approach for model validation in data sets with non-random treatment 
use would be to balance the data in such a way that it resembles that of a RCT. Inverse 
probability weighting (IPW) is a method applied in studies where the aim is to obtain 
an estimate of the causal association between an exposure and outcome, accounting for 
the influence of confounding variables on the effect estimate.15 A “treatment propensity 
model” is first fitted to the validation data, regressing an indicator (yes/no) of treatment 
use (dependent variable) on any measured variables that may be predictive of treatment 
use (independent variables), including the predictors of the prognostic model that is 
being evaluated.16 Subsequently this treatment propensity model is then used to estimate 
for each individual in the validation set the probability of receiving the treatment, based 
on his/her observed variables (risk profile). Following this, each individual is weighted 
by the inverse of their own probability of the actual treatment received,17 resulting in a 
distribution of risks in the validation set that resembles what would have been seen had 
treatments been randomly allocated, as shown by the similarity of the solid black line 
in Figure 2a and the dashed black line in Figure 2c. By excluding treated individuals 
after deriving weights, the resulting validation set should resemble the untreated target 
population, as seen in Figure 2d. However, this will again result in a smaller effective 
sample size for the validation.

IPW is subject to a number of theoretical assumptions.15, 18, 19 One example of a violation 
of these assumptions is practical non-positivity (i.e. it may be that in some risk strata 
no subjects received the treatment),20 which may arise if a subset of individuals has a 
contraindication for treatment or when guidelines already recommend that individuals 
above a certain probability threshold should receive treatment. This can lead to 
individuals receiving extreme weights, resulting in biased and imprecise estimates of 
model performance.15 In addition, problems can occur due to incorrect specification 
of the treatment propensity model, for example due to the presence of unmeasured 
confounders- predictors associated with both the outcome and the use of treatment in 
the validation set. Variants of the basic IPW procedure can be applied, such as weight 
truncation, which may improve the performance of this method in settings where the 
assumptions are violated.21
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Figure 2 a-d: Risk distributions in two simulated validation sets, before and after applying different 
approaches to correct for treatment use. 

50% of individuals received an effective treatment (relative odds reduction on treatment: 0.5) (see Table 
2 scenarios 2 and 1, respectively, for details). a: the model was validated on the combined treatment and 
control group of a randomised trial. b-d: the model was validated using data from a non-randomised setting 
where the probability of receiving treatment depended on an individual’s (untreated) outcome risk. Solid 
black lines represent the observed risks in the validation set after treatment. Dashed black lines represent 
the risks observed after applying correction methods to the data (a-b: the exclusion of treated individuals, 
c: IPW, d: IPW followed by the exclusion of treated individuals). Grey lines represent the risks of the same 
individuals had they remained untreated.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

a) Randomized treatment

Observed risk

All untreated
50% treated
Treated excluded

0.0 0.1 0.2 0.3 0.4 0.5 0.6

b) Non−random treatment

Observed risk

All untreated
50% treated
Treated excluded

0.0 0.1 0.2 0.3 0.4 0.5 0.6

c) Non−random treatment

Observed risk

All untreated
50% treated
IPW weighted

0.0 0.1 0.2 0.3 0.4 0.5 0.6

d) Non−random treatment

Observed risk

All untreated
50% treated
IPW weighted, treated excluded

Model recalibration
The incidence of the predicted outcome may vary between development and validation 
data sets. If this is the case, the predictions made by the model will not, on average, 
match the outcome incidence in the validation data set.22 As discussed in section 2.1, 
use of an effective treatment in a validation data set will lead to fewer outcome events 
and thus a lower incidence than there would have been had the validation set remained 
untreated. One approach to account for this would be to recalibrate the original model 
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using the partially treated validation data set. In a logistic regression model, a derivative 
of the incidence of the outcome is captured by the intercept term in the model, and 
thus a simple solution would seem to be to re-estimate the model intercept using 
the validation data set.23, 24 In doing this, the average predicted risk provided by the 
recalibrated model should then be equal to the (observed) overall outcome frequency 
in the validation set. Further details of this procedure are given in Table 1. Where 
treatment has been randomly allocated, intercept recalibration should indeed account 
for the risk-lowering effects, provided that the magnitude of the treatment effect does 
not vary depending on an individual’s risk and thus is constant over the entire predicted 
probability range. In non-randomized settings, where treatment use by definition is 
associated with participant characteristics, a simple intercept recalibration is unlikely to 
be sufficient due to interactions between treatment use and patient characteristics that 
are predictors in the model.

However, although recalibration may seem a suitable solution for modelling the effects 
of treatment, when applying recalibration, concerns should also be raised over the 
interpretation of the estimated performance of the model. Differences in outcome 
incidence between the development data set and validation data set may not be entirely 
attributable to the effects of treatment use. By recalibrating the model to adjust for 
differences in treatment use and effects, we simultaneously adjust for differences in 
case-mix between the development and validation set. As the aim of validation is to 
evaluate the performance of the original prognostic model, in this case in a treatment-
naïve sample, recalibration may actually lead to an optimistic impression of the accuracy 
of predictions made by the original model in the validation set. For example, if the 
validation set included individuals with a notably greater prevalence of comorbidities 
and thus were more likely to develop the outcome, recalibration prior to validation 
could mask any inadequacies of the model when making predictions in this subset of 
high-risk individuals. Thus recalibration is not an appropriate solution to the problem.

Incorporation of treatment in the model
A more explicit way to deal with treatment use would be to update the prognostic 
model with treatment use added as a new predictor. If effective, treatment can actually 
be considered to be a missing predictor in the original developed model. However, 
unlike other predictors, when validating a model in a non-randomised data set, we 
cannot know whether a person in practice will indeed receive the treatment at the point 
of making a prediction. By adding a binary predictor for treatment use to the original 
prognostic model, one may aim to alleviate the misfit that results from the omission 
of this predictor, and get closer to the actual performance of the original model in the 
validation set, had individuals remained untreated.
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There are a number of approaches to updating a model with a new predictor.22, 23, 25 One 
option would be to incorporate an indicator for treatment on top of the prognostic 
model, keeping the original model coefficients fixed. However, in doing this we assume 
that there is no correlation between treatment use and the predictors in the model. Instead 
the model could be entirely refitted with the addition of an indicator term for treatment 
using the validation data set (for further details, see Table 1). It may be necessary to 
include statistical interaction terms in the updated model, where anticipated.26

A challenge when considering this approach is the correct specification of the updated 
prediction model. Failure to correctly specify any interactions between treatment and 
other predictors in the validation set could mean that the effects of treatment are not 
completely taken into account. Furthermore, the addition of a term for treatment to 
the model that is to be validated may improve the performance beyond that of the 
original model due to the inclusion of additional predictive information. Thus, as with 
recalibration, we do not recommend this approach.

Outline of a simulation study
We assess the performance of different methods to account for the effects of treatment 
in fifteen scenarios using simulated data. The effectiveness of two methods described in 
section 2.2, model recalibration and the incorporation of a term for treatment use in the 
model, are not present, as their inferiority has already been discussed.

Details of the simulation study are provided in Table 2, which describes 15 scenarios that 
were studied. For each scenario, a development data set of 1000 individuals of whom 
all remained untreated throughout the study was simulated. A prognostic model was 
developed with two predictors using logistic regression analysis, specifying the model so 
it matched the data generating model. Fifteen validation sets of 1000 individuals were 
drawn using the same data generating mechanism as their corresponding development 
data sets, representing an ideal untreated validation set to estimate the model’s ability 
to predict untreated risks. Subsequently, 50% of the individuals in each validation set 
were simulated to receive a risk-lowering point-treatment with a constant effect of a 
reduction in the outcome odds by 50%.

In scenarios 1, 3 and 4, an individual’s probability of receiving treatment was a function 
of their untreated risk of the outcome, representing observational data. In scenario 
2, treatment was randomly allocated to individuals, simulating data from a RCT. In 
scenarios 1 and 3, there was a moderate positive association between risk and treatment 
allocation, and thus individuals with a more “risky” profile were more likely to receive 
treatment. In scenario 4 this association was large: treatment was allocated to most 
(95%) of the individuals with a predicted risk higher than 18%. In scenario 3, the 
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relative treatment effect was allowed to increase with increasing risk. Using scenario 
1 as a starting point, in scenarios 5–12, the effect of treatment on risk varied from 
strong to weak, and the proportion of individuals treated varied. In scenarios 13–15, 
an unobserved predictor with varying association (moderate negative, weak positive or 
strong positive) with the outcome was included in the data generating model.

The performance of the prognostic model was estimated in each of these data sets, first 
ignoring the effects of treatment, and again either by first excluding treated individuals from 
the analysis, or by applying IPW methods (as specified in Table 1). We applied standard IPW 
and IPW with weight truncation (at the 98th percentile). For scenarios 1–12, the treatment 
propensity model was correctly specified; for scenarios 13–15, the unobserved predictor 
was (by definition) omitted from the treatment propensity model.

Table 2: A summary of fifteen simulated scenarios. 

Data generating models  
(development, validation)†
logit(Y)=b0+b1X1+b2X2+b3U

Treatment model
P(Tr)= logit-1(a0+a1R)

% treated in 
validation set

Relative treatment 
effect on Y

b0 b1 b2 b3 ao a1

1 -1.50 1 1 0 1.95 -10 50 0.5
2 -1.50 1 1 0 0 0 50 0.5
3 -1.50 1 1 0 1.95 -10 50 logit-1(-1+5R)
4 -1.50 1 1 0 18.0 -100 50 0.5
5 -1.50 1 1 0 3.30 -10 25 0.3
6 -1.50 1 1 0 3.30 -10 25 0.5
7 -1.50 1 1 0 3.30 -10 25 0.8
8 -1.50 1 1 0 1.95 -10 50 0.3
9 -1.50 1 1 0 1.95 -10 50 0.8
10 -1.50 1 1 0 0.70 -10 75 0.3
11 -1.50 1 1 0 0.70 -10 75 0.5
12 -1.50 1 1 0 0.70 -10 75 0.8
13 -1.55 1 1 1 1.90 -10 50 0.5
14 -1.70 1 1 2 1.80 -10 50 0.5
15 -2.15 1 1 4 1.55 -10 50 0.5

Scenario 1 is the default scenario on which all other scenarios are based. All simulated data sets had a 
sample size n=1000, and a 20% chance of outcome (before treatment).
Abbreviations: P(Tr): probability of treatment ; R: baseline (untreated) risk of an individual in the 
validation set, calculated as logit-1(Y), where logit-1 is the inverse-logit function.
†Predictors X1, X2, and U were independent random draws from a normal distribution (mean = 
0, variance = 0.2); the binary outcome Y was sampled from a binomial distribution with outcome 
probability derived from the data generating model.
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In all simulated validation sets and for all methods being applied, performance was 
estimated in terms of the c-index (area under the ROC curve) and observed:expected 
(O:E) ratio. For scenarios 1-4 and 13-15 calibration plots were constructed. For 
IPW methods, calculated IPW weights were used to estimate weighted statistics (see 
Supplement 1 for further details). In order to obtain stable estimates of the c-index and 
O:E ratio, we repeated the process of data generation, model development and validation 
10,000 times, calculating the mean and standard deviation (SD) of the distribution 
of the 10,000 estimates. Calibration plots were based on sets of 1 million individuals 
(equivalent to combining results from 1000 repeats in data sets with 1000 individuals) 
for each scenario. R code to reproduce the analyses can be found in Supplement 1.

Results

Results of the simulation study are presented below. A summary of the estimated 
performance measures in each scenario can be found in Tables 3 and 4, and calibration 
plots for scenarios 1-4 and 13-15 are depicted in Figures 3 and 4, respectively.

Ignore treatment
Ignoring the effects of treatment resulted, as expected, in predicted risks that were always 
greater than the observed outcome frequencies, suggesting poor model calibration in all 
scenarios. This was exacerbated in non-randomised settings, in which there appeared 
to be greater miscalibration in high-risk individuals. When treatment allocation was 
non-random, ignoring treatment led to an underestimation of the c-index by up to 
0.08 (scenario 3), whereas the c-index did not noticeably change in the RCT scenario. 
As expected, when either the effectiveness of treatment or the proportion of individuals 
treated increased, both the O:E ratio and c-index were more severely underestimated.
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Table 3: Estimated calibration in the validation set (observed:expected (O:E) ratio) across fifteen 
different simulated scenarios.

  Method

Reference: 
untreated

Ignore 
treatment

Exclude treated IPW IPW, exclude IPWtrunc, 

exclude

1 1.00 (0.09) 0.76 (0.07) 1.01 (0.13) 0.79 (0.09) 1.00 (0.13) 1.00 (0.12)
2 1.00 (0.09) 0.79 (0.07) 1.00 (0.11) 0.79 (0.07) 1.00 (0.11) 1.00 (0.11)
3 1.01 (0.09) 0.69 (0.07) 1.00 (0.13) 0.76 (0.09) 1.00 (0.13) 1.00 (0.12)
4 1.00 (0.09) 0.72 (0.07) 1.01 (0.16) 0.74 (0.30) 0.98 (0.44) 1.00 (0.17)
5 1.00 (0.09) 0.80 (0.08) 1.00 (0.13) 0.68 (0.07) 1.00 (0.10) 1.00 (0.10)
6 1.00 (0.09) 0.87 (0.08) 1.01 (0.10) 0.79 (0.08) 1.00 (0.10) 1.00 (0.10)
7 1.00 (0.09) 0.96 (0.09) 1.01 (0.10) 0.93 (0.10) 1.00 (0.10) 1.00 (0.10)
8 1.00 (0.09) 0.63 (0.06) 1.01 (0.12) 0.68 (0.08) 1.00 (0.13) 1.00 (0.12)
9 1.00 (0.09) 0.91 (0.08) 1.01 (0.12) 0.92 (0.09) 1.00 (0.13) 1.00 (0.12)
10 1.00 (0.09) 0.49 (0.06) 1.00 (0.17) 0.68 (0.11) 1.00 (0.20) 1.00 (0.18)
11 1.00 (0.09) 0.66 (0.07) 1.00 (0.17) 0.79 (0.11) 1.00 (0.20) 1.00 (0.18)
12 1.01 (0.09) 0.88 (0.08) 1.01 (0.17) 0.92 (0.12) 1.00 (0.20) 1.00 (0.18)
13 1.00 (0.09) 0.75 (0.07) 0.90 (0.12) 0.76 (0.08) 0.87 (0.12) 0.88 (0.11)
14 1.00 (0.09) 0.74 (0.07) 0.70 (0.10) 0.72 (0.07) 0.67 (0.10) 0.67 (0.09)
15 1.00 (0.09) 0.76 (0.07) 0.39 (0.07) 0.74 (0.07) 0.38 (0.07) 0.38 (0.07)

Results were derived from development and validation sets of 1000 individuals. Performance estimates are 
the means (and standard deviations) of the distribution of O:E ratios from 10000 simulation replicates. 
See Table 2 for details of the scenarios.
Abbreviations: Exclude: exclusion of treated individuals from the analysis; IPW: inverse (treatment) 
probability weighting; IPWtrunc: IPW with weight truncation at 98th percentile.
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Table 4: Estimated discrimination in the validation set (c-index) across fifteen different simulated 
scenarios.

  Method

Reference: 
untreated

Ignore 
treatment

Exclude 
treated

IPW IPW, exclude IPWtrunc, 
exclude

1 0.67 (0.02) 0.63 (0.02) 0.65 (0.03) 0.66 (0.03) 0.66 (0.05) 0.65 (0.04)
2 0.67 (0.02) 0.66 (0.02) 0.67 (0.03) 0.66 (0.02) 0.67 (0.03) 0.67 (0.03)
3 0.67 (0.02) 0.59 (0.03) 0.65 (0.03) 0.64 (0.03) 0.66 (0.05) 0.65 (0.04)
4 0.67 (0.02) 0.59 (0.03) 0.60 (0.04) 0.59 (0.08) 0.57 (0.15) 0.60 (0.05)
5 0.67 (0.02) 0.62 (0.02) 0.65 (0.03) 0.66 (0.03) 0.67 (0.03) 0.66 (0.03)
6 0.67 (0.02) 0.64 (0.02) 0.65 (0.03) 0.66 (0.03) 0.66 (0.03) 0.66 (0.03)
7 0.67 (0.02) 0.66 (0.02) 0.65 (0.03) 0.67 (0.03) 0.67 (0.03) 0.66 (0.03)
8 0.67 (0.02) 0.60 (0.03) 0.65 (0.03) 0.66 (0.03) 0.66 (0.05) 0.65 (0.04)
9 0.67 (0.02) 0.65 (0.02) 0.65 (0.03) 0.66 (0.03) 0.66 (0.05) 0.65 (0.04)
10 0.67 (0.02) 0.61 (0.03) 0.65 (0.05) 0.66 (0.05) 0.66 (0.08) 0.65 (0.06)
11 0.67 (0.02) 0.64 (0.03) 0.65 (0.05) 0.66 (0.05) 0.66 (0.08) 0.65 (0.06)
12 0.67 (0.02) 0.66 (0.02) 0.65 (0.05) 0.66 (0.04) 0.66 (0.08) 0.65 (0.06)
13 0.66 (0.02) 0.63 (0.02) 0.63 (0.03) 0.65 (0.03) 0.64 (0.05) 0.63 (0.04)
14 0.65 (0.02) 0.63 (0.02) 0.60 (0.04) 0.62 (0.03) 0.61 (0.04) 0.60 (0.04)
15 0.62 (0.02) 0.61 (0.03) 0.57 (0.05) 0.58 (0.03) 0.57 (0.05) 0.57 (0.05)

Results were derived from development and validation sets of 1000 individuals. Performance estimates are 
the means (and standard deviations) of the distribution of c-indexes from 10000 simulation replicates. See 
Table 2 for details of the scenarios.
Abbreviations: Exclude: exclusion of treated individuals from the analysis; IPW: inverse (treatment) 
probability weighting; IPWtrunc: IPW with weight truncation at 98th percentile.
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Method 1: Exclude treated individuals
Excluding treated individuals resulted in calibration measures that appeared to reflect 
those of the untreated target population in most scenarios. However, as Figure 3 
shows, use of this approach when treatment allocation is dependent on an individual’s 
risk results in a loss of information about calibration in high risk individuals. When 
treatment allocation was random (scenario 2), this approach yielded a correct estimate of 
the c-index. As treatment allocation became increasingly associated with an individual’s 
risk across scenarios, this method yielded lower estimates for discrimination than 
observed in the untreated set, due to the selective exclusion of high-risk individuals, 
and consequently a narrower case-mix. The estimates of the c-index and O:E ratio were 
constant as the treatment effect and proportion treated changed across scenarios 5–12. In 
the presence of a strong unmeasured predictor of the outcome associated with treatment 
use (scenarios 14–15), exclusion of treated individuals resulted in an underestimation of 
the performance of the model. In addition, in all scenarios the precision of estimates of 
both the O:E ratio and c-index decreased due to the reduction in effective sample size.

Method 2: Inverse probability weighting
Across all scenarios, IPW alone did not improve calibration, compared to when treatment 
was ignored, whereas IPW followed by the exclusion of treated individuals provided 
correct estimates for calibration. IPW alone or followed by the exclusion of treated 
individuals improved estimates of the c-index in all scenarios where the assumptions 
of positivity and no unobserved confounding were met. In scenario 4, where treatment 
allocation was determined by a strict risk-threshold and thus the assumption of positivity 
was violated, IPW was ineffective, and resulted in the worst estimates of discrimination 
across all methods. In addition, the extreme weights calculated in scenario 4 led to very 
large standard errors. In scenarios 13–15, the presence of an unobserved confounder led 
to the failure of IPW to provide correct estimates of the c-index. Weight truncation at 
the 98% percentile increased precision but was less effective in correcting of the c-index 
for the effects of treatment.
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Discussion

We showed that when externally validating a prognostic model that was developed 
for predicting “untreated” outcome risks, treatment use in the validation set may 
substantially impact on the performance of the model in that validation set. Treatment 
use is problematic, if ignored, regardless of how treatment has been allocated, though 
more challenging to circumvent when non-randomized. While the risk-lowering eff ect 
of treatment seems to have little eff ect on model discrimination in randomised trial 
data, the model will appear to systematically over-estimate risks (miscalibration). Th is 
eff ect worsens with greater dependency of treatment use on patient characteristics (e.g. 
baseline risk).

We present simple methods that could be considered when attempting to take the 
eff ects of treatment use into account. While the use of IPW in prediction model research 
is uncommon, the rationale behind using IPW in settings with non-randomized 
treatments is motivated by its use to remove the infl uence of treatment on causal (risk) 
factor-outcome associations.27, 28 Although the use of IPW prior to the exclusion of 
treated individuals is a promising solution in data where treatments are non-randomly 
allocated, it should not be used when there are severe violations of the underlying 
assumptions, e.g. in the presence of non-positivity (where some individuals had no 
chance of receiving treatment), or when there is an unobserved confounder, strongly 
associated with both the outcome and treatment use. Th ere is thus a need to explore 
alternative methods to IPW to account for the eff ects of treatment use when validating 
a prognostic model in settings with non-random treatment use.

Although the results of our simulations support the expected behaviour of the methods 
described in section 2.2, some fi ndings warrant further discussion. First, although 
excluding treated individuals when treatment use is non-random theoretically results 
in incorrect estimates of model performance, in our simulations, the impact on model 
discrimination was small in most scenarios. However, when the association between 
an individual’s risk profi le and the chance of being treated increased (scenario 4), the 
selection bias due to excluding treated individuals resulted in a large decrease in the 
c-index, as expected. Second, in simulated scenarios in which an unobserved confounder 
of the treatment-outcome relation was present, the performance of the model greatly 
decreased after excluding treated individuals, with or without IPW. Th is is likely due 
to the selective exclusion of individuals with a high value for the strongly predictive 
unobserved variable. Th is results in a narrower case-mix distribution, and consequently 
lower model discrimination, as well as miscalibration due to the exclusion of a strong 
predictor of the outcome.
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While it is unclear to what extent treatment use has affected existing prognostic model 
validation studies, findings from a systematic review of cardiovascular prognostic 
model studies indicate that changes in treatment use after baseline measurements in 
a validation study are rarely considered in the analysis.29 While a number of studies 
excluded prevalent treatment users from their analyses, the initiation of risk-lowering 
interventions, such as statins, revascularization procedures and lifestyle modifications 
during follow-up was not taken into account. An equally alarming finding was that very 
few validation studies even reported information about treatment use during follow-
up, raising concerns over the interpretation of the findings of these studies. Based on 
the findings of the present study, we suggest that information about the use of effective 
treatments both at the study baseline and during follow-up should be reported in future 
studies.

It must be noted that not all prediction model validation studies require the same 
considerations for treatment use. Although we have discussed prognostic models used 
for predicting the risk of an outcome without treatment, sometimes prognostic models 
are developed for making predictions in both treated and untreated individuals. If, for 
example, the treatments used in the validation set are a part of usual care, and are present 
in the target population for the model, then differences in the use of these treatments 
between the development and validation sets should be viewed as a difference in case-
mix and not as an issue that we need to remove. Furthermore, if the model adequately 
incorporates relevant treatments (e.g. through the explicit modelling of treatment use), 
differences in treatment use between the development and validation sets can again be 
viewed as a difference in case-mix. In the event that treatments have not been modelled 
(e.g. because a new treatment has become readily available since the development of the 
model), the model could be updated through recalibration, or better yet by including a 
term for treatment in the updated model, leading to a completely new model, which in 
turn would require validation. Researchers must therefore first identify which treatments 
used in a validation data set could bias estimates of model performance, if ignored.

There are limitations to the guidance that we provide. First, we do not present a 
complete evaluation of all possible methods across a range of different settings, 
which would require at least an extensive simulation study. We argue, however, that 
the logical argumentation provided for each method forms a good starting point for 
further investigation. Furthermore, the list of methods that we present is by no means 
exhaustive and we encourage the consideration and development of new approaches for 
more complex settings, such as time-to-event settings, and where limited sample sizes 
pose a challenge. Second, we assumed for simplicity that a model has been developed 
in an untreated data set. In reality, it is likely that a model has been developed also 
in a partially treated set. The considerations for validation then remain the same, but 
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it should be noted that failure to properly account for the effects of treatment in the 
development of a model can lead to a model that underestimates untreated risks.13 Third, 
for simplicity we considered single point treatments in our simulated examples. Patterns 
of treatment use in reality are often complex, with individuals receiving multiple non-
randomized treatments, even in RCTs. Finally, we also recognize that while this paper 
discusses the validation of prognostic models, the same considerations for treatment 
use can, in some circumstances, be relevant to diagnostic studies (i.e. where treatment 
between index testing and outcome verification could lead to similar- and even more 
serious- problems).

Conclusion

When validating a previously developed prediction model for predicting risks without 
treatment in another data set, failure to properly account for (effective) treatment use in 
that validation sample will likely lead to poor performance of the prediction model and 
thus measures should be taken to remove the effects of treatment use. When validating 
a model with data in which treatments have been randomly allocated, simply excluding 
treated individuals is sufficient, at the cost of a loss of precision. In observational studies, 
where treatment allocation depends on patient characteristics or risk, inverse probability 
weighting followed by the exclusion of treated individuals can provide correct estimates 
of the actual performance of the model in its target population.
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Supplemental material

Supplement 1: R code to implement methods and replicate the simulation study
# (R version 3.3.2 (2016-10-31))
# Code can be run to reproduce Table 3 and Table 4. Calibration plots can be 
# reproduced by setting n = 1e6, n.sim = 1 and appraisal(..., plots=TRUE).
# Different scenarios can be run by removing # symbols where appropriate.

require(rms)
require(boot)

# Function to return discrimination and calibration
appraisal <- function(obs, LP, N, plots = TRUE, title = “”, w=rep(1,length(obs))){  
  sum.tab<- matrix(rep(NA, 2), nrow=1, dimnames=list(NULL, c(“O/E ratio”, “C 
index”)))
  pred <- 1 / (1 + exp(-LP))
  sum.tab[1] <- (sum(obs * w)/ sum(w)) / (sum(pred * w) / sum(w)) # O:E ratio
  sum.tab[2] <- somers2(LP,obs, weights = w)[1] #c-index
  if(plots){ #calibration plot
    predw <- rep(pred, round(w))
    obsw <- rep(obs, round(w))
    mf<- data.frame(cbind(obsw, predw))
    mf<- mf[with(mf, order(predw)),]
    dec.pred <- dec.obs <- c()
    for (i in 1:10) { # create deciles for calibration plot
      dec.obs[i] <- mean(mf[(1+(i-1)*(sum(round(w))/10)):((sum(round(w))/10)*i), 1])
      dec.pred[i] <- mean(mf[(1+(i-1)*(sum(round(w))/10)):((sum(round(w))/10)*i), 2])
    }
    plot(dec.pred,dec.obs, pch = 18, cex=1.5, main= paste(title),
         col = “darkgreen”, bg= “darkgreen”, xlim = c(0,0.4), ylim = c(0,0.4),
         ylab = “Observed risk”, xlab = “Predicted risk”, cex.lab = 1.25, las=1)
    abline(a=0,b=1)
  }
  return(round(sum.tab,4))  
}
 
# Set up simulation
n = 1000
n.sim = 10000
mu = 0
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s = sqrt(0.2)
b0U <- -1.5 # For scenarios 14-16, choose: (-1.55, -1.7, -2.15) 
bU <- 0 # For scenarios 14-16, choose: (1, 2, 4)
Z <- -1.95 # For scenarios 5-13, choose: (-3.3 (25% treated),-1.95 (50%), -0.7 (75%))
# For scenarios 14-16, choose: (-1.9, -1.8, -1.55)
t.eff <- 0.5 # For scenarios 5-13: (0.3, 0.5, 0.8)
untreated <- ignore <- restrict <- ipw <- ipw.r <- ipw.tr <- matrix(NA,n.sim, ncol=2)

# Simulation
for(i in 1:n.sim) {
# Scenarios 1-12
# Generate development set (untreated outcomes)
  df1 <- data.frame(X1=rnorm(n, mu, s), X2=rnorm(n, mu, s))
  drisk <- 1/(1+exp(-(-1.5 + 1*df1$X1 + 1*df1$X2))) 
  dY <- rbinom(n, 1, drisk)
# Generate validation set (untreated outcomes)
  df2 <- data.frame(X1=rnorm(n, mu, s), X2=rnorm(n, mu, s))
  vrisk <- 1/(1+exp(-(-1.5 + 1*df2$X1 + 1*df2$X2)))
  vY <- rbinom(n, 1, vrisk)

# Scenarios 13-15
# Generate development set (untreated outcomes)
#  df1 <- data.frame(X1=rnorm(n, mu, s), X2=rnorm(n, mu, s), U=rnorm(n, mu, s))
#  drisk <- 1/(1+exp(-(b0U + 1*df1$X1 + 1*df1$X2 + bU*df1$U))) 
#  dY <- rbinom(n, 1, drisk)
# Generate validation set (untreated outcomes)
#  df2 <- data.frame(X1=rnorm(n, mu, s), X2=rnorm(n, mu, s), U=rnorm(n, mu, s))
#  vrisk <- 1/(1+exp(-(b0U + 1*df2$X1 + 1*df2$X2 + bU*df2$U)))
#  vY <- rbinom(n, 1, vrisk)

# Generate treated outcomes
# Scenario 1, 5-15
 pt   <- 1/(1+exp(-(Z + 10*vrisk)))
 treated <- rbinom(n,1,pt)
 lodds <- log(vrisk/(1-vrisk))
 lodds[treated == 1] <- lodds[treated == 1] + log(t.eff)
 lodds <- inv.logit(lodds)
 Y.treated <- rbinom(n, 1, lodds)
# Scenario 2 
#   treated	 <- rbinom(n, 1, 0.5)
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#   lodds <- log(vrisk/(1 - vrisk))
#   lodds[treated == 1] <- lodds[treated == 1] + log(0.5)
#   lodds <- inv.logit(lodds)
#   Y.treated <- rbinom(n, 1, lodds)
# Scenario 3
#  t.OR <-1 / (1+exp(-(1-5*vrisk)))
#  pt <- 1/(1+exp(-(Z + 10*vrisk)))
#  treated	 <- rbinom(n,1,pt)
#  lodds <- log(vrisk/(1-vrisk))
#  lodds[treated == 1] <- lodds[treated == 1] + log(t.OR)[treated==1]
#  lodds <- inv.logit(lodds)
#  Y.treated <- rbinom(n, 1, lodds)
# Scenario 4
#  pt   <- 1/(1+exp(-(-18 + 100*vrisk)))
#  treated  <- rbinom(n,1,pt)
#  lodds <- log(vrisk/(1-vrisk))
#  lodds[treated == 1] <- lodds[treated == 1] + log(0.5)
#  lodds <- inv.logit(lodds)
#  Y.treated <- rbinom(n, 1, lodds) 

# Develop model (untreated)
# For Scenarios 13-15, unobserved predictor U is not included in the prediction model
  model1 <- glm(dY ~ df1$X1 + df1$X2, family=binomial)
  vLP <- model1$coef[1] + model1$coef[2]*df2$X1 + model1$coef[3]*df2$X2
  vpredrisk <- 1/(1+exp(-(vLP)))

# Inverse probability weighting
# For Scenarios 13-15, unobserved predictor U is not included in the propensity model  
  psm<-glm(treated~vpredrisk, family=”binomial”)$fitted.values
  df2$ps <- 0
  df2[treated==0,]$ps <- 1/(1 - psm[treated==0])
  df2[treated==1,]$ps <- 1/psm[treated==1]
# Truncation (98%, upper end of weight distribution truncated)
  pstrunc<-df2[treated==0,]$ps
  pstrunc[pstrunc > quantile(pstrunc, 0.98)] <- quantile(pstrunc, 0.98)

# Assess model performance following each analytical approach
#  For “restrict” and “ipw.r”, only the untreated subset is included.
#  For “ipw”, “ipw.r” and “ipw.tr”, performance measures are weighted.
  untreated[i,] <- appraisal(vY, vLP, n, plots=F)



Accounting for treatment use when validating a prognostic model: a simulation study

149

  ignore[i,] <- appraisal(Y.treated, vLP, n, plots=F)
  restrict[i,] <- appraisal(Y.treated[treated==0], vLP[treated==0], length(vLP[treated==0]), 
plots=F)
  ipw[i,] <- appraisal(Y.treated, vLP, n, plots=F, w=df2$ps)
  ipw.r[i,] <- appraisal(Y.treated[treated==0], vLP[treated==0], 
                                length(vY[treated==0]), plots=F, w=df2[treated==0,]$ps)
  ipw.tr[i,] <- appraisal(Y.treated[treated==0], vLP[treated==0], 
                                      length(vY[treated==0]), plots=F, w=pstrunc)
}

# Generate output tables
full.output <- cbind(untreated, ignore, restrict, ipw, ipw.r, ipw.tr)
output.est<-matrix(apply(full.output, 2, mean),ncol=2, byrow=T)
output.SE <- matrix(apply(full.output, 2, sd), ncol=2, byrow=T)
output <- cbind(output.est[,1],output.SE[,1],output.est[,2],output.SE[,2]) 
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Accounting for time-varying treatment use when developing a 
prognostic model from observational data: 

A comparison of approaches
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Abstract

Background
Failure to account for time-varying treatment use when developing a model to predict 
untreated risks can result in biased future predictions. 

Methods
We compared approaches to develop a prognostic model for 5-year mortality risk without 
selective β-blocker (SBB) treatment using data from 1906 patients; 325 received SBBs 
during follow-up. Seven Cox regression modelling strategies were compared: 1) ignoring 
SBB treatment, 2) excluding SBB users or 3) censoring them when treated, 4) inverse 
probability of treatment weighting after censoring, including SBB treatment as a 5) 
binary or 6) time-varying covariate, and 7) marginal structural modelling. 

Results
Compared to (1), approaches (2) and (5) provided predictions that were 1% and 
2% higher on average. Performance (c-statistic, Brier score, calibration slope) varied 
minimally between approaches. 

Conclusion
Although ignoring treatment is theoretically inferior, differences between approaches 
in our case study were modest. Further case studies and simulation studies should 
investigate when certain approaches are preferred.
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Background

Prognostic models provide information that can be used to guide physicians and 
patients when making medical decisions. For example, if a patient has a high predicted 
probability of a poor health outcome, the physician may recommend preventative 
medication or referral for specialist treatment. For a prognostic model to be useful for 
guiding individual decisions regarding interventions, predictions provided by the model 
should ideally reflect the risk of an individual developing a certain outcome if there were 
to be no intervention.1 This has been termed the “untreated risk” of an outcome 2, 3 and 
can be formally defined as the probability Pr(YT = 0 = 1 | P), where YT = 0 is the outcome if 
individuals were to remain untreated, and P is a vector of predictors.4

Data used to develop prognostic models often come from observational studies or 
longitudinal medical databases (e.g. electronic health record data) in which the study 
sample comprises of both treated and untreated individuals. In particular, individuals 
who were not receiving treatment when entering the cohort may start treatment 
during follow-up - an issue termed treatment “drop-in”.1,4 Unfortunately, conventional 
approaches to develop a prognostic model using data from a partly treated study 
population will result in a model that does not provide predictions of untreated risk, 
instead predicting Pr(Y = 1 | P). Assuming the treatment is effective in reducing the risk of 
developing the outcome of interest, the observed risk of individuals in the development 
sample will, on average, be lower than the risk had they remained untreated. Therefore, 
risk predictions for future patients provided by the model will underestimate the true 
untreated risk of the outcome.2 This could have a number of negative consequences, 
including possible under-treatment in future patients. Given that a contemporary yet 
untreated population in many cases no longer exists, several researchers have suggested 
that the effects of treatment should be accounted for in the analysis when developing 
a prognostic model.1-7 However, as of yet there is no clear consensus over whether one 
analytical approach to deal with the effect of treatment is to be preferred over another.

Simulation studies have been conducted to investigate methods to account for the 
effects of treatments on prognostic model predictions,2,4 but the effect of using different 
methods has, to our knowledge, not yet been investigated in real data. We aim to 
demonstrate, in an example from clinical practice, approaches that can be used to 
account for time-varying treatment drop-in in a development cohort and investigate 
whether the choice of approach affects a prognostic model in terms of model parameters 
and prognostic performance. We will first introduce a clinical case study and further 
explain the problem. We will then describe the approaches we compare to deal with 
treatment drop-in, followed by the results of this comparison.
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Methods

2.1 Case study
In our case study we aim to develop a prognostic model to predict 5-year mortality risk 
for patients with chronic obstructive pulmonary disease (COPD) if they were not to use 
cardio-selective β-blocking agents (SBBs). However, in practice some COPD patients 
do use SBBs and these agents are known to improve survival in patients with COPD;8,9 
all other “background” treatments are considered to be a part of routine care and should 
not bias the estimation of untreated risk.3 A summary of the case study is presented in 
Supplemental figure 1.

2.1.1 Data
A cohort was defined using electronic health record data from the Utrecht General 
Practitioners Network (HNU) database, with patient entry and follow-up from 1st 
July 1996 to 31st December 2005.10,11 Prevalent and incident COPD cases entered the 
cohort on 1st July 1996 and on their date of diagnosis, respectively. Patients younger 
than 45 years or using β-blocker medication (ATC code C07) within 14 days prior 
to cohort entry were excluded. In total, 1906 patients were included; median follow-
up was 6.7 years and 559 (29.3%) patients died during follow-up, of which 372 died 
within 5 years.

Patients prescribed SBBs during follow-up according to their individual prescription 
records 11 were classified as SBB “users” (yes/no). Prescription duration (days) was 
calculated as the total number of tablets prescribed divided by the daily tablet quantity 
prescribed. When prescriptions overlapped, the total number of overlapping days were 
added to the final prescription. In total, 325 (17.1%) patients began using SBBs after 
entering the cohort and the median time on treatment was 10.3 months. Prescriptions 
varied considerably from patient to patient (Supplemental figure 2). In total, 68 SBB-
users (20.1%) died during follow-up compared to 491 non-users (31.1%) and SBB-
users more often had a history of cardiovascular co-morbidities than non-SBB users 
(Table 1). For all other treatments, only data on use at baseline were recorded.

Missing data on the number of tablets prescribed (1.2%), and smoking status (33.3%) 
were singly imputed using predictive mean matching and polytomous logistic regression 
(mice package version 2.25).12
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Table 1: Baseline characteristics of 1906 patients with a diagnosis of COPD stratified by selective 
b-blocker use during follow-up. 

Characteristics
All Patients

n = 1906

Selective 
β-blocker use

n = 325

No selective 
β-blocker use

n = 1581

p-value of 
difference 
between 
groups

Age at study entry * 67.8 (10.9) 67.1 (10.4) 68.0 (11.0) 0.20
Male sex 1005 (52.7) 168 (51.7) 837 (52.9) 0.73

Smoking †
     Current smokers
     Former smokers
     Never smokers

708 (37.1)
934 (49.0)
264 (13.9)

104 (32.0)
179 (55.1)
42 (12.9)

604 (38.2)
755 (47.8)
222 (14.0)

0.05

Hypertension 716 (37.6) 228 (70.2) 488 (30.9) < 0.005
Diabetes 312 (16.4) 86 (26.5) 226 (14.3) < 0.005
History of cardiovascular diseases

Angina pectoris 302 (15.8) 121 (37.2) 181 (11.4) < 0.005
Myocardial infarction 86 (4.5) 34 (10.5) 52 (3.3) < 0.005
Atrial fibrillation 183 (9.6) 51 (15.7) 132 (8.3) < 0.005
Heart failure 475 (24.9) 99 (30.4) 376 (23.8) 0.01
Stroke 139 (7.3) 35 (10.7) 104 (6.6) 0.01
Peripheral arterial disease 134 (7.0) 40 (12.3) 94 (5.9) < 0.005
Drug use (ATC code) at baseline 

Drugs for obstructive airway diseases 
(R03)

432 (22.7) 61 (18.8) 371 (23.5) 0.08

Corticosteroids for systemic use (H02) 98 (5.1) 15 (4.6) 83 (5.2) 0.74
Lipid modifying agents (C10) 79 (4.1) 12 (3.7) 67 (4.2) 0.77
Agents acting on the renin-angiotensin 
system (C09)

159 (8.3) 38 (11.7) 121 (7.7) 0.02

Diuretics (C03) 236 (12.4) 49 (15.1) 187 (11.8) 0.13
Antithrombotic agents (B01) 135 (7.1) 24 (7.4) 111 (7.0) 0.91

Absolute numbers and percentages are reported. Characteristics of users and non-users were compared 
using t-tests (age) and chi-squared tests. * age in years; mean (standard deviation) reported. † Missing 
values were singly imputed (33.3%).
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2.1.2 Derivation of a hypothetical prognostic model
First, a prognostic model that completely ignored SBB drop-in was developed using 
Cox regression using the full follow-up time of all patients. Candidate predictors 
were selected based on literature,13,14 the availability of measurements, and backwards 
selection using likelihood ratio testing. The prediction model consisted of the estimated 
5-year baseline hazard and seventeen predictors: age, sex, smoking status, history of 
comorbidities (diabetes, hypertension, angina pectoris, myocardial infarction, atrial 
fibrillation, heart failure, stroke and peripheral arterial disease) and baseline drug use 
(drugs for obstructive airway diseases, corticosteroids for systemic use, lipid modifying 
agents, agents acting on the renin-angiotensin system, diuretics and antithrombotic 
agents). No serious violations of the proportional hazards assumption were found. 
As treatment use is typically ignored in most prognostic model development studies, 
this model- now referred to as “model 1”- served as a reference to compare different 
approaches to account for treatment drop-in (section below). 

2.2 Approaches to account for treatment use
We consider six other approaches that try to remove the effect of SBB drop-in in the 
development data. The first three approaches (models 2-4) remove treatment from 
the dataset in different ways. The next two approaches (models 5-6) explicitly model 
treatment effects. Finally, we apply a marginal structural modelling approach (model 
7). All approaches are based on developing a Cox model with the same predictors as in 
model 1 (except when treatment is added to the model). In this section, we describe the 
effect of each approach on the associations between predictors in our model (P), SBB use 
(T), and mortality (Y), using causal diagrams. Figure 1a represents these relationships 
when treatment is ignored.

2.2.1 Excluding or censoring treatment users from the cohort
A seemingly straightforward way to remove the effect of treatment drop-in is to restrict 
the analysis to patients who do not receive the treatment during follow-up (restriction, 
model 2) or to include follow-up of those patients until the moment they start treatment 
and censor them from that moment onwards (censoring, model 3). 

As illustrated by Figure 1b, restricting the analysis to individuals who did not receive 
an SBB prescription (T = 0) will remove the effect of SBBs on mortality from the 
cohort. However, as previously mentioned, in observational data, treatment is typically 
associated with predictors in the model (P), as in our example (see Table 1). Restricting 
the analysis to the T = 0 subset has two problems: i) the distribution of predictors and 
outcomes in the subset may not represent the target population for the model, as in 
our example where SBB users are more severely ill (Table 1); ii) in the presence of an
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Figure 1: The mechanisms underlying approaches to remove the eff ect of SBB drop-in on a 
prognosti c model. 

For a model to provide predictions of the risk of mortality if an individual were not to receive SBBs the 
model parameters should be estimated such that the associations between P and Y are not infl uenced by 
the eff ect of T on Y. P: predictor(s), Y: outcome, T: treatment, U: variable(s). See text for further details.
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unobserved confounder (U) of the treatment-outcome association, T now serves as a 
collider, which is represented by the two incoming arrows. Conditioning on T will alter 
the relation between P and U which may lead to biased estimation of the prognostic 
model (the association between P and Y) (see Figure 1c) (15). Alternatively, censoring 
individuals at the moment of SBB drop-in will retain a representative risk distribution 
in the data at baseline and retain more information on follow-up. However, as with 
restriction, if censoring is “informative”, i.e. associated with P and U, the estimated 
model coefficients will be biased, along with predictions of Pr(YT = 0 = 1 | P).

2.2.2 Reweighting using inverse probability of (censoring) treatment (IPTW) weights
To solve the issue of informative censoring, weights can be applied to patients so that the 
association between treatment and predictors is removed. Given that treatment drop-in 
does not occur at a fixed point in time, time-varying weights need to be derived.16-18 To 
account for informative censoring of SBB drop-in in our case study we divided the data 
into seven time periods of approximately one year and derived stabilized weights for 
each time-period using logistic regression.16 The prognostic model is then developed, 
after censoring, using a weighted Cox model (model 4). As Figure 1d indicates, if the 
underlying assumptions of the weighting procedure 17 are met, the association between 
P and T should be removed, allowing for correct estimation of the associations between 
P and Y. 

2.2.3 Explicitly modelling treatment
Previous findings have suggested that the explicit modelling of treatment can correct 
for the effect of treatment on predictor-outcome associations.2 By conditioning the 
prognostic model on treatment use, the pathway from P to Y via T is blocked (Figure 
1e). A simple approach is to include an indicator variable for treatment drop-in in the 
prognostic model (model 5 in our comparison); to make prognostic predictions, all 
patients would then have their value for “future treatment” set to zero. However, drop-
in occurs by definition after baseline and conditioning on future treatment (and thus 
future survival) introduces immortal time bias into the estimated treatment effect.19 As 
T is associated with P, this bias will affect the coefficients of the prognostic model, and 
hence the predicted probabilities. To address this bias, treatment can be included as a 
time-varying covariate in the prognostic model.20 Unlike all the previous approaches, this 
approach directly models all changes in treatment, such as discontinuation of treatment 
over time. However, as Figure 1f shows, residual confounding of the association between 
T and Y opens an additional path from P to Y (via U) and may result in model coefficients 
that are still biased.
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2.2.4 Marginal structural modelling
This approach formally derives a prognostic model within a counterfactual framework. 
As described elsewhere,4 to estimate the counterfactual, untreated risk Pr(YT = 0 = 1 | 
P), we can first estimate stabilized IPTW weights (as described in section 2.2.2). A 
weighted prognostic model is derived, which includes the relevant predictor variables, as 
well as a term to model time-varying treatment, and terms for any interactions between 
treatment and other predictors in the model that may vary over time. As with explicitly 
modelling treatment, this approach aims to remove the association between treatment 
and predictors in the model, but it is also sensitive to unmeasured confounding of the 
treatment-outcome association, as shown in Figure 1f. 

2.3 Comparison of approaches
All seven approaches were compared in terms of the resulting model coefficients, risk 
predictions provided by the model for patients in the development data, and the model’s 
predictive performance. Predicted risks of all models were compared to the predicted 
risks from model 1. Predictive performance (Harrell’s c-index, Brier score, calibration 
slopes) was assessed in two data sets derived from the development data: 1) the full data 
with patients censored at the moment of SBB treatment, and 2) SBB non-users only, to 
better evaluate performance in an untreated population than the full data.21 All analyses 
were performed using the R statistical programme, version 3.2.2.

In addition, comparisons were repeated using a “highly-treated” subset of the data (50% 
of the patients began using SBBs), to see whether the results of the modelling approaches 
differed more with more treatment use in the development sample.

Results

The regression coefficients differed between all seven models (Table 2). The largest changes 
in regression coefficients compared to model 1- developed by the conventional approach 
of ignoring treatment - were in models 2 (SBB users excluded), 3 (SBB users censored), 4 
(IPTW) and 7 (MSM). Model 6 (time-varying SBB) hardly deviated from model 1. The 
regression coefficient for (binary) treatment use was negative (-0.56), but became positive 
when modelled directly as a time varying covariate (0.39) or in a MSM (0.06).

Risk predictions made by all models in the development data ranged across the whole 
spectrum of probabilities (0-1). As shown by Figure 2, models 2 and 5 produced 
slightly higher risk predictions than model 1 (treatment ignored). Models 3 and 4 and 6 
provided slightly lower risk predictions than model 1. The means of the predicted risks 
were 21.3% (model 1), 22.7% (model 2), 20.8% (model 3), 20.8% (model 5), 22.5% 
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(model 5), 21.1% (model 6) and 21.6% (model 7). When evaluated in the full data, 
after censoring SBB-users, predictive performance was consistent across the models: 
c-statistic = 0.79, Brier score = 0.09, calibration slope ranged from 0.99 (model 4) to 
1.02 (Model 1,5,6). Similar results were seen when the models were evaluated in the 
data with SBB-users excluded.

Repeating the model development and evaluation in a highly-treated subset of the 
development data intensified the differences between the approaches. As Figure 3 
shows, the trends of higher predictions as compared to model 1 (mean predicted risk: 
18.6%) after excluding treatment (23.8%) and modelling binary treatment (23.5%), 
and lower predictions after censoring with (15.7%) or without (15.9%) IPTW, were 
more prominent. 

Discussion

This study presents seven approaches to account for treatment use when developing a 
prognostic model using observational data. Previous work has focussed on methods to 
account for point treatments, i.e. treatment use that does not change over time.2,21 As 
seen in our case study (see Supplemental figure 2), the use of treatments is often not 
fixed over time but can vary greatly in time and across individuals. The seven models, 
derived by ignoring treatment or applying one of the seven methods, varied in their 
coefficients and estimated slightly different risks for individuals in the development data 
set. We expected the use of effective treatments in the development set to result in a 
model that underestimates untreated risks, and therefore that approaches to correct for 
this would result in models that yielded higher predicted risks, on average. However, in 
our case study the impact was minimal.

There are a number of explanations for the limited, and where present, unexpected, 
differences between approaches that we observed in this case study. First, it may be 
that the effect of treatment in this development cohort was too small to impact on the 
performance of a prognostic model. The abundant literature supporting the protective 
effect of SBBs on mortality for patients with COPD (suggesting a risk ratio of ~0.7) 
suggests there was indeed a true effect of treatment in the patients in our dataset who 
did receive treatment. However, it may be that the 17.1% drop-in rate was insufficient 
to affect predictions. Additionally, most patients were prescribed SBBs for less than one 
year, which may have limited the impact on their overall risk profile during the study. 
With the exception of modelling SBB use as a time-varying covariate, the approaches 
did not account for the possibility that individuals may have stopped treatment. We also 
assumed that treatment prescriptions directly represent treatment use, which may have
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Figure 2: 5-year mortality risk predicti ons provided by the seven models for pati ents in the 
development data set. 

Predictions using models 2-7 are plotted against predictions provided by model 1 (treatment ignored). Blue 
points represent predictions for SBB non-users in the cohort; red points represent predictions for SBB users.
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Figure 3: 5-year mortality risk predicti ons provided by the seven models for pati ents in a “highly 
treated” subset of the development data (50% treatment drop-in). 

Predictions using models 2-7 are plotted against predictions provided by model 1 (treatment ignored). Blue 
points represent predictions for SBB non-users in the cohort ; red points represent predictions for SBB users.
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overestimated the total amount of actual treatment use. Indeed, when the analysis 
set was sampled such that the SBB drop-in rate was 50%, the effects of removing or 
modelling treatment on risk predictions provided by the models became more apparent.

The limited effects of the more advanced IPTW and time-varying covariate approaches 
may also be due to residual confounding. While this study has demonstrated that it is 
feasible to account for the time-varying use of a pharmacological treatment in practice 
using prescription information, due to a lack of available information on disease severity 
and comorbidity during follow-up, we were not able to incorporate this important factor 
in our analyses. Unobserved confounding of predictor-treatment associations can bias 
IPTW estimates, as discussed elsewhere,17 and as indicated by Figure 1, may result in a 
failure to remove the association between predictors and treatment. In such a case, these 
methods would not correctly estimates Pr(YT = 0 = 1 | P). This highlights the challenge 
of implementing more complex approaches when using observational data with limited 
data collection.

Our structured approach to considering the potential bias caused by treatments falls in 
line with the ideas recently described by Sperrin et al.,4 who recommended using MSMs 
to address treatment use for prognostic model development. This case study additionally 
considers approaches to exclude treated individuals or to directly model treatment as a 
time-varying variable in the prognostic model, both providing potentially less complex 
solutions than a MSM approach. Although all of the approaches considered in this 
paper attempt to remove the influence of treatment on predictor-outcome associations 
in a prognostic model, subtle differences between them may affect their suitability. First, 
as previously discussed,4,22 an advantage of the MSM approach is that, unlike simply 
modelling treatment as a time-varying covariate, it can account for the association 
between prior treatment use and time-dependent confounders. The extent to which 
this translates to improved prognostic model performance in practice requires further 
investigation. In addition, both modelling treatment as a time-varying covariate, and 
the MSM approach may be preferred over censoring individuals and using IPTW, 
as these approaches utilize all available data and can readily account for treatment 
discontinuation after initiation.

This study has limitations. Ideally, to compare the impact of following the different 
modelling approaches, the resulting models should be compared in a truly external 
validation data set. As is often the case when trying to validate a prognostic model,3 a 
validation data set without treatment use is not available, and thus we evaluated model 
performance in an untreated subset of the development cohort. Future studies using 
real data may need to consider employing advanced methods to account for treatment 
use in the validation data set.21 Alternatively, future research could evaluate model 
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performance in a dataset with outcomes simulated to be in the absence of treatment. 
In addition, in this study we selected the parameters in our prognostic model based on 
clinical knowledge and a backwards selection procedure. It is not yet established whether 
shrinkage methods for model selection could influence the effect of treatment on a 
prediction model or vice versa, and requires further investigation. Finally, we present a 
single case study, and therefore the results should not be used to determine whether one 
modelling approach is always superior to another. This case study demonstrates that the 
choice of approach certainly affects the risk predictions made by a developed prognostic 
model. Whether these approaches are necessary for a given study will depend on factors 
such as the strength of the treatment effect, the duration of treatment, the number of 
individuals treated, and the strength of any associations between predictors in the model 
and treatment use – all of which need to be investigated in additional case studies and 
simulation studies.

In conclusion, this methodological case study has shown that different methods to 
account for time-varying treatment use when developing a prognostic prediction model 
using observational data result in different model coefficients and risk predictions. 
Limited differences were observed in terms of model discrimination or calibration. 
The effects of (time-varying) treatment use should nonetheless always be considered 
when designing data collection and analyses in a prognostic model development study. 
Only then can it be determined whether additional methods will be necessary to make 
adjustments for any treatment effects during model development and validation.
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Supplemental material

Supplemental fi gure 1: A summary of the case study objecti ve. 

A model developed using data on treated (grey) and untreated (white) individuals does not predict Pr(YT 

= 0 = 1 | P), if treatment is not taken into account, and thus would not be suitable for guiding treatment 
decisions. In this case study, YT = 0 represents the counterfactual outcome 5-year mortality if patients remain 
untreated with cardio-selective β-blocking agents (SBBs).

 

Development cohort Individual patient 

 Begin SBB treatment 
 Withhold or delay SBB 

treatment 
 Advise lifestyle changes 

Pr (Y = 1 | P) Pr (YT=0 = 1 | P) 
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Supplemental fi gure 2: Selecti ve β-blocker prescripti on patt erns of three individuals. 

Red lines represent separate periods where the patients had been prescribed SBBs. Patients A (seven periods 
of treatment) and C (three periods of treatment) were prescribed SBBs for the majority of follow-up. Patient 
B (six periods of treatment) had an irregular prescription profi le, with a gap of nearly 5 years between two 
treatment periods.

 

A 

B 

C 

Days since entry into the cohort 
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Abstract

Background
Diagnostic and prognostic prediction models often perform poorly when externally 
validated. We investigate how differences in the measurement of predictors across 
settings affect the discriminative power and transportability of a prediction model.

Methods
Differences in predictor measurement between data sets can be described formally using 
a measurement error taxonomy. Using this taxonomy, we derive an expression relating 
variation in the measurement of a continuous predictor to the area under the ROC curve 
(AUC) of a logistic regression prediction model. This expression is used to demonstrate 
how variation in measurements across settings affects the out-of-sample discriminative 
ability of a prediction model. We illustrate these findings with a diagnostic prediction 
model using example data of patients suspected of having deep venous thrombosis. 

Results
When a predictor, such as D-dimer, is measured with more noise in one setting compared 
to another, which we conceptualize as a difference in “classical” measurement error, the 
expected value of the AUC decreases. In contrast, constant, “structural” measurement 
error does not affect the AUC of a logistic regression model provided the magnitude 
of the error is the same among cases and non-cases. As the differences in measurement 
methods between settings (and in turn differences in measurement error structures) 
become more complex, it becomes increasingly difficult to predict how the AUC will 
differ between settings. 

Conclusion
When a prediction model is applied to a different setting to the one in which it was 
developed, its discriminative ability can decrease or even increase if the magnitude 
or structure of the errors in predictor measurements differ between the two settings. 
This provides an important starting point for researchers to better understand how 
differences in measurement methods can affect the performance of a prediction model 
when externally validating or implementing it in practice.
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Introduction

Before prediction models are implemented in clinical practice, they should be externally 
validated, i.e. tested in individuals who were not a part of the data set used to develop 
the model.1-4 Ideally, a model should perform well in terms of its discriminative ability 
and calibration 5 when validated in new sets of patients from different settings, e.g. from 
different clinical settings, geographical locations, or time periods. However, prediction 
models commonly perform differently - generally poorer - in new settings compared to 
what was observed in the development data set.6 We then say that the transportability 
of the prediction model is low. Notably, failure for a model to transport well across 
settings indicates that the model cannot be readily implemented for new individuals.7 
Therefore, it is important that we understand what causes a prediction model to perform 
differently across settings. Discussions about variation in performance across data sets 
often focus on differences in patient characteristics.8-10 Herein, we argue that variation 
in prediction model performance can also be explained (in part) by differences in how 
predictors are measured across settings, regardless of whether patient characteristics are 
similar or different. 

The way that predictors are measured often varies from the development setting to 
validation or implementation settings. This occurs when predictor values are determined 
using different methodologies, protocols (e.g. fasting vs. non-fasting cholesterol 
measurements) or equipment, are measured by different people with varying levels of 
training, or are directly measured in one setting and measured by patient recall in a 
different setting, for example. Surrogate values for predictors may also be used when 
measurements of a certain predictor are unavailable in a data set.11 Altogether, this can 
have a large impact on the value of measurements for individual patients; the value of 
a blood pressure reading, for example, is known to vary greatly depending on how the 
measurement is taken.12 Therefore, we can expect that differences in the distribution 
of predictor values across different studies are not only due to true variation in the 
characteristics of patients but also the ways that their characteristics were measured. 

In this report we describe how the discriminative ability of a prediction model varies 
across settings with variation in the measurement of predictors, and illustrate the effect 
both numerically and in a case-study about a diagnostic prediction model for deep 
venous thrombosis.
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How the AUC is related to measurements of a predictor

Relating the AUC to the distribution of a continuous predictor
The area under the receiver operating characteristic curve (AUC) indicates how well a 
prediction model can discriminate between individuals who have/will have (cases) or do 
not have/will not have (non-cases) the health outcome of interest (e.g. disease or health 
state).13 Assuming a continuous predictor (which may be a linear combination of several 
predictors) follows a normal distribution among cases and non-cases separately, it has 
been shown that the AUC of a predictor of a binary outcome can be approximated by 14:
 

AUC=Φ
μ1-μ0

σ1+σ0

Here μ1 , μ0,  and  refer to the means and variances of the predictor in the cases (μ1, 
) and non-cases (μ0, ), and Φ denotes the cumulative normal distribution function. 

From [1] we can see that the AUC is a function of the mean and variance of the values 
of a predictor that are observed for cases and non-cases.  

Relating the AUC to the distribution of a predictor measured with error
To understand how the measurement of a predictor can affect the AUC of a prediction 
model, we turn to an existing taxonomy for measurement error (for further details see 
15-17). First consider a candidate predictor, for example height. In one sample, the height 
of patients is measured directly by a research assistant, providing an accurate measure of 
heights in the sample. In another sample, height is self-reported. Given that patients are 
likely to recall their height with a certain amount of error, the self-reported height value 
observed for an individual i (Wi) represents their accurately measured height (Xi) plus 
some additional error (Ui) 

15:
		

Wi= Xi+Ui.

A common model for Ui is the “classical” measurement error model where U follows 
a normal distribution with a mean value of zero, and a (constant) variance, τ. Under 
this model, the error in self-reported height is considered random and on average the 
measurements are unbiased (E(W) =E (X)) but have additional variance, such that the 
expected variance of W is equal to the sum of σ2 (the variance of the accurately measured 
predictor X) and τ. It follows that the expected value of the AUC of the predictor in the 
sample, measured with random error, is:
 

AUC=Φ
μ1-μ0

σ1+σ0+2τ
. 

[2]

[3]

[1]
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From this, we can see that as the amount of random error with which a predictor is 
measured increases, the discriminative ability of the predictor is expected to decrease, 
provided the other parameters in [3] remain constant. 

A general expression relating measurement error to the AUC of a continuous predictor
Measurement error can also affect the mean of the observed values, which may also vary 
between cases and non-cases. Expression [2] can be extended as such:
	   

Wi= Ψy+ Xiθy+ εi, 

where y is an indicator to distinguish between cases (y=1) and non-cases (y=0). Further, 
we assume ε|y ~ N(0,τy)

.
. The mean and variance components of the observed predictor 

values in the cases and non-cases can now be defined. Let the expected values of the 
predictor X be defined as X0=E(X|Y=0), X1=E(X|Y=1), and similarly, the values for error-
contaminated predictor W, be defined as W0=E(W|Y=0) , W1=E(W|Y=1) . Hence, in 
expectation, 

W1=Ψ1 + θ1X1

W0=Ψ0 + θ0X0

Σ1=σ1θ1+ τ1
Σ0=σ0θ0+ τ0

It follows that, under the same conditions required for expression [1] to hold, this 
expression can be extended to incorporate measurement error by substituting the 
means and variances of predictor X in the cases and non-cases for values of predictor W 
(measured with error), such that

AUC=Φ
Σ1+Σ0

W1-W0

[4]

[9]

[5]
[6]
[7]
[8]
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Differences in measurement error between settings lead to changes in the AUC

As explained, the way that predictors are measured in samples from different settings 
varies, which could result in variation in measurement error. Notably, it follows from 
expression [9] that if differences in measurement between settings translate to differences 
in the structure or magnitude of the measurement error associated with the predictors, 
the AUC can vary across these settings. Figure 1 (scenarios S1 and S2) shows that when 
the amount of random error across settings increases, the expected value of the AUC 
decreases. In contrast, depending on the direction of the error, and whether it is present 
equally in the measurements of both cases and non-cases, non-random error can cause 
the AUC to increase, decrease or may have little effect. Therefore we see that for the 
discriminative ability of a predictor to transport to a new setting, the measurement error 
of that predictor must also be transportable. Furthermore, the mean and variance of 
the predictors in the absence of measurement error remained constant across scenarios. 
In reality it becomes extremely challenging to predict how the AUC will change across 
settings, because the AUC is a function of predictor means, variances and error, all of 
which can change between settings. 

Case-study: differences in measurements from development to validation

Data from 1295 patients with possible deep venous thrombosis (DVT) 18 were used to 
examine how differences in the measurement of a predictor across samples affect the 
discriminative ability of a diagnostic prediction model. First, a model to predict the 
presence of DVT was developed with a single predictor, D-dimer (log-transformed, 
continuous measurements of the biomarker were used), using logistic regression on a 
random half of the data (a split-sample procedure for illustration purposes). Next, we 
explored how measuring D-dimer with greater error in a validation sample could affect 
its discriminative power. Error of increasing magnitude was simulated and added to the 
D-dimer measurements in the remaining half of the data, and subsequently the AUC 
was calculated in this half of the data. The AUCs reported in Figure 2 denote the average 
AUC after replicating the entire procedure (from data splitting to calculating the AUC) 
1000 times. Figure 2 shows that when measurements were conducted less accurately 
(i.e., with increasing amounts of noise or “classical error”, see section 3) there was greater 
overlap between the distributions of the predictor values of the cases and non-cases in 
the validation sample. This translated to a strong reduction of the AUC, from 0.89 
in the development sample to 0.67 in the validation sample with a 200% increase in 
log D-dimer variance relative to the actual variance. In contrast, a fixed increase in the 
D-dimer measurements (constant “structural error”, see section 3) caused a uniform 
shift in the predictor values and thus the AUC remained unchanged with increasing 
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error, as was also seen in Figure 1, scenario 3. Finally, the prediction model including 
D-dimer was extended with additional predictors: sex, oral contraceptive use, presence 
of a malignancy, recent surgery, absence of leg trauma, vein distension and the difference 
between calf circumferences, to reflect a published diagnostic model. 18 All predictors 
except D-dimer were assumed to be measured in the same fashion in the development 
and validation samples. The same trends were observed as in the univariable (D-dimer 
only) model; the AUC ranged from 0.90 in the development set to 0.70 in the validation 
sample with a 200% increase in log D-dimer variance relative to the actual variance, and 
remained stable with fixed increases in the D-dimer measurements.
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Concluding remarks

Differences in the way predictors are measured across settings can cause the discriminative 
ability of a prediction model to appear to be worse, but perhaps surprisingly can appear 
to be better as well, in one setting compared to another. Thus, for a prediction model 
to transport well to new patient samples, i.e. from development, to validation and 
finally implementation in daily practice, measurements methods should be comparable 
across each sample. We propose that differences in the way a predictor is measured 
across samples from different settings can be viewed in the context of measurement 
error. Prediction does not require the “true” value of a variable to be measured, rather, 
predictions are made using observed measurements.15 Whether predictor measurements 
deviate from their “true” (e.g. biological) value becomes important only if this deviation 
from “truth” varies from one sample to another. 

A number of studies have investigated factors that influence the performance of a 
prediction model. The effect of measurement error on prediction model performance 
within a single sample has been examined elsewhere.19-20 Others have investigated how 
correlation between predictors in a model is related to model performance. A simulation 
study by Kundu et al. 21 found that differences in the correlations between predictors 
in validation samples compared to the development sample can result in differences 
in the AUC. Given that differences in measurement methods can affect the variance 
of predictor measurement in a sample, and the correlation between two variables is 
a function of their variances and covariance, our findings explain how differences in 
correlations can arise between samples, and how this can affect the AUC of a model.

Variation in model performance due to differences in how predictors have been 
measured can have different implications. First, differences in performance can arise 
when predictors in a validation sample have been measured using methods that do not 
reflect current standards. This could happen if the validation sample comes from an 
historical cohort, in which outdated methods of measurement were used. Alternatively, 
if data were collected in a highly protocol-driven setting, such as for a randomized trial, 
measurements may be more precise than in clinical practice. In such cases, evidence of 
poor model transportability is weakened by non-representative measurements in the 
validation sample. Second, differences in measurements from development to validation 
might reflect true variation in clinical practice. In this case, we might conclude that 
poor performance in a validation sample is evidence of limited transportability of the 
model. Finally, it could be that the model itself is outdated, and since its development, 
the methods used to measure a predictor have improved. Poor performance in a 
contemporary validation sample could indicate that the model requires updating.
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We have presented a starting point for the exploration of the impact of differences in 
measurements on prediction model performance, but further attention is required in a 
number of areas. First, the mathematical relationship we present between measurement 
error and model discrimination is restricted to the case of a single continuous predictor, 
and is based on strict assumptions. Future research could use computer simulations 
to further explore the impact of differences in measurements on the discriminative 
ability of multivariable prediction models across samples, and could investigate the 
misclassification of categorical predictors. Second, while we have discussed model 
discrimination, model calibration requires separate attention. Finally, we do not 
comment on the use of correction methods for measurement error when developing or 
validating a prediction model, as this remains a topic for further investigation.

To conclude, if the measurement of predictors varies from sample to sample, we can 
anticipate changes in the discriminative ability of the model. Discussions about variation 
in prediction model performance across settings should therefore also consider variation 
in predictors measurements. The way predictors are measured when developing or 
validating a prediction model should mimic the way predictors are measured in practice 
in order to obtain realistic and relevant estimates of prediction model performance.
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Abstract

Prediction models have become an integral part of clinical practice, providing information 
for patients and clinicians and support for clinical decision making. The development 
and validation of prognostic prediction models requires substantial volumes of high-
quality information on relevant predictors and patient health outcomes. Primary data 
collection for prognostic model research comes with substantial costs and if suitable 
data are already available for prognostic modelling, performing such a new study can be 
seen as a form of research waste. Randomized clinical trials (RCTs) are a source of high-
quality clinical data with a largely untapped potential for use in further research. This 
article addresses when and how data from a RCT can be used additionally for prognostic 
model research and guidance is provided to help researchers with access to RCT data to 
evaluate the suitability of their data for the development and validation of prognostic 
prediction models. 

Summary points
• �To minimize research waste, data from randomized clinical trials (RCTs) might be  

considered for the development or validation of a prognostic prediction model.
• �Advantages of RCT data include completeness, accuracy and consistency of the 

data, and detailed protocols.
• �Randomized treatment allocation facilitates the development and validation 

of  prognostic models that predict risk in the presence or absence of (a certain) 
treatment.

• �RCT data might be less suitable due to selective patient or centre inclusion, 
extraneous trial effects or overly specialized predictor measurement, which all 
may limit the generalizability of prognostic models to real-life practice. Other 
limitations might be too short-term or clinically irrelevant, surrogate outcomes, 
or an insufficient sample size for prognostic model development or validation.

• �This paper provides guidance to appraise the suitability of RCT data for prediction 
research by examining both potential benefits and limitations.
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Introduction

Prediction model research requires substantial amounts of high-quality clinical data. 
Although prospective data collection designed specifically to develop or validate a 
prognostic prediction model is typically advocated,1 this is often not feasible or desirable 
due to the vast costs involved. Randomized clinical trials (RCTs) provide a tempting 
alternative data source for the development and validation of prognostic prediction 
models: in the last twelve months alone, nearly 20,000 RCTs of therapeutic interventions 
were published, generating an unfathomable amount of data (see Supplement for search 
query). Yet the valuable information gathered in RCTs remains largely untapped by 
the research community and one could view this as a tragic source of research waste. 
At the same time, despite the widespread belief that RCTs are the “gold standard” for 
data generation, their suitability for addressing questions of a descriptive (i.e. predictive) 
nature has been questioned.2 This article starts from the perspective that we would like 
to develop or externally validate a prognostic prediction model and we have access to 
individual participant data- herein referred to as “data”- from a relevant phase III (or 
possibly IIb) RCT. We present the opportunities that RCT data can offer, describe 
potential limitations that must be considered, and navigate the “dos and don’ts” of 
developing or externally validating a prognostic prediction model with RCT data.

Opportunities when using RCT data
To date, a number of prognostic prediction models have been effectively developed and 
validated using RCT data (see Table 1). Data generated by a RCT may confer certain 
benefits over data from alternative sources, such as from predesigned, observational 
studies, electronic health records, disease-specific registers or administrative medical 
databases. We outline the key opportunities that RCT data might provide when 
developing or externally validating a prognostic prediction model.

O1. Data quality: completeness
The completeness of data from RCTs can be an important asset for prediction model 
studies. Missing data is a serious and almost ubiquitous issue for studies that develop or 
externally validate prediction models.13,14 Although numerous methods exist to handle 
missing data, the best solution is undoubtedly its prevention. To develop a prediction 
model, one ideally needs complete information on all candidate predictor variables, 
measured in all individuals in the study.
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However, practically a model may be developed using whichever predictor variables 
are available. External validation requires complete information on all predictors of the 
model that is under evaluation.

Throughout the design and conduct of a RCT, a number of strategies may be employed 
to facilitate the complete collection of information on predictors and outcomes in all 
trial participants.15 This may include the training of research staff before starting data 
collection and incentives for data collectors to record complete information. While this 
may be a challenge in multicentre trials, the existence of a common, shared protocol 
can help to maintain consistent data collection across the centres. A unique feature 
of RCTs is detailed study monitoring, usually by a number of separate committees.16 
Trial oversight committees, such as data monitoring committees, monitor the presence 
of missing data in a trial. These efforts work synergistically with central and on-site 
monitoring to keep track of missing data and prevent additional missing data.

In addition, RCT data can include detailed information on important post-baseline 
events, which could affect the prognosis of participants. Such details are often not 
available in observational databases. Post-baseline events such as changes in treatment, 
the use of rescue medications or competing outcome events may need to be accounted 
for when developing or externally validating a prediction model, and should be reported 
alongside the results.17 

O2. Data quality: accuracy and consistency
Accurate and consistent predictor and outcome information is a requisite for accurate 
prediction models. RCTs are commonly regarded as a source of high-quality health data. 
As with data completeness, considerable amounts of time and money are channelled 
towards ensuring data are correctly measured and recorded.

First, adherence to the trial protocol and standard operating procedures facilitates the 
accurate and consistent measurement of predictors and outcomes, in particular for 
specific variables of interest in the trial (although this might not reflect actual variation 
in practice, see section L4). Second, case report forms require the recording of detailed 
clinical information and can help to prevent the recoding of impossible values, forming 
a part of the quality assurance process in a RCT.18 Third, as with data completeness, 
study monitoring in RCTs helps to maintain accuracy and consistency in the recorded 
data. For example, central monitoring includes the checking of data for unusual patterns 
or implausible values.16 In addition, source data verification and electronic data capture 
methods form an additional layer of data validation.19 Finally, a centralized system 
for the adjudication of outcome events can be especially important when outcome 
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measurements are subjective. Altogether, these systems and processes can yield data that 
satisfy the quality requirements of prediction model studies.

O3. Protocol and records
The availability of a trial protocol permits a better understanding of how predictors and 
outcomes were defined and measured. This information is helpful in several respects. 
First, data on how and when predictors were measured may provide insight into the 
suitability of a predictor for inclusion in a prediction model. For example, if the protocol 
states that a certain predictor should be measured at a time point that is not relevant to 
routine clinical practice, one might not select the predictor. Second, knowledge of the 
operationalization of predictor or outcome measurements provides insight into how 
well a model may perform in practice, and can inform risk of bias assessment when 
reviewing a prediction model study.20 In addition, information stored in such meta-data 
may also have predictive value. The timing of measurements, whether taken during the 
day or night, can be highly predictive of clinical outcomes.21 Such information could 
also be used in statistical models to impute missing data.

O4. Treatments
Often in practice, clinicians are interested in the following question: “What will happen 
to my patient if I do or do not treat them?”. By addressing this question, prediction 
models can be used to support clinical decisions, as well as provide information to 
clinicians and patients for counselling.1 For this purpose, prediction models must predict 
risks for patients in the absence (or presence) of a certain treatment. This can prove 
challenging in non-RCT data due to the non-random use of treatments by patients,22 
and advanced statistical methods may be needed to correctly account for this.23,24 In 
the case of RCT data, the effect of treatment use can be solved by simply developing or 
validating the prognostic model in the untreated (or placebo) trial arm or by including 
the randomized treatment as a predictor in the model, along with terms for any other 
treatment-predictor interactions (model development only).22 However, it must be 
recognized that the placebo-arm of a placebo-controlled trial may not represent truly 
untreated patients in usual practice (see section below “L5. Extraneous trial effects”).

Limitations and challenges when using RCT data

Available data from a RCT can suffer from a number of limitations which may reduce the 
viability of its use for prognostic prediction modelling. Below, we present key challenges 
when considering using RCT data for prognostic model research. Where necessary, the 
issues are addressed separately for model development and model validation.
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L1. Consent
Consent to re-use RCT data for prediction modelling may not have been given by the 
trial participants. In contrast to data repositories established specifically for scientific 
research purposes (e.g. the UK Biobank25), which have very broad consent for data 
re-use,26 trials may not always have asked for a sufficiently broad consent. However, 
compared with routinely collected data, which faces even greater challenges with consent 
in light of the recently implemented 2016 EU General Data Protection Regulation,27 
RCT data might prove more accessible, especially if trials begin to adopt broad consent 
for data re-use, as recommended.28 It is likely that researchers will need to consult their 
institutional review board before using RCT data for secondary analysis, but whether 
this satisfies ethical and legal requirements needs further examination. 

L2. Selective inclusion of centres
The centres that participate in RCTs might not be representative of clinical practice 
in general.29 Specifically, generalizability of a prognostic prediction model could be 
limited if only specialist trial centres (e.g. academic medical centres) or experienced 
clinicians with high performance ratings were invited to participate.30 In such cases, the 
associations between predictors and the outcome, and the incidence of outcomes could 
be different in the trial setting compared to routine clinical practice, of which both 
could affect the performance of a prognostic prediction model.31 

L3. Selective eligibility and enrolment 
RCTs commonly have narrow participant eligibility criteria, e.g. often excluding frail, 
multi-morbid or vulnerable patients.32-36 At the same time, some of the most challenging 
clinical decisions are for these groups of patients. Thus, RCTs may not provide sufficient 
information for prediction research in these clinically relevant patient subgroups. When 
developing a prediction model using a selective subset of patients, we assume that the 
predictor effects and functional forms of their associations with an outcome are the 
same across the patient subsets included and excluded from the RCT. In addition, the 
participants invited to enter a RCT and those who actually enrol and remain in the trial 
until completion can substantially differ.37 For example, the requirement of informed 
consent from participants has been shown to result differences between the patients 
enrolled and not enrolled in the a trial.38,39 As with selective eligibility, this may limit the 
value of RCT data for prognostic model development. This may not be as problematic 
for external validation, but may limit the generalizability of results to broader patient 
populations.

L4. Predictor measurement
As mentioned, protocol-driven data collection by trained research staff can help to 
improve the accuracy and consistency of clinical measurements, which in turn can 
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improve the accuracy of a prediction model.40 For the purpose of prediction, however, 
the measurement of predictors should closely reflect how they are measured in regular 
clinical practice. Thus the use of unrealistically accurate measurements – which may 
occur if specialist personal or equipment are used in a RCT - when developing a 
prediction model could reduce the transportability of the model to clinical practice, and 
the findings of a validation study may not represent how the model will truly perform 
in practice.41 

L5. Extraneous trial effects
The effects of being enrolled in a trial on participant behaviour are well-documented.42 
Knowledge of enrolment in a trial can lead to participants behaving differently, even 
reporting more optimistic outcomes,43,44 an effect commonly termed the “Hawthorne 
effect”. The enrolment of a centre in a RCT may also affect the behaviour of healthcare 
professionals and as a result the prognosis of a patient enrolled in a trial may be better 
than it would have been according to routine care.45 In the case of placebo-controlled 
trials, patients on placebo may also exhibit a placebo (or nocebo) effect, which may 
positively (or negatively) affect their outcomes.46 In addition, the presence of a “protocol 
effect” or “care effect” - whereby adherence of centres to a strict trial protocol may 
improve patient outcomes (e.g. through additional monitoring) compared to patients 
not enrolled in the trial 47,48  - may hamper the generalizability of RCT data to clinical 
practice. Thus, a trial that suffers from strong extraneous effects might not provide 
suitable data for prediction research. 

L6. Short-term and surrogate outcomes
Long-term, clinically relevant outcomes are often of interest in prognostication in daily 
practice. For example, models to predict cardiovascular disease risk are commonly 
designed to predict outcomes within 10-years.49 Such models require very long follow-
up, which is rarely available in large RCTs. However, unlike validating a model for long-
term prediction, with short-term outcome data, which is not advisable, there may still 
be clinical use of a prediction model developed with short-term outcomes. In addition, 
RCTs often opt for “surrogate endpoints”, to replace more costly long-term outcomes.50 
If a prediction model is to be used to inform patients and healthcare professionals, 
surrogate endpoints may have insufficient clinical relevance if the surrogate is imperfectly 
correlated with the clinical outcome, whether used to develop or validate a prediction 
model.

L7. Sample size
Prognostic model development research often requires substantial samples. While there 
is currently no consensus on the sample sizes required for prediction, evidence suggests 
that for the development of a logistic regression model, at least 20 outcome events 51 
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(if not more 52) are needed for every predictor included in the model. Similarly, reliable 
prediction model validation requires data samples with a minimum of several hundreds 
of outcome events53. Obviously, RCTs are not designed and powered with prediction 
research in mind. Thus data from a single RCT may simply not suffice. While approaches 
such as penalized regression can help to prevent the “overfitting” of prediction models 
in small data sets 54, large samples may yet be needed for modern modelling techniques 
55. Data from large, multicentre trials can, however, provide a solution to this issue. In 
addition, as seen in Table 1, the combination of individual participant data from more 
than one RCT can greatly increase the amount of available data.

How and when to use data from a RCT for prediction research

When data from a RCT are available, researchers must weigh the advantages (data 
quality, completeness, treated and untreated arms, and protocol) against any limitations, 
both described above. We suggest that the decision process can be separated as follows:

1. Criteria that must be met
    •  �There must be acceptable patient consent (or under certain circumstances a waiver by 

an institutional review board 56) for reuse of the RCT data for prediction research.

2. Criteria that may seriously limit the usefulness of the data
    •  �Insufficient sample size or follow-up, or no availability of important predictors or 

outcomes will seriously limit the suitability of RCT data.

 3. Criteria that may limit the usefulness of the data
    •  �Selection of patients or centres, experimental effects and highly protocol-driven 

predictor measurements may all limit how representative the trial data are of the 
target population for the prediction model.

To aid in this process, Table 2 presents a series of questions to ask when assessing whether 
data from a certain RCT are suitable for developing or externally validating a prognostic 
prediction model. For each situation, general advice is provided to help researchers reach 
a decision. The decision to use a given set of data from a RCT will depend on the specific 
research question and remains largely subjective. In addition, to help gain an overall 
picture of the suitability of a RCT as a whole, researchers can benefit from constructing 
a diagram, such as in Figure 1. In this (fictional) example, consent for secondary use of 
the data was available and the data received a high “score” for this criterion. Following 
this, the remaining criteria were assessed. From this we see that the data might be a good 
candidate for an external validation study, but centre and participant selection may 
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limit the generalizability of a prognostic model developed using the data. With such a 
picture, researchers can decide whether the benefi ts of using the RCT data outweigh the 
limitations. 

Table 2: How to assess whether data from a RCT is suitable for developing or externally validati ng 
a predicti on model.

Suggestions are provided for how to proceed in the event that any of the considerations might seriously limit 
the usefulness of a RCT for prediction research.

Consideration Questions to ask How to proceed

1. Consent Did patients give consent or has 
consent been waived for the data to be 
re-used for prediction research?

If consent for re-use is inadequate, 
data should not be used.

2. Selective inclusion of 
centres

Are centres (their expertise, facilities 
and use of complex interventions) in 
the trial representative of centres where 
you might use the prediction model? 

Development: May not be suitable 
if trial centres do not represent 
standard practice.
External validation: May still be 
used, but report limitations to the 
generalizability of results.

3. Selective eligibility and 
enrolment 

Did the trial eligibility criteria result 
in the exclusion of relevant patient 
groups for the prediction model? 
Are patients who did/did not enrol 
(after invitation), and patients who 
remained/left the study comparable 
in terms of their characteristics and 
possible prognosis?

Development: May not be suitable 
if participants do not represent the 
target population for prediction
External validation: May still be 
used, but report limitations to the 
generalizability of results.

4. Predictor measurement Were predictors measured as they 
would be in routine clinical practice?

If the methods of predictor 
measurement are seriously 
unrealistic, data may not be suitable.

5. Extraneous trial eff ects Could enrolment in the trial have 
infl uenced patient prognosis beyond a 
treatment eff ect?

If there is evidence for strong 
experimental eff ects, data may not be 
suitable.

6. Short-term and 
surrogate outcomes

Were the clinically relevant outcomes 
measured? Is there suffi  ciently long 
follow-up for outcomes?

If outcomes or the timing of their 
measurement are not relevant, data 
may not be suitable.

7. Sample size How many participants were enrolled 
and remained in the study? What 
proportion had the outcome?

Development: consider methods for 
data with few events 54, but may 
be too small for any meaningful 
modelling.
External validation: Data may not be 
suitable.
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Finally, if a decision is made to use the RCT data, this information can be used when 
reporting any study limitations.

Figure 1: A graphical example of how the suitability of data from a RCT can be assessed aft er 
consent for use has been confi rmed. 

A researcher might attribute a level of confi dence that the RCT does not suff er from the eight limitations 
described. For example, the black lines converge at the end of the “consent” axis, indicating that patient 
consent for re-use of the data for prediction was obtained. Th e greater the area within the black lines, the 
more suitable the data might be for prediction.

 
 

 

Centre selection: 
Centres are 
representative 

Eligibility and enrolment: 
Participants represent target 
population 

Extraneous trial effects: 
No concerns over  
trial effects 

Outcomes: 
Relevant and 
determined 
accurately 

Predictors:  
Available and defined 
and measured as in 
routine practice 

Sample size: 
Sufficient for 
development 
or validation population

Concluding remarks

When data from a RCT are available for the secondary purpose of developing or 
validating a prediction model, the opportunities and limitations of these data require 
careful consideration. Available data from RCTs can, if used appropriately, be a viable 
substitute for costly and labour-intensive dedicated data collection for prediction 
research. In essence, by fi rst recognizing the possibilities that RCT data off er and then 
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carefully appraising available data, we can maximize the chance of utilizing data that 
permit high-quality prognostic model research, while avoiding unnecessary, costly 
primary data collection. 

Inevitably, there remain fundamental challenges that are universal to the secondary use 
of data for research, such as the systematic absence of data on certain key predictors. In 
circumstances such as these, researchers might consider designing a dedicated study to 
collect data to develop of externally validate a prediction model.

We hope that researchers will cautiously seize the opportunities that data generated by 
RCTs provide, to improve both the quality and efficiency of future prediction research. 
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It remains imperative that we elucidate factors that influence the performance of 
clinical prediction models. This will improve the design of prediction model studies and 
help with deciding whether a certain prediction model will make sufficiently accurate 
predictions for use in daily clinical practice. This thesis provides insight into the causes 
of heterogeneous or unexpected performance of prediction models and in turn provides 
recommendations for researchers when developing or externally validating prediction 
models. Specific attention was paid to the influence of treatments on the performance 
of prediction models. 

Throughout the chapters of the thesis the following lessons were learned:

•	� There is considerable heterogeneity in the performance of prognostic prediction 
models for cardiovascular disease (CVD). A systematic review of three 
prognostic prediction models identified notable variation in the calibration and 
discrimination of the models across settings and a general trend for the models 
to apparently over-estimate CVD risk. Meta-regression analysis was unable 
to identify strong determinants of the between-study heterogeneity in model 
performance, but model discrimination was better in studies with greater 
variation in the characteristics of participants (Chapter 2).

•	� One possible cause of poor predictive performance is the use of treatments in the 
study cohorts used for model development or external validation, particularly 
when the intended use of the prognostic prediction model is to guide the 
decision to initiate those specific treatments. Studies that have developed or 
externally validated prediction models for CVD risk prediction have, by-and-
large, not taken treatment use into account (Chapter 3).

 
•	� Failure to account for the use of “guided” treatments in studies that externally 

validate a prognostic model can lead to biased estimates of a model’s discriminative 
ability and calibration. While excluding treated individuals from the validation 
study correctly removed the effects of randomly allocated treatments (as in a 
randomized trial (RCT)), inverse probability weighting (IPW) was preferred 
when treatments use was non-random (Chapter 4).

•	� Time-fixed methods to account for treatment use in a prognostic model study 
are not, in theory, suitable to account for treatment use that varies during 
follow-up. Although theoretically superior, advanced techniques such as the 
modelling of treatment use as a time-varying covariate in a prognostic model 
and the use of marginal structural models did not improve model performance 
in a case study (Chapter 5).
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•	� An additional source of heterogeneity in prediction model performance is 
differences in the way predictors are measured across settings. When the 
magnitude and structure of the error with which a predictor is measured varies 
between settings (e.g. between development and external validation cohorts), 
the discriminative ability of the model can change (Chapter 6).

•	� The use of data from a RCT may provide an easier means to account for 
treatment use, as well as other benefits, such as high-quality, well-recorded 
measurements. However, factors including the selective inclusion of centres 
and patients and non-representative methods for predictor measurement may 
hamper the generalizability of prediction models developed using data from a 
RCT (Chapter 7).

Directions for future research based on the findings in this thesis
Future research should investigate how variation in the distribution of predictors 
and outcomes across settings affects the predictions provided by a model. This can 
be approached from three angles. First, the effect of variation in the distribution of 
patient characteristics (or “case-mix”) from setting to setting can be further investigated. 
For example, recently advocated methods to evaluate the temporal and geographical 
variability of baseline risk need to be evaluated.1 Also, better modelling of interactions 
between predictors may help in this. Second, the extent to which variation in the 
definition or measurement of predictors and outcomes across settings actually affects the 
performance of a prediction model needs to be evaluated by empirical and simulation 
studies. Third, the impact of (variation in) undergone treatments across patients or 
settings on prediction model performance requires further investigation. For example, 
this thesis has mainly discussed explicit treatment use (e.g. medication), while the effect 
of more implicit interventions during a prognostic model study such as lifestyle and 
behavioural changes have not been addressed. Finally, it is essential that future research 
considers these three different aspects together to assess their relative impact on prediction 
model performance. Existing approaches, such as benchmarking methods,2,3 case-mix 
corrected performance measures 4 and approaches that draw comparisons across data 
samples 5-7 cannot yet distinguish between the above causes of variation across samples.

Towards better prognostic research: how to align aims and results

The issues addressed in this thesis and discussed above are related by a general theme, 
namely, a mismatch between what researchers aim to achieve when developing or 
externally validating a prediction model, and the actual results of such research. We 
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have seen how this can arise, for example through incorrect estimation of “untreated 
risks” in a prognostic study (using a data set in which individuals are (partly) treated). 
Inspired by the plea for estimands in randomised trials of therapeutic interventions, this 
thesis concludes with a proposal for a framework of so-called “prediction estimands”, as 
an important fi rst step to address these problems.

What are estimands, and how can they be used in prediction research?
In recent years, the concept of estimands has been advocated in the fi eld of Phase III 
pharmaceutical trials, to increase the transparency of research and to harmonize trial 
objectives, analyses, and the results that are presented 8. Succinctly, an estimand is the 
intended estimate of a study - a precisely defi ned theoretical construct, which can be 
used to inform the design of data collection and analysis of a study, primarily to yield 
research fi ndings that are relevant to specifi c stakeholders (e.g. patients, care providers 
or guideline developers)9-11. It has been proposed that causal estimands (e.g. the 
estimands for a RCT) should comprise four components:12 the target population, the 
patient endpoint (outcome), the specifi cation of “intercurrent” events (i.e. post-baseline 
but pre-outcome, such as treatment switching or competing events), and a summary 
measure of the exposure or intervention eff ect. Th e estimand is selected based on the 
study objective and is subsequently used together with the available data to select a 
suitable statistical estimator, which provides an estimate, i.e. the fi nal result of the study. 
In taking a structured approach, one aims to increase the likelihood of selecting the most 
suitable estimator and to obtain an estimate that is a quantifi cation of the estimand that 
one is interested in. In this way the results of the study will be aligned with its aims.

Prediction model research may also benefi t from adopting the concept of estimands. 
In this case the estimand of interest is not a summary measure of a causal relationship, 
but is instead a prediction for a future individual from the target population for which 
a prediction model is being developed or validated. In line with the PICOTS guidance 
for systematic reviews of prognostic model studies,13,14 we could consider a prediction 
estimand to also consist of the proper target population, the relevant outcome (with 
an appropriate time horizon), consideration for intercurrent events (e.g. treatment 
initiation or competing events) and the necessary statistical measure (e.g. a predicted 
probability). A prediction estimand would also need to specify both a setting and a 
time-point at which the prediction will be made. As with causal estimands, we can use 
a prediction estimand to guide our selection of an appropriate estimator (e.g. regression 
modelling strategy), as well as evaluate how well the predictions made by the model 
align with our intentions. In addition, as prediction model development or validation 
is often conducted using data collected for other purposes, the prediction estimand can 
also be used to judge a priori the suitability of that data for developing or validating a 
prediction model (as discussed in Chapter 7). Th is is summarized in Figure 1.
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Figure 1: An illustrati on of the path from esti mand to esti mate in predicti on research
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Example: defi ning an esti mand for a prognosti c model to predict CVD
As explained in Chapter 2 of this thesis, a prognostic prediction model can be used to 
select adults in primary care at high risk of CVD to initiate preventative interventions. 
Assume that one decides to develop a new prognostic prediction model. Given the 
future predictions one wants to make, the prognostic prediction model should provide 
predictions that represent the probability of a certain CVD outcome within, for 
example, 5-years, if individuals were to remain untreated over that time period. A full 
specifi cation of that prediction estimand is presented in Table 1.

Table 1: An example predicti on esti mand for a study to develop a prognosti c predicti on model for 
CVD

Estimand characteristic CVD example

Target population General population; no history of CVD or current use of lipid 
lowering drugs.

Setting General practice.

Timing When meeting a general practitioner.

Intercurrent events Preventative treatment: lifestyle changes and/or lipid or blood 
pressure lowering drugs. Non-CVD mortality.

Outcome First major CV event, including a myocardial infarction, 
unstable angina or stroke within 5 years, if no preventative 
treatment is started. 

Statistical measure Predicted probability of this outcome.

Now that an estimand for this prognostic model development study has been defi ned, a 
suitable data sample can be obtained, either through the primary collection of new data or 
(more likely) the acquisition of a data set collected for other purposes. By pre-specifying 
an estimand before collecting or searching for the necessary data, we have a foundation 
to assess the suitability of the data for this prediction model study . As the estimand 
is a probability of CVD in the absence of treatment, one might consider collecting 
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data from an untreated population, such as from the control arm of a RCT evaluating 
the effectiveness of such treatment (see Chapter 7).15 One also can try to acquire data 
that best matches our estimand in terms of the way that predictors and outcomes have 
been defined and measured. The estimand can then be used in combination with the 
chosen data to inform our selection of an estimator, in this case the statistical modelling 
techniques used to develop our prognostic prediction model. 

The final, crucial step is to evaluate how well the estimates (i.e. predicted probabilities) 
provided by the developed prognostic model align with the estimand. Due to 
inadequacies in our data or statistical methods, we may find discrepancies between what 
we intended to predict and what the prognostic model actually predicts. For example, 
if 30% of individuals in the data began treatment during follow up and we suspect 
that it compromised the estimation of untreated risks, we might decide to modify 
our estimator to account for this (as described in Chapter 5). Having identified any 
such discrepancies between the estimand and estimates, we can readily report these 
alongside the prognostic prediction model and discuss how this may limit the use of 
the model for future patients (or certain patient sub-populations) - in line with existing 
recommendations 16 - to facilitate appropriate use of the model in clinical practice. The 
prediction model will still need to be evaluated in terms of its clinical usefulness and 
impact on healthcare, but by precisely specifying a prediction estimand we may improve 
the odds of achieving this.

Conclusions

From a pragmatic perspective, clinical research only holds value when the products of 
the research have a meaningful interpretation. Put differently, “‘Useful clinical research’ 
means that it can lead to a favorable change in decision making (when changes in 
benefits, harms, cost, and any other impact are considered) either by itself or when 
integrated with other studies and evidence in systematic reviews, meta-analyses, decision 
analyses, and guidelines”. 17

For prediction models to be clinically useful, the individuals using the model must 
understand precisely what the predictions provided by the model represent in order 
to determine the likelihood that the models will provide accurate and meaningful 
predictions. We have seen throughout this thesis that there are a number of methodological 
barriers, which complicate and often obscure the true interpretation of newly developed 
prediction models and as a consequence their ability to cause favourable changes in 
clinical decision making. Actions are needed to facilitate the selection of the best models 
for use in practice. We argue that improvements will be made if we precisely define and 
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report the aims and methods of prediction model research. We hope that by formally 
defining what it is we intend to estimate in future prediction model studies in terms of 
specific estimands and then reflect on the suitability of our estimators and any resulting 
discrepancies between our estimands and estimates, we will move towards prediction 
models that are transparent and benefit the care providers and individuals who will use 
them. 
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Prediction models can be used to support clinicians when making diagnostic or 
prognostic assessments. By using information on an individual’s demographic, genetic or 
clinical profile, for example, a prediction model can provide estimates of the individual’s 
probability of having (diagnosis) or developing (prognosis) a certain outcome. These 
estimates provide additional information to health professionals and patients to guide or 
support decisions. For both diagnostic and prognostic prediction models to effectively 
support clinical practice, they must provide accurate, clinically relevant and interpretable 
predictions.

A number of factors that can affect the performance of a prediction model have been 
identified, particularly statistical aspects of the development of prediction models. 
At the same time, systematic reviews have found that many prediction models fail to 
provide consistently good predictions across populations or settings- a phenomenon 
exhibited even when prediction models have been developed using the appropriate 
methodology. Research into the heterogeneous performance of prediction models across 
settings has largely focused on differences in the distribution of patient characteristics 
(or “case-mix”) across settings as a primary explanation. However, attention has been 
growing towards alternative explanations for the unexpected (often poor) performance 
of prediction models when externally validated or implemented in new settings.

This thesis examines potential sources of variation in the predictive performance of 
prognostic prediction models when applied in new individuals. Attention is primarily 
given to the issue of treatment use in studies that develop or externally validate prognostic 
models, how this can affect the accuracy and generalizability of such prediction models, 
and possible methodological solutions.
 
Chapter 2 of this thesis examines the performance of three cardiovascular disease (CVD) 
prognostic prediction models: the Framingham Risk Score, the Framingham ATP III 
model and the ACC/AHA Pooled Cohort Equations. A systematic review of studies that 
externally validated these three prognostic models was conducted. 1585 studies were 
identified, of which 38 (describing a total of 112 external validations) were eligible for 
inclusion in the review. Data were extracted on characteristics of the included studies 
and the reported performance of the three models, and studies were scored for their 
risk of bias. Following this, meta-analyses of two measures of performance (c-statistic 
and O:E ratio) were conducted. The c-statistic greatly varied across the studies and the 
three models generally overestimated CVD risk in the included studies. Finally, meta-
regression analysis indicated that greater variation in patient characteristics and values of 
their clinical measurements may be associated with a larger c-statistic.
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Chapter 3 elaborates on the potential issues that can be caused by treatment use by 
individuals in prognostic prediction model studies. A typology for treatments was 
proposed, to better understand when and how they should be taken into account. 
Following this, we conducted a systematic review of how treatment use has been 
addressed in studies that developed or validated cardiovascular risk prediction models. 
In total, 302 articles were included in the review, of which nearly one-third did not 
report any information on treatment use in their studies. Only one article reported 
information on treatment use during the study follow-up. Recommendations were 
provided to help improve the design, analysis and reporting of future studies to develop 
or validate prognostic models.

Chapter 4 specifically addresses the issue of treatment use in a study to externally 
validate a prognostic prediction model. The mechanisms underlying the potential effect 
of treatment use on the results of a validation study were examined in detail. Following 
this, four different approaches to account for unwanted treatment effects on measures 
of model performance were examined theoretically, and compared in a simulation study. 
An inverse probability weighting (IPW) approach was found to perform well when 
treatment was non-random.

Individuals in an observational study may begin using treatments at any point of 
follow-up and in many situations may stop and restart treatment over the follow-up 
period. Chapter 5 compares approaches to account for the effects of such time-varying 
treatment use when using observational data to develop a prognostic prediction model. 
Building on previous work that investigated methods for time-fixed treatments, we 
conducted a methodologic case study to investigate more sophisticated methods using 
real patient data. We compared seven approaches to develop a prognostic model to 
predict five-year mortality in individuals diagnosed with chronic obstructive pulmonary 
disease, accounting for the use of selective beta-blockers (SBBs) by individuals in the 
study. While the use of different approaches did alter the coefficients in the prognostic 
model and the risk predictions made by the model, this did not translate to a noticeable 
difference in model performance.

 
In chapter 6, a second source of heterogeneity in prognostic prediction model 
performance is investigated, namely, differences in the measurement of predictors across 
settings. When prediction models are developed, externally validated and implemented 
in different settings, the ways in which predictor variables in the model are defined 
and measured can vary. We argue that this could explain variation in prediction 
model performance across settings. To substantiate this claim, we formally defined 
differences in predictor measurements in terms of “measurement error”. We then 
derived a general expression for the relationship between error in the measurement of a 
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continuous predictor and the area under the ROC curve (AUC) of a univariable logistic 
regression model. Subsequently, the effect of variation in error in the measurement of 
the diagnostic biomarker D-dimer on the AUC of a diagnostic prediction model was 
investigated, as an example. Through this, we were able to demonstrate that differences 
in the measurement of a predictor across settings can indeed explain variation in the 
performance of a prediction model.

Chapter 7 builds on the findings from previous chapters to provide recommendations 
for “best practices” when developing or validating prognostic models using data from 
randomized clinical trials (RCTs). Four key benefits that RCT data provide for prediction 
research were identified: 1) data completeness, 2) high quality of data, 3) randomized 
and well-characterized treatments and 4) detailed meta-data. Six issues to consider before 
using data from a RCT for prediction research were explored: 1) selectiveness of the trial 
participant population, 2) non-representative predictor measurements, 3) extraneous 
trial effects, 4) short-term and surrogate outcomes, 5) insufficiently large sample size 
and 6) trial participant consent for re-use of the data. Following this, we formulated 
guidance for researchers on how to appraise data from a RCT for its suitability for 
prediction research. 

This thesis ends with a general discussion of some of the current challenges in prediction 
model research and the proposal of a general framework to address these challenges. First, 
the key methodological advances presented in the preceding chapters are summarized. 
Next, suggestions are given for directions for further research into methods for 
prediction modelling, including specific recommendations for “next steps” for research 
into the issue of treatment use in prediction model studies. Finally, we integrate the 
recommendations made throughout this thesis and propose a framework for defining 
and linking the aims, estimands and estimators of a prediction study. We suggest that by 
following this framework of “prediction estimands”, researchers can improve the design 
and interpretation of future prediction model studies.
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Predictiemodellen kunnen worden gebruikt om clinici te ondersteunen bij het maken 
van diagnostische of prognostische beoordelingen. Door bijvoorbeeld informatie 
over het demografische, genetische of klinische profiel van een persoon te gebruiken, 
kan een predictiemodel schatten wat de waarschijnlijkheid van het individu is om 
een ​​bepaalde uitkomst (diagnose) te hebben of wat voor ontwikkeling (prognose) ze 
door gaan maken. Deze schattingen bieden  informatie aan medische professionals en 
patiënten om beslissingen te nemen of deze verder te ondersteunen. Om diagnostische 
en prognostische predictiemodellen de klinische praktijk effectief te doen ondersteunen, 
moeten ze accurate, klinisch relevante en interpreteerbare voorspellingen bieden.

Er zijn een aantal factoren geïdentificeerd die van invloed kunnen zijn op de prestaties 
van een predictiemodel, met name statistische aspecten in de ontwikkeling van 
deze predictiemodellen. Tevens hebben systematische reviews vastgesteld dat veel 
predictiemodellen er niet in slagen om consistent goede voorspellingen te geven in 
andere populaties of klinische omgevingen - een fenomeen dat zelf gebeurt wanneer 
predictiemodellen zijn ontwikkeld met behulp van de juiste methodologie. Onderzoek 
naar de heterogeniteit in prestaties van predictiemodellen in verschillende centra was 
grotendeels gericht op verschillen in de verdeling van patiëntkenmerken (of ‘case-mix’) 
tussen de centra als een primaire verklaring. Er is echter steeds meer aandacht voor 
alternatieve verklaringen voor de onverwacht slechteprestaties van predictiemodellen 
wanneer deze extern worden gevalideerd of geïmplementeerd in andere landen of centra.

Dit proefschrift onderzoekt potentiële oorzaken van variatie in de prestaties van 
prognostische predictiemodellen bij toepassing op nieuwe individuen. Er wordt vooral 
aandacht besteed aan de kwestie van het gebruik van behandeling in onderzoeken die 
prognostische modellen ontwikkelen of extern valideren, hoe dit de nauwkeurigheid en/
of de generaliseerbaarheid van dergelijke predictiemodellen kan beïnvloeden en hoe dit 
methodologisch op te lossen valt.

Hoofdstuk 2 van dit proefschrift onderzoekt de prestaties van drie voorspellende modellen 
voor cardiovasculaire aandoeningen: de Framingham risk score, het Framingham ATP 
III model en de ACC/AHA Pooled Cohort Equations. Een systematische review van 
studies die extern deze drie prognostische modellen valideerden, werd uitgevoerd. 
1585 studies werden geïdentificeerd, waarvan 38 (die in totaal 112 externe validaties 
beschrijven) in aanmerking kwamen voor deze review. Gegevens over kenmerken van 
de geïncludeerde studies en de gerapporteerde prestaties van de drie modellen werden 
genoteerd en studies werden gescoord op hun risico van bias (vertekening). Hierna 
werden meta-analyses uitgevoerd van twee statistieken die de prestatie van het model 
weergeven (c-statistiek en O:E-verhouding). De c-statistiek varieerde sterk tussen de 
onderzoeken en de drie modellen overschatten in het algemeen het risico op hart en 
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vaatziekten in de geïncludeerde studies. Ten slotte gaf meta-regressie-analyse aan dat een 
grotere variatie in patiëntkenmerken en hun klinische metingen werden geassocieerd 
met een hogere c-statistiek.

Hoofdstuk 3 gaat in op de mogelijke problemen die kunnen worden veroorzaakt 
wanneer individuen in prognostische predictiemodelstudies een behandeling gebruiken. 
Een kader voor behandelingen wordt voorgesteld om beter te begrijpen wanneer en 
hoe hier rekening mee moet worden gehouden. Hierna hebben we een systematische 
review uitgevoerd over hoe men in cardiovasculaire predictiemodel studies, zowel 
ontwikkeling als validatie, is omgegaan met het gebruiken van behandeling.. In 
totaal zijn 302 artikelen opgenomen in de beoordeling, waarvan bijna een derde geen 
informatie geeft over het gebruik van behandeling in hun studies. Slechts één artikel 
meldde informatie over het gebruik van de behandeling tijdens de follow-up van het 
onderzoek. Aanbevelingen werden gegeven om te helpen bij het ontwerp, de analyse en 
de rapportage van toekomstige studies om prognostische modellen te ontwikkelen of te 
valideren.

Hoofdstuk 4 gaat dieper in op het probleem van participanten die behandeling 
gebruiken in een onderzoek om een ​​prognostisch predictiemodel zonder behandeling 
extern te valideren. De mechanismen die ten grondslag liggen aan het potentiële effect 
van het gebruik van de behandeling op de resultaten van een validatiestudie werden in 
detail bestudeerd. Hierna werden vier verschillende aanpakken theoretisch onderzocht 
om rekening te houden met ongewenste effecten op metingen van modelprestaties 
en vervolgens vergeleken in een simulatieonderzoek. De techniek inverse probability 
weighting (IPW)-bleek goed te presteren wanneer de behandeling niet-willekeurig was.

Individuen in een observationele studie kunnen op elk moment gedurende follow-up 
behandelingen gaan gebruiken en in veel situaties kan deze worden stopgezet en later 
opnieuw worden gestart. Hoofdstuk 5 vergelijkt aanpakken om rekening te houden 
met de effecten van tijd variërend behandelgebruik wanneer observationele gegevens 
worden gebruikt om een ​​prognostisch predictiemodel te ontwikkelen. Voortbouwend 
op eerder werk dat methoden voor tijd gecorrigeerde behandelingen onderzocht, 
hebben we een methodologische casestudy uitgevoerd om meer geavanceerde methoden 
te onderzoeken met behulp van echte patiëntgegevens. We vergeleken zeven aanpakken 
om een ​​prognostisch model te ontwikkelen voor het voorspellen van sterfte binnen vijf 
jaar bij personen met de diagnose chronische obstructieve longziekte, rekening houdend 
met het gebruik van selectieve bètablokkers . Hoewel het gebruik van verschillende 
benaderingen de coëfficiënten in het prognostische model en de risicovoorspellingen 
van het model veranderde, vertaalde dit zich niet naar een merkbaar verschil in de 
prestaties van de modellen.
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In hoofdstuk 6 wordt een tweede oorzaak van heterogeniteit in de prestaties van 
(prognostische) predictiemodellen onderzocht, namelijk verschillen in hoe voorspellers 
gemeten worden. Wanneer predictiemodellen worden ontwikkeld, extern gevalideerd 
en geïmplementeerd in verschillende centra, kunnen de manieren waarop men 
voorspellende variabelen  definieert en meet, aanzienlijk verschillen. We beargumenteren 
dat dit de variatie in de prestaties van predictiemodellen tussen centra kan verklaren. 
Om deze bewering te onderbouwen, hebben we formeel de verschillen in voorspellende 
metingen gedefinieerd in termen van een “meetfout”. Vervolgens hebben we een 
algemene uitdrukking afgeleid voor de relatie tussen de meetfout van een continue 
voorspeller en het gebied onder de ROC-curve (AUC) van een univariabel logistisch 
regressiemodel. Hierna werd het effect van variatie in de meetfout van de diagnostische 
biomarker D-dimeer op de AUC van een diagnostisch predictiemodel onderzocht. Als 
gevolg hiervan konden we aantonen dat verschillen in de meting van een voorspeller 
in verschillende centra de variatie in de prestaties van een predictiemodel inderdaad 
kunnen verklaren.

Hoofdstuk 7 bouwt voort op de bevindingen uit eerdere hoofdstukken om 
aanbevelingen te doen voor “best practices” (beste aanpakken) bij het ontwikkelen of 
valideren van prognostische modellen met behulp van gegevens uit gerandomiseerde 
klinische studies (RCT’s). Vier belangrijke voordelen die RCT-gegevens bieden voor 
voorspellingsonderzoek werden geïdentificeerd: 1) volledigheid van de gegevens, 2) hoge 
kwaliteit van gegevens, 3) gerandomiseerde en goed gedefinieerde, gestandaardiseerde 
behandelingen en 4) gedetailleerde metagegevens. Zes kwesties die in overweging moeten 
worden genomen voordat gegevens van een RCT voor voorspellingsonderzoek werden 
gebruikt, werden onderzocht: 1) selectiviteit van participanten aan de studie, 2) niet-
representatieve metingen van voorspellende variabelen, 3) externe trial-effecten, 4) korte 
termijn- en surrogaatresultaten, 5) onvoldoende steekproefgrootte en 6) toestemming 
van participanten voor hergebruik van hun gegevens. Hierna hebben we richtlijnen 
geformuleerd die onderzoekers kunnen gebruiken om de geschiktheid van hun RCT 
voor een voorspellingsonderzoek te beoordelen.

Dit proefschrift eindigt met een algemene discussie over enkele hedendaagse uitdagingen 
in onderzoek naar predictiemodellen en een voorstel voor een algemeen kader om 
deze uitdagingen aan te pakken. Allereerst worden de belangrijkste methodologische 
ontwikkelingen die in de voorgaande hoofdstukken zijn gepresenteerd samengevat. 
Vervolgens worden suggesties gegeven voor verder onderzoek naar methoden voor het 
modelleren van voorspellingen, inclusief specifieke aanbevelingen aangaande de kwestie 
van het gebruik van behandeling in studies die predictiemodellen ontwikkelen of 
valideren. Ten slotte integreren we de aanbevelingen die in dit proefschrift zijn gemaakt 
en schetsen we een algemeen kader voor het definiëren en koppelen van de doelen en 
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de beoogde schatters van een voorspellingsonderzoek. We stellen voor dat onderzoekers 
door het volgen van dit kader, het ontwerp en de interpretatie van toekomstige 
voorspellingsonderzoeken kunnen verbeteren.
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