
109

Ora Schueler-Furman and Nir London (eds.), Modeling Peptide-Protein Interactions: Methods and Protocols, Methods in Molecular
Biology, vol. 1561, DOI 10.1007/978-1-4939-6798-8_8, © Springer Science+Business Media LLC 2017

Chapter 8

Information-Driven, Ensemble Flexible Peptide Docking
Using HADDOCK

Cunliang Geng*, Siddarth Narasimhan*, João P.G.L.M. Rodrigues,
and Alexandre M.J.J. Bonvin

Abstract

Modeling protein-peptide interactions remains a significant challenge for docking programs due to the
inherent highly flexible nature of peptides, which often adopt different conformations whether in their free
or bound forms. We present here a protocol consisting of a hybrid approach, combining the most fre-
quently found peptide conformations in complexes with representative conformations taken from molecu-
lar dynamics simulations of the free peptide. This approach intends to broaden the range of conformations
sampled during docking. The resulting ensemble of conformations is used as a starting point for informa-
tion-driven flexible docking with HADDOCK. We demonstrate the performance of this protocol on six
cases of increasing difficulty, taken from a protein-peptide benchmark set. In each case, we use knowledge
of the binding site on the receptor to drive the docking process. In the majority of cases where MD con-
formations are added to the starting ensemble for docking, we observe an improvement in the quality of
the resulting models.

Key words Protein-peptide docking, Flexibility, Information-driven docking, Ensemble docking,
HADDOCK, Molecular dynamics simulations

1  Introduction

Peptides are receiving an increasing level of attention from the
wider biological and pharmaceutical communities owing to an
increase in the number of peptide-based drugs and therapeutics
entering the market [1, 2]. Despite their importance, there is much
to be learned about the structural and dynamical properties of
peptides, in particular in the context of their interactions with
other biomolecules. The binding partner that peptides associate
with often plays an important role in restricting/defining their

Electronic supplementary material: The online version of this chapter (doi:10.1007/978-1-4939-6798-8_8) contains
supplementary material, which is available to authorized users.

*These authors contributed equally to this work.

http://dx.doi.org/10.1007/978-1-4939-6798-8_8

110

conformational space. Many peptides are known to exist in an
intrinsically disordered state, meaning they lack a well-defined and
stable folded form on the time scales that are available to experi-
mental methods in structural biology. As a consequence, the struc-
tures of peptides are mostly known in the context of their protein
receptors, which adds to the challenge of predicting in silico, the
structure of these interactions.

The two most common thermodynamic models often used to
describe biomolecular recognition and binding processes are
induced fit [3, 4] and conformational selection [5–7]. These mod-
els were formulated based on observations from classical titration-
like experiments, aimed at studying the manner in which an
estimated equilibrium is achieved upon addition of a binding part-
ner [8]. From a structural perspective, the induced fit model can be
explained as a binding mechanism where the partners induce con-
formational changes on each other during complex formation. The
conformational selection mechanism, on the other hand, predicts
bound conformations are sampled naturally by the free molecules,
i.e., without induction by the partner, and that partners merely
select the most favorable conformation for binding (minor struc-
tural changes, such as side-chain re-orientation, may still occur
upon binding).

A combination of the aforementioned mechanisms has been
exploited previously to design a protocol for information-driven
protein-peptide docking using HADDOCK [9]. Briefly, this proto-
col uses an ensemble of starting conformations for the peptide
(alpha-helix, polyproline-II, and extended) that represent “ideal”
conformational states of a given peptide and have been shown to
feature in a large fraction of the protein-peptide interactions depos-
ited in the Protein Data Bank (PDB) [10]. This ensemble is then
docked onto the receptor structure through restraints-guided rigid-
body energy minimization, and then a fraction of the models is fur-
ther optimized in successive flexible refinement stages. The flexibility
of the peptide is also increased compared to default HADDOCK
settings. The scoring function of HADDOCK selects, at each stage,
the most favored conformations, i.e., those showing the most favor-
able interaction with the receptor based on a set of energy criteria.
This protocol thus computationally approximates a combination of
the induced fit and conformational selection models.

In the protocol presented here, we suggest a way to further
improve our published protein-peptide docking protocol of
HADDOCK by focusing more on the fact that peptides are inher-
ently flexible. In addition to the three most common bound con-
formations, we use short MD simulations of the peptides, starting
from the three conformations mentioned above, to obtain more
detailed information on the conformational landscape of the free
peptide. Structures selected from the MD simulations that corre-
spond to different preferred conformational states of the free

Cunliang Geng et al.

111

peptide supplement the three ideal structures to perform ensemble
docking. Thereby, we aim at improving the conformational selection
scheme in the rigid body docking stage by providing more plausi-
ble conformations of the peptide and subsequently improving the
odds of success of the refinement stages. We illustrate this extended
ensemble approach with cases from the benchmark of protein-
peptide docking benchmark [11] and compare its performance
with the standard three-conformation protocol we previously pro-
posed [9].

2  Materials

This protocol was designed and tested on a Linux cluster. Given
the computational cost of molecular dynamics (MD) simulations,
we recommend the use of multiple CPUs and/or GPUs. Local
installation/compilation of the following programs is necessary,
most of which are available for GNU/Linux and OS X operating
systems:

	 1.	PyMOL: PyMOL [12] is a 3D molecular structure visualization
program, which can be obtained from http://pymol.org/. We
use it here to generate the ideal peptide conformations (alpha-
helix, polyproline-II, and extended).

	 2.	GROMACS: GROMACS [13] is a molecular dynamics
simulation program that includes a number of useful tools for
analysis. The current protocol was run using version 5.0.4.
Note that commands for versions 4.x and earlier might differ
from those used here. The software is available free of charge
at http://www.gromacs.org/

	 3.	Grace: Grace (xmgrace) is a 2D plotting software, which
provides a quick way to visualize plots generated during the
execution of this protocol. It is available free of charge at
http://plasma-gate.weizmann.ac.il/Grace

	 4.	MolProbity: MolProbity [14] is a structure validation service
that we use to assign the protonation states of Histidine resi-
dues. It can be downloaded from its GitHub repository:
https://github.com/rlabduke/MolProbity. Note that other
software/approaches can be used to define the charge state of
Histidine residues.

	 5.	HADDOCK v2.2: HADDOCK [15, 16] can be obtained free
of charge for noncommercial users by filling and returning the
license form available from http://www.bonvinlab.org/
software/haddock2.2/download.html. Installation instructions
can be found at http://www.bonvinlab.org/software/
haddock2.2/installation.html. Moreover, the software can be
used via a user-friendly web server [17, 18]. This protocol,
however, makes use of a locally installed version of HADDOCK.

2.1  Software
Requirements

Protein-Peptide HADDOCKing

http://pymol.org/
http://www.gromacs.org/
http://plasma-gate.weizmann.ac.il/Grace
https://github.com/rlabduke/MolProbity#_blank
http://www.bonvinlab.org/software/haddock2.2/download.html
http://www.bonvinlab.org/software/haddock2.2/download.html
http://www.bonvinlab.org/software/haddock2.2/installation.html
http://www.bonvinlab.org/software/haddock2.2/installation.html

112

	6.	 Crystallography and NMR System (CNS) v1.3: CNS [19, 20] is
the engine used for energy minimization and molecular dynam-
ics simulations in HADDOCK. Therefore, it is a main require-
ment for running HADDOCK. Note that HADDOCK v2.2 is
designed to work with CNS v1.3, but recompiled using
additional source code provided together with HADDOCK
(see the cns1.3 directory in the HADDOCK distribution).
The program is freely available for nonprofit users from http://
cns-online.org/v1.3/

	7.	 NACCESS: NACCESS is a useful tool that can be used to cal-
culate the solvent accessible surface area of a molecule from a
PDB structure file for both proteins and nucleic acids. It is free
for academic users and can be obtained from http://www.
bioinf.manchester.ac.uk/naccess/. A free alternative can be
obtained from http://freesasa.github.io/ [21].

	8.	 ProFit: ProFit is a protein least squares fitting program with
many powerful features including flexible selection of fitting
zones and atoms, calculation of RMS over different zones or
atoms, etc. It can be obtained free of charge for academic users
at http://www.bioinf.org.uk/software

The structure of the receptor, preferably in the bound conforma-
tion, should be available (e.g., from the PDB, or via homology
modelling) and the peptide sequence should be known. Addi
tionally, for information-driven docking, experimental data per-
taining to the interaction between the protein and peptide should
be available to define the binding site on the receptor. The more
information is available, the higher the chances for correct result-
ing models of the protein-peptide complex. Such information can
be obtained from a variety of experimental techniques such as
mutagenesis, chemical cross-linking, NMR chemical shift pertur-
bations, etc. [22–24], or bioinformatics predictions (e.g., CPORT
[25, 26]), all of which can be used to drive the docking in
HADDOCK.

3  Methods

This protocol is divided into five major stages (summarized in
Fig. 1):

	 1.	Building the peptide in three extreme conformations.
	 2.	Running MD simulations (50 ns) in explicit water for the pep-

tide conformations built in step 1.
	 3.	Analysis of the MD trajectories by Dihedral Principal Com

ponent Analysis (dPCA) and selection of the 30 most popu-
lated conformational states of the peptides.

2.2  Data
Requirements

Cunliang Geng et al.

http://cns-online.org/v1.3/
http://cns-online.org/v1.3/
http://www.bioinf.manchester.ac.uk/naccess/
http://www.bioinf.manchester.ac.uk/naccess/
http://freesasa.github.io/
http://www.bioinf.org.uk/software

113

	 4.	Protein-peptide docking from an ensemble of 30 structures
obtained from MD plus the three extreme conformations built
in step 1, including available information on the binding sites,
using HADDOCK 2.2.

	 5.	Analysis of the docking solutions to select the best models.
To execute this protocol, the user is required to have working

knowledge of a command-line interface and, preferably, experience
with running MD simulations using GROMACS. In the following
sections, commands are indicated in Courier font, and start with a
“>” sign (note that here a command that should be given as a
single line—i.e., indicated by a single “>,” could span multiple
lines). Text between < > in a command should be replaced by the
proper selection/value.

For the sake of demonstration, unless otherwise specified, we
will illustrate all the following steps using the complex of the TRAF
domain of TRAF2 with the LMP1 binding peptide (PDB ID:
1CZY, see Table 1). All the necessary information to run this exam-
ple case is provided in the supplementary material.

As described in our original protein-peptide docking protocol [9]
using the HADDOCK webserver, we use the build_seq.py script
written by Robert L. Campbell to generate the starting structures
of the peptides for MD simulations in PyMOL. The following
steps describe this procedure, with steps 3 and 4 describing the
procedure to cap residues at the N- and C-termini. GROMACS
can perform terminal capping during topology generation,

3.1  Generating
Peptide Conformations
for MD Simulations

Fig. 1 Schematic overview of the workflow described in our protocol

Protein-Peptide HADDOCKing

114

however, if one uses the AMBER99SB-ILDN force field [27]
(which we will use in this protocol), it is necessary to manually add
standard capping residues Acetyl and N-Methyl (abbreviated as
ACE and NME). These steps can be ignored if the peptide has
charged termini.

	 1.	Start PyMOL and load the build_seq.py script from the
PyMOL command line interface by typing:
> run build_seq.py

	 2.	Build the structure:
> build_seq <peptide_name>, <peptide_seq>,
ss=<secondary_structure: helix, beta, or
polypro>

For example, to create an alpha-helical conformation of the pep-
tide of the case 1CZY (peptide sequence: PQQATDD), type:
> build_seq alpha-peptide, PQQATDD, ss=helix

	 3.	To add the capping residue to the N-terminus, first select the
Nitrogen atom of the first residue (numbered as 2 by default in
PyMOL) by typing the following command:
> select pk1, name n and resi 2

Alternatively, simply select the proper atom by clicking on it
with the mouse in “editing mode,” for which using a stick
representation can be useful. Then select from the PyMOL
menu:
“Build > Residue > Acetyl”

	 4.	To add the capping residue to the C-terminus, select the
Carbonyl carbon atom of the last residue by typing the follow-
ing command (if you have followed the previous step, ensure
that you have deselected all atoms before proceeding):
> select pk1, name c and resi <residue_number>

Table 1
Statistics of the six protein-peptide complexes used in the case study

Case difficulty
PDB ID
complex

PDB ID
free
protein

Number
of protein
residues

Number
of peptide
residues RMSDbound/extended (Å)

Easy (RMSDbound/extended
≤4 Å)

1DDV 1I2H 104 6 2.58
1LVM 1LVB 214 6 1.54

Medium (4 Å <
RMSDbound/extended ≤ 8 Å)

1CZY 1CZZ 168 7 1.94
1D4T 1D1Z 101 11 3.27

Hard (RMSDbound/extended
>8 Å)

1HC9 2ABX 74 13 11.04
1NX1 1ALV 173 11 6.11

The classification of the case difficulty is based on Trellet et al. [9]

Cunliang Geng et al.

115

Alternatively, simply select the proper atom by clicking on it
with the mouse. Then select from the PyMOL menu:
“Build > Residue > N-Methyl”

	 5.	Save the molecule by typing:
> save <peptide_name>

Or you could do it by clicking “File > Save Molecule”.
Repeat these steps to create all three starting conformations.

This protocol has been designed using the AMBER99SB-ILDN
force field with periodic boundary conditions. To facilitate the
combined analysis of the MD trajectories originating from differ-
ent peptide conformations, it is recommended to make sure that
every simulation contains the same number of water molecules. An
example of a MD parameters file (*.mdp) suited for use with the
AMBER99SB-ILDN force field is provided in the supplementary
material. The commands described in the following subsections
can also be performed by running the script automd.sh provided in
the supplementary material (see the README section at the top
of the script for instructions).

We will perform the MD simulation in a rhombic dodecahedral
box, to minimize the volume of the simulation cell. The dimen-
sions of the box should be selected carefully to avoid interactions
between neighboring periodic images. To determine the appropri-
ate box dimensions, follow these steps:

	 1.	Use the peptide in its extended conformation to determine the
optimal box dimensions, considering that this represents the
conformation with longest end-to-end distance.

	 2.	Prepare the topology for the extended peptide:
> gmx pdb2gmx -f protein.pdb -o protein.gro
-ignh -ff amber99sb-ildn -water tip3p

	 3.	Prepare a box that accommodates the peptide in its center and
ensure that the minimum distance from the box edge to the
peptide is at least half the nonbonded cutoff (as per the mini-
mum image convention):
> gmx editconf -f protein.pdb -o protein_
pbc.gro -bt dodecahedron -d 1.0

	 4.	Note the “new box vectors” value in the last lines of the out-
put. This is the box vector that you must use with the “-box”
flag during box preparation for the other peptides. An example
is shown:
system size : 2.108 2.098 0.985 (nm)
diameter : 2.786(nm)
center : 2.581 0.469 1.224 (nm)
box vectors : 2.109 2.098 0.985 (nm)
box angles : 90.00 90.00 90.00 (degrees)

3.2  System
Preparation
for Running the MD
Simulations
with GROMACS 5.0.4

3.2.1  Determination
of the Optimal Box
Dimensions

Protein-Peptide HADDOCKing

116

box volume : 4.36 (nm^3)
shift : 1.009 3.120 0.468 (nm)
new center : 3.589 3.589 1.692 (nm)
new box vectors : 4.786 4.786 4.786 (nm)
new box angles : 60.00 60.00 90.00 (degrees)
new box volume : 77.51 (nm^3)

Given the same box dimensions, the three peptides will accommo-
date a slightly different number of water molecules (to fill the box
completely), depending on a variety of factors including surface
areas and volumes. Therefore, it is necessary to determine this and
use the smallest number of water molecules among the three sys-
tems (again to facilitate the combined analysis later—but not per se
a requirement in principle). To determine this number of water
molecules that the simulation system can accommodate, follow
these steps:

	 1.	Prepare the topology for the extended peptide:
> gmx pdb2gmx -f protein.pdb -o protein.gro
-ignh -ff amber99sb-ildn -water tip3p

	 2.	Prepare the box, defining the box vector with the value
obtained in Subheading 3.2.1:
>gmx editconf -f protein.pdb -o protein_pbc.
gro -bt dodecahedron -box 4.786

	 3.	Run a first energy minimization in vacuum:
>gmx grompp -f vacuum.mdp -c protein_pbc.
gro -p topol.top -o protein_vac.tpr
> gmx mdrun -v –deffnm protein_vac

	 4.	Solvate the system:
>gmx solvate -cp protein_vac.gro -cs spc216.
gro -p topol.top -o protein_solvated.gro

	 5.	Note the number of water molecules, referred to as “SOL
molecules” that were added from the output:
Output configuration contains 7605 atoms in
2508 residues
Volume : 77.518 (nm^3)
Density : 983.104 (g/l)
Number of SOL molecules: 2499

	 6.	Repeat the above steps for all the peptides in all the conforma-
tions and note the lowest number of the three cases. Solvate
the other two peptides (which are not the lowest) by using the
“-maxsol” flag to set the optimal number of water molecules:
> gmx solvate -cp protein_vac.gro -cs spc216.gro
-p topol.top -o protein_solvated.gro -maxsol
2499

3.2.2  Determination
of the Optimal Number
of Water Molecules

Cunliang Geng et al.

117

The following steps prepare the system for the production MD
simulation. They must be repeated for all three peptide conforma-
tions. Since the initial energy minimization in vacuum and solva-
tion has been done in the previous optimization steps, we can
proceed with neutralizing the electrical charge of the system. Note
that the various parameter files (.mdp) are provided in the supple-
mentary material.

	 1.	Add counter ions to the system to neutralize its electrical
charge:
> gmx grompp -f ions.mdp -c protein_solvated.
gro -p topol.top -o protein_pp_ionize.tpr
> gmx genion -s protein_pp_ionize.tpr -p
topol.top -o protein_ionized.gro –neutral

If and when prompted to “Select a continuous group of sol-
vent molecules,” choose the group “SOL” or “non-Protein”
or “Water” as they are all the same in our system.

	 2.	Run energy minimization:
> gmx grompp -f ions.mdp -c protein_ionized.
gro -p topol.top -o protein_neutral_relaxed.
tpr
> gmx mdrun -v -deffnm protein_neutral_relaxed

	 3.	Run a first equilibration under NVT conditions (constant
volume):
> gmx grompp -f nvt.mdp -c protein_neutral_
relaxed.gro -p topol.top -o protein_nvt.tpr
> gmx mdrun -v -deffnm protein_nvt

	 4.	Continue the equilibration under NPT conditions (constant
pressure):
> gmx grompp -f npt.mdp -c protein_nvt.gro
-p topol.top -o protein_npt.tpr
> gmx mdrun -v -deffnm protein_npt -nt 48
-ntmpi 12 -pin on

	 5.	Progressively release the position restraints during successive
short MD runs:
> sed -e 's/1000 1000 1000/ 100 100
100/g' posre.itp > tmp.itp && mv tmp.itp
posre.itp
> gmx grompp -f npt.mdp -c protein_npt.gro
-p topol.top -o protein_npt_progrel100.tpr
> gmx mdrun -v -deffnm protein_npt_progrel100
> sed -e 's/100 100 100/ 10 10 10/g' posre.
itp > tmp.itp && mv tmp.itp posre.itp
> gmx grompp -f npt.mdp -c protein_npt_progrel100.
gro -p topol.top -o protein_npt_progrel10.tpr
> gmx mdrun -v -deffnm protein_npt_progrel10

3.2.3  System Preparation
and Production MD

Protein-Peptide HADDOCKing

118

	 6.	Run a final short unrestrained equilibration MD step:
> gmx grompp -f unrestrained.mdp -c protein_
npt_progrel10.gro -p topol.top -o protein_
all_set.tpr
> gmx mdrun -v -deffnm protein_all_set

	 7.	Run the production MD simulation:
> gmx grompp -f production.mdp -c protein_
all_set.gro -p topol.top -o protein_md.tpr
> gmx mdrun -v -deffnm protein_md

Please bear in mind that in all the steps involving energy mini-
mization and MD simulations (which start with gmx mdrun),
it is likely that GROMACS might use all of the processor(s)
available to the user. It is possible that gmx mdrun may then
give error messages if the system cannot be parallelized with
the given conditions. In such cases, the user must set the num-
ber of threads and the PME ranks by using the -nt and -ntmpi
flags with the gmx mdrun command. If one wishes to opti-
mize parallelization, GROMACS offers a utility (gmx tune_
pme) to find the optimal PME conditions for a given number
of parallel processes (see the online GROMACS manual
pages for more information, http://manual.gromacs.org/
archive/5.0.4/programs/gmx-tune_pme.html).

The protocol to perform Dihedral PCA was adapted from
the GROMACS documentation (http://www.gromacs.org/
Documentation/How-tos/Dihedral_PCA). It consists of the fol-
lowing steps:

	 1.	Concatenate the various trajectories (three in this particular
case):
> gmx trjcat -f <path_trajectory_1> <path_
trajectory_2> <path_trajectory_3> -o all_
traj.xtc –settime

Ensure that you set the proper start time for the trajectories,
which in our case would be 0, 50,000, and 100,000 in picosec-
onds (ps). This will not be done automatically. Hence, we use
the -settime flag.

	 2.	Make an index file containing all residues except the capping
residues:
> gmx make_ndx -f protein_md.tpr -o index.
ndx

Follow the interactive menu to isolate the indices of the pep-
tide residues without the capping groups.

	 3.	Remove the capping groups from the trajectory:
> gmx trjconv -f all_traj.xtc -s protein_
md.tpr -n index.ndx -o protein_uncapped.xtc

3.3  Clustering
by Dihedral Principal
Component Analysis
(dPCA)

Cunliang Geng et al.

http://manual.gromacs.org/archive/5.0.4/programs/gmx-tune_pme.html
http://manual.gromacs.org/archive/5.0.4/programs/gmx-tune_pme.html
http://www.gromacs.org/Documentation/How-tos/Dihedral_PCA
http://www.gromacs.org/Documentation/How-tos/Dihedral_PCA

119

Choose the index group corresponding to the peptide residues
without the capping groups that were made in the previous
step.

	 4.	Create a topology for the peptide that excludes the capping
residues:
> gmx convert-tpr -s protein_md.tpr -n index.
ndx -o protein_uncapped.tpr

Select the same index group as the previous step.
	 5.	 Now create a topology containing only the backbone atoms of

all residues and also a trajectory file with the corresponding
coordinates:
> gmx convert-tpr -s protein_uncapped.tpr
-o protein_bb.tpr
> gmx trjconv -f protein_uncapped.xtc -s
protein_uncapped -o protein_bb.xtc

When prompted, in both cases, choose the index group titled
“Backbone,” which by default would be option 4.

	 6.	Create an index group for the backbone dihedral angles by
creating an angle index file:
> gmx mk_angndx -s protein_bb.tpr -type dihedral
-o dangle.ndx

	 7.	Open dangle.ndx with any text editor like, for example, vim or
nano, and identify the index groups that correspond to the
atoms forming the φ and ψ angles. Every four consecutive
atom indices present in the index groups in the dangle.ndx file
correspond to a single dihedral angle. For example, the first
index group (Titled as [Phi=180.0_2_10.46]) in the text box
shown below (which is a sample of dangle.ndx file), the atom
indices 2 3 4 5 correspond to the first dihedral angle and 5 6 7
8 correspond to the second dihedral angle, and so on. The
atoms that contribute to the φ angles are Coi-Ni+1-Cαi+1-Coi+1
and the ψ angles are Ni-Cαi-Coi-Ni+1. When your topology
contains only the backbone atoms, like in our case here, the φ
angles usually have the atom indices that start with “3,” which
represents the first backbone carbonyl carbon atom, and the ψ
angles usually have atom indices that start with “1” that repre-
sents the first backbone nitrogen atom. In the example below,
the atom indices that correspond to the φ angles are high-
lighted in bold and the ones that correspond to the ψ angles
are highlighted in Italic:
[Phi=180.0_2_10.46]
2 3 4 5 5 6 7 8 8 9 10 11
11 12 13 14 14 15 16 17 17 18 19 20
[Phi=0.0_2_1.13]
3 4 5 6 6 7 8 9 9 10 11 12
12 13 14 15 15 16 17 18 18 19 20 21

Protein-Peptide HADDOCKing

120

[Phi=0.0_3_1.76]
3 4 5 6 6 7 8 9 9 10 11 12
12 13 14 15 15 16 17 18 18 19 20 21
[Phi=180.0_1_1.88]
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19
[Phi=180.0_2_6.61]
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19
[Phi=180.0_3_2.30]
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19

	 8.	Delete all the other index groups and combine the ones that
correspond to φ and ψ angles that were identified, you can also
rename the group name for convenience:
[Psi and Phi]
3 4 5 6 6 7 8 9 9 10 11 12
12 13 14 15 15 16 17 18 18 19 20 21
1 2 3 4 4 5 6 7 7 8 9 10
10 11 12 13 13 14 15 16 16 17 18 19

	 9.	Extract the dihedral angles from the backbone trajectory file:
> gmx angle -f protein_bb.xtc -n dangle.ndx
-or dangle.trr -type dihedral

	10.	Note the number of atom positions that are filled with cos/sin
of the angles:
There are 12 dihedrals. Will fill 8 atom po-
sitions with cos/sin

and create an index file (referred to in the following steps as
“covar.ndx”) containing indices from 1 to the number of posi-
tions that are filled with cos/sin:
[Covar]
1 2 3 4 5 6 7 8

	11.	Make a reference structure for constructing the covariance
matrix using the dihedral angles, you can choose any frame for
the “-e” flag:
> gmx trjconv -f dangle.trr -s protein_
bb.tpr -o resized.gro –n covar.ndx -e 100

	12.	Perform the covariance analysis:
> gmx covar -f dangle.trr -n covar.ndx -ascii
-xpm -nofit -nomwa -noref -nopbc -s resized.
gro

	13.	Since the first two eigenvectors (Principal Components) con-
tain the largest variance in data, we will use them for the analy-
sis by calculating the Potential of Mean Force (PMF) at every

Cunliang Geng et al.

121

time frame and projecting the vectors on each other to obtain
a 2D free energy landscape.
> gmx anaeig -v eigenvec.trr -f dangle.
trr -s resized.gro -first 1 -last 2 -2d
2dproj_1_2.xvg

	14.	Convert the 2D plot into a 3D Gibbs free energy landscape by
Bolzmann invertion:
> gmx sham -f 2dproj_1_2.xvg -notime
-bin bindex-1_2.ndx -lp prob-1_2.xpm -ls
gibbs-1_2.xpm -lsh enthalpy-1_2.xpm -g shamlog-1_2
-lss entropy-1_2.xpm
Any of the *.xpm files can be converted to *.eps using the
GROMACS command “gmx xpm2ps”

	15.	As explained in the introduction of Subheading 3 (see also
Fig. 1), our aim is to obtain 30 representative peptide confor-
mations from the MD simulations. For this, we will use the 30
biggest bins (conformational states) identified by the PCA
analysis. In order to identify the largest bins, check the “sham-
log-1_2.log” file that contains the energy of each bin esti-
mated by the Boltzmann Inversion method (by gmx sham in
the previous step). Therefore, the size of the bin is inversely
proportional to its energy. Bin indices sorted by their energies
are listed after the “Minima sorted after energy” line in the
“shamlog-1_2.log” file (with the lowest energy bin—the
most populated one—having an energy of 0). This part is
shown below where the energies are highlighted in bold and
the bin indices are highlighted in Italic:
...
...
Minima sorted after energy
Minimum 0 at index 249 energy 0.000
Minimum 1 at index 766 energy 0.101
Minimum 2 at index 754 energy 0.884
Minimum 3 at index 918 energy 1.621
Minimum 4 at index 570 energy 1.669
Minimum 5 at index 594 energy 2.533
...
...

Note down the indices of the 30 lowest energy bins (Minimum
0 to 29).

	16.	From the “bindex-1_2.ndx” note down (any) one frame
number from each of the 30 bins whose indices were sought in
the previous step. In all our test cases, the first frame that
is listed under the bin index was used. Samples from the
“bindex-1_2.ndx” are shown below where the first three

Protein-Peptide HADDOCKing

122

structures in the biggest bins: 249, 766, and 570 are shown
and the first frame in these respective bins is highlighted in bold:
...
...
[249]
232
233
235
...
...
[766]
121
122
159
...
...
[570]
141
149
151
...
...

	17.	Extract the selected frames from the combined trajectory.
Please note that you should extract the frames from the trajec-
tory that contains ALL atoms and not just the backbone atoms
that were used to perform PCA. Also, the numbers noted in
the previous steps are the frame numbers. These need to be
multiplied by 50 (time frequency in ps at which coordinates
were saved in the production MD—change this value if you
have modified the save frequency in the parameter files) to
obtain the time stamp. In the following example, we used
frame number 219 as an example:
> gmx trjconv -f protein_nocap.xtc -s protein_
nocap.tpr -dump 10950 -o frame_219.pdb -pbc
mol

When prompted, choose the index group 1, containing all
atoms.
Repeat this step to extract a total of 30 conformations (or less).
We do not recommend using too many conformations for
ensemble docking since it might lead to under-sampling of
each conformation during the docking (a “dilution” problem),
as the number of rigid-body docking models generated in
HADDOCK is fixed.
Steps 9–17 can be automated by using the dpca.sh script that

is given in the supplementary material. Ensure that the filenames
are identical to what has been described in steps 1–8 and the script
should be run in the directory where all the files generated in these
steps are present.

Cunliang Geng et al.

123

We provide here a brief introduction into the various docking and
refinement stages of HADDOCK and its scoring functions. Before
using a locally installed version of HADDOCK, it is recommended
that the user also reads the HADDOCK manual (http://www.
bonvinlab.org/software/haddock2.2/manual.html).

The initial stage of HADDOCK consists of a randomization of the
starting orientations of the various molecules, followed by rigid
body energy minimization (it0). During the randomization stage,
the molecules are separated by a minimum of 25 Å and randomly
rotated around their respective center of mass and translated within
a 10 Å cube. During the following energy minimization, the mol-
ecules are treated as rigid bodies, i.e., all molecular bonds, angles,
and internal rotations around bonds are frozen. The energy func-
tion being minimized contains the interaction restraints and the
intermolecular van der Waals and electrostatics potentials. Typically,
between 1000 (default) and 10,000 models are written to disk at
this stage. The rigid body energy minimization is repeated multiple
times internally (5 by default) with symmetrical solutions being
sampled and minimized and only the best solution based on the
HADDOCK score (see below) being written to disk. Typically, the
top few hundred solutions (by default 200) are selected for further
refinement.

The second stage in HADDOCK consists of a semi-flexible refine-
ment by high-temperature molecular dynamics in torsion angle
space (it1), during which increasing flexibility is introduced in the
interface of the complex. It consists of four stages:

	 1.	High temperature rigid body dynamics (hot).
	 2.	Rigid-body simulated annealing (cool1).
	 3.	Semi-flexible simulated annealing with flexible side-chains at

the interface (cool2).
	 4.	Semi-flexible simulated annealing with fully flexible backbone

and side-chains at the interface (cool3).
During this stage, the interface of the complex model is opti-

mized. The flexible regions are defined by default automatically for
all residues within 5 Å of a partner molecule (the user can, how-
ever, also define these manually). Usually, all the solutions at this
stage are passed to the final refinement stage in explicit solvent.

The last stage is a flexible refinement in explicit solvent (TIP3P
water by default, but DMSO is also supported as a lipid environ-
ment mimic). The models from the previous stage are solvated in
an 8.5 Å solvent shell and further refined using molecular dynam-
ics simulations in Cartesian space, with weak position restraints on
backbone atoms outside the interface, followed by a final energy
minimization.

3.4  Docking
and Scoring

3.4.1  Introduction
to Docking Using
HADDOCK v2.2

Initial Rigid Body Docking
Stage (it0)

Semi-flexible Refinement
Stage (it1)

Explicit Solvent Refinement
Stage (water)

Protein-Peptide HADDOCKing

http://www.bonvinlab.org/software/haddock2.2/manual.html
http://www.bonvinlab.org/software/haddock2.2/manual.html

124

The HADDOCK score is a weighted sum of various energy and
other scoring terms. It is used to rank the models at the various
stages of the docking. The weight of various terms differs for each
stage of the docking process. By default, the HADDOCK score is
calculated as follows (a combination that has been shown to be
successful for various types of systems, from protein-protein to
protein-nucleic acid complexes):

	 it E E E E E0 0 01 0 01 1 0 1 0 0 01:= + + +air vdw elec desolv BSA- 	

	 it E E E E E1 0 1 1 0 1 0 1 0 0 01:= + + +air vdw elec desolv BSA- 	

	 water air vdw elec desolv:E E E E E= + + +0 1 1 0 0 2 1 0 	

where Eair is the ambiguous interaction restraints energy, Evdw is the
intermolecular van der Waals energy described by a 12-6 Lennard-
Jones potential, Eelec is the intermolecular electrostatic energy
described by a Coulomb potential, Edesolv is an empirical desolva-
tion energy term [28], and BSA is the buried surface area in Å2.
The nonbonded energies are calculated using an 8.5 Å cutoff using
the OPLS force field parameters [29]. Additional energy terms can
be included in the scoring function if other restraint types are used.

As described in Subheadings 3.1–3.3, various peptide conforma-
tions have been obtained, either built in ideal conformations, or
through MD simulations followed by clustering by dihedral PCA,
from which we selected 30 representatives. This ensemble of pep-
tide conformations (33 in total) along with the unbound receptor
structure will be used for docking. The following protocol describes
the steps to perform docking using a local version of HADDOCK.
As for the MD part, we use the 1CZY case (see Table 1) as an
example.

Since HADDOCK is an information-driven docking approach, it is
necessary to define information about the putative interfaces (note
that HADDOCK does offer various ab initio docking protocols,
although these will not be described here). For a manual run, this
means generating an ambiguous interaction restraints (AIRs) file
(the webserver will simply take a comma-separated list of residue
numbers). In order to generate AIRs, it is necessary to define active
and passive residues at the interface of each molecule based on
experimental data and/or bioinformatics predictions. In this exam-
ple, we will assume that we know the peptide-binding site on the
receptor—defining it from the known complex as all residues on
the receptor that are within a 5 Å distance from the peptide. This
represents of course an ideal situation. In case there is no available
experimental information about interface residues, various bioin-
formatics predictors, including our webserver CPORT (http://
haddock.science.uu.nl/services/CPORT/), can help predict inter
face residues. HADDOCK distinguishes between active and passive

Scoring Functions
of HADDOCK

3.4.2  Docking Protocol

Defining Ambiguous
Interaction
Restraints (AIRs)

Cunliang Geng et al.

http://haddock.science.uu.nl/services/CPORT/
http://haddock.science.uu.nl/services/CPORT/

125

residues: Active residues must be in the interface (i.e., make
contacts to either passive or active residues of the other molecule),
otherwise an energy penalty will be paid; passive residues, in
contrast, can be part of the interface, but are not penalized if oth-
erwise. While active residues are typically selected based on high-
quality experimental data or bioinformatics predictions, passive
residues can be defined as the surface neighbors of active residues,
or as a user-defined surface patch. In this protocol, we will define
all residues of the peptide as passive. For our example 1CZY, the
protein active residues are:

“41,42,44,60,62,66,67,68,77,114,115,116,117,
120,121,122,123,131,132,133,134,135,136,137,”
and the peptide passive residues:
“1,2,3,4,5,6,7.”
After obtaining the list of active and passive residues for each

molecule, the webserver for generating ambiguous interaction
restraints can be used to generate the AIRs file required for
HADDOCK. It can be found at http://www.bonvinlab.org/soft-
ware/Haddock2.2/generate_air.html. A description of the format
of the various restraints files in HADDOCK can be found in Box 4
of the original HADDOCK server article [17]. In the section
“Active residues for 1st molecule” and “Passive residues for 2nd
molecule,” fill in the 1CZY protein active residues and peptide pas-
sive residues, respectively. In the section “Segid of 1st molecule:”
and “Segid of 2nd molecule:”, specify the segment IDs to use for
each molecule during the docking (typically A and B). Then move
to the bottom of the page, click on “Generate AIR restraints” to
generate AIRs. You should be redirected to a new page that con-
tains all the AIRs. Save this page as a restraint file “restraints.tbl”
and copy it into your working directory. The “restraints.tbl” file
will be used when setting up your new HADDOCK project.

In general, small charge differences can have a strong impact
on the results of the docking. It is therefore advisable to define
the protonation state of Histidine residues prior to docking (if
not, by default Histidines will be considered positively charged).
The HADDOCK webserver can do that automatically, using
MolProbity [14] to guess the most plausible Histidine protonation
states. Here, we provide a Python script that uses the “reduce”
executable of MolProbity to assign the protonation state. Run the
script on the pdb file(s) to determine the protonation states of
Histidines:

> python ./molprobity.py ./protein.pdb

The reduce program will be used to add hydrogen atoms and
perform basic validation checks and optimizations on the protein
structure to generate a temporary new structure. Based on the pres-
ence and location of the hydrogen atoms in a Histidine residue, the
script will determine its protonation state. For each histidine, if

Determining
the Protonation State
of Histidine Residues

Protein-Peptide HADDOCKing

http://www.bonvinlab.org/software/haddock2.2/generate_air.html
http://www.bonvinlab.org/software/haddock2.2/generate_air.html

126

atom HD1 and HE2 exist, the doubly protonated, charged histidine
HIS+ state is assigned, if HD1 exists but not HE2, a singly proton-
ated histidine HISD is assigned, and if HE2 exists but not HD1, a
singly protonated histidine HISE is assigned.

The output of the script is shown below for the unbound form
of 1CZY:

Executing Reduce to assign histidine pro-
tonation states
Input PDB: protein.pdb
HIS (73) --> HISD
HIS (109) --> HISE

Save this information since it will be used later while editing
the run parameters.

To start a new project, it is necessary to generate the “new.html”
file that contains the information about all the required input data
for the docking. An online tool to prepare this file is available on
the HADDOCK webpage: http://www.bonvinlab.org/software/
Haddock2.2/start_new.html.

Three sections need to be filled. In the first section “HADDOCK
and project setup,” you should define the path to your local
HADDOCK installation under “Current HADDOCK program
directory” and the path to where your project will be created in
“Path of the new project.” Then, define the “Run number,” 1 in
this case, and the “Number of molecules for docking (max. 6),”
2 in this particular case.

In the second section, “Define the various molecules for dock-
ing”, set “PDB file of 1st molecule” to the absolute path of the
protein structure, “PDB file of 2nd molecule” to the absolute path
of the peptide (use one of the peptide PDB files for this), use the
default values for “Segid of 1st molecule” and “Segid of 2nd mol-
ecule” (unless of course you changed those values when creating
the AIR file). Since we will make use of an ensemble of peptide
conformations for the docking, a list file containing all absolute (or
relative) paths of those conformations (3 extreme + 30 MD confor-
mations) should be created, and set “file list for 2nd molecule
(opt.)” to the absolute path of this list file. Note that in principle,
instead of absolute paths, relative paths can also be used, e.g., “./
peptide.pdb.”

In the last section “Define the various restraint files,” the “AIR
restraints” should be set to the path of the “restraints.tbl”
file generated in Subheading “Defining Ambiguous Interaction
Restraints (AIRs).”

Move to the bottom of the page and click on “Save updated
parameters.” You should see a new webpage containing the gener-
ated file. Save it as the “new.html” file, and then copy it into your
working directory.

Starting a New Project

Cunliang Geng et al.

http://www.bonvinlab.org/software/haddock2.2/start_new.html
http://www.bonvinlab.org/software/haddock2.2/start_new.html

127

An example of the “new.html” file for 1CZY (also provided in
supplementary material) is given below:

<html>
<head>
<title>HADDOCK - start</title>
</head>
<body bgcolor=#ffffff>
<h2>Parameters for the start:</h2>

<!-- HADDOCK -->
HADDOCK_DIR=/home/software/haddock/
haddock2.2

N_COMP=2

PDB_FILE1=../pdb_files/protein.pdb

PDB_FILE2=../pdb_files/MD_conformations/md_1.
pdb

PDB_LIST2=../pdb_files/structures.list

PROJECT_DIR=./

PROT_SEGID_1=A

PROT_SEGID_2=B

AMBIG_TBL=./restraints.tbl

RUN_NUMBER=1

submit_save=Save updated parameters

</h4><!-- HADDOCK -->
</body>
</html>

Now go to your working directory, make sure that the “new.
html” file is present and then type the command (which should be
defined after proper installation of HADDOCK and sourcing of
the configuration script):

> haddock2.2
A new directory “runX” (X is a number that is defined as “Run

number” above) will be created, containing several subdirectories
and the important “run.cns” parameter file, which will need to be
edited in the next step. For details on the various subdirectories,
please refer to the online HADDOCK manual at http://www.
bonvinlab.org/software/Haddock2.2/start_new_help.html.

It is necessary to modify some docking parameters in the freshly
generated “run.cns” file. For this, the user can use an online tool
or edit the file directly with a text editor. The easiest way to modify
this file is to use our online tool: In the http://www.bonvinlab.
org/software/Haddock2.2/Haddock-start.html page (best viewed
with Firefox or Google Chrome), upload your “run.cns” file and
click on “Edit file.” You will be redirected to a new webpage that
contains all parameters to run HADDOCK. For details on all the
parameters, see the online manual (http://www.bonvinlab.org/

Setting the Docking
Parameters

Protein-Peptide HADDOCKing

http://www.bonvinlab.org/software/haddock2.2/start_new_help.html
http://www.bonvinlab.org/software/haddock2.2/start_new_help.html
http://www.bonvinlab.org/software/haddock2.2/haddock-start.html
http://www.bonvinlab.org/software/haddock2.2/haddock-start.html
http://www.bonvinlab.org/software/haddock2.2/run.html

128

software/Haddock2.2/run.html). Below, we will deal with only
the parameters that should be adjusted to run our protein-peptide
protocol.

Histidine patches: These parameters are used to define the pro-
tonation state of Histidines. By default, a Histidine is doubly
protonated and thus positively charged in HADDOCK. The histi-
dine parameters only need to be defined when a histidine should
be singly protonated (HISD or HISE). The information on the
protonation state of the various Histidines obtained in Subheading
“Determining the Protonation State of Histidine Residues,” will
be used here. For our example 1CZY in that section, Histidine 73
should be in HISD state and Histidine 109 in HISE. In the sec-
tion, “Patch to change doubly protonated HIS to singly proton-
ated histidine (HD1),” set the first residue of “molecule (Protein)
A” to 73. Then in “Patch to change doubly protonated HIS to
singly protonated histidine (HE2),” set the first residue of “mole-
cule (Protein) A” to 109. In this particular example, the peptide
does not contain any Histidine; otherwise, the same procedure
should be followed for the second molecule.

Definition of fully flexible segments: This section defines the
segments that are defined as fully flexible during all stages of it1. In
this protocol, because of the intrinsic high flexibility of peptides,
we will define all residues of the peptide as fully flexible. Therefore,
set the “Start Residue” to 1 and the “End Residue” to the residue
number of the last residue in the peptide, here should be 7 for the
case 1CZY.

Topology and parameter files: The linkage file in this section
allows defining the charged states of the N- and C-termini of the
protein and peptide. If the protein or peptide is a fragment of a
larger protein or was capped in experiments for some specific
reason, the N- and/or C-terminus should be uncharged. In
HADDOCK, the default linkage file used to generate the topology
is “protein-allhdg5-4.link,” which produces charged N and C ter-
mini. For uncharged termini, the linkage file “protein-allhdg5-4-
noter.link” should be used. For uncharged N-terminus and charged
C-terminus, use “protein-allhdg5-4-noNter.link”; for charged
N-terminus and uncharged C-terminus, use “protein-allhdg5-4-
noCter.link.”

For our particular example 1CZY, we will use “protein-allhdg
5-4-noter.link” for the peptide since the peptide is a fragment of a
larger protein and capped in its N-terminus.

Number of structures to dock: Due to the flexibility of the peptide,
the number of decoys to generate should be increased to improve the
sampling of all conformations of the protein-peptide complex. Since
we used 33 peptide conformations (3 extreme conformations + 30
MD cluster representatives) as initial ensemble for docking, we will
change the “number of structures for rigid body docking” from

Cunliang Geng et al.

http://www.bonvinlab.org/software/haddock2.2/run.html

129

1000 to 9900 (in that way each starting conformation is used 300
times), and the “number of structures for refinement” from 200
to 400.

Number of MD steps in the docking protocol: To improve the
sampling of protein-peptide interactions and in particular to allow
the peptide to better sample its conformation in the context of the
receptor, the number of MD steps for the it1 stages also needs to
be increased: From 500/500/1000/1000 to 2000/2000/4000/
4000 for the hot, cool1, cool2, and cool3 stages in it1,
respectively.

Final explicit solvent refinement: Just like the number of struc-
tures to dock, the “number of structures for the explicit solvent
refinement” is increased from 200 to 400.

Analysis and clustering: The “clustering method” is set to
RMSD, and due to the smaller size of peptide the “RMSD cutoff
for clustering” is decreased to 5 Å.

Parallel jobs: The user should specify the local “queue com-
mand” (e.g., simply csh if using a single computer, or a batch
queue submission command for a cluster (e.g., qsub)), the abso-
lute path of “cns executable” and define for “cpunumber” a num-
ber that matches the number of cores on the system (or the number
of allocated slots in the queue in the batch system). The internal
job dispatching routines will use this setting to limit the number of
concurrent refinement jobs. Note that for rigid-body stage jobs,
given the computational efficiency of this algorithm, several indi-
vidual minimizations are bundled together in each job.

After updating the parameters above, click “Save updated file”
on the page bottom, and then save the file as a new run.cns and
copy it to the runX directory to replace the old one.

The following lines describe how these changes would look
like if done manually simply in a text editor:

Histidine patches :
A_hisd_resid_1=73;
A_hise_resid_1=109;

The histidine protonation states are defined by these parameters.

Definition of fully flexible segments :
B_start_fle_1="1";
B_end_fle_1="7";

The parameters define the fully flexible segments in it1 step.
Topology and parameter files:

prot_link_B="protein-allhdg5-4-noter.link";

The parameter sets the charged states of N-terminus and
C-terminus of the molecule. Here, it sets both termini uncharged
for the peptide of 1CZY.

Protein-Peptide HADDOCKing

130

Number of structures to dock:
structures_0=9900;
structures_1=400;

These parameters set the number of structures to dock for it0
and it1.

DOCKING protocol:
initiosteps=2000;
cool1_steps=2000;
cool2_steps=4000;
cool3_steps=4000;

These parameters set the number of MD steps for hot, cool1,
cool2, and cool3 stage in it1 step.

Final explicit solvent refinement:
waterrefine=400;

The parameter sets the number of structures to dock for the
water step.

Analysis and clustering:
clust_meth="RMSD";
clust_cutoff=5;

These parameters set the clustering method and its cutoff.
Parallel jobs:

queue_1="csh";
cns_exe_1="/home/software/bin/cns";
cpunumber_1=50;

These parameters set the local queue command, path of cns
program, and the number of parallel jobs.

After ensuring that all parameters have been properly defined as
explained in the previous steps, navigate to the runX directory and
launch the docking by typing:

> haddock2.2 &>HADDOCK.log &

The docking should start in background and the information
about the run will be written to the HADDOCK.log file. During
the docking process, HADDOCK writes docking decoys in PDB
format and outputs the ranked PDB files in file.cns, file.list and file.
nam files at the end of each docking step in runX/structures/it0,
runX/structures/it1 and runX/structures/it1/water directories,
respectively. The file.cns, file.list and file.nam files contain a list
of generated structures sorted on HADDOCK score. For it1 and
water stages, the generated structures are automatically analyzed
and the results are placed in the runX/structures/it1/analysis
and runX/structures/it1/water/analysis directories, respectively.

Start the Docking

Cunliang Geng et al.

131

As described above, the results of automatic analysis for it1 and
water steps are placed in the analysis directories under each direc-
tory, respectively. Here, we will describe some relevant files con-
taining useful information.

fileroot_ave.pdb and fileroot_X.pdb:

These are the models in PDB format. fileroot_ave.pdb is
the average structure generated by superimposing the structures of
docking solutions on the backbone atoms of interface residues,
while the superimposed models are fileroot_N.pdb (N is a number
that corresponds to the ranking of the model in the file.list file).
The interface residues are automatically determined from an analy-
sis of all generated models. Note that the average model might not
be of much relevance in cases where very different solutions are
sampled.

fileroot_rmsd.disp:

This file contains the pairwise RMSD matrix calculated over all
models. The RMSD calculated here is the ligand interface RMSD,
i.e., the structures are fitted on backbone atoms of interface resi-
dues of the first molecule and the RMSD is calculated on the inter-
face backbone atoms of the second molecule. This file is used as
input for the RMSD clustering. If the clustering method defined in
run.cns is FCC (fraction of common contacts) instead, the name of
this file will become fileroot_fcc.disp. and contain the fraction of
common contacts between models [30].

cluster.out:

The file contains the list of clusters generated based on the
matrix in the fileroot_rmsd.disp or fileroot_fcc.disp file, depending
on the clustering method used. The clusters are numbered accord-
ing to the size of the cluster, e.g., the largest cluster is cluster 1.
The cluster.out file is used as input for analysis of clusters (ana_
cluster.csh) described below.

energies.disp, edesolv.disp and ene-reside.
disp:

These files contain various energy terms. The bonded and
nonbonded energies and buried surface area for each structure are
written to energies.disp, together with the average values over the
ensemble. The empirical desolvation energies are contained in
edesolv.disp. The ene-residue.disp file lists the per-residue inter-
molecular energies for all interface residues.

hbonds.disp, ana_hbonds.lis and nbcontacts.
disp, ana_nbcontacts.lis:

The hbonds.disp file contains the intermolecular hydrogen
bonds for each model, while the ana_hbonds.lis file lists all
hydrogen bonds with their occurrence and average distance.

3.4.3  Analysis

Automatic Analysis

Protein-Peptide HADDOCKing

132

Similar information for intermolecular hydrophobic contacts is
provided in nbcontacts.disp and ana_nbcontacts.lis.

geom.disp:

The file contains the averaged deviations from ideal covalent
geometry (bonds, angles, impropers, and dihedrals) for each struc-
ture and averaged over all structures.

noe.disp:

The file contains the number of distance restraints violations
per structure and averaged over the ensemble over all distance
restraint classes and for each class (unambiguous, ambiguous,
hbonds). Similar files are generated for dihedral angle restraints
(dihedrals.disp), residual dipolar coupling restraints (sani.disp),
intervector projection angle restraints (vean.disp), diffusion anisot-
ropy restraints (dani.disp), and pseudo contact shifts restraints
(pcs.disp).

ana_XXX.lis:

These files report restraint violations over the ensemble of
models, giving the number of times various restraints are violated,
the average distance, and the violation per restraint. The XXX can
be dihed_viol, dist_viol_all, hbond_viol, noe_viol_all, noe_viol_
ambig, and noe_viol_unambig.

Besides the automatic analysis, the user should also perform man-
ual analysis of the models and clusters. For this purpose, a number
of scripts are provided in the runX/tools directory.

	 1.	Collecting model statistics using ana_structures.csh: This script
extracts information from the header of the PDB files such as
various energy terms, violation statistics, and buried surface
area and calculates the overall backbone RMSD of each struc-
ture superimposed on the top ranking model. To run it type:
>$HADDOCKTOOLS/ana_structures.csh

in the runX/structures/it1 or runX/structures/it1/water
directory.
It generates a number of “file.nam_XXX” and “structures_
XXX-sorted.stat” files (XXX is energy term). The “file.nam_
XXX” file contains the values of the respective energy (or
other) term XXX for all structures. All of these terms are com-
bined into one file and sorted in different ways, generating the
corresponding “structures_XXX-sorted.stat” files. Of these,
structures_haddock-sorted.stat is usually the most important,
which corresponds to the HADDOCK score ranking.
Relationships between these energy terms can be checked by
plotting. For this purpose the make_ene-rmsd_graph.csh script

Manual Analysis

Cunliang Geng et al.

133

is provided. For example, the user can make a plot of the
HADDOCK score as a function of the RMSD:
> $HADDOCKTOOLS/make_ene-rmsd_graph.csh 3 2
structures_haddock-sorted.stat

It will generate a ene_rmsd.xmgr file in xmgr format which can
be displayed with xmgr or xmgrace:
> xmgrace ene_rmsd.xmgr

	 2.	RMSD clustering using cluster_struc: This program is used in
HADDOCK to perform clustering based on RMSDs. In the
process of automatic analysis, if RMSD clustering was defined
in run.cns, it has been run automatically in each analysis direc-
tory. However, the user can run it again to try different cluster-
ing cutoffs depending on the complex studied. It takes the
fileroot_rmsd.disp file as input:
> $HADDOCKTOOLS/cluster_struc [-f] fileroot_
rmsd.disp cutoff min_cluster_size>cluster.
out

Here, the -f is an option for full linkage clustering algorithm
(not used by default), the cutoff is the RMSD cutoff used to
determine if two structures belong in the same cluster, and
min_cluster_size is the minimum number of models to define
a cluster.
The output in the cluster.out file looks like:
Cluster 1 -> 2 4 5 9 11 12 14 20 121 127 129
141 145 156 170
Cluster 2 -> 1 48 51 56 58 93 96 139 161 164
171 181 187
Cluster 3 -> 36 7 37 49 112 148

The numbering of the clusters is based on the size of the clus-
ter, and the numbering of the structures corresponds to the
position of the structure in the file.list file. The first structure
of each cluster corresponds to the cluster center and the other
structures are sorted according to their index.

	 3.	FCC clustering using cluster_fcc.py: This Python script is used
to perform clustering based on the fraction of common con-
tacts (FCC) if FCC clustering was defined in run.cns. FCC is
an alternative metric to measure the structural similarity
between two docking models, based on the network of resi-
due-residue interactions at the interface of the models. As for
RMSD clustering, the user can choose to run it again to try
different clustering cutoffs depending on the complex studied.
It takes the fileroot_fcc.disp file as input:
> $HADDOCKTOOLS/cluster_fcc.py fileroot_fcc.
disp cutoff -c min_cluster_size > cluster.out

Protein-Peptide HADDOCKing

134

where cutoff is the FCC cutoff used to determine if two
structures belong to the same cluster, and min_cluster_size is
the minimum number of models to define a cluster.

	 4.	Analysis of clusters using ana_cluster.csh: The ana_clusters.csh
script calculates various statistics on a per cluster level. It takes
the cluster.out file as input. To run it type:
>$HADDOCKTOOLS/ana_clusters.csh [-best #]
analysis/cluster.out

in the runX/structures/it1 or runX/structures/it1/water
directory. The -best # is an optional argument to generate
additional files with calculation only on the best # structures of
a cluster, e.g., the top four structures of a cluster sorted on
their HADDOCK score as done by default by the HADDOCK
web server; this allows removing the dependency of the calcu-
lated averages on size of the various clusters.
Like the output of the ana_structures.csh script, the ana_
clusters.csh script also generates a number of files containing
values of different energy terms XXX but over models belong-
ing to the same cluster (clustX), e.g., file.nam_clustX_XXX
files, based on the list of models for each cluster stored in the
file.nam_clustX files. The script also calculates averages of vari-
ous energy terms for each cluster, which can be found in the
various cluster_XXX.txt files. All these are combined and sorted
in various ways in clusters_XXX-sorted.stat files. If the option
“–best #” is used, additional files will be created containing the
average values over the best # structures of each cluster, i.e.,
file.nam_clustX_best#, cluster_XXX.txt_best# and clusters_
XXX-sorted.stat_best# files. Of all these files, clusters_had-
dock-sorted.stat and clusters_haddock-sorted.stat_best# are
usually the most relevant.

	 5.	Rerunning automatic analysis on the basis of clusters: After hav-
ing performed the cluster-based analysis, it is possible to rerun
the HADDOCK automatic analysis for a given cluster. For this
the user needs to create cluster-specific files (e.g., file.cns_
clustX_best#, file.list_clustX_best#, and file.nam_clustX_best#)
and directory (e.g., analysis_clustX_best#). To simplify this
process, the make_links.csh script is provided. To run it type:
>$HADDOCKTOOLS/make_links.csh clustX_best#

This will automatically move the original file.cns, file.list and
file.nam files and analysis directory to new files and directory
by adding a suffix _all, and then make links to cluster-specific
files and directory, i.e.,
file.cns -> file.cns_clustX_best#
file.list -> file.list_clustX_best#
file.nam -> file.nam_clustX_best#
analysis -> analysis_clustX_best#

Cunliang Geng et al.

135

To rerun the analysis, go back to the runX directory and restart
HADDOCK:
> haddock2.2

Once finished, the user will find a new directory analysis_
clustX_best# that contains cluster-specific result files described
in Subheading “Automatic Analysis.”

Following the protocol described above, we performed unbound/
unbound docking for six protein-peptide complexes from the
protein-peptide benchmark [11], using a combination of ideal
peptide conformations and MD cluster representatives. These six
complexes (Table 1) correspond to two easy, two medium, and two
hard docking cases (based on the classification of Trellet et al. [9]).
The length of the peptides in these systems varies from 6 to 13
amino acids, while the proteins are much larger, varying from 74
to 214 residues.

We performed the docking using both the original three con-
formations (alpha-helix, polyproline-II, and extended) protocol
(regular protocol) [9] and by adding 30 additional conformations
sampled in MD simulations as described in this chapter (MD-based
protocol). To assess the performance of the docking, the interface
RMSD measure from the community-wide experiment CAPRI
(Critical Assessment of PRedicted Interactions) [31, 32] is used as
criteria, which is calculated on interface residues by superimposing
the docking solutions to the crystal structure of bound complex. In
the case of protein-peptide complexes, in CAPRI a docking solu-
tion is considered acceptable if its interface RMSD is less than 2 Å.

We summarized in Table 2, for both the regular protocol and
the current MD-based protocol, the number of acceptable models
out of the 400 water-refined models, together with the rank of the
first acceptable model and the first acceptable cluster in the list of
models or clusters sorted on HADDOCK score. This allows us to
compare the docking performance of both protocols. For the easy
cases, 1DDV and 1LVM, the MD-based protocol generated less
acceptable models. This is due to the “dilution” problem men-
tioned above: with a larger number of starting conformations, only
few will lead to acceptable models and accordingly the total number
of acceptable models is expected to decrease depending on the
information used to drive the docking. On the other hand, when
large conformational changes are taking place, it seems that the
MD-based protocol does improve the number of acceptable mod-
els (1CZY and 1NX1) and the ranking. However, both protocols
fail for two cases, for long peptides (11 and 13 amino acids, for
1D4T and 1HC9, respectively), with rather large conformational
changes. 1HC9 is especially challenging since the peptide forms a
b-hairpin conformation in its bound form that is not sampled
in the starting models. This clearly illustrates the challenges of

3.5  Case Studies

Protein-Peptide HADDOCKing

136

protein-peptide docking. The best models for each case are shown
in Fig. 2, superimposed onto the reference crystal structure.

In conclusion, the presented results, although taken from
a limited number of cases, seem to indicate that the presented
MD-based protocol is better at generating acceptable models with
HADDOCK. This was however for an ideal case where the bind-
ing site on the receptor is well defined. Lack of proper information,
high-flexibility, and large conformational changes still remain
major challenges to be addressed in protein-peptide interaction
modeling.

Table 2
Comparison of (A) unbound/unbound docking performance between the original three-conformations
protocol and the MD-based protocol presented in this chapter and (B) interface RMSD of the best and
first acceptable model using the MD-based protocol

(A)

Case
difficulty

PDB ID
complex

Number of acceptablea
models

Rankb of first
acceptable model

Rankb of first
acceptable clusterc

Regular
protocol

MD-based
protocol

Regular
protocol

MD-based
protocol

Regular
protocol

MD-based
protocol

Easy 1DDV 39 30 11 3 5 1
1LVM 176 92 1 1 1 1

Medium 1CZY 74 175 1 1 1 1
1D4T 0 0 NA NA NA NA

Hard 1HC9 0 0 NA NA NA NA
1NX1 58 62 6 3 3 2

(B)

Case difficulty PDB ID complex i-RMSD (Å)/rank
of best model (Å)

i-RMSD (Å)/rank of
first acceptablea model

Easy 1DDV 1.74/95 1.96/3
1LVM 1.26/40 1.64/1

Medium 1CZY 0.93/42 1.31/1
1D4T 2.31/3 NA

Difficult 1HC9 4.42/131 NA
1NX1 1.28/43 1.59/3

The original protocol [9] uses three peptide conformations (alpha-helix, polyproline-II, and extended), while 30 addi-
tional conformations sampled in MD simulations were added in the MD-based protocol. Both protocols output 400
docking models at the end of the HADDOCK process
aA model is defined as acceptable if its interface RMSD (i-RMSD) from the reference is less than 2 Å according to the
criteria of CAPRI. The i-RMSD is calculated on interface backbone atoms of docking models superimposed onto the
crystal structure
bThe ranking of the first acceptable model/cluster is the position of the first acceptable model/cluster in the list of
models/clusters sorted on HADDOCK score
cA cluster is defined as acceptable when at least one model is acceptable within the top four models

Cunliang Geng et al.

137

Acknowledgments 

C. Geng acknowledges financial support from the China Scholarship
Council, grant NO. 201406220132. This protocol is adapted
from a computer practical offered to our chemistry bachelor stu-
dents [33].

References

Fig. 2 View of the HADDOCK top-ranking first acceptable model for the six protein-peptide unbound/unbound
docking cases using the MD-based protocol. The PDB ID as well as difficulty, peptide length and interface
RMSD values are indicated for all six cases. The model selected for illustration is the acceptable model with
the best rank for (a) 1DDV, (b) 1LVM, (c) 1CZY, and (f) 1NX1, and the model with the best HADDOCK score for
(d) 1D4T and (e) 1HC9 (no acceptable models were generated for those two cases). The model peptide is
shown in orange together with the reference peptide in the crystal structure of the complex in black. Docking
model and crystal structure were superimposed on backbone atoms of the protein. The protein in the crystal
structure is shown in surface representation. Figure generated with PyMOL [12]

	 1.	Craik DJ, Fairlie DP, Liras S, Price D (2013)
The future of peptide-based drugs. Chem Biol
Drug Des 81:136–147

	 2.	Otvos L (2008) Peptide-based drug design:
here and now. Methods Mol Biol 494:1–8

	 3.	Fischer E (1894) Einfluss der Configuration
auf die Wirkung der Enzyme. Berichte der
Dtsch Chem Gesellschaft 27:2985–2993

	 4.	Koshland DE (1959) Enzyme flexibility and
enzyme action. J Cell Comp Physiol 54:
245–258

	 5.	Kumar S, Ma B, Tsai CJ, Sinha N, Nussinov R
(2000) Folding and binding cascades: dynamic
landscapes and population shifts. Protein Sci
9:10–19

	 6.	Rubin MM, Changeux JP (1966) On the
nature of allosteric transitions: implications of
non-exclusive ligand binding. J Mol Biol 21:
265–274

	 7.	Monod J, Wyman J, Changeux J-P (1965) On
the nature of allosteric transitions: a plausible
model. J Mol Biol 12:88–118

	 8.	Vogt AD, Di Cera E (2012) Conformational
selection or induced fit? A critical appraisal
of the kinetic mechanism. Biochemistry 51:
5894–5902

	 9.	Trellet M, Melquiond ASJ, Bonvin AMJJ
(2013) A unified conformational selection and
induced fit approach to protein-peptide dock-
ing. PLoS One 8:e58769

Protein-Peptide HADDOCKing

138

	10.	Diella F et al (2008) Understanding eukaryotic
linear motifs and their role in cell signaling and
regulation. Front Biosci 13:6580–6603

	11.	London N, Movshovitz-Attias D, Schueler-
Furman O (2010) The structural basis of
peptide-protein binding strategies. Structure
18:188–199

	12.	Pymol T, Graphics M, Schrödinger V. The
PyMOL Molecular Graphics System, Version
1.5.0.4 Schrödinger, LLC. 5

	13.	Abraham MJ et al (2015) GROMACS: high
performance molecular simulations through
multi-level parallelism from laptops to super-
computers. SoftwareX 1:19–25

	14.	Chen VB et al (2010) MolProbity: all-atom
structure validation for macromolecular crys-
tallography. Acta Crystallogr D Biol Crystallogr
66:12–21

	15.	Dominguez C, Boelens R, Bonvin AMJJ
(2003) HADDOCK: a protein-protein dock-
ing approach based on biochemical or bio
physical information. J Am Chem Soc 125:
1731–1737

	16.	de Vries SJ et al (2007) HADDOCK versus
HADDOCK: new features and performance of
HADDOCK2.0 on the CAPRI targets.
Proteins 69:726–733

	17.	de Vries SJ, van Dijk M, Bonvin AMJJ (2010)
The HADDOCK web server for data-driven
biomolecular docking. Nat Protoc 5:883–897

	18.	van Zundert GCP et al (2015) The
HADDOCK2.2 Web Server: user-friendly inte-
grative modeling of biomolecular complexes.
J Mol Biol. doi:10.1016/j.jmb.2015.09.014

	19.	Brünger AT et al (1998) Crystallography &
NMR system: a new software suite for macro-
molecular structure determination. Acta Crys
tallogr D Biol Crystallogr 54:905–921

	20.	Brunger AT (2007) Version 1.2 of the crystal-
lography and NMR system. Nat Protoc 2:
2728–2733

	21.	Mitternacht S (2016) FreeSASA 0.6.2: Solvent
accessible surface area calculation. doi:10.5281/
zenodo.44748

	22.	Rodrigues JPGLM, Bonvin AMJJ (2014)
Integrative computational modeling of protein
interactions. FEBS J 281:1988–2003

	23.	Karaca E, Bonvin AMJJ (2013) Advances in
integrative modeling of biomolecular com-
plexes. Methods 59:372–381

	24.	Melquiond ASJ, Bonvin AMJJ (2010) Data-
driven docking: using external information
to spark the biomolecular rendez-vous. In:
Zacharias M (ed) Protein-protein complexes
analysis, modeling and drug design. Imperial
College Press, Munich, pp 183–209.
doi:10.1142/9781848163409_0007

	25.	de Vries SJ, Bonvin AMJJ (2008) How pro-
teins get in touch: interface prediction in the
study of biomolecular complexes. Curr Protein
Pept Sci 9:394–406

	26.	de Vries SJ, Bonvin AMJJ (2011) CPORT: a
consensus interface predictor and its per
formance in prediction-driven docking with
HADDOCK. PLoS One 6:e17695

	27.	Lindorff-Larsen K et al (2010) Improved side-
chain torsion potentials for the Amber ff99SB
protein force field. Proteins 78:1950–1958

	28.	Fernández-Recio J, Totrov M, Abagyan R
(2004) Identification of protein-protein inter-
action sites from docking energy landscapes.
J Mol Biol 335:843–865

	29.	Jorgensen WL, Tirado-Rives J (1988) The
OPLS [optimized potentials for liquid simu
lations] potential functions for proteins,
energy minimizations for crystals of cyclic
peptides and crambin. J Am Chem Soc 110:
1657–1666

	30.	Rodrigues JPGLM et al (2012) Clustering
biomolecular complexes by residue contacts
similarity. Proteins 80:1810–1817

	31.	Janin J (2005) Assessing predictions of protein-
protein interaction: the CAPRI experiment.
Protein Sci 14:278–283

	32.	Lensink MF, Wodak SJ (2013) Docking, scor-
ing, and affinity prediction in CAPRI. Proteins
81:2082–2095

	33.	Rodrigues JPGLM, Melquiond ASJ, Bonvin AMJJ
(2016) Molecular Dynamics Characterization
of the Conformational Landscape of Small
Peptides: A series of hands-on collaborative
practical sessions for undergraduate students.
Biochemistry and Molecular Biology Education
44:160–167

Cunliang Geng et al.

http://dx.doi.org/10.1016/j.jmb.2015.09.014
http://dx.doi.org/10.1142/9781848163409_0007

