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Abstract

Background: Stillbirth is a major contributor to perinatal mortality and it is particularly common in low- and
middle-income countries, where annually about three million stillbirths occur in the third trimester. This study aims
to develop a prediction model for early detection of pregnancies at high risk of stillbirth.

Methods: This retrospective cohort study examined 6,573 pregnant women who delivered at Federal Medical
Centre Bida, a tertiary level of healthcare in Nigeria from January 2010 to December 2013. Descriptive statistics were
performed and missing data imputed. Multivariable logistic regression was applied to examine the associations
between selected candidate predictors and stillbirth. Discrimination and calibration were used to assess the model’s
performance. The prediction model was validated internally and over-optimism was corrected.

Results: We developed a prediction model for stillbirth that comprised maternal comorbidity, place of residence,
maternal occupation, parity, bleeding in pregnancy, and fetal presentation. As a secondary analysis, we extended
the model by including fetal growth rate as a predictor, to examine how beneficial ultrasound parameters would
be for the predictive performance of the model. After internal validation, both calibration and discriminative
performance of both the basic and extended model were excellent (i.e. C-statistic basic model =0.80 (95 % Cl

0.78-0.83) and extended model =0.82 (95 % Cl 0.80-0.83)).

Conclusion: We developed a simple but informative prediction model for early detection of pregnancies with a
high risk of stillbirth for early intervention in a low resource setting. Future research should focus on external

validation of the performance of this promising model.
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Background

Stillbirth is a major but silent contributor to perinatal
mortality [1], and about 3 million third-trimester
stillbirths [2, 3] occur annually, mainly (98 %) in low-
and middle-income countries (LMICs) [4]. Despite
several calls for action to reduce the rate of stillbirth
[1, 4-8], stillbirths are yet to be addressed in the
Global Burden of Disease metrics [9, 10], and Sus-
tainable Development Goals [11]. Given that neither
vital registration nor national stillbirth registers are
adequately provided in LMIC [2, 12], together with
the frequent omission from records of stillbirths that

* Correspondence: g.a.kayode@umcutrecht.nl

TJulius Global Health, Julius Center for Health Sciences and Primary
Care|University Medical Centre Utrecht, P.O. Box 855003508, GA, Utrecht, The
Netherlands

Full list of author information is available at the end of the article

( ) BiolVled Central

occur after 22 and before 28 weeks of gestation [13],
the stillbirth rate has been underestimated. Studies
have examined the associations between stillbirths
and clinical [14-19] and non-clinical characteristics
[20-22] of pregnant women but the knowledge ge-
nerated is yet to have any positive impact on intra-
uterine survival in LMIC [23]. This indicates limited
application of research findings to clinical settings,
notably in low-resource settings, due to the inability
of healthcare providers to combine these multiple
predictors of stillbirth accurately to identify pregnan-
cies with a high risk of stillbirth for early interven-
tions [5, 6].

Therefore, it is important to develop an easy-to-apply
clinical decision making tool for early detection of preg-
nancies with a high risk of stillbirth as recommended by
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experts in maternal and child health [12]. To date, only
few attempts have been made to develop a decision
making tool for early detection of pregnancies with a
high risk of stillbirth but these models cannot be ap-
plied to low-resource settings. For example a prediction
model for both stillbirth and neonatal death was devel-
oped in the United Kingdom [24] and subsequently
validated in the United Kingdom and the Netherlands
[25, 26]. This model predicts a different outcome
(stillbirth and neonatal death in very preterm babies)
and availability of routine data to validate it would be
a great challenge in low-resource settings. Likewise,
the prediction model developed by Akolekar et al. [27]
contains some parameters such as Maternal Serum
Pregnancy-Associated Plasma Protein-A and Reversed
A-Wave in Ductus Venosus, that are not routinely
assessed in low resource settings [27]. In this study we
aimed to develop a prediction model to be applied in
the second trimester of a pregnancy to identify preg-
nancies at high risk of stillbirth using routine clinical
and non-clinical profiles of pregnant women who re-
ceived care at a tertiary hospital in a low resource
setting.

Methods

Study population

A retrospective cohort of 6,573 pregnant women that
delivered at Federal Medical Centre Bida, a tertiary
hospital in Niger state, Nigeria, from January 2010 to
December 2013 was utilized to develop a prediction
model for stillbirth. Only those women who delivered at
the hospital after 20 completed weeks of gestation and
gave birth to babies with no life-threatening congenital
malformation were recruited.

Data collection

Paper-based health records of all the included patients
were retrieved from the Department of Health Infor-
mation, Federal Medical Center Bida. Information was
collected on clinical and non-clinical profile of the
participants by the use of data extraction form in an
anonymous format. Information on data extraction
forms was transmitted to an electronic database using
double data entry.

Outcome

The outcome of the study was stillbirth, defined as
fetal death that occurred after 20 completed weeks
of gestation.

Candidate predictors
For prediction modelling, the following candidate pre-
dictors were considered: maternal age, parity (number
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of previous pregnancies carried beyond viability i.e.
up to 28 weeks gestational age), maternal education
(woman who can read and write), maternal occupation,
ethnicity, place of residence, previous fetal loss (number
of previous pregnancy losses), bleeding in pregnancy
(whether the woman had any complaint of vaginal
bleeding during the index pregnancy), maternal height,
number of previous caesarean sections, maternal
weight, multiple gestation, sex, fetal presentation (part
of the fetus closest the pelvic inlet, was categorized as
cephalic, breech, and others), fetal growth rate (birth
weight divided by gestational age at birth), and number
of comorbid conditions. The following medical condi-
tions, diagnosed by a physician were considered to gen-
erate a number of comorbid conditions: hypertension
(defined as blood pressure of 140/90 mmHg and above)
[28], pre-eclampsia (presence of hypertension and pro-
teinuria) [28], diabetes (Diabetes is defined as Fasting
Blood Sugar (FBS)>7 mmol/L or 2-h Blood Sugar
(RBS) > 11.1 mmol/L; Impaired Glucose tolerance is de-
fined as Fasting Blood Sugar (FBS) 6.1-6.9 mmol/L or
2-h Blood Sugar (RBS)>7.8-11 mmol/L) [29], sickle
cell disease (presence of HbSS, HbSC or HbS pB-
thalassemia), renal disease (presence of clinical features,
ultrasound findings, and elevated serum urea and
creatinine), thyroid disease (presence of clinical mani-
festations and elevated serum free thyroxine and
triiodothyroxine concentration) [29], syphilis (diagnosed
using Venereal Disease Research Laboratory test) and
pelvic inflammatory disease. All candidate predictors
were selected based on availability, clinical experience
and medical literature.

Sample size calculation

We expected 2,000 deliveries per year and the incidence
of stillbirth was assumed to be 4 % [30, 31]. Thus, 320
cases of stillbirths were expected to have occurred
among 8,000 pregnant women who delivered at the
hospital from 2010 to 2013. We planned to recruit all
the 8,000 pregnant women who delivered at the hospital
retrospectively. Given that at least 10 events to a poten-
tial predictor will be adequate to build a prediction
model [32], we expected to have a sufficient number of
events to build a robust prediction model.

Data analysis

Descriptive statistics

Data were inspected and descriptive analyses performed
using the complete dataset. Categorical data were described
in terms of numbers and percentages while numerical
data were expressed as median and interquartile range;
the percentage of missing data in each potential pre-
dictor was determined.
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Missing data
Multiple imputation technique using fully conditional
specification was applied to impute missing data [33, 34].

Prognostic model

All potential predictors were entered into a multivariable
logistic regression model and significant predictors were
identified using stepwise backward selection with the
Akaike Information Criterion (AIC) stopping rule. Pre-
dictors that were consistently retained in the model were
selected and entered into a multivariable logistic regres-
sion. The best model was identified based on AIC and
the results from each imputed dataset were pooled using
Rubin’s rule [35]. Eventually, a prediction model for still-
birth was developed which we called the basic model.
Subsequently, the basic model was extended with the
variable fetal growth rate to become the extended model.
The extended model was developed for those patients
who had information on obstetric ultrasound, a proced-
ure that is not routinely done in low-resource settings.

Performance of the model

The predictive performance of the final models was
assessed by evaluating calibration and discrimination.
Calibration determines the level of agreement between
the observed events and model’s prediction and was
presented by the calibration plot [36]. Discrimination
examines how well the model can differentiate between
participants with or without event and was expressed as
C-statistic (which is equivalent to the area under the
receiver operator curve) [37].
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Internal validation

A bootstrap re-sampling technique was applied to the
whole data to generate 200 testing datasets. The original
models were re-fitted in the testing datasets and their
shrinkage factors were estimated.

Model shrinkage

The shrinkage factor was used to adjust for over-optimism
in each of the original models and the adjusted regression
coefficients were calculated. The predictive performance
of the final models was then re-assessed. All analyses were
performed in R statistical software package [38].

Results

Patient characteristics

Of the 6,808 pregnant women who were recorded to have
given birth in the delivery register; 6,573 (96.5 %) of them
were recruited into this study based on the inclusion
criteria as shown in Fig. 1. A total of 6,956 newborns were
delivered, 443 of them were lifeless at birth meaning that
six in 100 newborns delivered at this center were lifeless
at birth. Table 1 shows the descriptive characteristics of
the study population and percentage of missing data in
each characteristic of the patients. The median age of
women who delivered at the center was 27 years with an
average parity of two. About two-thirds of the women had
at least primary education; half of them were unemployed.
The Nupe ethnic group accounted for 72 % of the women
and they dwelled mainly in the urban areas (89 %). Almost
90 % of the babies delivered were singleton fetuses in
cephalic presentation and 51 % were male. The median
birth weight was 3.1 kg and the mean gestational age at
birth was 39 weeks. Average percentage of missing data

6,837 (100% ) pregnantwomen delivered at Federal
Medical Centre Bida, Nigena from January 2010 to
December 2013

24 (0.35%)women were excluded from the
study because their babies had a life-

threatening congenital malformations mainly:
congenital malformation, anencephaly and
hydrops fetalis

5 (0.07%) women were excluded from the

study because they delivered outside the
hospital

6,573 (96.1%) pregnantwomen were included in
the prediction analysis

Fig. 1 Follow up of study participants

235 (3.5%) women were excluded because
their medical records could not be found
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Table 1 General characteristics of the study population
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Characteristics All women Live infant (6,513) Stillbirth (443) Missing data [%]
Maternal age (years) 27 (24; 30) 26 (24; 30) 27 (25; 30) 0.5
Maternal height (centimeters) 156(153; 160) 156 (152; 160) 156 (153; 161) 321
Maternal weight (Kg) 65 (57; 75) 66.0 (57; 75) 66.0 (54.5; 75.5) 303
Parity 2(0; 3) 1(0;3) 3(0;4) 1.6
Number of previous fetal loss 0(0;1) 0(0;1) 0(0;1) 1.8
Number of previous caesarean section 0(0; 0) 0 (0; 0) 0(0; 0) 9.0
Maternal comorbidity 0 (0; 0) 0 (0; 0) 0 (0; 0) 15
Birth weight (Kg) 3127, 34) 3.1 (28 34) 28 (20;3.2) 4.1
Gestational age at birth (days) 265 (137; 276) 266 (137; 276) 225 (140; 254) 30.8
Maternal education (Educated) 3,284 [63.8] 3,171 [96.6] 113 [3.4] 26.0
Maternal education (Not educated) 1,866 [36.2] 1,747 [96.6] 119 [64]
Male infant 3,506 [514] 3,287 [93.6] 219 [63] 20
Female infant 3,310 [48.6] 3,113 [94.0] 197 [6.0]
Bleeding in pregnancy (Yes) 341 [5.1] 220 [64.5] 121 [35.5] 3.0
Bleeding in pregnancy (No) 6,406 [94.9] 6,107 [95.3] 299 [4.8]
Maternal occupation 16.2

Not employed 2,894 [49.6] 2,650 [91.6] 244 [84]

Self-employed 1,969 [33.8] 1,884 [95.7] 85 [4.3]

Private/public employee 968 [16.7] 930 [96.1] 38 [3.9]
Ethnicity 7.7

Nupe 4,611 [71.9] 4,297 [93.2] 314 [6.8]

Hausa / Fulani 246 [3.8] 220 [894] 26 [10.6]

Yoruba 790 [123] 758 [95.9] 32 [41]

Igbo 395 [6.2] 378 [95.7] 17 [4.3]

Gwari 19 [0.3] 17 [89.5] 2 [10.5]

Others 356 [5.6] 342 [96.1] 14 [39]
Place of residence (Urban) 5,707 [89.1] 5,449 [95.5] 258 [4.5] 79
Place of residence (Rural) 700 [10.9] 552 [78.9] 148 [21.1]
Multiple gestation <0.01

Singleton 6,201 [89.2] 5813 [93.7] 388 [6.3]

Twins 719 [10.3] 665 [92.5] 54 [7.5]

Triplets 35[0.5] 34 [97.1] 1[2.86]
Fetal presentation <0.01

Cephalic 6,506 [93.7] 6,159 [94.7] 347 [53]

Breech 334[4.8] 280 [83.8] 54 [16.2]

Others 100[1.4] 62 [62.0] 38 [38.0]

Median (interquartile range); number [percentage]

per potential predictor was 11 %. About 23 % of the
women have co-existing medical conditions, 30 % of them
were nulliparous while one quarter of them have had fetal
loss (Additional file 1: Table S1).

Multivariable prediction model
The results of the multivariable prediction model for
stillbirth (i.e. the basic model) are shown in Table 2. The

final model comprised maternal comorbidity, place of
residence, maternal occupation, parity, bleeding in preg-
nancy, and fetal presentation as independent predictors
of stillbirth. For every morbid condition co-existing
with pregnancy the likelihood of stillbirth increased.
Being an unemployed, rural-dwelling woman with a
positive history of bleeding in pregnancy increased
risk of stillbirth. As parity increased risk of stillbirth
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Table 2 Multivariable prediction model for stillbirth (Basic model)
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Predictors Unadjusted 8 coef. Standard error P-value Adjusted B coef.
Maternal comorbidity 0.71 0.097 <0.001 0.71
Place of residence (rural) 1.31 0.129 <0.001 1.30
Maternal occupation

Self employed —-0.30 0.144 0.035 -0.30

Employee -0.38 0.182 0.037 -0.38
Maternal parity 0.08 0.024 0.001 0.08
Bleeding (yes) 218 0.139 <0.001 2.16
Fetal presentation

Breech 0.96 0.182 <0.001 0.96

Others 2.12 0.240 <0.001 2.06

Unadjusted 3 coef. denotes B coefficient before penalization; Adjusted S coef. denotes S coefficient after penalization

C-statistic before and after penalization 0.80 (95 % Cl 0.78-0.83)

Risk of stillbirth = 1 /1 + exp(-(-3.6486 + 0.7077 * (comorbidity) + 1.3047 « (rural) -0.3022 * (self-employed)-0.3788 « (employee) + 0.0797 * (parity)
+ 2.1579 * (bleeding in pregnancy) + 0.9616 x (breech presentation) + 2.0588 x (other presentations))
For example the risk of a para-7, unemployed, hypertensive, diabetic pregnant woman in compound presentation with a positive history of vaginal bleeding in

pregnancy, dwelling in a rural area is

Risk of stillbirth = 1/1 + exp(-(-3.6486 + 0.7077 % (2) + 1.3047(1) - 0.3022(1) - 0.3788(0) -+ 0.0797(7) + 2.1579(1)+ 0.9616(0) + 2.0588(1))

=1/1 + exp(-3.5439)
Risk of stillbirth = 0.97

increased. Pregnancies in cephalic presentation lowered
the risk of stillbirth. Subsequently, the basic model was
extended by the variable fetal growth rate and the results
of the multivariable prediction model (i.e. the extended
model) are shown in Table 3. All predictors in the
extended model showed similar associations as observed
in the basic model. For fetal growth rate, the likelihood of
stillbirth decreased as growth rate increased.

Performance of the model

The discriminative performance of the final basic model
was very good with a C-statistic of 0.80 (95 % CI 0.78—
0.83). The extended model (i.e. with obstetric ultra-
sound variable growth rate added) showed a slightly
improved discriminative performance of 0.82 (95 % CI
0.80-0.85). Calibration for both models was good
(Figs. 2 and 3).

Table 3 Extended multivariable prediction model for stillbirth (Extended model)

Predictors Unadjusted 8 coef. Standard error P-value Adjusted B coef.
Maternal comorbidity 0.60 0.100 <0.001 0.60
Place of residence (rural) 1.27 0.129 <0.001 1.26
Maternal occupation

Self employed -0.27 0.143 0.07 -0.26

Employee -0.33 0.183 0.07 -0.33
Maternal parity 0.10 0.024 <0.001 0.10
Bleeding (yes) 2.04 0.142 <0.001 2.01
Fetal presentation

Breech 083 0.181 <0.001 0.83

Others 2.15 0.241 <0.001 2.07
Growth rate -0.18 0.026 <0.001 -0.18

Unadjusted 8 coef. denotes B coefficient before penalization; Adjusted S coef. denotes S coefficient after penalization

C-statistic before and after penalization 0.82 (95 % Cl 0.80-0.85)
Risk of stillbirth = 1 /1 + exp(-(-1.7035 + 0.5965 * (comorbidity)

+ 1.2603 * (rural) - 0.2647 « (self-employed) -0.3265  (employee) + 0.0959 x (parity)

+ 2.0149 * (bleeding in pregnancy) + 0.8342 « (breech presentation) + 2.0677 * (other presentations) — 0.1810 x (fetal growth rate)
For example the risk of a para-five, unemployed, hypertensive pregnant woman in breech presentation with a positive history of vaginal bleeding in pregnancy,
dwelling in a rural area and the estimated fetal weight by obstetric scan at 22 weeks was 650 g
Risk of stillbirth = 1/1 + exp(-(-1.7035 + 0.5965(1) + 1.2603(1) - 0.2647(1) - 0.3265(0) + 0.0959(5) + 2.0149(1)+0.8342(1) + 2.0677(0) - 0.1810(650,/22 * 7))

= 1/1 + exp(-2.4532)
Risk of stillbirth = 0.92
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B= 40 repetitions, boot

Fig. 2 Calibration plot of the basic model
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Internal validation

Both models were penalized but the discriminative
performance of both models remained unchanged while
their calibration improved (Figs. 2 and 3).

Discussion

In this study we developed an easy to use clinical prediction
model to identify pregnancies at high risk of stillbirth for
timely interventions. We also extended this basic model
with the variable fetal growth rate (fetal weight divided by

gestational age) to see whether this not routinely measured
variable (obstetric ultrasound) would improve predictions.
This study was reported based on the TRIPOD (Transpar-
ent reporting of a multivariable prediction model for
individual prognosis or diagnosis) guidelines [39] and to the
best of our knowledge, these are the first prediction models
for stillbirth that can easily be applied in the second trimes-
ter of pregnancy in low-resource settings where 98 % of
third-trimester stillbirths occur [4]. This study reaffirms
stillbirth as an important public health issue; 6 in every 100

B= 40 repetitions, boot

Fig. 3 Calibration plot of the basic model

.||,| ,,”,
o | e
o //’
© |
o
Z
el
[
Qo
[
o <
T © 7|
2
o
<
<~ ! = Apparent
o 1 — Bias-corrected
---- Ideal
o |
S .-
T T T T
0.0 02 04 06 08

Predicted Pr{outcome=death}

Mean absolute error=0.008 n=6956




Kayode et al. BVIC Pregnancy and Childbirth (2016) 16:274

newborns delivered at the center were lifeless at birth, justi-
fying the clinical relevance of an easy to use prediction
model to detect high risk pregnancies at an early stage (i.e.
the 2nd trimester). The basic prediction model comprised
six easy-to-measure, readily available, inexpensive parame-
ters, promoting its easy use during antenatal visits in low-
resource settings. A previous model [27] included more
predictors, but also used Pregnancy-Associated Plasma
Protein-A and Reversed Flow of A-wave in Ductus Venosus
that are not routinely measured in low-resource settings.
Age restriction was not included in the eligibility criteria so
as to broaden its application among pregnant women. A
large cohort was used to develop the model to increase the
power of the study and lower the possibility of overfitting.
The predictive performance of the model in terms of
discrimination and calibration was very good also after
internal validation. As a secondary analysis we generated
fetal growth rate using birth weight and gestational age at
birth. This proxy predictor was included in the extended
model (Table 3) instead of using ultrasound estimated fetal
weight and gestational age, because up to 60 % of the
women did not undergo obstetric ultrasound investigation
during antenatal care due to various reasons. To acknow-
ledge the importance of monitoring intrauterine growth
restriction in stillbirth, fetal growth rate was included in the
extended multivariable model. We preferred to generate
fetal growth rate from birth weight and gestational weight
at birth instead of using obstetric ultrasound information
because based on our knowledge of these data some of the
reasons why obstetric ultrasound was not done might be
related to the outcome e.g. antenatal visit. Missing data was
observed in some of our predictors and multiple imput-
ation was applied to address it instead of performing a
complete case analysis which may give biased results.
Studies have shown repeatedly that multiple imputation
reduces the possibility of bias in the estimates compared
to complete case analysis [40-42]. It is important to
emphasize that this prediction model has not undergone
external validation, and this is planned to be done in a
future study; but its predictive performance remained
unchanged after internal validation. Experts have expressed
the need to develop a prediction model for stillbirth
because of its clinical importance [12]. It allows for early
detection of pregnancies at high risk of stillbirth for timely
allocation of targeted interventions and to benefit from
closer monitoring throughout the pregnancy. Prioritization
of care allocation is particularly relevant in low resource
settings. Interventions to improve neonatal, intrauterine
and maternal survival have been identified and inte-
grated as a continuum of care because they are related
[5, 6]; thus, it is expected that this prediction model
may not only improve prevention of stillbirth but may
also have a positive collateral effect on maternal and
neonatal survival.
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Conclusion

We developed a simple but informative prediction model
for early detection of pregnancies at high risk of stillbirth
for timely intervention in low resource settings. It is
important for future studies to conduct an external valid-
ation of this prediction model at all levels of care using
prospectively collected data and include information on
maternal HIV status.

Additional file

Additional file 1: Table S1. Describes characteristics of the women.
(PDF 117 kb)
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