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Rare Variant Analysis of Human and 
Rodent Obesity Genes in Individuals 
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Afzal11,12, Sofia Papadia3, Sofie Ashford3, Sumedha Garg3, Glenn L. Millhauser13, Rafael I. 
Palomino13, Alexandra Kwasniewska3, Ioanna Tachmazidou1, Stephen O’Rahilly3, Eleftheria 
Zeggini1, UK10K Consortium*, Inês Barroso1,3 & I. Sadaf Farooqi3

Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 
32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 
52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were 
sometimes found with accelerated growth rather than short stature as described previously. Nominally 
significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and 
ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF~0.1%, odds 
ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including 
additional case-control studies and population controls (N = 260,642) did not support association of this 
variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10−3), highlighting the challenges of testing rare 
variant associations and the need for very large sample sizes. Further validation in cohorts with severe 
obesity and engineering the variants in model organisms will be needed to explore whether human 
variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. 
Such studies may yield druggable targets for weight loss therapies.

Studies focused on severe early onset obesity alone, or obesity with developmental delay and/or dysmorphic 
features have identified a number of genes harbouring highly penetrant causal mutations1, 2. The further charac-
terisation of rare, highly penetrant variants identified in such individuals can provide insights into the cellular and 
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physiological mechanisms involved in energy homeostasis and human obesity, and can identify and/or validate 
targets for therapeutic intervention. The aim of our study was to examine the prevalence of rare/novel variants in 
human and mouse obesity genes using high-throughput next-generation sequencing in a large cohort of individ-
uals with severe early onset obesity. Here we describe results from an analysis of 119 candidate genes sequenced 
in 2,548 individuals with severe, early-onset obesity from the Severe Childhood Onset Obesity Project (SCOOP)3 
(UK individuals of European ancestry recruited to the Genetics of Obesity Study, GOOS; BMI standard deviation 
score (SDS) > 3; onset of obesity before the age of 10 years; Methods) from the UK10K project4. Our analysis 
includes 737 SCOOP individuals with whole-exome sequence, and 1,811 additional SCOOP individuals, not 
consented for whole-exome analysis, in whom we performed targeted sequencing. As this work was performed 
as part of a consortium (UK10K project), this data was compared to 1,117 individuals with other disorders (e.g. 
neurodevelopmental and rare disease) in whom exome sequencing and analysis were performed using the same 
methods. For the purposes of this analysis, these individuals are designated as “controls” (Methods), although we 
recognise that there are limitations with this design.

Study Design
SCOOP individuals likely to have congenital leptin deficiency, a treatable cause of severe obesity, were excluded 
by measurement of serum leptin, and individuals with mutations in the melanocortin 4 receptor gene (MC4R) 
(the most common genetic form of penetrant obesity) were excluded by prior Sanger sequencing.

We focused on six tiers of genes (Methods and Supplementary Table 1): (1) genes known to harbour vari-
ants causing human obesity alone (Obesity Alone; n = 6); (2) genes in which known variants cause human obe-
sity combined with developmental delay and/or dysmorphology (Obesity and Delay; n = 26); (3) genes in which 
loss-of-function leads to obesity in mice (LoF Mice; n = 51); (4) genes in which gain-of-function leads to obe-
sity in mice (GoF Mice, n = 5); (5) genes encoding anorectic peptides and their receptors (Anorectic Molecules, 
n = 7), and (6) genes in which loss-of-function is associated with other metabolic phenotypes in mice (Complex 
Metabolic Effects, n = 24). Our aim was to include genes where there was sufficient evidence to indicate disorders 
with Mendelian inheritance (obesity syndromes) or where complete deletion or overexpression (as opposed to 
conditional knockouts) causes an obesity phenotype in mice (Methods) (i.e. genes in which inherited loss/gain of 
function variants might exist). To identify variants more likely to be causally linked to obesity, we focused on rare 
(MAF < 1%) and novel (not seen in the data we used for filtering) variants predicted to be functional (i.e. non-
sense variants, missense amino acid substitutions, alterations of conserved splice sites or small insertions/dele-
tions (indels) that introduced a frameshift) (Methods). We filtered our data against approximately 8,000 publicly 
available sequenced samples, as well as 2,097 exomes (sequenced in parallel on the same platform as our samples) 
and 3,781 whole-genome sequenced samples also from the UK10K project (Methods).

Human Obesity Syndrome Genes.  Firstly, we sought to identify rare and novel functional variants in the 
32 genes known to cause human obesity, with or without, additional developmental delay and/or dysmorphology 
features (Obesity Alone, or Obesity and Delay) (Methods). We identified 11 rare potentially functional variants 
in ClinVar with pathogenic/likely pathogenic status and 321 novel functional variants, which we confirmed by 
Sanger sequencing (Fig. 1, Methods). Based on inheritance patterns (where available) and the functional proper-
ties of variants that have previously been characterised, variants in these genes may contribute to obesity, some-
times in a non-fully penetrant manner, in 52 (2%) individuals (Supplementary Figure 1 & Supplementary Table 2; 
Fig. 2, Methods). As variants in MC4R account for approximately 5% of severe obesity in this cohort5, these 
findings indicate that > 90% of patients within this cohort do not have their phenotype explained by variants in 
known human obesity genes. Further analysis exploring the whole-exome in an agnostic manner, with appropri-
ately matched non-disease controls not available in the UK10K project, will be an aim of future investigations.

Notably, we identified thirteen clinically associated GNAS variants in fourteen SCOOP individuals (12 of 
these confirmed on Sanger sequencing; 0.5%) (Supplementary Table 3). GNAS is an imprinted gene in which 
heterozygous loss-of-function variants are associated with obesity, short stature and skeletal abnormalities, and, 
when maternally inherited, hormone resistance syndromes6. As GNAS sequencing has traditionally only been 
performed in individuals with classical clinical features, our findings suggest that the true prevalence in child-
hood obesity may be underappreciated. Three of the variants found in our study have been described previously 
in patients with classical features (p.Y163X7; p.R258W8, and p.R265H9). We identified a novel nonsense variant 
(p.Y169X) predicted to remove the entire Ras-like GTPase domain and several missense variants predicted to 
affect downstream signalling by affecting the interaction with G-protein coupled receptors (GPCRs), G-protein 
β- and γ-subunits, or downstream adenylyl cyclase when mapped onto the protein structure of GNAS (Fig. 3). We 
confirmed maternal transmission of variants in three out of the five families where parental samples were availa-
ble for genotyping. Although four GNAS variant carriers exhibited endocrinopathies and nine had developmental 
delay as anticipated, unexpectedly four individuals had accelerated linear growth in childhood (height SDS > 2) 
rather than short stature (defined as height sds < 2.0) (Supplementary Table 3). Further molecular and physiolog-
ical studies will be needed to investigate potential genotype-phenotype correlations. As studies in rodents have 
shown that Gnas is imprinted in the paraventricular nucleus of the hypothalamus10, the location of the majority of 
neurons expressing the G-protein coupled receptor MC4R, it is plausible to hypothesize that some GNAS variants 
may contribute to obesity and accelerated linear growth by reducing melanocortin signalling.

Next we formally tested for enrichment of rare, or novel, functional variants in case-control analysis11 
(Methods). Although no gene attained experiment-wide threshold of p-value < 2 × 10−4 (Methods and 
Supplementary Tables 4–9), four genes (BBS1, BBS9, GNAS, and MKKS) known to cause obesity and devel-
opmental delay and/or dysmorphology (Obesity and Delay) had nominally significant burden test p-values 
(p-value < 0.05) and a higher burden of variants in cases than controls (Table 1).
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Mouse Obesity Genes.  We found a higher burden of rare variants in cases than controls for two genes 
known to cause obesity when disrupted in mice - ANGPTL6 and CLOCK (Table 1). Testing the functional con-
sequences of CLOCK variants in cells is not straightforward as the molecular mechanisms that lead to obe-
sity are not fully understood. As such, we focused on verifying the accuracy of the computationally predicted 
function of all twelve rare ANGPTL6 variants (Methods, Fig. 4, Supplementary Table 10). All variants found in 
cases (but not the one variant found exclusively in controls, V143L) were predicted to affect the fibrinogen-like 
domain of the protein (Fig. 4a). ANGPTL6 is predominantly expressed in the liver but is also expressed in white 
adipose tissue and kidney. To evaluate the effect of these variants, HEK293 cells were transiently transfected 
with constructs encoding wild type and variant forms of ANGPTL6. Whereas wild-type ANGPTL6 was read-
ily detected in the medium, several mutants reduced, and the S286X mutant abolished, secretion of ANGPTL6 
(Fig. 4b). Incorporation of this functional information did not qualitatively change the results of the ANGPTL6 
gene-based test (Supplementary Table 10). However, limiting the analysis to the single variant that com-
pletely abolished protein secretion (p.S286X, rs201622589) led to an adjusted OR = 10.13 and p-value = 0.028 
(Fisher’s p-value = 0.041) suggesting that the association signal at this gene is primarily driven by this variant 
(Supplementary Table 10). To increase power, and given that there were no additional cases of European descent 
from our obesity cohort, we analysed existing exome-chip data from an additional 253,587 unrelated European, 
non-Finnish population controls (Methods, Supplementary Table 11). In an updated analysis with the 2,548 cases 
and 253,587 controls, we observed an odds ratio (OR) = 2.90 and a Fisher’s p-value = 0.0022, which did not 
reach experiment or exome-wide significance. Further analysis of 1,436 non-overlapping obesity cases and 1,954 
non-overlapping controls from two studies did not lend additional support, and when combined with the orig-
inal data, yielded an overall OR = 2.34 and chi-squared p-value = 0.0060 (total 3,984 cases vs 256,658 controls, 
Supplementary Table 11). The results are similar when limiting to non-obese controls (Supplementary Table 12). 
These findings highlight the difficulty in studying very rare variants in complex diseases, and potentially the effect 
of winner’s curse, reinforcing the need for extremely large sample sizes12. Of interest, mice with targeted dele-
tion of Angptl6 that survive to birth (20%) develop marked obesity, have increased food intake, reduced energy 
expenditure, exhibit lipid accumulation in liver and muscle, and develop insulin resistance13. Conversely, mice 
with targeted overexpression of Angptl6 are lean, insulin sensitive and are protected from diet-induced obesity13. 
As ANGPTL6 is a liver-derived circulating peptide, and thus could potentially be manipulated for therapeutic 
purposes14, further genetic studies in larger cohorts and experimental studies in mice and humans are necessary 
to explore its role in obesity and potential utility as an anti-obesity drug target.

Power and Gene Set Analysis.  Assuming an experiment-wide significance level of 2 × 10−4 and that 30% 
of rare (MAF < 1%) variants within a given gene are causal we have very limited power (~20%) to detect an 
association to a gene region using our sample of 2,548 cases and 1,117 controls (Supplementary Figure 2, Online 
Methods, Supplementary Note 4)12. As there is evidence that looking across group of genes with stronger priors 
may increase power15–17, we tested for association of rare or novel functional variants within each of the six 

Figure 1.  Identification of clinically-associated variants in known human obesity genes. Schematic outlining 
the analysis strategy.
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candidate gene sets. We further filtered variants with respect to their likelihood of being deleterious and per-
formed six nested tests for each gene set (Methods). Although none of the analyses of tiered gene sets reached 
experiment-wide significance (Supplementary Table 13, Fig. 5), we see an increase in OR as we focus on rarer 
variants with more evidence of predicted deleterious effect within the Obesity Alone gene set. This suggests that 
focusing on extremely rare variants with strong evidence of being deleterious may be a good strategy for diseases 
with a complex genetic architecture, which likely includes rare, highly penetrant alleles. Our power analyses also 
suggests that restricting the MAF threshold to be near the very rare allele frequency of that expected for the causal 
variants, rather than a more lenient MAF threshold of 1%, increases power (Supplementary Figure 3). Finally, 
there are nominally significant signals (p-value < 0.05) within the LoF Mice candidate gene set for the novel, 
functional variant tests suggesting that within this rather large gene set (n = 51) there may be additional genes 
associated with human early onset obesity (Fig. 5).

Discussion
In summary, analysis of sequence data in 119 genes across 2,548 severely obese children and 1,117 other disease 
controls from the UK10K project identified variants in known obesity genes, contributing to obesity in 2% of 
children within this cohort, in whom mutations in MC4R and leptin had been excluded. It also highlighted that 
GNAS mutations may be more prevalent in human obesity than previously thought, and that the spectrum of 
phenotypic consequences may be broader and more heterogeneous than previously described (6). Additional 
detailed genotype-phenotype studies will be required to further elucidate the molecular underpinnings of the 
physiological consequences of these variants.

Taking the information generated in this study together with the published literature, we suggest that molec-
ular genetic investigations, including testing known obesity genes, or agnostic exome-wide or genome-wide 
approaches (as these become more established at the point of care), should become part of the assessment for a 
child presenting with severe obesity (BMI SDS > 3) in the absence of other syndromic features. Genetic studies 
can allow the identification of congenital leptin deficiency which is entirely treatable with recombinant leptin 
therapy18. Also, early reports suggest that patients with mutations that disrupt POMC signalling may be effectively 

Figure 2.  Pedigrees of patients with clinically associated variants contributing to obesity Co-segregation 
of variants is shown where male (squares) and female (circles) family members consented to genotyping. 
Heterozygous (filled) and wild-type (empty) mutation carriers are indicated; in some cases, individuals were 
not available for genotyping (grey). Body mass index (BMI) (>27 kg/m2 = overweight;>30 kg/m2 = obesity) 
for adults and BMI standard deviation scores (BMI sds) for children are shown where data was available. 
(A) Obesity alone; (B) Obesity and Delay. MC4R mutations were excluded by prior Sanger sequencing of all 
individuals undergoing whole exome sequencing and the majority (1744/1811) of individuals undergoing 
targeted resequencing. The finding of four MC4R mutations in the remaining 82 individuals is in keeping with 
the prevalence of heterozygous MC4R mutations in this cohort as reported previously5.
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treated with Setmelanotide (a MC4R agonist)19. Finally, our data suggest that focusing on very rare, deleterious 
variants may increase power to find genetic association. Further detailed investigation of genes that lead to obe-
sity when deleted in mice may identify new pathophysiological mechanisms involved in human obesity that can 
be targeted for drug discovery.

Methods
Sample Sets.  All studies were approved by the Cambridge Local Research Ethics Committee and all par-
ticipants and their parents gave written informed consent. All methods were performed in accordance with the 
relevant laboratory/clinical guidelines and regulations.

The SCOOP cohort3 was studied as part of the UK10K consortium4. Data was compared to subsets within 
the neurodevelopmental and rare disease groups that were consented for use as controls. Details and further 

Figure 3.  Structural model of variants identified in GNAS. (A) Structure of the active state ternary protein 
complex of G-protein coupled receptor (GPCR) beta 2-adrenergic receptor (ADRB2), and the nucleotide-
free Gs heterotrimer, composed of Gs-α(GNAS), Gs-β, and Gs-γ subunits (based on Rasmussen et al.20, pdb 
file: 3sn6). The two major domains of GNAS are noted, α-helical domain and Ras-like GTPase domain. The 
principal interactions between GNAS and GPCRs involve the amino- and carboxy-terminal α-helices. The Ras-
like GTPase domain contains most of the catalytic residues necessary for GTP hydrolysis, as well as the Gβγ 
and effector binding regions (switch regions I, II and III), which change confirmation upon binding to GTP 
or GDP). (B) Structure of the complex of Gs-alpha with the catalytic domains of mammalian adenylyl cyclase 
(based on Tesmer et al.21, pdb file: 1azs). Variant residues (purple), and the different components of the complex 
are highlighted.
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information about the UK10K project can be found at http://www.uk10k.org/ and in the UK10K consortium 
paper from 20154.

We gathered the genotypes for the variant S284X (rs201622589) in 202,981 unrelated population controls with 
European non-Finnish ancestry from existing cohorts (UKHLS22, Fenland, EPIC Norfolk23, CCHS24–26, CGPS24–

26, CIHDS24–26, EPIC-CVD27, UK Biobank28 and ExAC29) and in two additional studies of obese children and 
healthy or thin controls30, 31 including one from the Leipzig Childhood Obesity Cohort32. (Supplementary Note 1)

Sequencing, Variant Calling, and Quality Control.  Targeted Sequencing (TS) and Whole Exome 
Sequencing (WES) was performed as described elsewhere (refs 33 and 4 respectively). All UK10K WES samples 
from all arms of the exome study available at the time of the variant calling and SCOOP TS samples (N = 5,233 
and 2,819 respectively) were called together on the non-redundant targets + /− 100 bp using multi-sample call-
ing. Using SAMtools34, a BCF file was created and the site genotype likelihoods were calculated. Variants (SNPs 
and Indels) were called using BCFtools. Indels were left-aligned using ‘vcf norm’ from the htslib package. Variants 
were filtered for sequencing and genotype quality at the site and genotype level using vcf-annotate35. Additional 
details in Supplementary Note 2.

Variant Annotation.  All variant annotation was applied using the GRCh37 human reference. Variants were 
annotated with rsIDs from dbSNP 137, and allele frequencies from the final 1000Genomes Phase 1 integrated 
(v3) callset36, the NHLBI Exome Sequencing Project (ESP) v237, and the UK10K WGS sample set4. The Ensembl 
Variant Effect Predictor (http://www.ensembl.org/info/docs/variation/vep/index.html)38 v2.8 with Ensembl 
66 was used to add variant consequence annotations including the predicted deleteriousness of each missense 
variant as predicted by SIFT39, 40, PolyPhen41, 42, and Condel43. For the 32 known human obesity genes, only 
the variant consequences on the most clinically relevant transcript were considered for further analysis. For the 
other 87 candidate obesity genes, the most severe consequence on any transcript was retained for each variant 
(Supplementary Table 1). Using Sequence Ontology terms44, 45, variant consequences were defined as functional 
(i.e. essential splice site, stop gained, stop lost, complex indel, frameshift coding, non synonymous coding, within 
mature miRNA, partial codon).

To identify rare variants, we used the thirteen UK10K WES sample sets that were not obese sample sets and 
were not included as controls in this study (Supplementary Note 1). These sample sets were processed in parallel 
with our cases and controls and thus provide a similar sequencing coverage and depth across the called regions. 
We removed variants that had a MAF > 1% across all or a MAF > 10% in any of the thirteen sample sets. We then 
removed variants with a MAF > 1% in any of seven additional sample sets: 1. UK10K WGS sample set4, 2–3. 
European and African American NHLBI ESP v2 sample sets 37, and 4–7, the four continent sample sets (AFR, 
AMR, ASN, EUR) from 1000 Genomes Phase 1 integrated v3 call set36. Novel variants were identified as sites not 
seen in any of the internal or external datasets used for MAF annotation, i.e. novel at the time of this study.

Sample quality control.  Samples were identified as contaminated using a combination of two methods: 
VerifyBamID v1.046 and “fraction skewed hets”4. For the TS samples, the FREEMIX value was estimated using 
11,250 high quality, autosomal, biallelic SNPs with an alternate AF ≥ 0.01, and a call rate ≥ 0.5 in both the TS 
sample set and the 1000Genomes Project Phase 1 v336. Of the 2,819 TS SCOOP samples, the 784 WES SCOOP 
samples, and the 1427 WES samples used as controls 37, one, and nine were excluded due to contamination 

Gene Tier # Variants

Rare alleles 
in SCOOP TS 
(N = 1,811)

Rare alleles 
in SCOOP 
WES 
(N = 737)

Rare alleles in 
Control WES 
(N = 1,117) OR

Adjusted 
OR

p-value 
SKATO

p-value 
BURDEN

Rare Functional

BBS1 Obesity and 
Delay 18 36 18 10 2.368 0.022 0.018

BBS9 Obesity and 
Delay 20 24 5 5 2.543 0.081 0.045

GNAS Obesity and 
Delay 14 12 4 0 Inf 14.505 0.015 0.008

MKKS Obesity and 
Delay 19 90 25 28 1.801 0.006 0.007

ANGPTL6 Mouse LOF 12 18 10 4 3.073 0.043 0.027

Novel Functional

GNAS Obesity and 
Delay 13 11 4 0 Inf 13.629 0.019 0.010

CLOCK Mouse LOF 9 8 2 0 Inf 9.208 0.066 0.036

Table 1.  Summary of case-control results. Summary of case-control results in genes with nominally significant 
(p-value < 0.05, bold) burden of Rare (top) or Novel (bottom) functional variants in SCOOP cases (N = 1,811 
with targeted sequence and N = 737 with whole-exome sequence), compared to 1,117 controls with whole-
exome sequence data from the UK10K project. The number of variants (# variants) per gene are shown, as 
well as the number of alleles in cases and controls, odds ratios (OR) and p-values from SKAT-O (p-value 
SKATO) and from burden tests (p-value BURDEN). For variants not detected in controls an adjusted odds ratio 
(Adjusted OR) was calculated by adding 0.5 to the number of alleles in each cell of the two-by-two table.
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respectively. Sixteen non-contaminated TS samples were excluded based on a mean sample read-depth 3 SD 
below the average for all samples (i.e. mean sample read-depth < 12.09). Genotype concordance for 436 WES 
SCOOP samples and 1,035 TS SCOOP samples for which we had both sequence and GWAS data3 was also calcu-
lated. Four WES samples and six TS samples with a concordance rate below 90% were identified and excluded. A 
set of highly polymorphic markers (MAF > 0.3) was genotyped and compared to the sequencing calls from each 
sample. Non-concordant WES samples were removed prior to variant calling and are not included in the original 
sequencing numbers. Eighty-one TS samples with low concordance were removed after variant calling. Three TS 
samples were removed due to having an extremely high genotype missing rate of > 50%.

To identify non-European samples, we calculated principal components (PCs) from the 1000Genomes Phase 
I integrated call set36 using either EIGENSTRAT v4.247 or LASER 2.048 for the WES and TS samples respectively 
(Supplementary Note 3). Of the 2,676 TS samples, 837 were classified as non-European due to genetic ancestry 
and three were excluded due to a reported non-European ancestry resulting in 1,836 good quality TS samples of 
European ancestry. Of the 779 WES SCOOP samples, 37 samples were classified as non-European due to genetic 
ancestry resulting in 742 good quality WES SCOOP samples of European ancestry. Of the 1,418 control samples, 
146 were identified as being non-European leaving 1272 high quality WES controls.

Known and cryptic relatedness was identified by estimating pairwise identity by descent using PLINK v1.0749. 
Genetic relationships within the WES sample set is described in detail elsewhere4. We removed individuals 
sequentially by: (1) largest number of relationships, (2) diseased controls, non-diseased controls, cases, (3) lower 
mean depth of sequencing. Five SCOOP cases and 155 controls were removed resulting in 737 SCOOP WES 
cases and 1,117 WES controls all of high quality, unrelated, and European ancestry. A similar process was used to 
identify genetic relationships within the TS sample set and between the TS and WES sample sets (Supplementary 
Note 3). This resulted in 25 additional exclusions (18 TS cases related to WES cases and seven related within the 
TS sample set) for a total of 1,811 high quality, unrelated, TS samples of European ancestry.

Figure 4.  Functional characterisation of ANGPTL6 variants location and functional effect (A) Human 
ANGPTL6 protein and location of the genetic variants. Schematic of the human ANGPTL6 protein with the 
three recognisable domains: signal peptide (SP) in green, coiled-coil domain (CCD) in purple, and fibrinogen-
like domain (FLD) in yellow. As all genetic variants identified are located predominantly in the FLD, the 
partial tertiary structure of the C-terminal protein portion (amino acids 135–470), based on previously solved 
fibrinogen structure (1lwu) is presented. The single variant seen in controls only is shown in blue, variants 
identified in cases are in purple, the S284X variant is starred. (B) Functional characterisation of ANGPTL6 
variants. Cells were transiently transfected with constructs encoding wild-type (WT) or mutant ANGPTL6; 
levels of protein secretion into the media were measured by ELISA; means+/− standard deviation (SD) for 
experiments performed in triplicate are shown (results were confirmed by Western blotting; data not shown). 
Statistical significance was measured using unpaired T-test with Welch’s correction using the GraphPad Prism 
software. *p < 0.05; ***p < 0.001.
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Candidate Gene Sets.  We performed database searches using keywords ‘obesity’, ‘growth’, ‘size’, ‘adipose 
tissue’, (details below) and manually curated the results to arrive at a set of six tiers of candidate gene with definite 
or likely links to obesity. The Online Mendelian Inheritance of Man (OMIM database, http://www.omim.org/) 
accessed in February, 201350 was used to identify 32 genes (Supplementary Table 1) which directly lead to human 
obesity. These were further categorised into two groups based on consistent clinical features: genes character-
ised by “Obesity alone” (Obesity Alone; n = 6), and “Obesity and developmental delay and/or dysmorphology” 
(Obesity and Delay; n = 26). Any putative list of candidate genes has limitations and other genes that contribute to 
energy homeostasis/obesity in animal models deserve interrogation in the future.

Genes that cause obesity when disrupted in rodents were identified using the Mouse Genome Informatics 
Database (MGI, http://www.informatics.jax.org/)51 and the Rat Genome Database (RGD, http://rgd.mcw.edu)52 
both accessed in February 2013, as well as published research (www.ncbi.nlm.gov/Pubmed). Eighty-seven genes 
were associated with a growth/size phenotype when perturbed in rodent animal models. We evaluated the 
strength of evidence for a role of each gene in obesity phenotype and divided them into four further categories, 
specifically: Loss of function associated with obesity in mice (LoF Mice; n = 51); gain of function associated with 
obesity in mice (GoF Mice, n = 5); anorectic peptides and receptors (Anorectic Molecules, n = 7); loss of function 
associated with other metabolic phenotypes in mice (Complex Metabolic Effects, n = 24) (Supplementary Table 1).

Sequence validation of rare functional variants.  Novel, functional variants in all 119 candidate genes 
were taken forward for validation by conventional Sanger sequencing (90% validation rate). Briefly, customized 
PCR primers were designed+/−250 bp surrounding the variant; and sequencing was performed using BigDye 
Terminator v3 kit (Applied BioSystems) and analysed by capillary electrophoresis on an ABI3730 DNA Analyzer 
platform (Applied Biosystems), according to the manufacturers’ instructions. Familial segregation analysis of 
variants was performed where family samples were available.

Identification of clinically-associated variants in known human obesity genes.  The strategy for 
identification of clinically-associated variants in known human obesity genes is outlined in Fig. 1. Briefly, novel 
and rare variants in the known human obesity genes were filtered using the ClinVar database (http://www.ncbi.
nlm.nih.gov/clinvar/). We retained novel variants and those with a ClinVar status of Pathogenic/Likely patho-
genic (N = 332).

Structural Analysis of GNAS Variants.  For structural analysis of the genetic variants and prediction of their 
impact on protein function, we modelled their location in relation to previously solved protein crystal structures 
of GNAS in complex with either G-protein coupled receptor (ADRB2) or downstream effector (adenylyl cyclase). 
Specifically, the first model represented in Fig. 3a is based on crystal structure of the active state ternary protein 
complex of GPCR beta-2-adrenergic receptor (ADRB2), and the nucleotide-free Gs heterotrimer, composed of 
Gs-α(GNAS), Gs-β, and Gs-γ subunits (ref. 20, PDB number: 3SN6, www.rcsb.org). The second model, represented 
in Fig. 3b, is based on complex of GNAS with the catalytic domains of mammalian adenylyl cyclase (ref. 21, PDB 

Figure 5.  Tiered analysis of obesity candidate genes sets. ORs (bars) and 95% (dotted vertical lines) confidence 
intervals for each of the six gene tiers and across all 119 genes combined each for eight different filtering 
scenarios by MAF (Rare or Novel) and functional prediction (synonymous - Synon, functional - Func, 
functional with at least 1 deleterious consequence prediction – Func, 1 + del, and functional with all deleterious 
consequence predictions - Func, all del).

http://www.omim.org/
http://1
http://www.informatics.jax.org/
http://rgd.mcw.edu
http://www.ncbi.nlm.gov/Pubmed
http://1
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.rcsb.org
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number: 1AZS, www.rcsb.org). The structural representations using ribbon-depicted models were generated using 
the Open-Source PyMOL Molecular Graphics System, Version 1.7.x Schrödinger, LLC (http://pymol.org).

Association Analyses.  We implemented the optimal Sequence Kernel Association Test SKAT-O11, 53 with 
the SKAT R package v1.1.254 using options method = ”optimal.adj” for SKAT-O and r.corr = 1 for burden. For 
each gene and candidate gene set, we performed two primary tests using the burden test: 1. rare functional (Rare 
Func) or (2) novel functional (Novel Func). We performed secondary tests restricting either to variants that were 
predicted to be deleterious by at least one of the three algorithms (i.e. SIFT, PolyPhen, and Condel) (1 + del) or 
to variants that were predicted to be deleterious by all three algorithms (all del). For SIFT and Condel, variants 
were classified as deleterious if they were labelled as “deleterious”. For PolyPhen, variants were classified as dele-
terious if they were labelled as “probably damaging” or “damaging”. Our conservative Bonferroni adjusted signif-
icance level of the primary analyses for 119 genes and 6 gene sets was 0.05/(2 × 125) = 2.0E-4. Once considering 
our additional ten secondary tests, our Bonferroni adjusted significance level was 0.05/(12 × 125) = 3.3E-5. We 
repeated all primary and secondary tests using SKAT-O (Table 1; Supplementary Table 4–9, 13).

Functional studies of variants in ANGPTL6.  To predict the impact of variants on the ANGPTL6 protein, 
we modelled their location using the crystal structure of a related protein fibrinogen in a complex with a peptide 
Gly-His-Pro-amide (described in Yang et al.55, PDB number: 1LWU, www.rcsb.org). The structural representa-
tions using ribbon-depicted models were generated using the Open-Source PyMOL Molecular Graphics System, 
Version 1.7.x Schrödinger, LLC (http://pymol.org). N-terminal triple Flag tag was added to human ANGPTL6 
cDNA cloned into a pEZ-M14 mammalian expression vector (Capital Bioscience). Mutations were introduced 
into this construct using QuikChange (Agilent technologies), and confirmed by Sanger sequencing. ANGPTL6 
protein expression was studied by transient transfection in HEK293 cells. Media was collected 48 h – post trans-
fection, the cell medium was centrifuged for 5 min (5,000 g at 4 °C) and the supernatants were collected. Cells 
were harvested prior to centrifugation for 15 min (15,000 g at 4 °C). Aliquots from the medium and cells were 
subjected to SDS-PAGE and immunoblot analysis. Primary antibodies (monoclonal Flag M2 antibody (Sigma) 
and a polyclonal antibody to Calnexin (Cell signalling)) were used at 1:1000, and secondary Horseradish per-
oxidase–conjugated anti-mouse or anti-rabbit IgG (Dako) antibody at 1:2000 dilution. After staining with ECL 
West Dura Substrate kit (Thermo Scientific), visualisation was performed on Chemidoc Digital Imager (Bio-Rad) 
(Supplementary Information). The relative protein secretion of ANGPTL6 for each variant was standardized to 
wild-type protein secretion. Experiments were performed in triplicate and analysed using an unpaired T-test with 
Welch’s correction.

ANGPTL6 statistical follow-up analyses.  We ran gene-based analyses using SKAT-O as described above 
on two subsets of ANGPTL6 variants (Supplementary Table 10): (1) the one variant that resulted in a complete loss 
of protein secretion (S284X; rs201622589), and (2) excluding S284X. For (1), we also used a Fisher’s Exact Test. We 
repeated the Fisher’s Exact Test of the S284X variant including additional population controls with pre-existing gen-
otype data and replication samples (Online Methods, Sample Sets; Supplementary Tables 11 and 12).

Power Analysis.  We calculated the power to detect association to a gene region using the burden test with 
the Power_Logistic_R function and the haplotype dataset within the SKAT R-package54. We performed power 
calculations using 500 simulations on a random 2Kb sub region. The effect sizes of the causal variants are equal 
to log10(MAF) with a maximum effect size of 1.6 (MAF = 0.0001) and all have the same direction of effect. We 
limited the MAF threshold for causal variants to ≤ 0.01, 0.001, 0.0005 and varied the percentage of causal variants 
in the region to be between 10–90%. (More details in Supplementary Note 4).
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