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ABSTRACT
BACKGROUND: Gilles de la Tourette syndrome (GTS) is a complex neuropsychiatric disorder with a strong genetic
influence where copy number variations are suggested to play a role in disease pathogenesis. In a previous small-
scale copy number variation study of a GTS cohort (n 5 111), recurrent exon-affecting microdeletions of four genes,
including the gene encoding arylacetamide deacetylase (AADAC), were observed and merited further investigations.
METHODS: We screened a Danish cohort of 243 GTS patients and 1571 control subjects for submicroscopic
deletions and duplications of these four genes. The most promising candidate gene, AADAC, identified in this Danish
discovery sample was further investigated in cohorts from Iceland, the Netherlands, Hungary, Germany, and Italy,
and a final meta-analysis, including a total of 1181 GTS patients and 118,730 control subjects from these six
European countries, was performed. Subsequently, expression of the candidate gene in the central nervous system
was investigated using human and mouse brain tissues.
RESULTS: In the Danish cohort, we identified eight patients with overlapping deletions of AADAC. Investigation of
the additional five countries showed a significant association between the AADAC deletion and GTS, and a final
meta-analysis confirmed the significant association (p 5 4.4 3 1024; odds ratio 5 1.9; 95% confidence interval 5
1.33–2.71). Furthermore, RNA in situ hybridization and reverse transcription-polymerase chain reaction studies
revealed that AADAC is expressed in several brain regions previously implicated in GTS pathology.
CONCLUSIONS: AADAC is a candidate susceptibility factor for GTS and the present findings warrant further
genomic and functional studies to investigate the role of this gene in the pathogenesis of GTS.

Keywords: AADAC, Association study, CNV, Copy number variation, Gilles de la Tourette syndrome, Neuro-
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Gilles de la Tourette syndrome (GTS) (Mendelian Inheritance in
Man: 137580) is a heterogeneous neuropsychiatric disorder
characterized by the presence of chronic motor and vocal tics
normally arising in childhood (1). The disorder often co-occurs
with obsessive-compulsive disorder (OCD)/obsessive-compul-
sive behavior and attention-deficit/hyperactivity disorder
(ADHD), but other behavioral problems, such as depression,
anxiety, learning disabilities, and autism spectrum disorder
(ASD), are also overrepresented among GTS patients (1). The
prevalence of GTS ranges from .4% to 3.8% worldwide and
male individuals are affected approximately four times more
frequently than female individuals (2).

Twin and family studies suggest a strong genetic compo-
nent for GTS susceptibility (3–5). Although multiple genes and
chromosomal regions have been implicated in disease
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etiology, it has generally been difficult to replicate the findings
(5), supporting the notion of GTS as a complex polygenic
disorder. Furthermore, environmental factors are suggested to
play a role in disease development (6) and GTS is thus
accepted to be a multifactorial disorder with a largely unknown
etiology.

Rare copy number variations (CNVs) play an important role
in a number of neuropsychiatric disorders, including ASD and
schizophrenia (7). To date, four genome-wide studies have
investigated the possible role of CNVs in the pathogenesis of
GTS (8–11). In one of these studies, Sundaram et al. (8)
screened 111 GTS patients and 73 ethnically matched control
subjects and identified four recurrent exon-affecting CNVs in
patients that were not present in the control group or in the
Database of Genomic Variants (DGV) by then. These CNVs
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included partial deletion of neurexin 1 (NRXN1) and α-T
catenin (CTNNA3), genes that have previously been associ-
ated with ASD (12,13) and/or schizophrenia (14), as well as
deletion of the entire fibrous sheath CABYR-binding protein
(FSCB) gene and of the arylacetamide deacetylase (AADAC)
gene, neither of which have previously been linked to a
disorder. Although AADAC was deleted in three patients
(2.7%) and none of the control subjects, it was not considered
a possible GTS candidate gene, probably because its expres-
sion in neuronal tissues had never been demonstrated and the
known function of the protein product could not readily be
related to disease pathogenesis. In addition, the number of
patients was too small to reach a statistically significant result.

In this study, we performed an initial CNV screening of 243
Danish GTS patients and 1571 Danish control subjects to
investigate the preliminary findings of Sundaram et al. (8). As
the AADAC deletion was the most promising candidate among
these four CNVs, we carried out a follow-up study on a large
cohort of GTS patients and nationality matched control
subjects from five additional European countries. Furthermore,
we investigated expression of AADAC in several GTS-related
brain regions to provide further support for a role of this gene
in disease pathogenesis.
METHODS AND MATERIALS

Subjects

In total, 1181 patients with GTS were assembled from six
European countries: Denmark: 243 patients were recruited as
part of a large clinical study at the Tourette Clinic in Glostrup
(15) and diagnosed according to the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition, Text Revision
(DSM-IV-TR) (16); Iceland: 466 patients were recruited from all
over Iceland by deCODE Genetics in Reykjavik. Recruitment
was based on either a clinical diagnosis using the ICD-10
Classification of Mental and Behavioral Disorders (17) (n 5 176)
or DSM-IV (18) (n 5 171) or with an affirmative answer to the
question: “Have you previously been diagnosed with Tourette
syndrome?” (n 5119); Netherlands: 86 patients were recruited
at the Department of Psychiatry at the University Medical
Center Groningen (19) and diagnosed according to DSM-IV-
TR (16) while 76 patients were collected at the Department of
Psychiatry at VU University Medical Center Amsterdam and
diagnosed using the Diagnostic Confidence Index (20) and the
Table 1. Phenotypic and Demographic Information About Patie

Nationality

Tourette Patients

Male Female Comorbid ADHD

Denmark 196 (81) 47 (19) 93 (38)

Iceland 330 (71) 136 (29) 169 (36)

Netherlands 115 (71) 47 (29) 35 (22)

Hungary 91 (83) 18 (17) 41 (38)

Germanya 88 (82) 20 (18) 41 (38)

Italy 81 (87) 12 (13) 57 (61)

Total 901 (76) 280 (24) 436 (37)

ADHD, attention-deficit/hyperactivity disorder; OCD, obsessive-compuls
aFor 12 German patients, it was unknown whether they had any comor
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Yale Global Tic Severity Scale (21); Hungary: 109 patients
were recruited as part of the efforts of a multinational
consortium (The Tourette Syndrome Genetics–Southern and
Eastern Europe Initiative [TSGeneSEE]) (22) and diagnosis was
based on DSM-IV-TR (16); Germany: 108 patients were
recruited from the Outpatient GTS Clinic of Hannover Medical
School (23) and diagnosed according to DSM-IV-TR (16); Italy:
93 patients were recruited as part of the TSGeneSEE con-
sortium (22) and diagnosis was based on DSM-IV-TR (16),
Diagnostic Confidence Index (20), and Yale Global Tic Severity
Scale (21). The gender ratios of the patients and the presence
of OCD and ADHD are listed in Table 1.

A total of 118,730 nationality matched control subjects
were assembled from the same six European countries: Den-
mark: DNA of 316 control subjects was retrieved from the
biobanks of the Kennedy Center in Glostrup and 1571 control
subjects were recruited through the Danish Donor Corps in the
Copenhagen area (24); Iceland: 112,714 control subjects were
recruited from all over Iceland as parts of various genetic
programs at deCODE Genetics [a smaller subset of these
individuals has been described before (24)]; Netherlands: 224
control subjects were recruited at the Donders Institute for
Brain, Cognition and Behavior of the Radboud University
Nijmegen Medical Center (25) and 2884 control subjects were
collected as part of the Nijmegen Biomedical Study (26);
Hungary: DNA from 96 healthy high school students was
collected from the general Hungarian population; Germany:
199 control subjects were recruited from the Department of
Transfusion Medicine, Hannover Medical School (23) and 512
control subjects were randomly selected from the general
population of Munich (24); Italy: 51 control subjects were
recruited as part of the TSGeneSEE consortium (22) and 163
individuals were recruited in South Verona for a genetic study
on schizophrenia (24). To our knowledge, all the patients and
control individuals were unrelated, except from a small subset
of the Iceland cohort, which was accounted for in the
statistical analyses. As the control individuals have been
recruited in relation to different research projects, not all of
them have been investigated specifically for GTS or other
neurological disorders. However, whenever information about
a neuropsychiatric phenotype was available, the individuals
were excluded from the control cohorts. The gender ratios of
the different control cohorts are given in Table 1.

All patient and control samples were investigated using
DNA extracted from whole blood or buccal swabs. For all
nts and Control Individuals, n (%)

Control Individuals

Comorbid OCD Male Female

84 (35) 1279 (68) 608 (32)

104 (22) 50,262 (45) 62,452 (55)

49 (30) 1564 (50) 1544 (50)

11 (10) 58 (60) 38 (40)

17 (16) 384 (54) 327 (46)

50 (65) 117 (55) 97 (45)

315 (27) 53,664 (45) 65,066 (55)

ive disorder.
bidities.
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Table 2. Numbers of Included Patients and Control Sub-
jects, Numbers of Identified AADAC Deletions, and the
Allelic Frequency of the Deletion in Each Cohort

Nationality

Patients
AADAC
Deletion Control Subjects

AADAC
Deletion

n n % n n %

Denmark 243 8 1.65 1887 44 1.17

Iceland 466 21 2.25a 112,714 2236b .99

Netherlands 162 3 .93 3108 53 .85

Hungary 109 4 1.83 96 3 1.56

Germany 108 5 2.31 711 12 .84

Italy 93 2 1.08 214 2 .47

Total 1181 43 1.82 118,730 2340 .99
aFor Icelandic patients with a clinically confirmed diagnosis and a

self-reported diagnosis, the allelic frequency was 2.16% and 2.52%,
respectively.

bA total of 10 Icelandic control subjects were homozygous for the
deletion.
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samples, collection was approved by local ethical boards of
respective countries and informed written consent was
obtained from all patients or their legal guardians. The total
numbers of patients and control subjects from each popula-
tion are shown in Table 2.

All cases and control subjects were carefully matched for
ancestry to remove any potential bias introduced by popula-
tion stratification. Ancestry information was based on the
family name of the included individuals, as well as self-
reported ancestry. For a subset of the subcohorts, principal
component analysis was also performed to confirm ancestry
(data not shown).

Genotyping

All patients and control individuals were genotyped for the
AADAC deletion by employment of chromosome microarray,
quantitative polymerase chain reaction (qPCR) or genome-
wide genotyping (Table S1 in Supplement 1).

Chromosome microarray was carried out using Affymetrix
CytoScan HD array or Affymetrix 2.7M array (Affymetrix, Santa
Clara, California). Data were analyzed using Affymetrix
Chromosome Analysis Suite software (ChAS) and the thresh-
old was 5 markers for deletions and 10 markers for duplica-
tions. The data were interpreted with the aid of the University
of California, Santa Cruz Human Genome Browser (http://
genome.ucsc.edu;GRCh37/hg19assembly).

qPCR was used to screen a subset of the patients and
control subjects for the AADAC deletion, as well as to verify all
AADAC deletions identified by chromosome microarray in
patients. See Supplement 1 and Table S2 in Supplement 1
for details.

Genome-wide genotyping using BeadChips was performed
at deCODE Genetics using either Illumina HumanHap or Omni
chips (Illumina, San Diego, California). Copy number detection
was performed using the PennCNV algorithm (27), following
the standard protocol using allele frequencies per batch from
the samples typed on each genotyping array and adjusting for
genomic waves (28) using guanine-cytosine model files
generated specifically for each genotype assay. For all
genotyping arrays, we excluded markers found within the
Biological P
genomic super-duplicate regions (29,30). Sample-based qual-
ity control was performed using the statistics calculated by
PennCNV. Samples with BAF-Drift . .01 or LLR-SD . .3 were
excluded. For the Illumina BeadChips, the threshold for
detecting the AADAC deletion was also set to a minimum of
five markers.

Statistical Analysis

Fisher’s exact test was performed to examine the allelic
association of the four recurrent exon-affecting CNVs reported
by Sundaram et al. (8) with GTS in the Danish cohort.

Allelic association analysis of the AADAC deletion was also
carried out for the Icelandic, Dutch, Hungarian, German, and
Italian cohorts using Fisher’s exact test. To account for the
relatedness of the Icelandic cohort, dropdown simulations
through the Icelandic genealogy were performed and an
empirical p value was calculated from the fraction of simu-
lations having a Fisher’s exact p value less than the p value
obtained using the observed allele counts. Results from all
cohorts, except for the Icelandic cohort, were combined using
the Mantel-Haenszel exact test, which was used to control for
confounding due to population stratification. The results from
Iceland were combined with those of the remaining cohorts
using inverse variance weighted, fixed-effects meta-analysis.

Expression Analysis

Reverse transcription PCR was carried out on a panel of total
RNA from 19 various brain regions of a normal human adult
(Biochain, Newark, California) and all PCR products were
Sanger sequenced (primer sequences are listed in Table S2
in Supplement 1).

In Situ Hybridization

In situ hybridization was performed on paraffin embedded human
cerebellum sections (Capital Biosciences, Rockville, Maryland)
and on 10-micron sections of snap-frozen brains of adult BALB/c
mice and E15.5 embryos (31). See Supplement 1 for details.

RESULTS

We investigated the frequency of the four exon-affecting CNVs
(of the NRXN1, CTNNA3, FSCB, and AADAC genes) reported
by Sundaram et al. (8) in 243 Danish patients with GTS and
1571 Danish control subjects. We identified eight patients with
an �36 kilobase (kb) deletion encompassing the entire
AADAC gene (Figure 1A), while an exon-affecting CTNNA3
deletion was detected in a single patient and none of the
patients had exon-affecting NRXN1 or FSCB deletions (Table
S3 in Supplement 1). Despite a modest p value of .38 (odds
ratio [OR] 5 1.4; 95% confidence interval [CI] 5 .65–3.04), the
AADAC deletion was the most promising candidate CNV for
further investigations. A subsequent follow-up screening of
938 patients with GTS and 116,843 population-based control
subjects from Iceland, the Netherlands, Hungary, Germany,
and Italy was performed to further investigate the association
of the AADAC deletion and GTS. The Mantel-Haenszel exact
test was used to estimate the combined association in the
additional five populations and showed a statistically significant
association (p 5 4.6 3 1024; OR 5 2.1; 95% CI 5 1.37–3.07).
sychiatry March 1, 2016; 79:383–391 www.sobp.org/journal 385
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Figure 1. Genomic location of the AADAC deletion and expression of AADAC in human brain regions. (A) Genomic region showing the AADAC gene and
indicating the exact location of the deletion (in red) identified in both patients and control subjects of all populations. The positions of the markers within the
genomic region for each of the employed Affymetrix and Illumina array platforms are indicated below the deletion. (B) AADAC expression in various human
brain regions. Using reverse transcription polymerase chain reaction, AADAC expression was investigated in a panel containing 19 different brain regions.
Complementary DNA was synthesized according to the manufacturer’s instructions using .5 mg total RNA, random primers (Promega, Madison, Wisconsin),
and SuperScript III reverse transcriptase (Invitrogen, San Diego, California). (C) AADAC expression in adult human cerebellum. Using fluorescent in situ
hybridization, AADAC expression was identified in the molecular layers of the human cerebellum. bp, base pair.
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Overall, we found that 3.6% of the patients and 2.0% of the
control individuals were carriers of the deletion. The total
numbers of patients and control individuals with deletion of
386 Biological Psychiatry March 1, 2016; 79:383–391 www.sobp.org/j
AADAC and the allele frequency of the deletion in each cohort
are given in Table 2. None of the investigated continental
European individuals were homozygous for the deletion, but
ournal
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Popula�on
Denmark
Iceland
Netherlands
Hungary
Germany
Italy

Pa�ents
243
466
162
109
108
93

Controls
1,887

112,714
3,108

96
711
214

P-value
0.38

0.0012
0.76

1
0.049
0.59

Total
OR

1.90
95% CI

1.33-2.71
P-value

4.4 x 10-4

OR
0.1  0.2 0.5 1.0  2.0 5.0 10.0

Pa�ents  n = 1,181
Controls n = 118,730

Figure 2. Forest plot showing association of AADAC with Gilles de la
Tourette syndrome across the six European cohorts. For each cohort, the
number of investigated patients and control subjects as well as the p values
are given. The odds ratios (ORs) are represented by squares (the size of
which is proportional to the weights used in the meta-analysis) and the
horizontal lines represent the 95% confidence interval (CI) for each
population. The Mantel-Haenszel exact test and inverse variance-weighted
fixed-effects meta-analysis were used to combine association evidence
across cohorts. The OR, 95% CI, and p value are given for the meta-
analysis and the diamond represents the result of the combined meta-
analysis.
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among the Icelandic control subjects, 10 homozygous indi-
viduals were observed. However, the Icelandic control cohort
was by far the largest (n 5 112,714) and this finding is to be
expected for a population in Hardy-Weinberg equilibrium. In
the final meta-analysis of all 1181 investigated patients and
118,730 control subjects from the six countries (Denmark,
Iceland, the Netherlands, Hungary, Germany, and Italy), the
association between deletion of the AADAC gene and the
GTS phenotype was statistically significant (p 5 4.4 3 1024;
OR 5 1.9; 95% CI 5 1.33–2.71) (Figure 2).

A very limited number of the DNA samples originated from
buccal swaps; however, there was no significant difference in
the detection rate of the AADAC deletion between DNA
obtained from blood samples or buccal swaps.

The distribution of comorbidities among patients with the
AADAC deletion was comparable with that of the combined
patient cohorts, although it is worth noting that the frequency
of GTS-only was 11% higher among the deletion carriers
(Figure S1A in Supplement 1). The gender distributions among
the patients with the AADAC deletion and among the com-
bined patient cohorts were not significantly different (Figure
S1B in Supplement 1). Thus, the association of the AADAC
deletion with GTS does not appear to be gender specific.
Therefore, the difference in the gender ratios between patients
and control subjects is unlikely to contribute to the significant
findings of this study (Table 1).

In a large Icelandic sample of genotyped trios (n 5 34,726),
we found the AADAC deletion in 722 of the offspring. In all the
instances, the deletion was transmitted. Thus, the CNV may
have arisen as a single event, and in keeping with this
finding, a single nucleotide polymorphism (SNP) marker
(chr3:151,551,059), which is approximately 19 kb distal to
the AADAC gene, is in strong linkage disequilibrium (R2 5 .98)
with the AADAC deletion in the Icelandic population. However,
it is worth mentioning that this SNP was not identified among
the eight Danish deletion carriers, and although it might be
used as a genotyping marker in the Icelandic population, it
Biological P
cannot automatically be used in other populations, e.g., the
SNP is not found in the 1000 Human Genome project (32). In
further support for the hypothesis that the deletion has arisen
as a single event, we mapped the deletion breakpoints in
several individuals from each of the investigated populations,
including both patients and control subjects, using PCR
(primer sequences are available in Table S2 in Supplement 1).
The breakpoints of all of these deletions were exactly the
same, spanning a 39,532 base pair region at chromosome
position chr3:151,511,533-151,551,064 (University of California,
Santa Cruz, Feb. 2009 GRCh37/hg19 release) (Figure 1A).

Expression Analysis

We investigated tissue-specific expression of the AADAC
transcript using a panel of total RNA from 19 different regions
of human adult brain to provide evidence for the involvement
of AADAC in the central nervous system. Expression of
AADAC was observed in all the investigated regions, with
particularly high expression in corpus callosum, pituitary,
pons, cerebral meninges, cerebral cortex, thalamus, and
caudate nucleus (Figure 1B).

In Situ Hybridization Studies

In murine embryonic (E15.5) brain, the AADAC transcript was
ubiquitously expressed at a moderate level (Figure 3A). In the
adult mouse, expression was also observed in most of the
brain regions (data not shown) with particularly high levels in
the cerebellum, hippocampus, olfactory bulb, cerebral cortex,
pons, and medulla (Figure 3B). These results support in situ
hybridization data provided by the Allen Brain Atlas (33). Using
a coronal section of the adult mouse brain, expression was
observed especially in the molecular layer and the Purkinje cell
layer of the cerebellum (Figure 3C). The very high expression in
the Purkinje cell layer was especially obvious when using a
transverse section of cerebellar folia (Figure 3D). No signal was
observed when performing negative control experiments
(Figure S2 in Supplement 1).

In the human cerebellum, the AADAC transcript was highly
expressed in the molecular and Purkinje cell layers of the
cerebellar cortex, while limited staining was observed in the
granular layer (Figure 1C).
DISCUSSION

In this study, we investigated four exon-affecting CNVs
previously identified in a small GTS cohort (8). Although the
NRXN1 gene has been associated with GTS in several studies
(8,10), our initial screening of the Danish cohort indicated
AADAC as the strongest candidate among these four genes
tested. In the follow-up study of the Icelandic, Dutch, Hun-
garian, German, and Italian cohorts, the association was
shown to be statistically significant and this was also the case
when including the Danish results in a meta-analysis.

Deletions of AADAC have been reported in DGV and are
also observed in our ethnically matched control subjects,
including 10 homozygous Icelandic control subjects without
phenotype information; however, the frequency of the deletion
is significantly higher among patients than control subjects
(p = 4.4 3 1024; OR = 1.9; 95% CI = 1.33–2.71) even after
sychiatry March 1, 2016; 79:383–391 www.sobp.org/journal 387
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Figure 3. Expression of AADAC in
mouse brain sections. Sagittal sec-
tions from (A) mouse embryo (E15.5)
and (B) adult mouse and (C) coronal
section from adult mouse hybridized
with probes for exon 2 of the mouse
Aadac gene using fluorescence in situ
hybridization. Fluorescein isothiocya-
nate signals are green and DAPI
stains the DNA blue. In the embryo,
the gene was ubiquitously expressed,
whereas expression was localized to
the cerebellum, olfactory bulb, hippo-
campus, cerebral cortex, and pons in
the adult mouse. (D) Sagittal section
of cerebellar folia in adult mouse
showing particularly high expression
in the Purkinje cell layer. Please note
that only fluorescein isothiocyanate
signals are shown in the figure.
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Bonferroni correction for multiple testing (p = 1.8 3 1023).
Our result is the first support for a significant association
between AADAC and GTS, suggesting that this gene plays a
role in the pathogenesis of GTS. The finding of AADAC
deletions among the general population, including subjects
with complete knockout of the gene, may indicate incom-
plete penetrance of the deletion, variable expression, or
presence of other prerequisite genetic or environmental
factors. Furthermore, many of the control subjects were
recruited for different research projects not related to neuro-
psychiatric disorders and we cannot exclude that some of
the deletion carriers are affected with GTS, chronic tics, or
other related disorders.
388 Biological Psychiatry March 1, 2016; 79:383–391 www.sobp.org/j
Besides the study by Sundaram et al. (8), three other
studies have investigated the role of CNVs in GTS (9–11);
however, none of these have reported finding of AADAC
deletions. A plausible explanation may be that these studies
predominantly focused on rare (,1%) and/or large CNVs,
which would have excluded the AADAC deletion. Thus, while
McGrath et al. (11) and Nag et al. (10) only investigated or
reported CNVs larger than 500 kb, respectively, Sundaram
et al. (8) investigated CNVs as small as 10 kb. In addition,
Fernandez et al. (9) only included rare CNVs, defined if less
than 50% of its length overlapped CNVs present at $1%
frequency in the March 2010 update of the DGV database.
Sundaram et al. (8) used an older version of DGV to define rare
ournal
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CNVs, where the AADAC deletion was not yet identified in a
significant number of cases. Therefore, re-examination of
these data may give further support to the present finding.

Except for the Danish and Icelandic patients, all the patient
cohorts were screened for the deletion using a single qPCR
primer pair within the first exon of AADAC, while the majority
of control individuals were screened using chip genotyping,
which includes several SNP probes within the gene. qPCR is a
valid method for verification of chromosome microarray find-
ings and all the AADAC deletions identified with chromosome
microarray could be verified with qPCR using exon 1 and exon
5 primers. As the breakpoints of all the deletions, which were
fine mapped across the different nationalities, were identical,
there should be no bias in the pickup rate using the different
array platforms, as they all had sufficient coverage within the
deletion region (Figure 1A). The lower frequency of AADAC
deletions in the patient cohorts from the Netherlands and Italy
can therefore probably not be explained by the detection
method but is more likely a consequence of the relatively small
sample sizes, which make them more sensitive to chance
variation. As the Illumina HumanHap300 and HumanCNV370
platforms have a lower probe density within the deletion region
compared with the other arrays, we investigated whether
these platforms are more sensitive to probe failure. The
deletion detection frequency was .018 and .020 among the
Icelandic control subjects using Illumina HumanHap300 and
HumanOmniExpress, respectively. Likewise, the detection
frequency was .023 and .015 among the Dutch control
subjects using a merge of the Illumina HumanHap300 and
HumanCNV370 and HumanOmniExpress, respectively. Thus,
the lower-density platforms employed to investigate the con-
trol subjects do not appear to have a lower detecting
frequency. Furthermore, for the Danish control cohort, the
deletion detection frequency was .019 and .028 using qPCR
and Illumina HumanOmniExpress, respectively. This indicates
that the sensitivity of the different array platforms used to
investigate the control subjects is not lower than the sensitivity
of qPCR used for several patient cohorts. Overall, this
illustrates that the significant association of the AADAC
deletion with GTS is not likely to be due to different detection
methods.

One could also speculate that phenotypic differences
across the study samples, e.g., differences in the frequencies
of comorbidities across the populations, could affect the
results. However, although the frequency of comorbid ADHD
was much lower among the Dutch patients compared with the
other populations, we did not observe an overrepresentation
of GTS patients with comorbid ADHD among the deletion
carriers, which might have explained the low frequency of
deletions among the Dutch patients. On the contrary, more
patients with GTS-only were observed among the deletion
carriers, suggesting that the AADAC deletion is specifically
associated with the GTS phenotype and not with one of the
comorbidities, although this difference was not significant. In
support for the suggested GTS specificity of the AADAC
deletion, genome-wide CNV studies performed for OCD and
ADHD have not reported finding of CNV regions overlapping
with the AADAC deletion (11,34–39). However, further studies
on patients with GTS-only, ADHD-only, and OCD-only are
warranted to give further answers to these questions.
Biological P
A final concern when performing case-control studies is the
risk of population stratification. The Mantel-Haenszel test does
not assume that the deletion has the same frequency in the
different populations investigated, hereby protecting against false
positives caused by differences in deletion frequency among
these populations. The Mantel-Haenszel test does, however, not
protect against false positives caused by within-population
differences in ancestry between cases and control subjects;
but we believe that these differences are unlikely, given the
efforts made to ensure uniform ancestry within each population.

In all the control cohorts, the deletion frequencies were
similar, except for the Hungarian and Italian cohorts, but the
number of investigated individuals in these two cohorts was
small and the deletion frequency estimates were therefore
prone to fluctuations. Considering the similar deletion frequen-
cies across the different countries, the deletion is likely to have
arisen from a single event thousands of years ago. In further
support for this hypothesis, the deletion is not flanked by
segmental duplications known to drive nonallelic homologous
recombination giving rise to recurrent CNVs (40) but rather
appears to have arisen through a seemingly random event. In
addition, the deletion was always inherited from either of the
parents among the 722 Icelandic trios, and the breakpoints
were identical for both patients and control subjects of all
investigated nationalities when mapped.

The function of AADAC in the brain and nervous system is
unknown. In this study, we detected expression of AADAC in
mouse and human brain regions (such as hippocampus,
corpus callosum, and caudate nucleus), which are implicated
in GTS pathogenesis (41), giving further support for a role of
AADAC in GTS etiology. Notably, expression of AADAC was
particularly high and specific in the Purkinje cell layer of the
human cerebellum. The role of Purkinje cells in the patho-
genesis of GTS has not been investigated to date, but
abnormal or dysfunctional Purkinje cells have been implicated
in other neurodevelopmental and movement disorders such as
ASD, ataxia, and dystonia (42–45). The cerebellum has pre-
viously been implicated in GTS at the anatomical level by
imaging studies, where regional reductions in cerebellar volume
correlated with the degree of tic severity (46) and cerebellar
activity was shown to be increased at tic initiation (47). It is thus
possible that aberrant activity of Purkinje cells and a dysfunc-
tional cerebellum may play a role in GTS pathogenesis and
should be investigated further.

AADAC is suggested to be involved in neutral lipid lipolysis,
detoxification, and drug metabolism (48) and the gene has
previously been shown to be expressed in the liver, small
intestine, adrenal glands, and pancreas (49). Possibly owing to
this knowledge, AADAC has not previously been regarded as
an attractive candidate gene for GTS. However, other drug-
metabolizing enzymes of the liver are shown to be expressed
in the brain, where they are suggested to be involved in the
metabolism of neurotransmitters and neurosteroids (50). One
example is the suggested involvement of the cytochrome
P450 enzymes CYPD in dopamine metabolism (51) as indi-
cated by expression in dopaminergic cells of the rat substantia
nigra (52), co-localization with the dopamine transporter (53),
and association of CYP2D6 genetic variants with Parkinson
disease (54) and Alzheimer disease (55). Our finding of AADAC
expression in the brain suggests that its protein product may
sychiatry March 1, 2016; 79:383–391 www.sobp.org/journal 389
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play a role in the central nervous system; however, whether it
is involved in the synthesis or metabolism of neurotransmitters
or has another function is currently unknown. Identification of
endogenous substrates of the AADAC enzyme in the brain is
therefore warranted, as are functional studies investigating the
consequences of the AADAC deletion at the cellular level in
neuronal tissues.

In conclusion, we have identified a statistically significant
association of the deletion of AADAC with GTS using a large
cohort of patients and population-based control subjects from
six European countries. This finding indicates that AADAC could
be one of the genetic factors that play a role in the pathogenesis
of GTS. Demonstration of AADAC expression in various brain
tissues gives further support for its involvement in normal
neuronal function. However, investigations of additional patient
cohorts are needed to replicate the identified association
between AADAC and GTS, and functional studies are warranted
to investigate the role of its enzyme product in the human brain.
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