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ABSTRACT
This article applies error propagation in a Monte Carlo simulation
for a spatial-based fuzzy logic multi-criteria evaluation (MCE) in
order to investigate the output uncertainty created by the input
data sets and model structure. Six scenarios for quantifying uncer-
tainty are reviewed. Three scenarios are progressively more com-
plex in defining observational data (attribute uncertainty); while
three other scenarios include uncertainty in observational data
(position of boundaries between map units), weighting of evi-
dence (fuzzy membership assignment), and evaluating changes
in the MCE model (fuzzy logic operators). A case study of petro-
leum exploration in northern South America is used. Despite the
resources and time required, the best estimate of input uncer-
tainty is that based on expert-defined values. Uncertainties for
fuzzy membership assignment and boundary transition zones do
not affect the results as much as the attribute assignment uncer-
tainty. The MCE fuzzy logic operator uncertainty affects the results
the most. Confidence levels of 95% and 60% are evaluated with
threshold values of 0.7 and 0.5 and show that accepting more
uncertainty in the results increases the total area available for
decision-making. Threshold values and confidence levels should
be predetermined, although a series of combinations may yield
the best decision-making support.
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1. Introduction

Multi-criteria evaluation (MCE), also referred to as multi-criteria analysis and multi-criteria
decision analysis, is a subset of multidimensional decision and evaluation models that
essentially are tools to evaluate the trade-offs between alternatives with different
impacts (Carter 1991). The goal of MCE is to evaluate the outcome of combining
different criteria to fulfill one or more objectives that may possibly be conflicting
(Carter 1991, Heywood et al. 2006); MCE can be with or without a spatial component
and is applicable in any discipline or field.
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Spatial MCE is used in many different disciplines in order to evaluate suitabilities (or
favorabilities) of locations. This article follows Bonham-Carter et al. (1988) in using the term
favorability. Defining the most favorable location may be positive as in the best location or
negative as in the worst location. Voogd (1983), Carver (1991), and Bonham-Carter (1994)
have conducted comprehensive and in-depth studies of spatial MCE; Malczewski (2006)
provides a recent survey of literature from 1990 to 2004. Previous spatial MCE studies
focusing on economic geology have used either Bayesian methods or fuzzy logic (e.g.
Bonham-Carter et al. 1988, An et al. 1994, Wright and Bonham-Carter 1996, Tangestani
and Moore 2002, Tounsi 2005). Both methods are knowledge-driven relying on information
from an expert. Because Bayesian methods require prior probabilities, they are most
appropriate for areas with well-distributed and sufficient data; thus, they are less appro-
priate for frontier exploration areas where data distribution is sparse (Bonham-Carter 1994).
Therefore, fuzzy logic MCE is most appropriate for a variety of exploration settings.

Spatial MCE is useful for modeling favorable locations on a set of criteria. However, it
is extremely important that the modeler and the decision-maker understand the impli-
cations of subjectivity within the method (Heywood et al. 1995) and the uncertainty
related to the MCE model input, parameters, structure, and results (Thapa and Bossler
1992, Heywood et al. 1995, Karssenberg and De Jong 2005, Li et al. 2012). Because of the
inherent subjectivity of MCE and the uncertainty both from the data and the parameters
used in the MCE, there exists a need to quantify the uncertainty.

Data uncertainty is common in any spatial analysis, including MCE modeling, where
the user relies on many different sources for data, especially if data is older or the
original source is unknown. Model input uncertainty is generally associated with data
collection or processing; data completeness for time and space; data resolution; and
errors from digitizing data (Heuvelink 1998, Heywood et al. 2006). Model parameters and
structure may have some uncertainty associated with them due to the decisions made
by the modeler in how to combine the data sets (Heuvelink 1998, Heywood et al. 2006).

There are several methods for investigating uncertainty in models. Error propagation is
an analysis used to investigate uncertainty and is a suitable method for calculating the
uncertainty of the final output (Thapa and Bossler 1992). The uncertainty, therefore, influ-
ences all subsequent calculations in the model. Monte Carlo simulation, used here, is an
error propagation technique that calculates the model repeatedly using different input
values based on an error model (Heuvelink 1998). By interpreting the culminated results
(e.g. 5th percentile, 95th percentile, and median) of hundreds or thousands of realizations,
the modeler can evaluate spatial variations for further analysis (i.e. confidence level tests).

There are a limited number of published examples of spatial MCE and error propaga-
tion combined. Moon (1998) combined spatial MCE, fuzzy logic, and error propagation in
a theoretical presentation to show their importance and possible theoretical application
in geosciences. The paper did not produce examples or models but an umbrella idea of
applications. Davis and Keller (1997) applied fuzzy logic with Monte Carlo simulation in a
spatial setting in order to investigate uncertainty related to attribute boundaries and
attribute assignment for slope stability. Fernández and Lutz (2010) and Feizizadeh and
Blaschke (2014) are two recent papers which focus on both spatial MCE and error
propagation. Fernández and Lutz (2010) apply Taylor’s series for error propagation and
use a combination of defined and assumed uncertainties. Feizizadeh and Blaschke (2014)
focus on comparing different MCE methods.
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This article focuses on applying error propagation using Monte Carlo simulation to a
spatial fuzzy logic MCE for petroleum exploration using geologic data. A case study from
northern South America is used because the region is oil-rich and has underexplored
areas. This article addresses three questions:

● What are possible methods for defining uncertainty in the various components of
the MCE model and can similar results be found with different methods requiring
less effort?

● How do the different scenarios for defining uncertainty compare to each other?
● What is the MCE error magnitude (on average) from the defined uncertainty on the

results?

The innovation of this article is the combination of spatial MCE, fuzzy logic, and error
propagation applied to petroleum exploration.

The remainder of the article is divided into five sections. First, the spatial MCE is reviewed
in Section 2; Section 3 reviews the error propagation and six scenarios for evaluating the
MCE. Sections 4–6 of the article present and discuss the results and provide the conclusions.

2. Spatial MCE

Bingham et al. (2012) proposed a spatial-based fuzzy logicMCEwith applications to petroleum
exploration such that the investigating geologist may choose a geographic area for further
and more intensive investigation for proposed hydrocarbon prospects, but does not pinpoint
specific locations for drilling. The method is intended to reflect the data evaluation process of
a geologist in a recordable and repeatable manner. The method can be applied to geologic
age-specific data (e.g. Cretaceous interval consisting of substrata that fall within the
Cretaceous age between ca. 145 Ma and 65 Ma) or to non-age-specific data by combining
all of the available age-specific data (e.g. Cretaceous to recent). This article focuses only on the
non-age-specific evaluation of a case study of northern South America (Bingham et al. 2012).

2.1. Data

The MCE combines data covering five criteria: economic and political, hard (or directly
measured), seismic derived, other geologic, and constraints. The criteria are composed
of 17 subcriteria; Table 1 lists the criteria and subcriteria with their original sources. All
subcriteria were either compiled or created by the researchers as part of the Caribbean
Basins, Tectonics, and Hydrocarbons consortium (www.cbth.uh.edu) and were collected
from scales varying from 1:100,000 to 1:44,000,000. Bingham et al. (2012) discuss the
data selection process. The case study extends from approximately 80°W to 55°W and 3°
N to 15°N (Figure 1). A customized Albers projection with central meridian 67.5°W, two
standard parallels of 7°N and 11°N, and WGS1984 as the datum is used to preserve the
relative distance and area (USGS 1989). A cell size of 100 km2 is used due to the
extensive size of the study area (2.5 × 106 km2), the lack of large-scale data, dense
data sets, and the goal of the MCE to have a general idea of favorable prospect areas
rather than pinpointing specific drilling sites.
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The subcriteria maps were created using expert opinion by assigning fuzzy membership
values [0,1], where 0 is unfavorable, and 1 is favorable. Table 2 lists the subcriteria, attributes,
and corresponding fuzzy membership values. The fuzzy membership allows for partial truth
where Boolean membership only allows true or false (Bonham-Carter 1994, Jiang and
Eastman 2000, Tounsi 2005). A fuzzy membership value of 0 is avoided due to the mathe-
matics (i.e. multiplication) of theMCE. The fuzzymembership values and classifications are not
rigidly or universally set as the values may be altered for other geographic regions, with
additional data, and/or more expertise.

2.2. MCE framework

The subcriteria are combined in aggregation stages using fuzzy logic operators (FLO;
MIN (minimum), MAX (maximum), GAMMA, ALGEBRAIC SUM). The operators work on a

Table 1. Criteria sources.

5 Criteria 17 Subcriteria Sources and information

No. of
data
sets

Economic and
political (E)

Costs (C) A highly general map intended to reflect relative general costs only 1
Safety (Y) A highly general map intended to reflect relative safety levels only 1
Risks (R) Data set created by AON Group, Inc. (2010) 1

Hard (H) Geochemical
(G)

A general map showing total organic content 1

Fields (F) Data sets collected from several sources (DM2 Project, 2005; Castellanos
et al., 2006; Wood McKenzie, 2006; Staatsolie, 2007; EPIS and ANH, 2008)

1

Wells (W) Data sets collected from several sources (French and Schenk, 2004; DM2
Project, 2005; Wood McKenzie, 2006; Staatsolie, 2007; EPIS and ANH,
2008)

1

Seeps (S) Data sets collected from several sources (DM2 Project, 2005; Staatsolie,
2007; EPIS and ANH, 2008)

1

Seismic derived
(D)

Fault density
(U)

Fault densities are calculated for 10,000 square kilometers from faults
identified on 2D seismic data; there are four stratigraphic surfaces:
Cretaceous, Paleogene, Miocene, surface/seafloor

4

Diapirs (A) Data sets collected from several sources (Kugler, 1959; Valery et al., 1985;
Brown and Westbrook, 1988; Beltran, 1993; Deville et al., 2003; DM2
Project, 2005; Sullivan, 2005; ANH, 2007; Duerto, 2007)

1

Isochrons (I) Three isochrons (basement/Cretaceous-Paleogene; Paleogene-Miocene;
Miocene-Recent/surface) calculated from interpolated 2D and 3D seismic
data

3

Plays (P) A general map showing play risks 1
Other geologic
(O)

Surface
geology (Q)

Data sets collected from several sources (Geologisch Mijnbouwkundige
Dienst, 1977; Walrond, 1987; Saunders and Snoke, 1998; Schenk et al.,
1999; French and Schenk, 2004; Garrity et al., 2006; Gomez Tapias et al.,
2007)

1

Source rock
(X)

Two data sets, Cretaceous and Lower Cenozoic, show interpretive extents
based on several publications (Curet, 1992; Ysaccis, 1997; Di Croce et al.,
1999; Sanchez, 2007; Kroehler, 2007; Yang and Escalona, 2011; and
references cited therein)

2

Reservoir rock
(V)

Three data sets, Cretaceous, Paleogene, and Miocene, show interpretive
extents

3

Traps (T) A general map showing trap presence/absence 1
Subsurface
lithology (L)

Three data sets, Cretaceous, Paleogene, and Miocene, based on
paleogeographic maps

3

Constraint Sedimentary
basin (N)

Data set edited from Fugro Data Services, AG. (2005) and a buffer of five
kilometers was applied

1

TOTAL 27

Letters in parentheses by criteria and subcriteria are the equation symbols.
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cell-by-cell basis (i.e. raster algebra). Bonham-Carter (1994) and Zimmerman and Zysno
(1980) provide thorough explanations of the operators, while a simplified explanation of
GAMMA and ALGEBRAIC SUM follows here. The GAMMA FLO uses an exponent called
gamma with a value between 0 and 1; it can result in fuzzy membership values that lie
between the extremes of the other FLOs (Bonham-Carter 1994). If the GAMMA FLO is
used in more than one instance in a model, the gamma value does not need to be the
same for each instance. The algebraic sum ‘is always larger (or equal to) the largest
contributing fuzzy membership value’ (Bonham-Carter 1994). The MCE workflow is
shown in Figure 2. The subcriteria are combined in three stages. Stage 1 aggregates
the subcriteria to the criteria level. Stage 2 combines the criteria together. Stage 3
removes the constraint areas producing the final favorability map.

A brief description of the proposed MCE follows; for a full explanation of the method,
equations, and input data sets, see Bingham et al. (2012). The first step (Figure 2)
combines the economic and political subcriteria using the GAMMA FLO to allow for
flexibility (by changing the gamma value) based on a company’s risk policy:

E ¼ 1� 1� Cð Þ 1� Rð Þ 1� Yð Þð Þγ1 CRYð Þ 1�γ1ð Þ (1)

where E is the economic and political criteria, C is cost, R is risks, Y is safety, and γ1 is the
gamma value applied to the economic and political subcriteria.

The second step combines the hard subcriteria, which are considered ‘hard data’
because they are associated with direct measurements (e.g. oil is or is not present in a
well vs. the interpreted location of a fault on seismic data). As the subcriterion with the
highest favorability should be assigned, the MAX FLO is used to combine fields, wells,
and seeps. The result is combined with the geochemical data using the ALGEBRAIC SUM
FLO, which results in the highest possible output.

Figure 1. Case study results (Bingham et al. 2012) of non-age-specific map from fuzzy logic MCE.
Color scale represents more to less favorable, where light gray is least favorable and black is most
favorable. White areas were removed by the constraints.
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H ¼ 1� 1� MAX F;W; Sð Þð Þð Þ 1� Gð Þ (2)

where H is the hard criteria, F is hydrocarbon fields, W is drilled wells, S is hydrocarbon
seeps, and G is geochemical subcriterion.

Three equations (Equations (3)–(5)) combine the seismic-derived subcriteria. Equation
(3) combines seismic derived interpretation that can be directly observed in the seismic
data and uses the GAMMA FLO to be able to reflect the seismic interpreter’s knowledge
or even to reflect if the interpretation is considered thorough or superficial. The sub-
criteria in Equation (4) represent a further state of interpretation and cannot be seen
directly from the seismic data; the subcriterion with the higher favorability is chosen in
case of null values. The outputs from Equations (3) and (4) are combined for the seismic-
derived favorability value (Equation 5) and use the GAMMA FLO to reflect the overall
confidence or exploration policy.

Table 2. Fuzzy membership values applied in case study.
Subcriteria Attribute FM value Subcriteria Attribute FM value

Costs (C) Very low 1.0 Diapirs (A) Present 0.7
Low 0.7 Absent 0.3
Intermediate 0.5 Isochrons in milliseconds

two-way-time (I)
0 0.1

High 0.3 0.0–1000 0.3
Very high 0.1 1000–3000 0.5

Risks (R) Low 0.9 3000–7000 0.8
Low-medium 0.7 7000–9000 0.5
Medium 0.5 >9000 0.3

Safety (Y) Very high 1.0 Plays (P) None 0.01
High 0.9 Low 0.9
Med-high 0.7 Low-Medium 0.7
Low 0.3 Medium 0.5
Very low 0.1 Med-high 0.3

Geochemical data (G) Low-med 0.4 High 0.1
Medium 0.5 Surface geology (Q) Igneous 0.1
Med-high 0.7 Metamorphic 0.1
High 0.9 Sedimentary 0.9
Very high 1.0 Mix 0.5
None 0.01 Source rock (X) Present 1.0

Oil and gas fields (F) Present 1.0 Absent 0.1
Absent 0.1 Reservoir rock (V) Present 1.0

Oil and gas wells (W) Dry well 0.01 Absent 0.1
Water well 0.01 Traps (T) Present 1.0
Show 0.7 Mix 0.5
Producing 1.0 Subsurface lithology (L) Limestone 0.8
Other 0.01 Shale 0.8

Oil and gas seeps (S) Other seep 0.5 Sandstone 0.8
Oil or gas seep 0.9 Combination 0.8
No seep 0.1 No deposition 0.1

Fault density, surface (U) 0 0.9 Other 0.1
0.0–0.42* (0.9, 0.1) Sedimentary basins (N) Present 1.0
0.42+ 0.1 Absent 0.0

Fault density, subsurface (U) 0 0.1
0.0–0.42* (0.1, 0.9)
0.42+ 0.9

*A linear relationship between the attribute and the fuzzy membership value.
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D1 ¼ 1� 1� Uð Þ 1� Að Þð Þγ2 UAð Þ 1�γ2ð Þ (3)

D2 ¼ MAX I; Pð Þ (4)

D ¼ 1� 1� D1ð Þ 1� D2ð Þð Þγ3 D1D2ð Þ 1�γ3ð Þ (5)

where D1 is the combined first seismic derived subcriteria; U is fault interpretation; A is
diapirs; D2 is the combined second seismic derived subcriteria; I is isopach/isochron; P is
plays; and D is the seismic derived criteria.

The final criteria group, other geologic features, is composed of more interpretive
geologic subcriteria that are used for exploration, and thus uses the GAMMA FLO to
reflect the degree of interpretation more flexibly.

O ¼ 1� 1� Qð Þ 1� Xð Þ 1� Vð Þ 1� Tð Þ 1� Lð Þð Þγ4 QXVTLð Þ 1�γ4ð Þ (6)

where O is the combined other geologic features criteria, Q is surface geology, X is
source rock, V is reservoir rock, T is trap, and L is subsurface lithology.

All of the criteria are then combined using the GAMMA FLO.

K ¼ ð1� ð1� EÞð1� HÞð1� DÞð1� OÞÞγ5ðEHDOÞð1�γ5Þ (7)

where K is the combined criteria.

Figure 2. MCE workflow. The left column of boxes shows the subcriteria. All successive boxes are the
combined data at different aggregation stages. The other shapes (hexagon, octagon, and circle)
match a different fuzzy logic operator and contain the equation number in the text as well. All
shapes contain the letter used in the equations in the text. The subcriteria are combined from left to
right.

1558 L. BINGHAM ET AL.



To obtain the final favorability, constraints must be applied. The exploration should
be restricted within the limits of sedimentary basins. While it is acknowledged that areas
excluded in the case study may contain some sedimentary deposits, the sedimentary
layers are not currently thought to be thick enough to contain mature hydrocarbon
deposits. Therefore, for simplicity, these areas are considered nonsedimentary basins in
this article. Using the MIN FLO ensures the selection of the favorability within the
sedimentary basin if the true value is 1 (i.e. sedimentary basin is 1, nonsedimentary
basin is 0, and a favorability value within the sedimentary basin [0,1] will be chosen).

Z ¼ MIN N; Kð Þ (8)

where Z is the final favorability and N is the constraints criteria.
Figure 1 is the final favorability map of the non-age-specific petroleum exploration

potential of northern South America. The highest scoring favorability areas are found in
Venezuela and Colombia. Non-age-specific favorability will indicate whether the area in
general, regardless of possible exploration targets (age intervals of subsurface sedi-
ments), is of low to high favorability for exploration. Exploration may occur in well-
known and established areas of production or in areas where there is little or no
production (i.e. frontier exploration).

3. Error propagation

The workflow of the uncertainty modeling follows a series of steps to create realizations
for the investigated uncertainties. The following steps outline the workflow of the
uncertainty modeling with Monte Carlo simulation (Heuvelink 1998).

(1) Error models are defined for each input criterion.
(2) Create 2000 sets of realizations of all inputs by drawing from the probability

distributions (defined by the error models in step 1).
(3) Run the MCE model (Equations (1)–(8)) for each set of realizations and store

results.
(4) For final favorability (Z), calculate sampling statistics over realizations.

In order to investigate systematically the sources of uncertainty, six scenarios are created
and evaluated. The scenarios evaluate three basic groups of uncertainty. Group A
focuses on uncertainty in observational data, specifically addressing the uncertainty
related to feature attribute classification (Column 2 ‘Attribute’ in Table 2). This uncer-
tainty addresses the possible misclassification of a feature to the wrong attribute class
by either negligence or mapping error. Group B has two parts and focuses on uncer-
tainty of weighting of evidence with a component of observational data. The two parts
are fuzzy membership assignment (Column 3 ‘FM Value’ in Table 2; weighting of
evidence) and boundary transition zone (observational data). The uncertainty of the
fuzzy membership assignment is related to the expert opinion that a specific attribute
should be assigned a specific fuzzy membership value. The boundary transition zone is
the uncertainty that the boundary between two classified areas is geographically mis-
located either due to mapping errors, classification errors, or rasterization processes.
Group C focuses on changing model parameters (i.e. FLOs). The different scenarios
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combine the groups in a successive manner. Scenarios 1–3 focus on Group A; Scenario 4
combines groups A and B; Scenario 5 combines groups A and C; and Scenario 6
combines all groups. The results of the different scenarios are evaluated by comparing
two different threshold values (0.5, 0.7) and two different confidence levels (60%, 95%).

3.1. Scenario 1: ‘simple’ uncertainty

Scenario 1 acts as the base case of the six scenarios. It assumes that all input data set
feature classifications (i.e. Group A) have an uncertainty probability of 0.1 for being
misclassified. This value was chosen as most appropriate based on informed expert
knowledge. In Scenario 1, this uncertainty is formally represented as follows: class
numbers are defined i = 1, . . ., N with N, the total number of classes. X is a discrete
random variable representing the class of a feature. The probability of the originally
mapped class i = k is:

Pr X ¼ kð Þ ¼ u (9)

The probability of the remaining classes i ≠ k is:

Pr X ¼ ið Þ ¼ 1� u
N� 1

forall i�k (10)

The purpose of this simple scenario is to evaluate the necessity of a more detail-oriented
expert-defined uncertainty, i.e. are similar results possible with less effort. Its significance
is to compare the analysis results of increased resources and more in-depth modeling.
The originally defined classification is assigned a probability of 0.9 (i.e. u = 0.9). A
probability of 0.1 is distributed equally among the remaining classes as described by
Pr(X = i). For example, for subcriterion geochemical (TOC), polygon 964 was originally
classified as high TOC by an expert (Figure 3D). Scenario 1 models with 0.1 probability
that the area included in polygon 964 is not classified correctly and may be one of the
other classifications (none, low, low-medium, medium, medium-high; see Table 2). A 0.1
probability is distributed equally among these five classifications (Figure 3A). Polygons
963, 968, 969, 970, and 971 were originally noted as ‘unknown TOC’ (Figure 3D); there-
fore, these areas are equally probable as being one of the six classifications: none, low,
low-medium, medium, medium-high, and high (Figure 3A).

3.2. Scenario 2: expert-defined uncertainty spread across neighboring classes

Scenario 2 aims to be slightly more complex than Scenario 1 in order to evaluate the
difference of a detailed expert-defined uncertainty and a limitation to possible misclas-
sification. Just like Scenario 1, it focuses on Group A uncertainty only; groups B and C
uncertainties are ignored. In this scenario, a geological expert with experience in the
case study area defined the uncertainty of each input data set by reviewing the attribute
classification and the geographic location of the features. Every feature in every data set
was assigned a probability that the feature classification is incorrect. A probability
distribution is created using this assigned value. The probability that the feature is
misclassified is split equally between the class neighbors. The number of class neighbors
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is defined i = 1, . . ., N with N the total number of classes. X is a discrete random variable
representing the class of a feature. The probability of the originally mapped class i = k is:

Pr X ¼ kð Þ ¼ u (10)

The probability of the class neighbors i = k + 1 and i = k − 1 is:

Pr X ¼ k � 1ð Þ ¼ Pr X ¼ k þ 1ð Þ ¼ 1� u
2

(11)

The probability of the remaining classes is zero.
For example, polygon 965 was originally classified as ‘medium-high’ TOC (Figure 3D).

The expert-defined uncertainty is a probability of 0.5 that the area is either ‘medium’ or
‘high’ TOC (Figure 3B) and is split equally between the two classes (i.e. 0.25 medium, 0.5
medium-high, 0.25 high, because i = 2). In the case of polygon 964, the uncertainty is a
probability of 0.1 that the area is not ‘high’ TOC (Figure 3D); however, the classification
‘high’ is an end-member and in this case ‘medium-high’ classification is assigned a
probability 0.1 because i = 1 (Figure 3B). Polygons 963 and 968–971 are treated the
same as in Scenario 1 because the original classification was ‘unknown’ TOC; thus each
attribute is equally likely (i.e. i = N) (Figure 3B and D).

3.3. Scenario 3: expert-defined uncertainty in pseudo-normal distribution

Scenario 3 continues to focus only on Group A uncertainty like Scenarios 1 and 2. It uses
expert-defined uncertainty like Scenario 2. However, unlike Scenario 2 where reclassifi-
cation is limited, Scenario 3 distributes uncertainty among all of the classes in a pseudo-
normal distribution.

Class numbers are defined i = 1, . . ., N with N the total number of classes. X is a
discrete random variable representing the class of a feature. The probability of the
originally mapped class i = k is:

Pr X ¼ kð Þ ¼ u (13)

The remaining probability 1–u is distributed over all the remaining classes i ≠ k. The
probability distribution was created with expert opinion to follow a smooth, bell-curve
shape taken from Gaussian distribution sigma values (1σ = 0.341, 2σ = 0.136, 3σ = 0.21,
4σ = 0.001); hence called ‘pseudo-normal distribution’ as the originally classified attri-
bute will disrupt the normal bell curve (Figure 3C). The classes nearer to the originally
assigned class will be more probable than those classes further away and all classes will
have some probability of being the correctly assigned classification. In situations where
the class is unknown, the probability distribution follows a normal distribution fitted
to N.

Figure 3C shows the probability distribution of the geochemical subcriterion. For
example, polygon 964 has a probability of 0.1 of being misclassified, which is divided
among the classes in a pseudo-normal distribution. The polygons as well as the uncer-
tainty are labeled in the map (Figure 3D). All uncertainty probability distributions can be
found in Supplemental data.
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3.4. Scenario 4: expert-defined uncertainty over pseudo-normal distribution with
fuzzy membership assignment and boundary transition zone

Scenario 4 builds on the uncertainty modeling of Scenario 3 by using the same input
data uncertainty and probability distributions. Scenario 4 additionally investigates the
uncertainty effects of fuzzy membership assignment and a boundary transition zone of
10 km. This scenario combines Group A and Group B uncertainties. Fuzzy membership
uncertainty is represented using a stochastic fuzzy membership value. The fuzzy mem-
bership values originally assigned to each feature are j � g, g = [0,1]; j may be different
for each feature. In order to represent uncertainty, each of these values is replaced by a
stochastic variable jY, derived from the original fuzzy membership value as:

jY ¼ j þ Y (14)

In Equation (14), Y is a Gaussian distributed random variable with a mean 0 and a standard
deviation 0.1. In each Monte Carlo realization, a random variable is drawn from jY.

Input data sets were assigned a boundary transition zone of 10 km because of the
scale of the map and cell size. This means that for every neighboring area, the actual
boundary may be shifted up to 5 km into one area or another as the boundary transition
zone is bisected by the original boundary. The boundary transition zone is randomly
reassigned a class membership between the two neighbors (Figure 4), having equal
probability of occurrence of 0.5. Boundary transition zones are not applicable to all input
data sets (Table 3). Examples of exceptions are where the boundary is already certain or
the original format is point data.

Figure 4. Boundary transition zone example. The polygon border may shift between neighboring
areas. The cells within the transition zone are randomly reassigned.
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3.5. Scenario 5: parameter investigation

Scenario 5 builds on Scenario 3 ignoring Group B uncertainty, but Scenario 5 introduces
Group C uncertainty (model structure uncertainty). Scenario 5 changes all of the FLOs to
the gamma operator. Gamma values are q � g, g = [0,1]. qz is a random variable
representing the gamma value, q is the originally assigned gamma value, and Z is a
Gaussian random variable with mean zero and standard deviation 0.2.

qz ¼ qþ Z (15)

3.6. Scenario 6 – parameters with fuzzy membership uncertainty and boundary
transition zone

Scenario 6 builds on Scenario 5 adding fuzzy membership uncertainty and a boundary
transition zone. This scenario takes all sources of uncertainty of an MCE into account. It
addresses groups A, B, and C uncertainties; thus, it applies Equations (13)–(15).

3.7. Confidence levels and thresholds

This article does not intend to give a complete review of statistical theory behind
confidence levels and threshold values; however, it is deemed necessary for a brief
overview and application in order that the reader is sure to understand the presentation
of results and the discussion. Confidence levels are used when the most effective way to
describe the error associated with an event cannot be precisely determined. A con-
fidence level provides ‘an interval and a probability that the unknown value falls within
the interval’ (Isaaks and Srivastava 1989, p. 494). Geoscience applies confidence levels on
events that do not necessarily repeat over time (i.e. a well is only drilled once), but over

Table 3. Error propagation parameters.
Subcriteria Border classification Fuzzy membership assignment

Costs (C) Yes Yes
Safety (S) Yes Yes
Risks (R) No+ Yes
Geochemical (G) No‡ Yes
Fields (F) No‡ Yes
Wells (W) No‡ Yes
Seeps (W) No‡ Yes
Fault density (U) No‡ Yes
Diapirs (A) Yes Yes
Isochrons (I) No† Yes
Plays (P) Yes Yes
Surface geology (Q) Yes Yes
Source rock (X) Yes Yes
Reservoir rock (V) Yes Yes
Traps (T) Yes Yes
Subsurface lithology (L) Yes Yes
Sedimentary basin (N) Yes No*

+Risks were not included in the border classification error because the boundaries follow the accepted political and
economic zone boundaries.

‡These data sets were not included because the random error model was applied.
†The isochrons were not included because it is a continuous data set and has no borders.
*Sedimentary basins are not included in fuzzy membership assignment or error modeling because value is not
uncertain; either the location is a sedimentary basin or it is not and this is well-established information.
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space (i.e. multiple wells may be drilled in a prospect). However, it is further understood
that the data collected (e.g. from wells) are skewed towards a bias of good outcomes
(Isaaks and Srivastava 1989, Goovaerts 1997). The confidence intervals are calculated
using the percentiles from the Monte Carlo simulation.

Figure 5 shows a graph illustrating two different confidence intervals. The area within
the confidence interval is shaded gray. By changing the confidence level from 1–α1 to 1–
α2, the confidence level is lower. In this study, 95% and 60% confidence levels are
calculated and compared. A confidence level of 95% is used because of the conventional
use of the interval as well as the lower risk associated with the outcomes; 5% risk is
considered exceptional for petroleum exploration. Because the data used in the study is
not industry-grade (i.e. data available for university research and public use) and to allow
for comparison in a high-risk fashion, a confidence level of 60% is presented for
comparison.

The concept of a threshold value is such that it is an indicator of a critical behavior
(Isaaks and Srivastava 1989). Figure 5 shows two threshold values, t1 and t2. In the case
of this study, the threshold value indicates the required favorability for petroleum
exploration. The favorability value chosen to indicate possible exploration is 0.7 because
the fuzzy membership values in Table 2 have this value as a medium-high qualitative
description. A lower favorability value of 0.5 is presented for comparison based on the
favorability values in Table 2, because the contextual relationship of 0.5 to ‘medium’
quality outcomes. It is assumed that less than ‘medium’ quality outcomes are not
preferred for exploration decisions.

The confidence level is combined with the threshold value to indicate three different
classifications of locations. Those areas that are (1) confident to be above the threshold
value; (2) confident to be below the threshold value; or (3) ambiguous (i.e. it is unknown
if the location is above or below the threshold and no decision can be made). Figure 5
illustrates how the confidence level and threshold value may restrict the results. The

Figure 5. Confidence interval graphs with mean μ. Two thresholds are shown by dashed lines (t1
and t2). (A) Boundaries of confidence interval α1 shown with solid black lines. (B) Boundaries of
confidence interval α2 shown with solid black lines.
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interval for a level of 1–α1 straddles t1 and t2 and is therefore ambiguous (Figure 5A); the
interval of 1–α2 straddles t1 and is ambiguous (Figure 5B). However, 1–α2 is completely
below t2, so it is confident to be below the threshold (Figure 5B).

4. Results

The median values of the realizations for all scenarios are shown in Figure 6. Areas in
white are excluded from the results because the areas are not sedimentary basins, thus
not appropriate for petroleum exploration activities. Scenario 3 (Figure 6C) has higher
favorability in areas of known production in the Magdalena Valley basin, Llanos basin,
Maracaibo basin, Guarico subbasin, Eastern Venezuelan basin, and Trinidad. Relatively
high values are also shown in Aruba, Curaçao, and Bonaire, which are not producing
areas, and offshore Guyana where there has been a recent oil discovery (Liza-1; Rosati
and Carroll 2015) after several unsuccessful attempts of exploration. A comparatively low
area is just northeast of Guajira Peninsula. All scenarios reflect similar spatial patterns of
favorability trends, i.e. higher favorability onshore than offshore and higher favorability
in the nine mentioned areas. Scenarios 1, 2, 3, and 5 have similar ranges of favorability
from ~0.4 to ~0.8. Scenario 4 has favorability range from ~0.1 to ~0.8 and Scenario 6 has
a range from ~0.0 to ~0.8. However, there are two identifiable ranges of values that
appear more often – one ranging from ~0.0 to ~0.1 and a second ranging from ~0.5 to
~0.8 for both scenarios (4 and 6). Scenarios 4 and 6 include low favorability, likely
dominating the lower value range histogram, in the boundary transition zone between
the sedimentary and nonsedimentary basins.

The standard deviation of the final favorability Z was calculated for each scenario and
is shown in Figure 7. Scenario 3 (Figure 7C) has an overall low standard deviation
ranging from 0.02 to 0.09. There is a small area in Guyana near the border to
Suriname that has a standard deviation ~0.3 because of the uncertainty related to
various data sets overlapping there. Disregarding the nonsedimentary basins (shown
with cross hatch marks), the lowest standard deviation is onshore and increases towards
the offshore because of increased uncertainty; however, there is not much variation
between the two regions. Scenarios 2 and 4 exhibit similar spatial trends and ranges of
standard deviation to Scenario 3 with the exception of the border region in Scenario 4,
which has high standard deviation due to the boundary transition zone. Scenario 1 has
high standard deviation between 0.15 and 0.24 with higher values concentrated
onshore and in areas of known hydrocarbon production. Scenarios 5 and 6 exhibit
similar spatial trends to each other and have similar ranges from ~0.20 to ~0.40. These
scenarios also show the greatest amount of spatial variation within the map results.

Following Scenario 3 through the changes in thresholds and confidence intervals
(Figures 8–12), some general results can be related to the other five scenarios. A threshold
value of 0.7 and a confidence interval with a confidence level of 95% results in 41% of the
cells being either above or below the threshold; 59% of the cells cannot be used to
support decisions (Figures 8C and 9). By narrowing the confidence level to 60%, the
number of cells that can be used for decision-making increases to 67% (Figures 9 and
10C). By increasing the acceptable risk of making a wrong decision (i.e. by decreasing the
confidence level of the confidence interval), the number of cells meeting the criteria
increases. By lowering the threshold value to 0.5 and using a confidence level of 95%,
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the total area available for decision-making increases; 85% of the cells are either above or
below the threshold (Figures 9 and 11C). Accepting more risk by reducing the confidence
level to 60%, the total area available for decision-making increases and virtually all of the
cells are either above or below the threshold (Figures 9 and 12C). In general, all of the
scenarios follow the same pattern: narrowed confidence level and lowered threshold
value increases the total area available for decision-making (Figures 8–12).

5. Discussion

From the uncertainty applied to the data sets in this study, the results, in general, show
that lowering the confidence level from 95% to 60% results in more cells for decision-
making. Changing the threshold value from 0.7 to 0.5 results in more cells that are
considered more favorable (i.e. number of cells above the threshold increase). With a
threshold value of 0.7 and confidence level of 95% (Figures 8 and 9), regardless of the
scenario, the majority of the results either do not support exploration or are inconclu-
sive. In the case that accepts the most uncertainty in the results with threshold value of
0.5 and confidence level of 60%, more areas are above the threshold and support
exploration than in previous cases (Figures 9 and 12). However, it is not necessarily
good that all of an area could be explored because it is not probable that petroleum
exists in the entire study area. In the same case, if all of the uncertainty sources are taken
into account (Scenario 6), there are few areas where exploration is supported (Figures 9
and 12F). By overlaying known oil and gas wells and fields, it is shown that many
existing production areas are in the ambiguous areas (Figure 12F), although new areas
are also predicted. In many of the cases, depending on the sources of uncertainty taken
into account, decisions are not possible. Because of this conundrum, it is difficult to
choose only one case for making decisions. It would most likely suit the realistic
situation that areas are further classified for decision-making and that all four cases
are used for a specified scenario. In short, areas would be given a grade based on the
threshold value and confidence interval.

Group A (uncertainty of observational data with respect to attribute classification)
with expert-defined uncertainty in either Scenarios 2 or 3 yield overall similar spatial
results with local variation and have lower standard deviation than Scenario 1 (Figure 7).
Scenario 2 has more cells available for decision-making when the threshold value is 0.7
regardless of the confidence interval, and Scenario 3 has more cells available for
decision-making when the threshold value is 0.5 regardless of the confidence interval
(Table 9). Because Scenarios 2 and 3 yield similar results and rely on expert opinion, they
are favored over Scenario 1, which produces very different results.

Scenario 4 combines groups A (uncertainty of observational data with respect to
attribute classification) and B (uncertainty of weighting of evidence with respect to fuzzy
membership assignment and observational data with respect to boundary transition
zones) uncertainties and presents more uncertainty in its results as expected since more
uncertainties are quantified. However, fuzzy membership and border transition uncer-
tainty (Group B) contribute less to the output uncertainty than the uncertainty of the
attribute classification in the input data sets (Group A). It is concluded that there is more
uncertainty related to the input data set attribute classification rather than the fuzzy
membership values for the defined uncertainties, because the addition of Group B
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uncertainty has little impact on the results of Scenario 4 compared to Scenario 3. It is
possible that differently defined uncertainties for either Group A or Group B could yield
different results.

Group C uncertainty (model uncertainty of fuzzy logic operators) overshadows the
other uncertainties defined in groups A or B. Scenarios 5 and 6 have similar spatial
patterns and values both in the standard deviation and in threshold results. The results
of Scenarios 5 and 6 verify that changes in the gamma value have large impacts on the
results. This confirms the known subjectivity and uncertainty related to MCE models and
reinforces the necessity to construct models based in logical grounding of the real-world
phenomena and data evaluation of an expert. This is a sensitive aspect of the model.

The weaknesses in this approach are the subjectivity related to every aspect of the
analysis: the input data, the MCE methodology, the fuzzy membership values, the
defined uncertainties, the accepted threshold value, and the acceptable confidence
level. All of these aspects of the analysis may change depending on the expert opinion
or depending on the company policy that an exploration geologist would refer to for
decisions. However, every aspect of the analysis would not necessarily change or change
drastically.

When comparing known locations of oil and gas wells and fields (Figures 8C and 12F),
it may be concluded that the uncertainties are underestimated for some subcriteria. The
coverage of the oil and gas wells and fields data set is not complete; however, it can be
used as a guide for validation. Some areas where petroleum exists coincide with the
ambiguous zone. In Figure 8C, the confidence level of 95% means that 5% of the cells
are incorrectly classified as either above or below the threshold value. In Figure 12F, 40%
of the cells are incorrectly classified as being above or below the threshold. While not all
of the existing wells and fields are shown to be in the confidence levels and above the
threshold value, some validation is shown. Further work is needed therefore to better
constrain the defined uncertainties in order to reflect better-known production informa-
tion. Despite the weaknesses, statistical information is given that can be used to support
decisions which would not be present otherwise. Additionally, the MCE and Monte Carlo
simulation could be repeated for age-specific analysis and validation of producing fields
may reflect better the reality of production information.

6. Conclusions

This article applies a Monte Carlo simulation to a fuzzy logic MCE to determine the best
scenario for defining uncertainty in the input data and model structure. It addresses
three groups of uncertainty sources (attribute classification – Scenarios 1–3; fuzzy
membership assignment and boundary transition – Scenario 4; fuzzy logic operator –
Scenario 5), combines the uncertainty sources in different ways (Scenarios 4–6), and
proposes three methods for defining input data attribute classification uncertainty
(Scenarios 1–3). It finds that similar results can be obtained in either of the two
expert-defined uncertainty scenarios (Scenarios 2 and 3) and thus are the favored
uncertainty definition approaches. Uncertainty from fuzzy membership assignment did
not affect the results as much as attribute classification uncertainty (Scenario 4 vs.
Scenarios 1–3). Changing fuzzy logic operators to gamma and changing the gamma
values significantly changed the output, indicating that the choice of fuzzy logic
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operator and gamma value must be chosen in a clear and logical manner (Scenario 5).
Threshold values and confidence levels need to be predetermined prior to analyzing the
results to prevent bias in the interpretation; however, the most useful interpretation may
include several cases (i.e. multiple thresholds or multiple confidence levels) which grade
the locations. Future work may better constrain uncertainties in order to match known
production locations better and to focus on age-specific evaluations. By incorporating
the uncertainties of the subcriteria and defining them within the provided MCE frame-
work, the uncertainty analysis can be incorporated in forecasts used for decision-making.
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