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Abstract

Rationale: Gene therapy holds promise for a curative mutation-
independent treatment applicable to all patients with cystic fibrosis
(CF). The various viral vector–based clinical trials conducted in the
past have demonstrated safety and tolerance of different vectors, but
none have led to a clear and persistent clinical benefit. Recent clinical
breakthroughs in recombinant adeno-associated viral vector (rAAV)-
basedgene therapyencouragedus toreexploreanrAAVapproachforCF.

Objectives:We evaluated the preclinical potential of rAAV gene
therapy for CF to restore chloride and fluid secretion in two
complementary models: intestinal organoids derived from subjects
with CF and a CF mouse model, an important milestone toward the
development of a clinical rAAV candidate for CF gene therapy.

Methods:Weengineered an rAAVvector containing a truncatedCF
transmembrane conductance regulator (CFTRDR) combined with a
short promoter (CMV173) to ensure optimal gene expression.

A rescue in chloride and fluid secretion after rAAV-CFTRDR
treatment was assessed by forskolin-induced swelling in CF
transmembrane conductance regulator (CFTR)-deficient organoids
and by nasal potential differences in DF508 mice.

Measurements and Main Results: rAAV-CFTRDR transduction
of human CFTR-deficient organoids resulted in forskolin-induced
swelling, indicating a restoration of CFTR function. Nasal potential
differences demonstrated a clear response to low chloride and
forskolin perfusion in most rAAV-CFTRDR-treated CF mice.

Conclusions: Our study provides robust evidence that rAAV-
mediated gene transfer of a truncated CFTR functionally rescues the
CF phenotype across the nasal mucosa of CF mice and in patient-
derived organoids. These results underscore the clinical potential of
rAAV-CFTRDR inoffering a cure for all patientswithCF in the future.
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Cystic fibrosis (CF) is caused by mutations
in CFTR, which codes for the CF
transmembrane conductance regulator
protein (CFTR), a chloride/bicarbonate
channel regulating fluid transport across
epithelia. Almost 2,000 mutations have
been described (www.genet.sickkids.on.ca).
The major clinical manifestations of CF are
related to respiratory and gastrointestinal
tract pathology. In 2012, a breakthrough in

CF therapy was achieved with the U.S. Food
and Drug Administration approval of the
first curative drug (Kalydeco; Vertex
Pharmaceutics, Cambridge, MA), a
potentiator correcting the CFTR gating
defect (www.ema.europa.eu). It can,
however, only be applied to 4–5% of
patients with CF carrying gating mutations.
Very recently the U.S. Food and Drug
Administration approved the first therapy,
which tackles the underlying defect of the
most common CF-causing mutation
(DF508) with a combination of a CFTR
potentiator (Kalydeco, ivacaftor) and a
CFTR corrector (lumacaftor), a drug that
partially rescues DF508-CFTR trafficking to
the membrane (1). In a phase III clinical
trial this combination therapy resulted
in a significant, albeit modest (2.6–4%)
improvement in lung function in patients
with CF homozygous for the DF508
mutation (2), underscoring the need for
further development of more potent
therapeutic strategies.

In contrast to small molecules that act
mutation-specific (3), gene therapy offers a
mutation-independent treatment for all
patients with CF, with the potential to cure
the disease. In the early 1990s, clinical trials
using adenoviral and recombinant adeno-
associated viral vectors (rAAV2/2) did not
improve lung function (4–6). Recent
successes in gene therapy using rAAV to
treat congenital blindness, hemophilia B,
and lipoprotein lipase deficiency encouraged
us to reexplore rAAV gene therapy for CF
(reviewed in Reference 7). rAAV is derived
from wild-type AAV and not associated with
human pathology. It has emerged as a
promising and safe vector because of its low
immunogenicity, nonintegrating nature, and
absence of viral genes (8). In 2012, the
European Medicines Agency approved the
first rAAV gene therapy product (Glybera;
UniQure, Amsterdam, the Netherlands) for
patients with lipoprotein lipase deficiency
(www.ema.europa.eu). Unlike rAAV clinical
trials in the past (9), our approach uses
rAAV2/5, an airway-tropic serotype (10–12).
Additionally, we incorporate a truncated
CFTR (CFTRDR) that allows insertion of a
promoter to enhance gene expression.
CFTRDR has a deletion in the regulatory
domain (D708–759) but retains channel
activity (13).

We investigated the therapeutic
potential of rAAV-CFTRDR in two
complementary models: intestinal
organoids derived from subjects with

CF and a CF mouse model. Human
intestinal organoids are primary stem
cell–based cultures generated from
rectal biopsies (14–16). CFTR activation
leads to rapid volumetric expansion
of organoids (17, 18), providing a
platform to study CFTR function
following CFTR gene transfer. Here we
report that viral vector-mediated gene
transfer results in a rescue of the CF
phenotype in human CFTR-deficient
organoids.

Finally, we evaluated rAAV2/5-
CFTRDR gene therapy efficacy in CF mice
homozygous for the DF508 mutation (19).
We assessed a possible CFTR correction
in airways by measuring in vivo nasal
potential differences (NPDs), because the
nasal epithelium of CF mice mimics
transepithelial ion transport defects
observed in patients with CF (20). We
demonstrate that a single dose of
rAAV2/5-CFTRDR could restore Cl2

conductance. Taken together, our results
underscore the therapeutic potential of
rAAV-CFTRDR as gene therapy vector for
CF, opening new avenues toward a
generic cure for all patients. Some of the
results of these studies have been
previously reported in the form of
abstracts (21–23).

Methods

Viral Vector Production
Production of lentiviral vector (LV) and
rAAV was performed as described
previously with minor modifications (12, 24,
25). Vector production and cloning
strategies are provided in the online
supplement.

Generation of HeLa Cell Lines Stably
Expressing CFTR Constructs
HeLa cells stably overexpressing triple flag
(3F)-tagged CFTR constructs were
generated by transduction with vesicular
stomatitis virus glycoprotein G (VSV-G)
pseudotyped LV encoding the transgene of
interest under the control of the human
cytomegalovirus (CMV) promoter.

Detection of CFTR Expression
Detailed protocols and antibodies used for
Western blotting, immunocytochemical,
and immunohistochemical analysis are
available in the online supplement.

At a Glance Commentary

Scientific Knowledge on the
Subject: The modest successes of
previous clinical trials for cystic fibrosis
(CF) gene therapy raise the question of
how to further improve gene transfer
efficacy and how to more accurately
determine functionality of CF
transmembrane conductance regulator
(CFTR)-encoding vectors in preclinical
studies. Organoid experiments are
valuable because they allow functional
vector assessment in CF patient–
derived material using a sensitive and
quantitative swelling assay. The CF
mouse model complements the
organoid data because a potential
rescue of the CF phenotype can be
assessed in vivo by nasal potential
differences, a widely accepted
biomarker used for evaluation of
response to treatment in patients with
CF.

What This Study Adds to the
Field: In the process of developing a
clinical candidate for CF viral vector–
based gene therapy, a thorough
examination of preclinical efficacy in
relevant cell and animal models is a
prerequisite. Here we describe that a
single dose of a therapeutic vector,
recombinant adeno-associated viral
vector–truncated CFTR, rescues the
CF phenotype in intestinal organoids
derived from subjects with CF and in
the nasal mucosa of CF mice,
highlighting its clinical potential to
correct both respiratory and
gastrointestinal pathology in CF.
These results pave the way to assess
long-term efficacy and functional
restoration of CFTR activity in a large
animal model recapitulating human
CF pathology.
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Iodide Efflux Assay
The assay was performed as described
previously with minor modifications
provided in the online supplement (26).

Patch Clamp
Whole-cell patch-clamp analysis was
performed as described previously with
minor modifications provided in the online
supplement (27).

Transduction of Human Intestinal
Organoids
The Ethics Committee of the University
Medical Center Utrecht approved this study,
and informed consent was obtained.
Organoids were generated from rectal
biopsies and cultured as described previously
(14, 18). For viral vector transduction,
cultures were trypsinized (TrypLE; Gibco
BRL, Invitrogen, Merelbeke, Belgium) and
seeded in 96-well plates in 4 ml Matrigel
(Corning, Corning, NY) and viral vector
(1:1) containing single cells and small
organoid fragments. These cells were
incubated at 378C (10 min for LV; 30 min for
rAAV) and immersed in medium. rAAV
transduction efficiency was verified by
measuring Firefly luciferase (Fluc) activity
after addition of 50 mM D-luciferin using
an IVIS Spectrum (Xenogen; Caliper LS,
Hopkinton, MA). Quantification of
forskolin-induced organoid swelling (FIS)
was performed as described previously (18).
A detailed protocol is available in the online
supplement.

Mouse Model and Viral Vector
Administration
Adult FVB/N mice homozygous for the
DF508 mutation (Cftrtm1Eur mice) (19) were
obtained from CDTA (Cryopréservation,
Distribution, Typage et Archivage animal)
(Orléans, France) and housed on a fiber-
free diet. A total of 50 ml of vector
suspension (93 1010 GC/animal) rAAV2/
5-CFTRDR or control rAAV2/5-eGFP-
P2A-Fluc was administered by nasal
instillation to anesthetized mice. All animal
procedures were approved by the local
ethical committee in compliance with
European Community regulations.

NPD Measurements
CFTR activity in the nasal epitheliumofDF508
mice was assessed by NPD as described
previously with minor modifications provided
in the online supplement (28).

Statistical Analysis
For NPD measurements, response to vector
treatment between groups was compared by
Mann-Whitney test for unpaired
observations. A P value less than 0.05 was
considered statistically significant (*P,
0.05, **P, 0.01). GraphPad Prism 5
(GraphPad Software, San Diego, CA)
software was used for statistical analysis.

Results

CFTR Truncated in the Regulatory
Domain (CFTRDR) Is a Functional and
Regulatable Chloride Channel
rAAV has a limited packaging capacity and
the full-length CFTR complementary DNA
(cDNA) does not fit the small vector. As a
first step in the development of a rAAV-
based gene therapy for CF, we evaluated
and compared functionality of two
truncated versions of CFTR with that of the
full-length CFTR channel. We generated
HIV-based LVs that carry the 3F-tagged
full-length CFTR cDNA (4,443 bp),
CFTRDN (3,729 bp, D27–264, missing the
first four transmembrane segments at the N
terminus) (29), or CFTRDR (4,287 bp,
lacking residues 708–759 of the regulatory
R-domain) (30) (Figure 1A) and generated
stable HeLa cell lines. The subcellular
distribution of CFTRDR was comparable
with that of full-length CFTR as shown by
immunocytochemistry (Figure 1B). By
Western blot analysis, we could
demonstrate that the expression level of
CFTRDR was similar to that of full-length
CFTR, showing the immature protein
(band B) and the glycosylated, fully mature
protein (band C) (Figure 1C). In contrast,
3F-CFTRDN showed only a single band on
Western blot and located mainly to the
cytoplasm (Figures 1B and 1C).

Next, we compared functionality of the
respective CFTR versions in an iodide (125I2)
efflux assay (Figure 1D). 125I2 efflux increased
in cells expressing 3F-CFTRDR after exposure
to a mixture of forskolin and genistein
(indicated by an arrow), comparable with that
of full-length 3F-CFTR-expressing cells,
whereas no 125I2 efflux was observed for 3F-
CFTRDN cells or nontransduced HeLa cells
(Figure 1D, negative). The fact that 125I2

efflux was only observed after activation
of adenylyl cyclase activity by forskolin
underscores that CFTRDR is regulated by the
cAMP/protein kinase A pathway and has no
constitutive activity.

Next, we evaluated 3F-CFTRDR and full-
length 3F-CFTR protein function by whole-
cell patch-clamp analysis (Figures 1E–1G).
Protein expression was verified by Western
blot (see Figure E1 in the online supplement).
Currents were recorded both under basal
conditions to control for constitutive channel
activity and following CFTR activation with a
cAMP agonist cocktail. The presence of a
CFTR-specific current (ΔICFTR) was evaluated
by using inh172, a CFTR inhibitor (Figures
1E–1G) (31). For 3F-CFTRDR cells, only a
very low current was detectable under basal
conditions demonstrating absence of
constitutive CFTRDR activity. Interestingly,
ΔICFTR generated by CFTRDR was
comparable with that of full-length CFTR
(Figure 1G), consistent with the results from
the 125I2 efflux assay (Figure 1D) and in line
with earlier reports (13).

CFTRDR Restores Chloride and Fluid
Secretion in Intestinal Organoids
Derived from Subjects with CF
After showing functionality in a HeLa-based
cell culture model, we set out to evaluate the
potential of CFTRDR to rescue the CF
phenotype in human CFTR-deficient
organoids (E60X/4014delATTT; referred to
as CF) and to compare activity with full
length 3F-CFTR. CF organoids were
transduced with LVs encoding CFTRDR,
full-length CFTR, or a vector encoding a
reporter gene (eGFP) to control for possible
transduction-related side effects and
monitored for CFTR activity using the FIS
assay (Figures 2A–2C). Healthy control
organoids, expressing endogenous levels of
CFTR and transduced with an eGFP-control
vector, were included as a reference. In LV-
CFTRDR transduced CF organoids, forskolin
addition resulted in a strong increase in
organoid swelling (50% increase after 120
min; compare with t = 0 min), in line with
the rescue observed for LV-CFTR transduced
CF organoids (Figure 2B). Similar results
were obtained at lower vector doses (see
Figure E2). Compared with nontransduced
CF organoids, a sixfold increase in organoid
swelling (i.e., area under the curve obtained
from time periods measured in Figure 2B)
was reached after correction with LV-
CFTRDR and a fivefold increase after
correction with LV-CFTR (Figure 2C).
Truncated and full-length CFTR proteins
migrated at the predicted molecular weight
as detected by Western blot analysis, albeit at
lower expression levels than the endogenous
CFTR expressed in healthy control organoids
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(Figure 2D). Altogether, these results
strengthen the data obtained in the 125I2

efflux assay and the patch-clamp analyses
(Figure 1), and demonstrate that CFTRDR
rescues Cl– secretion to similar levels as
observed for the full-length protein.

Optimization of Trimmed Expression
Cassettes to Accommodate CFTRDR
Because the rAAV genome size is limited to
5 kb, this excludes the addition of the full-

length CFTR cDNA in combination with
regulatory elements. We opted for a
truncated CFTR (CFTRDR), which allows
insertion of an additional promoter to
enhance gene expression levels. We
evaluated a shortened version of the CMV
promoter (comprising 173 bp of the full-
length CMV, referred to as CMV173) and a
minimal polyadenylation signal (49 bp,
SPA) described by Ostedgaard and
coworkers (30) and compared reporter gene

expression levels with our standard rAAV
vector carrying a full-length CMV and a
BGHpA signal (rAAV-CMV173-Fluc
and rAAV-CMV-Fluc, respectively)
(Figure 3A). The latter expression cassette,
in combination with CFTRDR, would
exceed the rAAV packaging capacity.
Fluc activity was compared following
transduction of HEK293T cells with the
respective rAAV vectors (Figure 3B). Even
though rAAV-CMV173-Fluc showed a
35-fold lower Fluc signal than the control
vector (rAAV-CMV-Fluc), the signal
was still 3-log higher than background
(Figure 3B). Similar data were obtained
when evaluating rAAV-CMV173-Fluc
and rAAV-CMV-Fluc transduction in
primary intestinal organoids (Figure 3C),
demonstrating that a shorter expression
cassette results in lower transgene
expression levels, but opens the possibility
to incorporate a larger cDNA, such as
CFTRDR.

rAAV-Mediated CFTRDR Gene
Transfer Rescues CFTR Activity in
Human Intestinal Organoids
After successful validation of rAAV-
CMV173-Fluc, we replaced the reporter
genes with CFTRDR to generate a
therapeutic rAAV vector, referred to as
rAAV-CFTRDR with a genome size of
4,964 bp, which is just below the theoretical
rAAV packaging limit of 5 kb (Figure 3D).
rAAV-CMV173-Fluc was included as
control (further referred to as rAAV
control). Next, rAAV-CFTRDR was
functionally validated in human CFTR-
deficient organoids (E60X/4014delATTT;
referred to as CF) (Figures 3E–3I). Even
though the episomal nature of rAAV does
not allow stable transduction of rapidly
proliferating organoids, rAAV-CFTRDR
resulted in FIS of transduced organoids at
t = 120 min (Figure 3G) compared with
organoids transduced with rAAV control
(Figure 3F), which corresponds to an
average surface area increase of 13%
(Figure 3H), being fourfold higher than
organoids treated with rAAV control
(Figure 3I). Taken together, these data
demonstrate that the engineered
therapeutic rAAV-CFTRDR vector is
functional and that the ion transport-
induced organoid swelling is CFTR-
dependent. Although the expression
cassette is at the limit of the rAAV
packaging capacity, data imply that intact
genomes are incorporated into vector
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particles and allow efficient second
strand DNA synthesis and transgene
expression.

rAAV2/5-CFTRDR Corrects the CF
Phenotype in a DF508 Mouse Model
In a next step, we applied rAAV intranasally
to DF508 mice (rAAV2/5-CFTRDR and
rAAV2/5-eGFP-P2A-Fluc, respectively)
and assessed transgene expression by

immunohistochemistry in nasal tissue
(see Figure E3). CFTRDR expression was
detected in the respiratory epithelium in a
nonhomogeneous, patchy manner. In
positively stained epithelial cells, CFTRDR
was detected as a characteristic apical signal
(see Figure E3A, black arrow) in rAAV2/5-
CFTRDR-treated animals, whereas the
signal was much lower in animals treated
with rAAV control (see Figure E3B, orange

arrow). This signal likely presents the
detection of endogenous DF508-CFTR
situated both in the cytoplasm and to a
limited extent in the plasma membrane, as
described by others for this mouse strain
(32). However, a small part of the apical
signal could be aspecific because low-level
apical staining was occasionally observed
in nasal tissue of CFTR knock-out mice
(see Figure E3C).

In a final step, we evaluated
functionality of our gene therapeutic
approach in a DF508 mouse model (19).
The experimental protocol is detailed in
Figure 4. One week before treatment,
NPD measurements were performed to
assess residual activity of endogenous
DF508-CFTR (Figure 4; see Figure E4, left
recordings). We applied rAAV2/5-
CFTRDR (n = 8) or rAAV2/5-eGFP-P2A-
fLuc, referred to as rAAV control, (n = 5)
intranasally to CF mice (Figure 3D). Two
to 4 weeks after vector administration,
we assessed a phenotypic rescue by
measuring changes in nasal transepithelial
ion transport using NPD (Figure 4; see
Figure E4, right recordings). NPD
recordings after rAAV2/5-CFTRDR
treatment demonstrate a clear change in
potential difference in response to low
Cl2 solution and to some extent after
forskolin addition, which was partially
inhibited by inh172 (Figure 4
demonstrates a NPD recording of a
rAAV2/5-CFTRDR-treated animal;
recordings of all animals are shown in
Figure E4). Hyperpolarization after low
Cl2 and forskolin perfusion was taken as a
main indicator to demonstrate a response
to CFTRDR gene transfer (33).

In the rAAV2/5-CFTRDR-treated
group, five out of eight mice responded to
low Cl2 (Figure 5A). The highest change
in potential difference value of this
group measured 1 week before vector
administration was taken as the cut-off
value for positivity to score the effect of
gene transfer. Mice that responded to
treatment (five of eight) showed a
significant hyperpolarization during low
Cl2 perfusion of 25.8 mV (median; range,
26.9 to 23.4; n = 5) compared with the
group treated with rAAV2/5 control (P =
0.008), indicating Cl2 channel activity
(Figure 5C). For comparison, reference
values obtained in wild-type mice after low
Cl2 perfusion were25 mV (median; range,
215.6 to 21.2; n = 28) (28). Additionally, a
cumulative response to low Cl2 and
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forskolin perfusion was observed in five out
of seven mice strengthening the previous
observation (Figures 5B and 5D).
Interestingly, a strong response to forskolin
perfusion (26 mV) without initial
hyperpolarization to low Cl2 was observed
in one animal (see Figure E4A, animal 7).
In the rAAV2/5-CFTRDR-treated group,
Cl2 secretion could be inhibited to a larger
extent compared with the control group
(Figure 5E) (P = 0.03), underscoring the
contribution of CFTR to the overall

transepithelial ion transport. In summary,
the ion transport defect in the nasal mucosa
was restored by rAAV2/5-mediated
CFTRDR transfer in most treated DF508
mice.

Discussion

This study provides a robust proof-of-
principle that rAAV-mediated gene transfer
of a truncated CFTR leads to functional

rescue of CF. We demonstrated a significant
improvement in CFTR channel activity
in two complementary CF models: first, in
human intestinal organoids; and second, in
the DF508 mouse model, which allows
in vivo assessment of CFTR correction by
NPD, routinely used in patients. Since the
discovery of CFTR in 1989 (34), the initial
high expectations on gene therapy for CF
were not met because of lack of persistent
clinical benefit. A very recent clinical study
by Alton and coworkers (35) demonstrated
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that liposome-mediated airway delivery of
CFTR cDNA stabilized lung function
(measured by FEV1) in treated patients
with CF, whereas a further decline was
observed in the placebo group, showing a
first proof-of-concept of nonviral gene
therapy to prevent further loss of lung
function, a clinical hallmark of CF airway
disease. Although the benefit achieved by
this form of nonviral gene therapy is
modest and at this stage too premature to
become part of clinical care for patients
with CF, these results fuel further research
on CF gene therapy. Liposomes are safe
nonviral delivery vehicles that can transfer
a large genetic cargo and allow repeated
vector administration. However, transport
from the cytoplasm to the nucleus presents
a major rate-limiting step (reviewed in
Reference 36), in contrast to viral vectors
(37).

A first improvement compared with
previous unsuccessful rAAV-based clinical
trials for CF is the selection of the serotype.
We opted for rAAV2/5, which efficiently
transduces airway epithelia in mice and
humans (10–12, 38), in contrast to rAAV2/
2 used in the past (5). It is now known that

receptors for that serotype are low to absent
at the apical side of the airway epithelium,
which could at least in part explain the
limited success of rAAV2/2 (39). A second
improvement is the use of an optimized
expression cassette, which incorporates a
truncated CFTR (CFTRDR) to allow
addition of an external promoter
(CMV173), which significantly enhanced
gene expression. As a result, expression of
CFTRDR in nasal tissue of rAAV2/5-
treated DF508 mice was detected in our
study. In contrast, previous rAAV2/2-based
clinical trials for CF incorporated the
full-length CFTR cDNA into the rAAV
expression cassette. Packaging size
restriction necessitated the use of the
inverted terminal repeat promoter, the
short but weak promoter present in
the rAAV genome. The inability to detect
CFTR expression in biopsies and the
clinical failure in those trials may
thus be caused by poor transgene
expression (5, 6).

The use of a minigene for rAAV-based
gene therapy, which has a packaging limit
of approximately 5 kb, is a strategy that
has already been successfully applied in

Duchenne muscular dystrophy (40). In our
study, CFTRDN did not show any intrinsic
channel activity (Figure 1D). However,
previous studies demonstrated that
this truncated form rescues the
endogenous DF508-CFTR mutant by
transcomplementation (29, 41), which can
serve as an alternative gene therapy
approach. However, although CFTRDR
was developed for a rAAV-based gene
therapeutic approach, functionality in vivo
has only been reported using adenoviral-
mediated gene transfer (13). In that
perspective, our aim was to evaluate the
therapeutic potential of rAAV-CFTRDR as a
novel treatment option for both CF airway
and intestinal disease. Although stronger
than the AAV inverted terminal repeat, the
CMV173 promoter is weaker than the full-
length CMV promoter. This moderate
activity may be an advantage for CF gene
therapy because strong viral promoters
result in marked overexpression, with some
CFTR channels even being present in the
basolateral membrane, thereby reducing
transepithelial Cl2 transport at the apical
membrane (42). So we believe that the
selection of the promoter contributed to our
successful results.

Humans are naturally infected with
AAV virus. Hence, preexisting immunity
poses a major challenge for systemic rAAV-
based gene delivery (43–45). However,
when rAAV is administered locally to
for example the airways, the effect of
preexisting neutralizing antibodies might be
less pronounced. Different approaches are
currently evaluated preclinically to reduce
the effect of neutralizing antibodies,
such as prior transduction with empty
rAAV particles to deplete the serum or
bronchoalveolar lavage fluid of rAAV-
specific neutralizing antibodies (46) or
capsid engineering to generate serologically
distinct AAV serotypes (47). Each model
used for preclinical validation of gene
therapeutic approaches using rAAV
requires prior selection of the optimal
rAAV serotype for efficient transduction.
As such, the rAAV2/5 preference in mouse
does not necessarily carry through to
humans (48). However, assuming that
rAAV2/5 would be translated into the
clinic, 40% of the human population is
estimated to be seropositive and 3.2%
positive specifically for anti-AAV5 serum
neutralizing factors (49–51). This
prevalence is among the lowest of all
natural AAV serotypes evaluated (49).
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Figure 4. Recombinant adeno-associated viral vector (rAAV) 2/5–truncated cystic fibrosis
transmembrane conductance regulator (CFTRDR) rescues ion transport defect in DF508 mouse nasal
mucosa. (Top) Overview of the experimental set-up. Basal NPD was recorded 1 week before
intranasal administration of rAAV2/5-CFTRDR or a rAAV2/5 control vector in adult mice homozygous
for the DF508 mutation. NPD was measured 2–4 weeks postadministration. Bottom shows an
example of an NPD recording before (left) and after rAAV2/5-CFTRDR treatment (right) for the same
animal. Results are represented as the best responsive nostril. Each interval on the x-axis depicts a 1-
minute time frame. NPD = nasal potential difference.
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Compared with other AAV serotypes,
AAV5 seroconversion occurs later in life
(around 15–20 yr of age) (reviewed in
Reference 52). This implies that a broader
time window is available for rAAV2/5 gene
therapy treatment in patients, situated
between the decrease in maternal anti-
AAV5 antibodies found in newborns
during the first few months after birth and
the occurrence of AAV5 infection
(reviewed in Reference 52).

Although rAAV is a mainly
nonintegrating vector, it can provide
sustained gene expression in different low-
proliferative organs including the mouse
lung (11, 38) and the liver, where systemic
rAAV2/8 administration resulted in a
reduction of the bleeding phenotype in
hemophilia B patients for more than 3 years
(44, 45). Estimating the longevity of gene
expression depends on the specific cell
types transduced. For instance, ciliated

airway epithelial cells, a primary target for
CF gene therapy, are terminally
differentiated and their half-life is estimated
to be approximately 6 to even 17 months
(53). Nevertheless, although the airway
epithelium is a slowly proliferating tissue,
repeated vector doses will most likely be
necessary to ensure lifelong correction for
specific diseases, such as CF. To that end,
further exploration of approaches to
circumvent an immune response to the
AAV capsid is essential, such as serotype
switching with a serologically distinct
rAAV serotype (54), transient
immunosuppression (55), vector
administration to an immature immune
system (12, 56), or prolonging the time
period between vector administrations (11,
57). The safety of repeated rAAV2/2-CFTR
doses has already been demonstrated in a
clinical setting (6).

Apart from rAAV-based gene therapy
for CF, other viral vectors are currently
being investigated to target the airways,
such as LV (for a review, see Reference 58).
Although prolonged gene expression can
be obtained, it is yet to be elucidated if
sustained LV-mediated gene expression
results from transduced long-living
terminally differentiated epithelial cells or
from vector integration into stem cells (37,
59, 60). An integrating vector is in theory
capable of transducing airway stem cells.
Many of these cells reside in specific
anatomic niches (61); however, basal cells,
one of the main stem cells described for
adult airways, do not (62). They are
located at the basal lamina of the
pseudostratified respiratory epithelium
and are thus not in contact with the lumen
of the conducting airways. Therefore, the
in vivo potential of transducing these
different stem or progenitor populations
via local airway delivery will have to be
investigated for the specific viral vector
system used.

Organoid experiments are valuable
because they allow functional vector
assessment in CF patient-derived material
using a sensitive and quantitative FIS assay.
The rescue we obtained in human CFTR-
deficient organoids not only provides
evidence that rAAV-CFTRDR can
restore chloride and fluid transport,
but at the same time highlights that the
gastrointestinal CF phenotype can be
corrected by gene therapy. The CF mouse
model complements the organoid data
because here a potential rescue of the CF
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Figure 5. Nasal potential difference measurements demonstrate rescue after recombinant adeno-
associated viral vector (rAAV) 2/5–truncated cystic fibrosis transmembrane conductance regulator
(CFTRDR) gene transfer. Adult mice homozygous for the DF508 mutation were treated intranasally
with rAAV2/5-CFTRDR (n = 8) or rAAV2/5 control vector (n = 5). At 2–4 weeks after administration,
changes in transepithelial ion transport across nasal mucosa were assessed by NPD. (A)
Response to low chloride perfusion. (B) Cumulative response to low chloride and forskolin/3-isobutyl-
1-methylxanthine (IBMX) perfusion. (A and B) Basal values, recorded 1 week before vector
administration, are presented at the left side of both graphs for each treatment group (open circles).
(C) Comparison of the response to low chloride in animals that responded to rAAV2/5-CFTRDR gene
transfer compared with the group treated with rAAV2/5 control vector. (D) Comparison of the
cumulative response to low chloride and forskolin/IBMX perfusion after vector treatment in animals
that responded to rAAV2/5-CFTRDR gene transfer compared with the group treated with rAAV2/5
control vector. The cut-off for positivity in animals that responded to rAAV2/5-CFTRDR gene transfer
was determined as the highest value obtained in basal NPD measurements 1 week before
treatment (open circles) for the respective group. (E) Effect of perfusion with CFTR inhibitor (inh172)
evaluated after CFTR activation with low chloride and forskolin/IBMX perfusion and plotted as the
difference in potential difference (DPD) between activation and inhibition. Measurements of individual
animals were plotted as single values, and the median DPD plus interquartile range per group is
depicted. The response to vector treatment between the two groups was compared using a Mann-
Whitney test for unpaired observations (*P, 0.05; **P, 0.01). NPD = nasal potential difference.
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phenotype can be assessed in vivo by NPD,
a widely accepted biomarker used for
evaluation of response to treatment in
patients with CF (28, 63, 64). Our results
show a clear response to low Cl– and
forskolin perfusion in most treated mice,
underscoring the therapeutic potential of
rAAV2/5-CFTRDR. Importantly, the level
of rescue after rAAVA2/5-CFTRDR gene
transfer was comparable with the level of
rescue after CFTR corrector treatment as
measured by NPD (65). Variation in
treatment response could be explained by
differences in transduction efficiency
between animals. This could affect NPD
outcome depending on where exactly the
measuring electrode was placed on the
nasal epithelium.

In conclusion, this study provides a
robust proof-of-principle that rAAV-
mediated gene transfer of a truncated CFTR
leads to functional rescue of the CF
phenotype in two complementary models:
gastrointestinal pathology in human
intestinal organoids, and in vivo assessment
of CFTR correction in the nasal mucosa
of CF mice. A next step is to investigate
the therapeutic effect of rAAV-CFTRDR
in a larger animal model for CF, such as
the CF rat, ferret, or pig, because these
models recapitulate human CF pathology
more faithfully and allow a better
assessment of the level of CFTR rescue
required to ameliorate CF (66–69). If
successful, gene therapy would drastically
improve life expectancy and life quality of

patients with CF by offering a definite
cure for CF in a mutation-independent
manner. n
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