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Chapter 8

Information-Driven, Ensemble Flexible Peptide Docking 
Using HADDOCK

Cunliang Geng*, Siddarth Narasimhan*, João P.G.L.M. Rodrigues, 
and Alexandre M.J.J. Bonvin

Abstract

Modeling protein-peptide interactions remains a significant challenge for docking programs due to the 
inherent highly flexible nature of peptides, which often adopt different conformations whether in their free 
or bound forms. We present here a protocol consisting of a hybrid approach, combining the most fre-
quently found peptide conformations in complexes with representative conformations taken from molecu-
lar dynamics simulations of the free peptide. This approach intends to broaden the range of conformations 
sampled during docking. The resulting ensemble of conformations is used as a starting point for informa-
tion-driven flexible docking with HADDOCK. We demonstrate the performance of this protocol on six 
cases of increasing difficulty, taken from a protein-peptide benchmark set. In each case, we use knowledge 
of the binding site on the receptor to drive the docking process. In the majority of cases where MD con-
formations are added to the starting ensemble for docking, we observe an improvement in the quality of 
the resulting models.

Key words Protein-peptide docking, Flexibility, Information-driven docking, Ensemble docking, 
HADDOCK, Molecular dynamics simulations

1  Introduction

Peptides are receiving an increasing level of attention from the 
wider biological and pharmaceutical communities owing to an 
increase in the number of peptide-based drugs and therapeutics 
entering the market [1, 2]. Despite their importance, there is much 
to be learned about the structural and dynamical properties of 
peptides, in particular in the context of their interactions with 
other biomolecules. The binding partner that peptides associate 
with often plays an important role in restricting/defining their 
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conformational space. Many peptides are known to exist in an 
intrinsically disordered state, meaning they lack a well-defined and 
stable folded form on the time scales that are available to experi-
mental methods in structural biology. As a consequence, the struc-
tures of peptides are mostly known in the context of their protein 
receptors, which adds to the challenge of predicting in silico, the 
structure of these interactions.

The two most common thermodynamic models often used to 
describe biomolecular recognition and binding processes are 
induced fit [3, 4] and conformational selection [5–7]. These mod-
els were formulated based on observations from classical titration-
like experiments, aimed at studying the manner in which an 
estimated equilibrium is achieved upon addition of a binding part-
ner [8]. From a structural perspective, the induced fit model can be 
explained as a binding mechanism where the partners induce con-
formational changes on each other during complex formation. The 
conformational selection mechanism, on the other hand, predicts 
bound conformations are sampled naturally by the free molecules, 
i.e., without induction by the partner, and that partners merely 
select the most favorable conformation for binding (minor struc-
tural changes, such as side-chain re-orientation, may still occur 
upon binding).

A combination of the aforementioned mechanisms has been 
exploited previously to design a protocol for information-driven 
protein-peptide docking using HADDOCK [9]. Briefly, this proto-
col uses an ensemble of starting conformations for the peptide 
(alpha-helix, polyproline-II, and extended) that represent “ideal” 
conformational states of a given peptide and have been shown to 
feature in a large fraction of the protein-peptide interactions depos-
ited in the Protein Data Bank (PDB) [10]. This ensemble is then 
docked onto the receptor structure through restraints-guided rigid-
body energy minimization, and then a fraction of the models is fur-
ther optimized in successive flexible refinement stages. The flexibility 
of the peptide is also increased compared to default HADDOCK 
settings. The scoring function of HADDOCK selects, at each stage, 
the most favored conformations, i.e., those showing the most favor-
able interaction with the receptor based on a set of energy criteria. 
This protocol thus computationally approximates a combination of 
the induced fit and conformational selection models.

In the protocol presented here, we suggest a way to further 
improve our published protein-peptide docking protocol of 
HADDOCK by focusing more on the fact that peptides are inher-
ently flexible. In addition to the three most common bound con-
formations, we use short MD simulations of the peptides, starting 
from the three conformations mentioned above, to obtain more 
detailed information on the conformational landscape of the free 
peptide. Structures selected from the MD simulations that corre-
spond to different preferred conformational states of the free 
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peptide supplement the three ideal structures to perform ensemble 
docking. Thereby, we aim at improving the conformational selection 
scheme in the rigid body docking stage by providing more plausi-
ble conformations of the peptide and subsequently improving the 
odds of success of the refinement stages. We illustrate this extended 
ensemble approach with cases from the benchmark of protein-
peptide docking benchmark [11] and compare its performance 
with the standard three-conformation protocol we previously pro-
posed [9].

2  Materials

This protocol was designed and tested on a Linux cluster. Given 
the computational cost of molecular dynamics (MD) simulations, 
we recommend the use of multiple CPUs and/or GPUs. Local 
installation/compilation of the following programs is necessary, 
most of which are available for GNU/Linux and OS X operating 
systems:

	 1.	PyMOL: PyMOL [12] is a 3D molecular structure visualization 
program, which can be obtained from http://pymol.org/. We 
use it here to generate the ideal peptide conformations (alpha-
helix, polyproline-II, and extended).

	 2.	GROMACS: GROMACS [13] is a molecular dynamics 
simulation program that includes a number of useful tools for 
analysis. The current protocol was run using version 5.0.4. 
Note that commands for versions 4.x and earlier might differ 
from those used here. The software is available free of charge 
at http://www.gromacs.org/

	 3.	Grace: Grace (xmgrace) is a 2D plotting software, which 
provides a quick way to visualize plots generated during the 
execution of this protocol. It is available free of charge at 
http://plasma-gate.weizmann.ac.il/Grace

	 4.	MolProbity: MolProbity [14] is a structure validation service 
that we use to assign the protonation states of Histidine resi-
dues. It can be downloaded from its GitHub repository: 
https://github.com/rlabduke/MolProbity. Note that other 
software/approaches can be used to define the charge state of 
Histidine residues.

	 5.	HADDOCK v2.2: HADDOCK [15, 16] can be obtained free 
of charge for noncommercial users by filling and returning the 
license form available from http://www.bonvinlab.org/
software/haddock2.2/download.html. Installation instructions 
can be found at http://www.bonvinlab.org/software/
haddock2.2/installation.html. Moreover, the software can be 
used via a user-friendly web server [17, 18]. This protocol, 
however, makes use of a locally installed version of HADDOCK.

2.1  Software 
Requirements
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	6.	 Crystallography and NMR System (CNS) v1.3: CNS [19, 20] is 
the engine used for energy minimization and molecular dynam-
ics simulations in HADDOCK. Therefore, it is a main require-
ment for running HADDOCK. Note that HADDOCK v2.2 is 
designed to work with CNS v1.3, but recompiled using 
additional source code provided together with HADDOCK 
(see the cns1.3 directory in the HADDOCK distribution).  
The program is freely available for nonprofit users from http://
cns-online.org/v1.3/

	7.	 NACCESS: NACCESS is a useful tool that can be used to cal-
culate the solvent accessible surface area of a molecule from a 
PDB structure file for both proteins and nucleic acids. It is free 
for academic users and can be obtained from http://www.
bioinf.manchester.ac.uk/naccess/. A free alternative can be 
obtained from http://freesasa.github.io/ [21].

	8.	 ProFit: ProFit is a protein least squares fitting program with 
many powerful features including flexible selection of fitting 
zones and atoms, calculation of RMS over different zones or 
atoms, etc. It can be obtained free of charge for academic users 
at http://www.bioinf.org.uk/software

The structure of the receptor, preferably in the bound conforma-
tion, should be available (e.g., from the PDB, or via homology 
modelling) and the peptide sequence should be known. Addi
tionally, for information-driven docking, experimental data per-
taining to the interaction between the protein and peptide should 
be available to define the binding site on the receptor. The more 
information is available, the higher the chances for correct result-
ing models of the protein-peptide complex. Such information can 
be obtained from a variety of experimental techniques such as 
mutagenesis, chemical cross-linking, NMR chemical shift pertur-
bations, etc. [22–24], or bioinformatics predictions (e.g., CPORT 
[25, 26]), all of which can be used to drive the docking in 
HADDOCK.

3  Methods

This protocol is divided into five major stages (summarized in 
Fig. 1):

	 1.	Building the peptide in three extreme conformations.
	 2.	Running MD simulations (50 ns) in explicit water for the pep-

tide conformations built in step 1.
	 3.	Analysis of the MD trajectories by Dihedral Principal Com

ponent Analysis (dPCA) and selection of the 30 most popu-
lated conformational states of the peptides.

2.2  Data 
Requirements
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	 4.	Protein-peptide docking from an ensemble of 30 structures 
obtained from MD plus the three extreme conformations built 
in step 1, including available information on the binding sites, 
using HADDOCK 2.2.

	 5.	Analysis of the docking solutions to select the best models.
To execute this protocol, the user is required to have working 

knowledge of a command-line interface and, preferably, experience 
with running MD simulations using GROMACS. In the following 
sections, commands are indicated in Courier font, and start with a 
“>” sign (note that here a command that should be given as a 
single line—i.e., indicated by a single “>,” could span multiple 
lines). Text between < > in a command should be replaced by the 
proper selection/value.

For the sake of demonstration, unless otherwise specified, we 
will illustrate all the following steps using the complex of the TRAF 
domain of TRAF2 with the LMP1 binding peptide (PDB ID: 
1CZY, see Table 1). All the necessary information to run this exam-
ple case is provided in the supplementary material.

As described in our original protein-peptide docking protocol [9] 
using the HADDOCK webserver, we use the build_seq.py script 
written by Robert L. Campbell to generate the starting structures 
of the peptides for MD simulations in PyMOL.  The following 
steps describe this procedure, with steps 3 and 4 describing the 
procedure to cap residues at the N- and C-termini. GROMACS 
can perform terminal capping during topology generation, 

3.1  Generating 
Peptide Conformations 
for MD Simulations

Fig. 1 Schematic overview of the workflow described in our protocol
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however, if one uses the AMBER99SB-ILDN force field [27] 
(which we will use in this protocol), it is necessary to manually add 
standard capping residues Acetyl and N-Methyl (abbreviated as 
ACE and NME). These steps can be ignored if the peptide has 
charged termini.

	 1.	Start PyMOL and load the build_seq.py script from the 
PyMOL command line interface by typing:
> run build_seq.py

	 2.	Build the structure:
> build_seq <peptide_name>, <peptide_seq>, 
ss=<secondary_structure: helix, beta, or 
polypro>

For example, to create an alpha-helical conformation of the pep-
tide of the case 1CZY (peptide sequence: PQQATDD), type:
> build_seq alpha-peptide, PQQATDD, ss=helix

	 3.	To add the capping residue to the N-terminus, first select the 
Nitrogen atom of the first residue (numbered as 2 by default in 
PyMOL) by typing the following command:
> select pk1, name n and resi 2

Alternatively, simply select the proper atom by clicking on it 
with the mouse in “editing mode,” for which using a stick 
representation can be useful. Then select from the PyMOL 
menu:
“Build > Residue > Acetyl”

	 4.	To add the capping residue to the C-terminus, select the 
Carbonyl carbon atom of the last residue by typing the follow-
ing command (if you have followed the previous step, ensure 
that you have deselected all atoms before proceeding):
> select pk1, name c and resi <residue_number>

Table 1 
Statistics of the six protein-peptide complexes used in the case study

Case difficulty
PDB ID 
complex

PDB ID 
free 
protein

Number  
of protein 
residues

Number  
of peptide 
residues RMSDbound/extended (Å)

Easy (RMSDbound/extended 
≤4 Å)

1DDV 1I2H 104 6 2.58
1LVM 1LVB 214 6 1.54

Medium (4 Å <  
RMSDbound/extended ≤ 8 Å)

1CZY 1CZZ 168 7 1.94
1D4T 1D1Z 101 11 3.27

Hard (RMSDbound/extended 
>8 Å)

1HC9 2ABX 74 13 11.04
1NX1 1ALV 173 11 6.11

The classification of the case difficulty is based on Trellet et al. [9]
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Alternatively, simply select the proper atom by clicking on it 
with the mouse. Then select from the PyMOL menu:
“Build > Residue > N-Methyl”

	 5.	Save the molecule by typing:
> save <peptide_name>

Or you could do it by clicking “File > Save Molecule”.
Repeat these steps to create all three starting conformations.

This protocol has been designed using the AMBER99SB-ILDN 
force field with periodic boundary conditions. To facilitate the 
combined analysis of the MD trajectories originating from differ-
ent peptide conformations, it is recommended to make sure that 
every simulation contains the same number of water molecules. An 
example of a MD parameters file (*.mdp) suited for use with the 
AMBER99SB-ILDN force field is provided in the supplementary 
material. The commands described in the following subsections 
can also be performed by running the script automd.sh provided in 
the supplementary material (see the README section at the top 
of the script for instructions).

We will perform the MD simulation in a rhombic dodecahedral 
box, to minimize the volume of the simulation cell. The dimen-
sions of the box should be selected carefully to avoid interactions 
between neighboring periodic images. To determine the appropri-
ate box dimensions, follow these steps:

	 1.	Use the peptide in its extended conformation to determine the 
optimal box dimensions, considering that this represents the 
conformation with longest end-to-end distance.

	 2.	Prepare the topology for the extended peptide:
> gmx pdb2gmx -f protein.pdb -o protein.gro 
-ignh -ff amber99sb-ildn -water tip3p

	 3.	Prepare a box that accommodates the peptide in its center and 
ensure that the minimum distance from the box edge to the 
peptide is at least half the nonbonded cutoff (as per the mini-
mum image convention):
> gmx editconf -f protein.pdb -o protein_
pbc.gro -bt dodecahedron -d 1.0

	 4.	Note the “new box vectors” value in the last lines of the out-
put. This is the box vector that you must use with the “-box” 
flag during box preparation for the other peptides. An example 
is shown:
system size : 2.108 2.098 0.985 (nm)
diameter : 2.786(nm)
center : 2.581 0.469 1.224 (nm)
box vectors : 2.109 2.098 0.985 (nm)
box angles : 90.00 90.00 90.00 (degrees)

3.2  System 
Preparation 
for Running the MD 
Simulations 
with GROMACS 5.0.4

3.2.1  Determination 
of the Optimal Box 
Dimensions
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box volume : 4.36 (nm^3)
shift : 1.009 3.120 0.468 (nm)
new center : 3.589 3.589 1.692 (nm)
new box vectors : 4.786 4.786 4.786 (nm)
new box angles : 60.00 60.00 90.00 (degrees)
new box volume : 77.51 (nm^3)

Given the same box dimensions, the three peptides will accommo-
date a slightly different number of water molecules (to fill the box 
completely), depending on a variety of factors including surface 
areas and volumes. Therefore, it is necessary to determine this and 
use the smallest number of water molecules among the three sys-
tems (again to facilitate the combined analysis later—but not per se 
a requirement in principle). To determine this number of water 
molecules that the simulation system can accommodate, follow 
these steps:

	 1.	Prepare the topology for the extended peptide:
> gmx pdb2gmx -f protein.pdb -o protein.gro 
-ignh -ff amber99sb-ildn -water tip3p

	 2.	Prepare the box, defining the box vector with the value 
obtained in Subheading 3.2.1:
>gmx editconf -f protein.pdb -o protein_pbc.
gro -bt dodecahedron -box 4.786

	 3.	Run a first energy minimization in vacuum:
>gmx grompp -f vacuum.mdp -c protein_pbc.
gro -p topol.top -o protein_vac.tpr
> gmx mdrun -v –deffnm protein_vac

	 4.	Solvate the system:
>gmx solvate -cp protein_vac.gro -cs spc216.
gro -p topol.top -o protein_solvated.gro

	 5.	Note the number of water molecules, referred to as “SOL 
molecules” that were added from the output:
Output configuration contains 7605 atoms in 
2508 residues
Volume : 77.518 (nm^3)
Density : 983.104 (g/l)
Number of SOL molecules: 2499

	 6.	Repeat the above steps for all the peptides in all the conforma-
tions and note the lowest number of the three cases. Solvate 
the other two peptides (which are not the lowest) by using the 
“-maxsol” flag to set the optimal number of water molecules:
> gmx solvate -cp protein_vac.gro -cs spc216.gro 
-p topol.top -o protein_solvated.gro -maxsol 
2499

3.2.2  Determination 
of the Optimal Number 
of Water Molecules
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The following steps prepare the system for the production MD 
simulation. They must be repeated for all three peptide conforma-
tions. Since the initial energy minimization in vacuum and solva-
tion has been done in the previous optimization steps, we can 
proceed with neutralizing the electrical charge of the system. Note 
that the various parameter files (.mdp) are provided in the supple-
mentary material.

	 1.	Add counter ions to the system to neutralize its electrical 
charge:
> gmx grompp -f ions.mdp -c protein_solvated.
gro -p topol.top -o protein_pp_ionize.tpr
> gmx genion -s protein_pp_ionize.tpr -p 
topol.top -o protein_ionized.gro –neutral

If and when prompted to “Select a continuous group of sol-
vent molecules,” choose the group “SOL” or “non-Protein” 
or “Water” as they are all the same in our system.

	 2.	Run energy minimization:
> gmx grompp -f ions.mdp -c protein_ionized.
gro -p topol.top -o protein_neutral_relaxed.
tpr
> gmx mdrun -v -deffnm protein_neutral_relaxed

	 3.	Run a first equilibration under NVT conditions (constant 
volume):
> gmx grompp -f nvt.mdp -c protein_neutral_
relaxed.gro -p topol.top -o protein_nvt.tpr
> gmx mdrun -v -deffnm protein_nvt

	 4.	Continue the equilibration under NPT conditions (constant 
pressure):
> gmx grompp -f npt.mdp -c protein_nvt.gro 
-p topol.top -o protein_npt.tpr
> gmx mdrun -v -deffnm protein_npt -nt 48 
-ntmpi 12 -pin on

	 5.	Progressively release the position restraints during successive 
short MD runs:
> sed -e 's/1000  1000  1000/ 100   100   
100/g' posre.itp > tmp.itp && mv tmp.itp 
posre.itp
> gmx grompp -f npt.mdp -c protein_npt.gro 
-p topol.top -o protein_npt_progrel100.tpr
> gmx mdrun -v -deffnm protein_npt_progrel100
> sed -e 's/100 100 100/ 10 10 10/g' posre.
itp > tmp.itp && mv tmp.itp posre.itp
> gmx grompp -f npt.mdp -c protein_npt_progrel100.
gro -p topol.top -o protein_npt_progrel10.tpr
> gmx mdrun -v -deffnm protein_npt_progrel10

3.2.3  System Preparation 
and Production MD

Protein-Peptide HADDOCKing
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	 6.	Run a final short unrestrained equilibration MD step:
> gmx grompp -f unrestrained.mdp -c protein_
npt_progrel10.gro -p topol.top -o protein_
all_set.tpr
> gmx mdrun -v -deffnm protein_all_set

	 7.	Run the production MD simulation:
> gmx grompp -f production.mdp -c protein_
all_set.gro -p topol.top -o protein_md.tpr
> gmx mdrun -v -deffnm protein_md

Please bear in mind that in all the steps involving energy mini-
mization and MD simulations (which start with gmx mdrun), 
it is likely that GROMACS might use all of the processor(s) 
available to the user. It is possible that gmx mdrun may then 
give error messages if the system cannot be parallelized with 
the given conditions. In such cases, the user must set the num-
ber of threads and the PME ranks by using the -nt and -ntmpi 
flags with the gmx mdrun command. If one wishes to opti-
mize parallelization, GROMACS offers a utility (gmx tune_
pme) to find the optimal PME conditions for a given number 
of parallel processes (see the online GROMACS manual  
pages for more information, http://manual.gromacs.org/
archive/5.0.4/programs/gmx-tune_pme.html).

The protocol to perform Dihedral PCA was adapted from  
the GROMACS documentation (http://www.gromacs.org/
Documentation/How-tos/Dihedral_PCA). It consists of the fol-
lowing steps:

	 1.	Concatenate the various trajectories (three in this particular 
case):
> gmx trjcat -f <path_trajectory_1> <path_
trajectory_2> <path_trajectory_3> -o all_
traj.xtc –settime

Ensure that you set the proper start time for the trajectories, 
which in our case would be 0, 50,000, and 100,000 in picosec-
onds (ps). This will not be done automatically. Hence, we use 
the -settime flag.

	 2.	Make an index file containing all residues except the capping 
residues:
> gmx make_ndx -f protein_md.tpr -o index.
ndx

Follow the interactive menu to isolate the indices of the pep-
tide residues without the capping groups.

	 3.	Remove the capping groups from the trajectory:
> gmx trjconv -f all_traj.xtc -s protein_
md.tpr -n index.ndx -o protein_uncapped.xtc

3.3  Clustering 
by Dihedral Principal 
Component Analysis 
(dPCA)
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Choose the index group corresponding to the peptide residues 
without the capping groups that were made in the previous 
step.

	 4.	Create a topology for the peptide that excludes the capping 
residues:
> gmx convert-tpr -s protein_md.tpr -n index. 
ndx -o protein_uncapped.tpr

Select the same index group as the previous step.
	 5.	 Now create a topology containing only the backbone atoms of 

all residues and also a trajectory file with the corresponding 
coordinates:
> gmx convert-tpr -s protein_uncapped.tpr 
-o protein_bb.tpr
> gmx trjconv -f protein_uncapped.xtc -s 
protein_uncapped -o protein_bb.xtc

When prompted, in both cases, choose the index group titled 
“Backbone,” which by default would be option 4.

	 6.	Create an index group for the backbone dihedral angles by 
creating an angle index file:
> gmx mk_angndx -s protein_bb.tpr -type dihedral 
-o dangle.ndx

	 7.	Open dangle.ndx with any text editor like, for example, vim or 
nano, and identify the index groups that correspond to the 
atoms forming the φ and ψ angles. Every four consecutive 
atom indices present in the index groups in the dangle.ndx file 
correspond to a single dihedral angle. For example, the first 
index group (Titled as [Phi=180.0_2_10.46]) in the text box 
shown below (which is a sample of dangle.ndx file), the atom 
indices 2 3 4 5 correspond to the first dihedral angle and 5 6 7 
8 correspond to the second dihedral angle, and so on. The 
atoms that contribute to the φ angles are Coi-Ni+1-Cαi+1-Coi+1 
and the ψ angles are Ni-Cαi-Coi-Ni+1. When your topology 
contains only the backbone atoms, like in our case here, the φ 
angles usually have the atom indices that start with “3,” which 
represents the first backbone carbonyl carbon atom, and the ψ 
angles usually have atom indices that start with “1” that repre-
sents the first backbone nitrogen atom. In the example below, 
the atom indices that correspond to the φ angles are high-
lighted in bold and the ones that correspond to the ψ angles 
are highlighted in Italic:
[ Phi=180.0_2_10.46 ]
2 3 4 5 5 6 7 8 8 9 10 11
11 12 13 14 14 15 16 17 17 18 19 20
[Phi=0.0_2_1.13]
3 4 5 6 6 7 8 9 9 10 11 12
12 13 14 15 15 16 17 18 18 19 20 21

Protein-Peptide HADDOCKing
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[Phi=0.0_3_1.76]
3 4 5 6 6 7 8 9 9 10 11 12
12 13 14 15 15 16 17 18 18 19 20 21
[Phi=180.0_1_1.88]
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19
[ Phi=180.0_2_6.61 ]
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19
[Phi=180.0_3_2.30]
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19

	 8.	Delete all the other index groups and combine the ones that 
correspond to φ and ψ angles that were identified, you can also 
rename the group name for convenience:
[Psi and Phi]
3 4 5 6 6 7 8 9 9 10 11 12
12 13 14 15 15 16 17 18 18 19 20 21
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19

	 9.	Extract the dihedral angles from the backbone trajectory file:
> gmx angle -f protein_bb.xtc -n dangle.ndx 
-or dangle.trr -type dihedral

	10.	Note the number of atom positions that are filled with cos/sin 
of the angles:
There are 12 dihedrals. Will fill 8 atom po-
sitions with cos/sin

and create an index file (referred to in the following steps as 
“covar.ndx”) containing indices from 1 to the number of posi-
tions that are filled with cos/sin:
[Covar]
1 2 3 4 5 6 7 8

	11.	Make a reference structure for constructing the covariance 
matrix using the dihedral angles, you can choose any frame for 
the “-e” flag:
> gmx trjconv -f dangle.trr -s protein_
bb.tpr -o resized.gro –n covar.ndx -e 100

	12.	Perform the covariance analysis:
> gmx covar -f dangle.trr -n covar.ndx -ascii 
-xpm -nofit -nomwa -noref -nopbc -s resized.
gro

	13.	Since the first two eigenvectors (Principal Components) con-
tain the largest variance in data, we will use them for the analy-
sis by calculating the Potential of Mean Force (PMF) at every 
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time frame and projecting the vectors on each other to obtain 
a 2D free energy landscape.
> gmx anaeig -v eigenvec.trr -f dangle.
trr -s resized.gro -first 1 -last 2 -2d 
2dproj_1_2.xvg

	14.	Convert the 2D plot into a 3D Gibbs free energy landscape by 
Bolzmann invertion:
> gmx sham -f 2dproj_1_2.xvg -notime 
-bin bindex-1_2.ndx -lp prob-1_2.xpm -ls 
gibbs-1_2.xpm -lsh enthalpy-1_2.xpm -g shamlog-1_2 
-lss entropy-1_2.xpm
Any of the *.xpm files can be converted to *.eps using the 
GROMACS command “gmx xpm2ps”

	15.	As explained in the introduction of Subheading  3 (see also 
Fig. 1), our aim is to obtain 30 representative peptide confor-
mations from the MD simulations. For this, we will use the 30 
biggest bins (conformational states) identified by the PCA 
analysis. In order to identify the largest bins, check the “sham-
log-1_2.log” file that contains the energy of each bin esti-
mated by the Boltzmann Inversion method (by gmx sham in 
the previous step). Therefore, the size of the bin is inversely 
proportional to its energy. Bin indices sorted by their energies 
are listed after the “Minima sorted after energy” line in the 
“shamlog-1_2.log” file (with the lowest energy bin—the 
most populated one—having an energy of 0). This part is 
shown below where the energies are highlighted in bold and 
the bin indices are highlighted in Italic:
...
...
Minima sorted after energy
Minimum 0 at index 249 energy 0.000
Minimum 1 at index 766 energy 0.101
Minimum 2 at index 754 energy 0.884
Minimum 3 at index 918 energy 1.621
Minimum 4 at index 570 energy 1.669
Minimum 5 at index 594 energy 2.533
...
...

Note down the indices of the 30 lowest energy bins (Minimum 
0 to 29).

	16.	From the “bindex-1_2.ndx” note down (any) one frame 
number from each of the 30 bins whose indices were sought in 
the previous step. In all our test cases, the first frame that  
is listed under the bin index was used. Samples from the 
“bindex-1_2.ndx” are shown below where the first three 
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structures in the biggest bins: 249, 766, and 570 are shown 
and the first frame in these respective bins is highlighted in bold:
...
...
[249]
232
233
235
...
...
[766]
121
122
159
...
...
[570]
141
149
151
...
...

	17.	Extract the selected frames from the combined trajectory. 
Please note that you should extract the frames from the trajec-
tory that contains ALL atoms and not just the backbone atoms 
that were used to perform PCA. Also, the numbers noted in 
the previous steps are the frame numbers. These need to be 
multiplied by 50 (time frequency in ps at which coordinates 
were saved in the production MD—change this value if you 
have modified the save frequency in the parameter files) to 
obtain the time stamp. In the following example, we used 
frame number 219 as an example:
> gmx trjconv -f protein_nocap.xtc -s protein_
nocap.tpr -dump 10950 -o frame_219.pdb -pbc 
mol

When prompted, choose the index group 1, containing all 
atoms.
Repeat this step to extract a total of 30 conformations (or less). 
We do not recommend using too many conformations for 
ensemble docking since it might lead to under-sampling of 
each conformation during the docking (a “dilution” problem), 
as the number of rigid-body docking models generated in 
HADDOCK is fixed.
Steps 9–17 can be automated by using the dpca.sh script that 

is given in the supplementary material. Ensure that the filenames 
are identical to what has been described in steps 1–8 and the script 
should be run in the directory where all the files generated in these 
steps are present.

Cunliang Geng et al.



123

We provide here a brief introduction into the various docking and 
refinement stages of HADDOCK and its scoring functions. Before 
using a locally installed version of HADDOCK, it is recommended 
that the user also reads the HADDOCK manual (http://www.
bonvinlab.org/software/haddock2.2/manual.html).

The initial stage of HADDOCK consists of a randomization of the 
starting orientations of the various molecules, followed by rigid 
body energy minimization (it0). During the randomization stage, 
the molecules are separated by a minimum of 25 Å and randomly 
rotated around their respective center of mass and translated within 
a 10 Å cube. During the following energy minimization, the mol-
ecules are treated as rigid bodies, i.e., all molecular bonds, angles, 
and internal rotations around bonds are frozen. The energy func-
tion being minimized contains the interaction restraints and the 
intermolecular van der Waals and electrostatics potentials. Typically, 
between 1000 (default) and 10,000 models are written to disk at 
this stage. The rigid body energy minimization is repeated multiple 
times internally (5 by default) with symmetrical solutions being 
sampled and minimized and only the best solution based on the 
HADDOCK score (see below) being written to disk. Typically, the 
top few hundred solutions (by default 200) are selected for further 
refinement.

The second stage in HADDOCK consists of a semi-flexible refine-
ment by high-temperature molecular dynamics in torsion angle 
space (it1), during which increasing flexibility is introduced in the 
interface of the complex. It consists of four stages:

	 1.	High temperature rigid body dynamics (hot).
	 2.	Rigid-body simulated annealing (cool1).
	 3.	Semi-flexible simulated annealing with flexible side-chains at 

the interface (cool2).
	 4.	Semi-flexible simulated annealing with fully flexible backbone 

and side-chains at the interface (cool3).
During this stage, the interface of the complex model is opti-

mized. The flexible regions are defined by default automatically for 
all residues within 5 Å of a partner molecule (the user can, how-
ever, also define these manually). Usually, all the solutions at this 
stage are passed to the final refinement stage in explicit solvent.

The last stage is a flexible refinement in explicit solvent (TIP3P 
water by default, but DMSO is also supported as a lipid environ-
ment mimic). The models from the previous stage are solvated in 
an 8.5 Å solvent shell and further refined using molecular dynam-
ics simulations in Cartesian space, with weak position restraints on 
backbone atoms outside the interface, followed by a final energy 
minimization.

3.4  Docking 
and Scoring

3.4.1  Introduction 
to Docking Using 
HADDOCK v2.2

Initial Rigid Body Docking 
Stage (it0)

Semi-flexible Refinement 
Stage (it1)

Explicit Solvent Refinement 
Stage (water)
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The HADDOCK score is a weighted sum of various energy and 
other scoring terms. It is used to rank the models at the various 
stages of the docking. The weight of various terms differs for each 
stage of the docking process. By default, the HADDOCK score is 
calculated as follows (a combination that has been shown to be 
successful for various types of systems, from protein-protein to 
protein-nucleic acid complexes):

	 it E E E E E0 0 01 0 01 1 0 1 0 0 01: . . . . .= + + +air vdw elec desolv BSA- 	

	 it E E E E E1 0 1 1 0 1 0 1 0 0 01: . . . . .= + + +air vdw elec desolv BSA- 	

	 water air vdw elec desolv: . . . .E E E E E= + + +0 1 1 0 0 2 1 0 	

where Eair is the ambiguous interaction restraints energy, Evdw is the 
intermolecular van der Waals energy described by a 12-6 Lennard-
Jones potential, Eelec is the intermolecular electrostatic energy 
described by a Coulomb potential, Edesolv is an empirical desolva-
tion energy term [28], and BSA is the buried surface area in Å2. 
The nonbonded energies are calculated using an 8.5 Å cutoff using 
the OPLS force field parameters [29]. Additional energy terms can 
be included in the scoring function if other restraint types are used.

As described in Subheadings 3.1–3.3, various peptide conforma-
tions have been obtained, either built in ideal conformations, or 
through MD simulations followed by clustering by dihedral PCA, 
from which we selected 30 representatives. This ensemble of pep-
tide conformations (33 in total) along with the unbound receptor 
structure will be used for docking. The following protocol describes 
the steps to perform docking using a local version of HADDOCK. 
As for the MD part, we use the 1CZY case (see Table  1) as an 
example.

Since HADDOCK is an information-driven docking approach, it is 
necessary to define information about the putative interfaces (note 
that HADDOCK does offer various ab initio docking protocols, 
although these will not be described here). For a manual run, this 
means generating an ambiguous interaction restraints (AIRs) file 
(the webserver will simply take a comma-separated list of residue 
numbers). In order to generate AIRs, it is necessary to define active 
and passive residues at the interface of each molecule based on 
experimental data and/or bioinformatics predictions. In this exam-
ple, we will assume that we know the peptide-binding site on the 
receptor—defining it from the known complex as all residues on 
the receptor that are within a 5 Å distance from the peptide. This 
represents of course an ideal situation. In case there is no available 
experimental information about interface residues, various bioin-
formatics predictors, including our webserver CPORT (http://
haddock.science.uu.nl/services/CPORT/), can help predict inter
face residues. HADDOCK distinguishes between active and passive 

Scoring Functions 
of HADDOCK

3.4.2  Docking Protocol

Defining Ambiguous 
Interaction 
Restraints (AIRs)
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residues: Active residues must be in the interface (i.e., make 
contacts to either passive or active residues of the other molecule), 
otherwise an energy penalty will be paid; passive residues, in 
contrast, can be part of the interface, but are not penalized if oth-
erwise. While active residues are typically selected based on high-
quality experimental data or bioinformatics predictions, passive 
residues can be defined as the surface neighbors of active residues, 
or as a user-defined surface patch. In this protocol, we will define 
all residues of the peptide as passive. For our example 1CZY, the 
protein active residues are:

“41,42,44,60,62,66,67,68,77,114,115,116,117, 
120,121,122,123,131,132,133,134,135,136,137,”
and the peptide passive residues: 
“1,2,3,4,5,6,7.”
After obtaining the list of active and passive residues for each 

molecule, the webserver for generating ambiguous interaction 
restraints can be used to generate the AIRs file required for 
HADDOCK. It can be found at http://www.bonvinlab.org/soft-
ware/Haddock2.2/generate_air.html. A description of the format 
of the various restraints files in HADDOCK can be found in Box 4 
of the original HADDOCK server article [17]. In the section 
“Active residues for 1st molecule” and “Passive residues for 2nd 
molecule,” fill in the 1CZY protein active residues and peptide pas-
sive residues, respectively. In the section “Segid of 1st molecule:” 
and “Segid of 2nd molecule:”, specify the segment IDs to use for 
each molecule during the docking (typically A and B). Then move 
to the bottom of the page, click on “Generate AIR restraints” to 
generate AIRs. You should be redirected to a new page that con-
tains all the AIRs. Save this page as a restraint file “restraints.tbl” 
and copy it into your working directory. The “restraints.tbl” file 
will be used when setting up your new HADDOCK project.

In general, small charge differences can have a strong impact 
on the results of the docking. It is therefore advisable to define 
the protonation state of Histidine residues prior to docking (if 
not, by default Histidines will be considered positively charged). 
The HADDOCK webserver can do that automatically, using 
MolProbity [14] to guess the most plausible Histidine protonation 
states. Here, we provide a Python script that uses the “reduce” 
executable of MolProbity to assign the protonation state. Run the 
script on the pdb file(s) to determine the protonation states of 
Histidines:

> python ./molprobity.py ./protein.pdb

The reduce program will be used to add hydrogen atoms and 
perform basic validation checks and optimizations on the protein 
structure to generate a temporary new structure. Based on the pres-
ence and location of the hydrogen atoms in a Histidine residue, the 
script will determine its protonation state. For each histidine, if 

Determining 
the Protonation State 
of Histidine Residues
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atom HD1 and HE2 exist, the doubly protonated, charged histidine 
HIS+ state is assigned, if HD1 exists but not HE2, a singly proton-
ated histidine HISD is assigned, and if HE2 exists but not HD1, a 
singly protonated histidine HISE is assigned.

The output of the script is shown below for the unbound form 
of 1CZY:

## Executing Reduce to assign histidine pro-
tonation states
## Input PDB: protein.pdb
HIS (73) --> HISD
HIS (109) --> HISE

Save this information since it will be used later while editing 
the run parameters.

To start a new project, it is necessary to generate the “new.html” 
file that contains the information about all the required input data 
for the docking. An online tool to prepare this file is available on 
the HADDOCK webpage: http://www.bonvinlab.org/software/
Haddock2.2/start_new.html.

Three sections need to be filled. In the first section “HADDOCK 
and project setup,” you should define the path to your local 
HADDOCK installation under “Current HADDOCK program 
directory” and the path to where your project will be created in 
“Path of the new project.” Then, define the “Run number,” 1 in 
this case, and the “Number of molecules for docking (max. 6),” 
2 in this particular case.

In the second section, “Define the various molecules for dock-
ing”, set “PDB file of 1st molecule” to the absolute path of the 
protein structure, “PDB file of 2nd molecule” to the absolute path 
of the peptide (use one of the peptide PDB files for this), use the 
default values for “Segid of 1st molecule” and “Segid of 2nd mol-
ecule” (unless of course you changed those values when creating 
the AIR file). Since we will make use of an ensemble of peptide 
conformations for the docking, a list file containing all absolute (or 
relative) paths of those conformations (3 extreme + 30 MD confor-
mations) should be created, and set “file list for 2nd molecule 
(opt.)” to the absolute path of this list file. Note that in principle, 
instead of absolute paths, relative paths can also be used, e.g., “./
peptide.pdb.”

In the last section “Define the various restraint files,” the “AIR 
restraints” should be set to the path of the “restraints.tbl”  
file generated in Subheading “Defining Ambiguous Interaction 
Restraints (AIRs).”

Move to the bottom of the page and click on “Save updated 
parameters.” You should see a new webpage containing the gener-
ated file. Save it as the “new.html” file, and then copy it into your 
working directory.

Starting a New Project
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An example of the “new.html” file for 1CZY (also provided in 
supplementary material) is given below:

<html>
<head>
<title>HADDOCK - start</title>
</head>
<body bgcolor=#ffffff>
<h2>Parameters for the start:</h2>
<BR>
<!-- HADDOCK -->
HADDOCK_DIR=/home/software/haddock/
haddock2.2<BR>
N_COMP=2<BR>
PDB_FILE1=../pdb_files/protein.pdb<BR>
PDB_FILE2=../pdb_files/MD_conformations/md_1.
pdb<BR>
PDB_LIST2=../pdb_files/structures.list<BR>
PROJECT_DIR=./<BR>
PROT_SEGID_1=A<BR>
PROT_SEGID_2=B<BR>
AMBIG_TBL=./restraints.tbl<BR>
RUN_NUMBER=1<BR>
submit_save=Save updated parameters<BR>
</h4><!-- HADDOCK -->
</body>
</html>

Now go to your working directory, make sure that the “new.
html” file is present and then type the command (which should be 
defined after proper installation of HADDOCK and sourcing of 
the configuration script):

> haddock2.2
A new directory “runX” (X is a number that is defined as “Run 

number” above) will be created, containing several subdirectories 
and the important “run.cns” parameter file, which will need to be 
edited in the next step. For details on the various subdirectories, 
please refer to the online HADDOCK manual at http://www.
bonvinlab.org/software/Haddock2.2/start_new_help.html.

It is necessary to modify some docking parameters in the freshly 
generated “run.cns” file. For this, the user can use an online tool 
or edit the file directly with a text editor. The easiest way to modify 
this file is to use our online tool: In the http://www.bonvinlab.
org/software/Haddock2.2/Haddock-start.html page (best viewed 
with Firefox or Google Chrome), upload your “run.cns” file and 
click on “Edit file.” You will be redirected to a new webpage that 
contains all parameters to run HADDOCK. For details on all the 
parameters, see the online manual (http://www.bonvinlab.org/

Setting the Docking 
Parameters
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software/Haddock2.2/run.html). Below, we will deal with only 
the parameters that should be adjusted to run our protein-peptide 
protocol.

Histidine patches: These parameters are used to define the pro-
tonation state of Histidines. By default, a Histidine is doubly 
protonated and thus positively charged in HADDOCK. The histi-
dine parameters only need to be defined when a histidine should 
be singly protonated (HISD or HISE). The information on the 
protonation state of the various Histidines obtained in Subheading 
“Determining the Protonation State of Histidine Residues,” will 
be used here. For our example 1CZY in that section, Histidine 73 
should be in HISD state and Histidine 109 in HISE. In the sec-
tion, “Patch to change doubly protonated HIS to singly proton-
ated histidine (HD1),” set the first residue of “molecule (Protein) 
A” to 73. Then in “Patch to change doubly protonated HIS to 
singly protonated histidine (HE2),” set the first residue of “mole-
cule (Protein) A” to 109. In this particular example, the peptide 
does not contain any Histidine; otherwise, the same procedure 
should be followed for the second molecule.

Definition of fully flexible segments: This section defines the 
segments that are defined as fully flexible during all stages of it1. In 
this protocol, because of the intrinsic high flexibility of peptides, 
we will define all residues of the peptide as fully flexible. Therefore, 
set the “Start Residue” to 1 and the “End Residue” to the residue 
number of the last residue in the peptide, here should be 7 for the 
case 1CZY.

Topology and parameter files: The linkage file in this section 
allows defining the charged states of the N- and C-termini of the 
protein and peptide. If the protein or peptide is a fragment of a 
larger protein or was capped in experiments for some specific 
reason, the N- and/or C-terminus should be uncharged. In 
HADDOCK, the default linkage file used to generate the topology 
is “protein-allhdg5-4.link,” which produces charged N and C ter-
mini. For uncharged termini, the linkage file “protein-allhdg5-4-
noter.link” should be used. For uncharged N-terminus and charged 
C-terminus, use “protein-allhdg5-4-noNter.link”; for charged 
N-terminus and uncharged C-terminus, use “protein-allhdg5-4-
noCter.link.”

For our particular example 1CZY, we will use “protein-allhdg 
5-4-noter.link” for the peptide since the peptide is a fragment of a 
larger protein and capped in its N-terminus.

Number of structures to dock: Due to the flexibility of the peptide, 
the number of decoys to generate should be increased to improve the 
sampling of all conformations of the protein-peptide complex. Since 
we used 33 peptide conformations (3 extreme conformations + 30 
MD cluster representatives) as initial ensemble for docking, we will 
change the “number of structures for rigid body docking” from 
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1000 to 9900 (in that way each starting conformation is used 300 
times), and the “number of structures for refinement” from 200  
to 400.

Number of MD steps in the docking protocol: To improve the 
sampling of protein-peptide interactions and in particular to allow 
the peptide to better sample its conformation in the context of the 
receptor, the number of MD steps for the it1 stages also needs to 
be increased: From 500/500/1000/1000 to 2000/2000/4000/ 
4000 for the hot, cool1, cool2, and cool3 stages in it1, 
respectively.

Final explicit solvent refinement: Just like the number of struc-
tures to dock, the “number of structures for the explicit solvent 
refinement” is increased from 200 to 400.

Analysis and clustering: The “clustering method” is set to 
RMSD, and due to the smaller size of peptide the “RMSD cutoff 
for clustering” is decreased to 5 Å.

Parallel jobs: The user should specify the local “queue com-
mand” (e.g., simply csh if using a single computer, or a batch 
queue submission command for a cluster (e.g., qsub)), the abso-
lute path of “cns executable” and define for “cpunumber” a num-
ber that matches the number of cores on the system (or the number 
of allocated slots in the queue in the batch system). The internal 
job dispatching routines will use this setting to limit the number of 
concurrent refinement jobs. Note that for rigid-body stage jobs, 
given the computational efficiency of this algorithm, several indi-
vidual minimizations are bundled together in each job.

After updating the parameters above, click “Save updated file” 
on the page bottom, and then save the file as a new run.cns and 
copy it to the runX directory to replace the old one.

The following lines describe how these changes would look 
like if done manually simply in a text editor:

Histidine patches :
A_hisd_resid_1=73;
A_hise_resid_1=109;

The histidine protonation states are defined by these parameters.

Definition of fully flexible segments :
B_start_fle_1="1";
B_end_fle_1="7";

The parameters define the fully flexible segments in it1 step.
Topology and parameter files:

prot_link_B="protein-allhdg5-4-noter.link";

The parameter sets the charged states of N-terminus and 
C-terminus of the molecule. Here, it sets both termini uncharged 
for the peptide of 1CZY.
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Number of structures to dock:
structures_0=9900;
structures_1=400;

These parameters set the number of structures to dock for it0 
and it1.

DOCKING protocol:
initiosteps=2000;
cool1_steps=2000;
cool2_steps=4000;
cool3_steps=4000;

These parameters set the number of MD steps for hot, cool1, 
cool2, and cool3 stage in it1 step.

Final explicit solvent refinement:
waterrefine=400;

The parameter sets the number of structures to dock for the 
water step.

Analysis and clustering:
clust_meth="RMSD";
clust_cutoff=5;

These parameters set the clustering method and its cutoff.
Parallel jobs:

queue_1="csh";
cns_exe_1="/home/software/bin/cns";
cpunumber_1=50;

These parameters set the local queue command, path of cns 
program, and the number of parallel jobs.

After ensuring that all parameters have been properly defined as 
explained in the previous steps, navigate to the runX directory and 
launch the docking by typing:

> haddock2.2 &>HADDOCK.log &

The docking should start in background and the information 
about the run will be written to the HADDOCK.log file. During 
the docking process, HADDOCK writes docking decoys in PDB 
format and outputs the ranked PDB files in file.cns, file.list and file.
nam files at the end of each docking step in runX/structures/it0, 
runX/structures/it1 and runX/structures/it1/water directories, 
respectively. The file.cns, file.list and file.nam files contain a list  
of generated structures sorted on HADDOCK score. For it1 and 
water stages, the generated structures are automatically analyzed 
and the results are placed in the runX/structures/it1/analysis  
and runX/structures/it1/water/analysis directories, respectively.

Start the Docking
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As described above, the results of automatic analysis for it1 and 
water steps are placed in the analysis directories under each direc-
tory, respectively. Here, we will describe some relevant files con-
taining useful information.

fileroot_ave.pdb and fileroot_X.pdb:

These are the models in PDB format. fileroot_ave.pdb is  
the average structure generated by superimposing the structures of 
docking solutions on the backbone atoms of interface residues, 
while the superimposed models are fileroot_N.pdb (N is a number 
that corresponds to the ranking of the model in the file.list file). 
The interface residues are automatically determined from an analy-
sis of all generated models. Note that the average model might not 
be of much relevance in cases where very different solutions are 
sampled.

fileroot_rmsd.disp:

This file contains the pairwise RMSD matrix calculated over all 
models. The RMSD calculated here is the ligand interface RMSD, 
i.e., the structures are fitted on backbone atoms of interface resi-
dues of the first molecule and the RMSD is calculated on the inter-
face backbone atoms of the second molecule. This file is used as 
input for the RMSD clustering. If the clustering method defined in 
run.cns is FCC (fraction of common contacts) instead, the name of 
this file will become fileroot_fcc.disp. and contain the fraction of 
common contacts between models [30].

cluster.out:

The file contains the list of clusters generated based on the 
matrix in the fileroot_rmsd.disp or fileroot_fcc.disp file, depending 
on the clustering method used. The clusters are numbered accord-
ing to the size of the cluster, e.g., the largest cluster is cluster 1. 
The cluster.out file is used as input for analysis of clusters (ana_
cluster.csh) described below.

energies.disp, edesolv.disp and ene-reside.
disp:

These files contain various energy terms. The bonded and 
nonbonded energies and buried surface area for each structure are 
written to energies.disp, together with the average values over the 
ensemble. The empirical desolvation energies are contained in 
edesolv.disp. The ene-residue.disp file lists the per-residue inter-
molecular energies for all interface residues.

hbonds.disp, ana_hbonds.lis and nbcontacts.
disp, ana_nbcontacts.lis:

The hbonds.disp file contains the intermolecular hydrogen 
bonds for each model, while the ana_hbonds.lis file lists all 
hydrogen bonds with their occurrence and average distance. 

3.4.3  Analysis

Automatic Analysis
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Similar information for intermolecular hydrophobic contacts is 
provided in nbcontacts.disp and ana_nbcontacts.lis.

geom.disp:

The file contains the averaged deviations from ideal covalent 
geometry (bonds, angles, impropers, and dihedrals) for each struc-
ture and averaged over all structures.

noe.disp:

The file contains the number of distance restraints violations 
per structure and averaged over the ensemble over all distance 
restraint classes and for each class (unambiguous, ambiguous, 
hbonds). Similar files are generated for dihedral angle restraints 
(dihedrals.disp), residual dipolar coupling restraints (sani.disp), 
intervector projection angle restraints (vean.disp), diffusion anisot-
ropy restraints (dani.disp), and pseudo contact shifts restraints 
(pcs.disp).

ana_XXX.lis:

These files report restraint violations over the ensemble of 
models, giving the number of times various restraints are violated, 
the average distance, and the violation per restraint. The XXX can 
be dihed_viol, dist_viol_all, hbond_viol, noe_viol_all, noe_viol_
ambig, and noe_viol_unambig.

Besides the automatic analysis, the user should also perform man-
ual analysis of the models and clusters. For this purpose, a number 
of scripts are provided in the runX/tools directory.

	 1.	Collecting model statistics using ana_structures.csh: This script 
extracts information from the header of the PDB files such as 
various energy terms, violation statistics, and buried surface 
area and calculates the overall backbone RMSD of each struc-
ture superimposed on the top ranking model. To run it type:
>$HADDOCKTOOLS/ana_structures.csh

in the runX/structures/it1 or runX/structures/it1/water 
directory.
It generates a number of “file.nam_XXX” and “structures_
XXX-sorted.stat” files (XXX is energy term). The “file.nam_
XXX” file contains the values of the respective energy (or 
other) term XXX for all structures. All of these terms are com-
bined into one file and sorted in different ways, generating the 
corresponding “structures_XXX-sorted.stat” files. Of these, 
structures_haddock-sorted.stat is usually the most important, 
which corresponds to the HADDOCK score ranking.
Relationships between these energy terms can be checked by 
plotting. For this purpose the make_ene-rmsd_graph.csh script 

Manual Analysis
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is provided. For example, the user can make a plot of the 
HADDOCK score as a function of the RMSD:
> $HADDOCKTOOLS/make_ene-rmsd_graph.csh 3 2 
structures_haddock-sorted.stat

It will generate a ene_rmsd.xmgr file in xmgr format which can 
be displayed with xmgr or xmgrace:
> xmgrace ene_rmsd.xmgr

	 2.	RMSD clustering using cluster_struc: This program is used in 
HADDOCK to perform clustering based on RMSDs. In the 
process of automatic analysis, if RMSD clustering was defined 
in run.cns, it has been run automatically in each analysis direc-
tory. However, the user can run it again to try different cluster-
ing cutoffs depending on the complex studied. It takes the 
fileroot_rmsd.disp file as input:
> $HADDOCKTOOLS/cluster_struc [-f] fileroot_
rmsd.disp cutoff min_cluster_size>cluster.
out

Here, the -f is an option for full linkage clustering algorithm 
(not used by default), the cutoff is the RMSD cutoff used to 
determine if two structures belong in the same cluster, and 
min_cluster_size is the minimum number of models to define 
a cluster.
The output in the cluster.out file looks like:
Cluster 1 -> 2 4 5 9 11 12 14 20 121 127 129 
141 145 156 170
Cluster 2 -> 1 48 51 56 58 93 96 139 161 164 
171 181 187
Cluster 3 -> 36 7 37 49 112 148

The numbering of the clusters is based on the size of the clus-
ter, and the numbering of the structures corresponds to the 
position of the structure in the file.list file. The first structure 
of each cluster corresponds to the cluster center and the other 
structures are sorted according to their index.

	 3.	FCC clustering using cluster_fcc.py: This Python script is used 
to perform clustering based on the fraction of common con-
tacts (FCC) if FCC clustering was defined in run.cns. FCC is 
an alternative metric to measure the structural similarity 
between two docking models, based on the network of resi-
due-residue interactions at the interface of the models. As for 
RMSD clustering, the user can choose to run it again to try 
different clustering cutoffs depending on the complex studied. 
It takes the fileroot_fcc.disp file as input:
> $HADDOCKTOOLS/cluster_fcc.py fileroot_fcc.
disp cutoff -c min_cluster_size > cluster.out
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where cutoff is the FCC cutoff used to determine if two 
structures belong to the same cluster, and min_cluster_size is 
the minimum number of models to define a cluster.

	 4.	Analysis of clusters using ana_cluster.csh: The ana_clusters.csh 
script calculates various statistics on a per cluster level. It takes 
the cluster.out file as input. To run it type:
>$HADDOCKTOOLS/ana_clusters.csh [-best #] 
analysis/cluster.out

in the runX/structures/it1 or runX/structures/it1/water 
directory. The -best # is an optional argument to generate 
additional files with calculation only on the best # structures of 
a cluster, e.g., the top four structures of a cluster sorted on 
their HADDOCK score as done by default by the HADDOCK 
web server; this allows removing the dependency of the calcu-
lated averages on size of the various clusters.
Like the output of the ana_structures.csh script, the ana_
clusters.csh script also generates a number of files containing 
values of different energy terms XXX but over models belong-
ing to the same cluster (clustX), e.g., file.nam_clustX_XXX 
files, based on the list of models for each cluster stored in the 
file.nam_clustX files. The script also calculates averages of vari-
ous energy terms for each cluster, which can be found in the 
various cluster_XXX.txt files. All these are combined and sorted 
in various ways in clusters_XXX-sorted.stat files. If the option 
“–best #” is used, additional files will be created containing the 
average values over the best # structures of each cluster, i.e., 
file.nam_clustX_best#, cluster_XXX.txt_best# and clusters_
XXX-sorted.stat_best# files. Of all these files, clusters_had-
dock-sorted.stat and clusters_haddock-sorted.stat_best# are 
usually the most relevant.

	 5.	Rerunning automatic analysis on the basis of clusters: After hav-
ing performed the cluster-based analysis, it is possible to rerun 
the HADDOCK automatic analysis for a given cluster. For this 
the user needs to create cluster-specific files (e.g., file.cns_
clustX_best#, file.list_clustX_best#, and file.nam_clustX_best#) 
and directory (e.g., analysis_clustX_best#). To simplify this 
process, the make_links.csh script is provided. To run it type:
>$HADDOCKTOOLS/make_links.csh clustX_best#

This will automatically move the original file.cns, file.list and 
file.nam files and analysis directory to new files and directory 
by adding a suffix _all, and then make links to cluster-specific 
files and directory, i.e.,
file.cns    -> file.cns_clustX_best#
file.list    -> file.list_clustX_best#
file.nam    -> file.nam_clustX_best#
analysis    -> analysis_clustX_best#
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To rerun the analysis, go back to the runX directory and restart 
HADDOCK:
> haddock2.2

Once finished, the user will find a new directory analysis_
clustX_best# that contains cluster-specific result files described 
in Subheading “Automatic Analysis.”

Following the protocol described above, we performed unbound/
unbound docking for six protein-peptide complexes from the 
protein-peptide benchmark [11], using a combination of ideal 
peptide conformations and MD cluster representatives. These six 
complexes (Table 1) correspond to two easy, two medium, and two 
hard docking cases (based on the classification of Trellet et al. [9]). 
The length of the peptides in these systems varies from 6 to 13 
amino acids, while the proteins are much larger, varying from 74 
to 214 residues.

We performed the docking using both the original three con-
formations (alpha-helix, polyproline-II, and extended) protocol 
(regular protocol) [9] and by adding 30 additional conformations 
sampled in MD simulations as described in this chapter (MD-based 
protocol). To assess the performance of the docking, the interface 
RMSD measure from the community-wide experiment CAPRI 
(Critical Assessment of PRedicted Interactions) [31, 32] is used as 
criteria, which is calculated on interface residues by superimposing 
the docking solutions to the crystal structure of bound complex. In 
the case of protein-peptide complexes, in CAPRI a docking solu-
tion is considered acceptable if its interface RMSD is less than 2 Å.

We summarized in Table 2, for both the regular protocol and 
the current MD-based protocol, the number of acceptable models 
out of the 400 water-refined models, together with the rank of the 
first acceptable model and the first acceptable cluster in the list of 
models or clusters sorted on HADDOCK score. This allows us to 
compare the docking performance of both protocols. For the easy 
cases, 1DDV and 1LVM, the MD-based protocol generated less 
acceptable models. This is due to the “dilution” problem men-
tioned above: with a larger number of starting conformations, only 
few will lead to acceptable models and accordingly the total number 
of acceptable models is expected to decrease depending on the 
information used to drive the docking. On the other hand, when 
large conformational changes are taking place, it seems that the 
MD-based protocol does improve the number of acceptable mod-
els (1CZY and 1NX1) and the ranking. However, both protocols 
fail for two cases, for long peptides (11 and 13 amino acids, for 
1D4T and 1HC9, respectively), with rather large conformational 
changes. 1HC9 is especially challenging since the peptide forms a 
b-hairpin conformation in its bound form that is not sampled  
in the starting models. This clearly illustrates the challenges of 

3.5  Case Studies
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protein-peptide docking. The best models for each case are shown 
in Fig. 2, superimposed onto the reference crystal structure.

In conclusion, the presented results, although taken from  
a limited number of cases, seem to indicate that the presented 
MD-based protocol is better at generating acceptable models with 
HADDOCK. This was however for an ideal case where the bind-
ing site on the receptor is well defined. Lack of proper information, 
high-flexibility, and large conformational changes still remain 
major challenges to be addressed in protein-peptide interaction 
modeling.

Table 2 
Comparison of (A) unbound/unbound docking performance between the original three-conformations 
protocol and the MD-based protocol presented in this chapter and (B) interface RMSD of the best and 
first acceptable model using the MD-based protocol

(A)

Case 
difficulty

PDB ID 
complex

Number of acceptablea 
models

Rankb of first 
acceptable model

Rankb of first 
acceptable clusterc

Regular 
protocol

MD-based 
protocol

Regular 
protocol

MD-based 
protocol

Regular 
protocol

MD-based 
protocol

Easy 1DDV 39 30 11 3 5 1
1LVM 176 92 1 1 1 1

Medium 1CZY 74 175 1 1 1 1
1D4T 0 0 NA NA NA NA

Hard 1HC9 0 0 NA NA NA NA
1NX1 58 62 6 3 3 2

(B)

Case difficulty PDB ID complex i-RMSD (Å)/rank  
of best model (Å)

i-RMSD (Å)/rank of 
first acceptablea model

Easy 1DDV 1.74/95 1.96/3
1LVM 1.26/40 1.64/1

Medium 1CZY 0.93/42 1.31/1
1D4T 2.31/3 NA

Difficult 1HC9 4.42/131 NA
1NX1 1.28/43 1.59/3

The original protocol [9] uses three peptide conformations (alpha-helix, polyproline-II, and extended), while 30 addi-
tional conformations sampled in MD simulations were added in the MD-based protocol. Both protocols output 400 
docking models at the end of the HADDOCK process
aA model is defined as acceptable if its interface RMSD (i-RMSD) from the reference is less than 2 Å according to the 
criteria of CAPRI. The i-RMSD is calculated on interface backbone atoms of docking models superimposed onto the 
crystal structure
bThe ranking of the first acceptable model/cluster is the position of the first acceptable model/cluster in the list of 
models/clusters sorted on HADDOCK score
cA cluster is defined as acceptable when at least one model is acceptable within the top four models
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