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Strong Evidence for Pattern Separation in Human
Dentate Gyrus
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The hippocampus is proposed to be critical in distinguishing between similar experiences by performing pattern separation comput-
ations that create orthogonalized representations for related episodes. Previous neuroimaging studies have provided indirect evidence
that the dentate gyrus (DG) and CA3 hippocampal subregions support pattern separation by inferring the nature of underlying repre-
sentations from the observation of novelty signals. Here, we use ultra-high-resolution fMRI at 7 T and multivariate pattern analysis to
provide compelling evidence that the DG subregion specifically sustains representations of similar scenes that are less overlapping than
in other hippocampal (e.g., CA3) and medial temporal lobe regions (e.g., entorhinal cortex). Further, we provide evidence that novelty
signals within the DG are stimulus specific rather than generic in nature. Our study, in providing a mechanistic link between novelty
signals and the underlying representations, constitutes the first demonstration that the human DG performs pattern separation.
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A fundamental property of an episodic memory system is the ability to minimize interference between similar episodes. The
dentate gyrus (DG) subregion of the hippocampus is widely viewed to realize this function through a computation referred to as
pattern separation, which creates distinct nonoverlapping neural codes for individual events. Here, we leveraged 7 T fMRI to test
the hypothesis that this region supports pattern separation. Our results demonstrate that the DG supports representations of
similar scenes that are less overlapping than those in neighboring subregions. The current study therefore is the first to offer
compelling evidence that the human DG supports pattern separation by obtaining critical empirical data at the representational
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level: the level where this computation is defined.
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Introduction

The hippocampus (HC) is widely acknowledged to be critical to
episodic memory (Cohen and Eichenbaum, 1993; Eichenbaum,
2004; Davachi, 2006). To avoid confusing memories for similar
experiences, the HC should assign distinct neuronal codes to
related episodes. This process, often referred to as pattern sepa-
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ration, is generally viewed to be a critical computation performed
by an episodic memory system, specifically, the dentate gyrus
(DG) subregion of the HC (Marr, 1971; O’Reilly and McClelland,
1994; Rolls and Treves, 1994; Norman and O’Reilly, 2003). Al-
though empirical evidence demonstrates that the hippocampal
DG region in rodents supports pattern separated representations
(Leutgeb et al., 2007; McHugh et al., 2007; Colgin et al., 2008;
Neunuebel and Knierim, 2014; Lee et al., 2015), previous studies
in humans have provided only indirect evidence for a role for the
DG in this process (Bakker et al., 2008; Lacy et al., 2011; Azab et
al., 2014; Reagh and Yassa, 2014; Kyle et al., 2015) and lacked the
anatomical resolution to distinguish between DG and CA3.
Specifically, a previous study used an fMR adaptation para-
digm to show that items that were similar to those previously
experienced (“lures”) elicited elevated levels of activity in DG/
CA3 (i.e., comparable to that elicited by the initial presentation)
compared with exact repetitions of the item (Bakker et al., 2008;
also see follow-up studies: Yassa et al., 2010, 2011; Lacy et al.,
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2011; Bakker et al., 2012). Although this lure-associated novelty
signal was used to infer the existence of pattern-separated repre-
sentations for the original and lure item in the DG/CA3 region,
there is an alternative possibility that cannot be discounted:
that these novelty signals may reflect the output of a match—
mismatch process in which the lure item triggers pattern com-
pletion of the original stored item and a resultant mismatch
signal (Kumaran and Maguire, 2009). Therefore, these previ-
ous studies do not necessarily imply a role for the human
DG/CA3 in pattern separation.

The current study, therefore, was configured to provide a
more definitive test of the hypothesis that the human DG per-
forms pattern separation. First, we were able to distinguish be-
tween the DG and CA3 subregions by obtaining high-field fMRI
data at 7 T with a functional resolution of 0.8 X 0.8 X 0.8 mm
(corresponding to a volume of 0.51 mm?) covering the whole
medial temporal lobe (MTL) memory system including the HC,
entorhinal cortex (EC), perirhinal cortex (PRC), and parahip-
pocampal cortex (PHC). In contrast, previous fMRI studies of
the MTL that investigated pattern separation relied on 3 T fMRI
and isotropic voxel sizes up to 1.5 mm (corresponding to a vol-
ume of 3.375 mm’; Bakker et al., 2008; Carr et al., 2010). Second,
we used multivariate fMRI methods to investigate whether the
DG performs pattern separation, an analytic technique that is
particularly appropriate given that this computation is defined at
the level of the underlying representations (Treves and Rolls,
1994; McClelland et al., 1995; Norman and O’Reilly, 2003;
Haynes and Rees, 2006; Davis and Poldrack, 2013; Haynes, 2015;
Knierim and Neunuebel, 2016). Strong evidence for pattern
separation would require the demonstration that multivoxel ac-
tivity patterns for similar stimuli in the DG were more distinct
than in regions upstream the HC such as the EC, PRC, and PHC.
To optimize our paradigm for multivariate pattern analysis
(MVPA), we used a modified repetition suppression paradigm
that included only two stimuli (A,B) (cf. Bakker et al., 2008 that
used trial-unique stimuli). The stimuli constituted very similar
versions of the same spatial environment inspired by A-B-B-A
type paradigms used in nonhuman primate studies in which rep-
etition suppression responses are observed even with highly fa-
miliar stimuli (Miller and Desimone, 1994; Holscher and Rolls,
2002). In addition, this allowed us to investigate whether the DG
generates stimulus specific novelty responses that can be related
to the underlying representations detected by MVPA analysis.

Materials and Methods

Subjects

Twenty young subjects (11 male, recruited at the campus of the Otto-
von-Guericke University Magdeburg, mean age 27.6 = 4 years, range =
21-35) participated in the experiment. Subjects were screened for known
metabolic disorders and neurologic or psychiatric history and excluded
from further examination in case of incidents reported during history
taking. All subjects had normal or corrected to normal vision and were
right handed. One subject was discarded from further analyses due to too
many incorrect responses (19% incorrect). The study was conducted and
designed in accordance with the Declaration of Helsinki (Williams,
2008) and all subjects gave informed and written consent for their par-
ticipation in accordance with ethic and data security guidelines of the
Otto-von-Guericke University Magdeburg. The study was approved by
the local ethics committee.

Task and design

Before scanning subjects had to complete a 4 min training and stimulus
familiarization phase outside of the scanner (10 stimulus sequences).
During the following fMRI session, the same two stimuli (A and B; Fig. 1)
were presented in short sequences consisting of three to five stimulus
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presentations. Sequences were presented in an event-related design. Each
stimulus was presented for 2 s and stimuli were separated by a presenta-
tion of a scrambled noise picture for 3.5 s (*1 s) to prevent an afterimage
or pop-out effects. Sequences were separated by a presentation of a
fixation star for 4.5 s. Subjects had to indicate the third occurrence of the
first item seen in a sequence via button press with their right index finger.
This provided a behavioral measure of mnemonic discrimination
performance.

For the fMRI analysis, we focused only on the first and second stimulus
presentation within each sequence to counterbalance stimuli and to ex-
clude the motor response. All sequences were counterbalanced in terms
of stimulus A and B. In addition, the length and order of the sequences
was counterbalanced between stimulus A and B repetitions and lures (see
Fig. 1 for example sequences). We presented 32 sequences in each of the
four runs. This resulted in a total of 128 sequences. Although, in half of
the sequences, the first stimulus was repeated (repetitions), in the other
half, there was a change of the stimulus within the first two stimulus
presentations (lures). Therefore, we could include 128 first presenta-
tions, 64 repetitions, and 64 lures in the subsequent fMRI analyses.

Immediately after the scanning procedure, there was a postscan de-
briefing in which we asked subjects to draw both stimuli in as detailed a
manner as possible. This was done to make sure that all subjects were not
only aware of the difference between both stimuli, but that they also had
a detailed representation of the whole living room scene.

Stimuli

The stimuli consisted of two colored computer-generated (3ds Max;
Autodesk) and isoluminant images. The images showed two similar ver-
sions of the same living room with a size of 800 X 600 pixels (Fig. 1). A
scrambled “noise” picture with identical dimensions was shown between
the images. The fixation target was a black image with identical dimen-
sions and a white fixation star in the center. Stimuli were projected onto
the center of a screen and the participants watched them through a mir-
ror mounted on the head coil, subtending a visual angle of ~=*3° X +2°.

MRI

MRI data were acquired using a 7 T MR system (Siemens). A 32-channel
head coil was used. The same scanning protocol was used as previously
reported in a high-resolution fMRI study on the MTL (Maass et al.,
2014). Furthermore, task residuals from the data of the recent study were
used for functional connectivity analyses of MTL regions previously
(Maass et al., 2015). Before the fMRI session, a whole head MP-RAGE
volume (TE = 2.8 ms, TR = 2500 ms, TI = 1050 ms, flip angle = 5°,
resolution 0.6 mm isometric) was acquired. Subsequently, the four fMRI
sessions were run (see “fMRI data acquisition” section), followed by the
acquisition of a high-resolution partial structural volume (T2*-weighted
imaging, TE = 18.5 ms, TR = 680 ms, resolution 0.33 mm X 0.33 mm, 45
slices, slice thickness 1.5 mm + 25% gap, FOV 212 mm X 179 mm,
matrix 640 X 540), with a slice alignment orthogonal to the HC main
axis. Total MRI duration was ~100 min.

fMRI data acquisition

Each subject’s fMRI scan consisted of 1600 volumes, each comprising
28 T2*-weighted echo planar slices with a resolution of 0.8 X 0.8 mm
(TE = 22 ms, TR = 2000 ms, slice thickness 0.8 mm, FOV 205 mm,
matrix 256 X 256, parallel imaging with grappa factor 4) in 4 sessions
of 13.5 min.

The slices were acquired in an odd—even interleaved fashion oriented
parallel to the HC long axis. EPI volumes were distortion corrected using
a point spread function mapping method (Zaitsev et al., 2004) and mo-
tion corrected during the online reconstruction.

fMRI data analyses

Univariate analysis. {MRI data preprocessing and statistical modeling
was done using SPM8 (Wellcome Trust Centre for Neuroimaging, Uni-
versity College London) and FSL (Centre for Functional Magnetic Res-
onance Imaging of the Brain, University of Oxford). Raw image data
were converted to NIfTT images while preserving the original image pa-
rameters. Because the data were already corrected for distortions and for
motion (see “fMRI data acquisition” section), the preprocessing in-
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Experimental paradigm. Stimuli Aand B were presented in short sequences (three to five stimuli; a—d show selected examples). Subjects were instructed to indicate the third occurrence

of the first item seen in a sequence via button press. In half of the sequences, there was a repetition of identical stimuli in the beginning (repetition trials; a, b). In the other half, stimuli changed in
the very beginning (lure trials; ¢, d). We included only the first and second stimulus in further analyses as indicated by the blue line. R indicates the appropriate response for each example sequence.
We refer to the first stimulus in each sequence as “first presentation” although only the two scenes displayed in the figure were used in the entire experiment and therefore each scene was highly
familiar. Note that the length and order of the sequences was counterbalanced between stimulus A and B repetitions and lures.

cluded only slice timing correction and smoothing with a 2 mm full-
width half-maximum Gaussian kernel (FWHM). A 2 mm smoothing
kernel was used because it provides a good compromise between high
sensitivity and high specificity, as we reported previously (Maass et al.,
2014). Coregistration of the functional and structural images was done
using boundary-based registration on a white matter segmentation of the
structural MPRAGE image using FSL (Greve and Fischl, 2009).

To model the functional data, delta functions defined by the onset of a
stimulus on a trial-by-trial basis were convolved with a hemodynamic
response function (HRF) and its first temporal derivative. First- and
second-level data were analyzed using a mixed-effect general linear
model (GLM) approach (Worsley and Friston, 1995) and experimental
conditions were entered into the GLM as separate regressors for first
presentations, repetitions, and lures for A and B stimuli, respectively. An
additional regressor for all other trials, as well as a regressor including
motor responses, was entered into the GLM. Furthermore, six motion
correction parameters were added as regressors of no interest to mini-
mize false-positive activations due to task-correlated motion (Johnstone
et al., 2006). In total, this resulted in 16 conditions for each of the four
sessions.

To assess differences in activity, two types of contrasts were calculated.
First, we contrasted all first presentations to repetitions (first > repeti-
tions) to capture activation due to the immediate repetition of a stimulus
(repetition suppression). Conversely, we contrasted lures to repetitions
(lures > repetitions) to identify voxels that show less repetition suppres-
sion to lures compared with repetitions. All models were calculated in
native space.

Cross-participant alignment for univariate group analyses. To visualize
and compare group activity levels in the HC, we created a sample specific
template for optimal cross-participant alignment of the functional data
(Avants et al., 2010, 2011) using Region-of-Interest Advanced Normal-
ization Tools (ROI-ANTS; Klein et al., 2009). This nonlinear diffeomor-

phic mapping procedure optimizes regional alignment (based on
anatomically defined ROIs) across subjects. The sample-specific tem-
plate was constructed based on coregistered individual MP-RAGE im-
ages of all 19 subjects. For subsequent ROI-based alignment, regions in
the hippocampal head and body, as well as in the EC, PRC, and PHC,
were segmented on specific slices on the T1 template. We then applied
the expectation-based point set registration to register the individual
MP-RAGE images to the T1 template based on the labeled point sets
(= MTL ROIs). Each participant’s contrast image for lures > repetitions
and firsts > repetitions was then aligned to the sample-specific template
space. Finally, the aligned contrast images were submitted to a second-
level group analysis in SPM (one-sample ¢ test).

Simulation of type-1 error rates. To determine the probability of false-
positive clusters (type 1 error) for a given smoothness, voxelwise thresh-
old (p < 0.005), and cluster size, we used 3dClustSim implemented in
AFNT (http://afni.nimh.nih.gov/afni/). These analyses were restricted to
the bilateral HC because our hypotheses were specifically focused on
neural processing within the subfields of the HC. 3dClustSim computes
the cluster size threshold at chosen values for the a significance level and
voxelwise threshold (e = Prob(Cluster = given size)). 3dClustSim re-
quires an estimate of the spatial correlation across voxels, which was
determined in SPM with respect to the applied smoothing kernel of 2 mm
(FWHM = 2.5 X 2.8 X 2.1 mm?>). For visualization, second-level result
maps were thresholded at p,. i jever < 0.005 and a cluster size of 35
voxels. The type 1 error rates of the resulting clusters are listed in Table 1.

MVPA. Raw image data were converted to NIfTTimages while preserv-
ing the original image parameters. The preprocessing included only slice
timing correction (SPM8). We avoided spatial smoothing to keep the
high-resolution and fine-grained structure of activity. All models were
calculated in native space.

We estimated trial-by-trial activation patterns using an effective ap-
proach for rapid event-related designs (Mumford et al., 2012). We ob-
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Table 1. Group activation after ROI-based alignment
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Cluster size Cluster pyncorr Alpha (sim) Peak T Peak location Template x, y, z (mm) Hemisphere
Contrast lures vs repetitions
4 0.005 <0.05 4.14 DG (head) 22.4 28.1 —18.6 R
16 0.061 >0.05 373 CA1/DG (body) 256 11.8 —10.1 R
Contrast firsts vs repetitions
55 0.003 <0.05 5.39 CA1 (body) 18.4 16.9 —9.3 R
25 0.031 >0.05 5.69 CA1 (body) —224 131 =127 L
17 0.085 >0.05 447 Subiculum (body) 232 186 —15.9 L
15 0.069 >0.05 4.19 CA1 (body) —20.0 16.0 —125 R
13 0.120 >0.05 3.74 CA1 (head) —16.8 13.2 —10.9 L
12 0.107 >0.05 3.36 Subiculum (body) —248 266 —19.6 L

Hippocampal subregions showing group-level activation (thresholded at p, e ever < 0.005; k = 10 voxels; n = 19) for the repetition suppression (firsts > repetitions) and lure-related novelty contrast (lures > repetitions). Alpha levels
(type 1 error rates) were simulated using 3dClustSim (AFNI). Regions in bold survive corrections for multiple comparisons.

tained each trial’s estimate through a GLM including a regressor for that
trial as well as another regressor for all other trials. The first derivative of
the HRF was included in the model to take individual onset variations of
the HRF into account. This process was repeated for each stimulus and
resulted in 256 separate GLMs. Therefore, we could include 128 first
presentations, 64 repetitions, and 64 lures as samples in the multivariate
classification procedure. There were no missing trials and the data were
balanced in terms of samples for stimulus A and B for every run.

For our main analysis, we did not remove the mean pattern (“cocktail
blank removal”; Op de Beeck, 2010) or the mean value of the ROI (“mean
centering”; Coutanche, 2013) from our multivoxel patterns before our
MVPA because recent studies have highlighted the negative effects of
mean pattern removal (e.g., inducing negative correlations; Garrido et
al., 2013; Walther et al., 2015), but also argue against the removal of the
mean value (Davis and Poldrack, 2013).

Trial estimates (64 per session, 256 in total) were analyzed for multi-
variate effects using PYMVPA 2.2.0 (Hanke et al., 2009). Each sample
consisted of the 8 estimate of a specific trial as well as its first derivative.
Independent data chunks were defined by each of the four sessions. For
the purpose of evaluation of classification validity, a leave-one-run-out
cross-validation was performed. In each of the four validation steps, a
linear support vector machine (Chang and Lin, 2011) was trained on the
data of three runs and tested on the remaining run. We followed an
anatomical feature selection approach (see “Segmentation of subregions
inthe MTL” section). Therefore, the analysis was done for each condition
(first presentations, repetitions, and lures), hippocampal subregion
(subiculum, CA1, CA2/3, and DG) and subject. In a second analysis, this
was also done for the EC, PRC, and PHC. Because the regions in the
anterior MTL are more affected by signal dropouts, this analysis was
done separately and excluded four subjects with dropouts in the EC or
PRC. Accuracy of the validation step was calculated as the proportion of
the samples that were classified correctly. Overall classification accuracy
was defined as the mean accuracy of all four validation steps. There were
more trial estimates for first presentations (128) compared with repeti-
tions and lures (64). To parallel the analysis, we randomly chose 64 first
presentations that were balanced between stimulus A and B, as well as run
one to four. This procedure was repeated 100 times and decoding accu-
racies were averaged across all permutations.

Group analysis. Results were first tested for significance using one-
sample f tests and permutation testing was also applied. We averaged the
accuracy of all subjects to get the “true” group accuracy value. In a second
step, we relabeled the samples of the training set 1000 times and tested
them on the testing set using the same leave-one-run-out cross-
validation scheme as before. This was to generate the individual null
distributions that we used to calculate 1000 group means. Finally, we
used the 1000 group means to generate the group null distribution. By
comparing the “true” group accuracy value, we could identify the rank
and thus the p-value (1000 permutations allow for p < 0.001) of the true
group accuracy value (Nichols and Holmes, 2002). We used a 3 X 4
repeated-measures ANOVA with the within-subject factors condition
(first presentations, repetitions, and lures) and subfield (subiculum,
CALl, CA2-3, and DG) to test whether there are significant differences in
classifier performance across task conditions and hippocampal subfields.

.'

CA3
CA2
CA1
..- )
PHC

Figure 2.  Segmentation of MTL subregions and hippocampal subfields. Hippocampal ROIs
were traced on high-resolution T2* images (A, B), whereas EC, PRC, and PHC were traced on the
high-resolution T1images. All ROIs were later coregistered and resliced to the mean functional
image (C). sub, Subiculum.

Greenhouse—Geisser correction was used to correct for violations of
sphericity.

Segmentation of subregions in the MTL

For each subject, ROIs for the subfields of the HC were traced manually
on the high-resolution T2*-weighted images acquired orthogonal to the
long axis of the HC (Fig. 2 A, B). The coregistered T1-weighted MPRAGE
images provided additional information due to different contrast, lower
slice thickness, and less susceptibility artifacts. This was the case espe-
cially in the anterior MTL, including the PRC and EC. Therefore, the EC,
PRC, and PHC were labeled manually only on the high-resolution T1-
weighted MPRAGE images. All ROIs were coregistered and resliced to
the mean functional image. Finally, segmented masks were verified and
adjusted (if necessary) on the mean functional images (see Fig. 2C for the
overlay of masks on a mean EPI).

ROIs were identified in bilateral MTL and traced on consecutive cor-
onal slices. Segmentation was performed for each hemisphere separately
using a freehand spline drawing tool based on MeVisLab (MeVis Medical
Solutions). This tool provided a user-friendly interface for spline draw-
ing and editing, with which the outer borders of the ROIs were traced
closely. The freehand drawing technique offers a higher accuracy than
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Univariate group results. A, Custer in CAT (top row) shows significantly more activity in first presentations compared with repetitions. However, the cluster in the anterior DG

(bottom row) shows significantly higher activation in lures compared with repetitions. Both clusters are in the right HC. Results are small-volume corrected for the bilateral HC (p,yej-jever << 0.005
and pjyseer < 0.05). Images on the right show a coronal view and those on the left show a sagittal view. B, Beta estimates extracted from clusters in DG (left) and CA1 (right). Error bars indicate SEM.
€, Stimulus-specific novelty contrasts. Clusters of activity resulting from lure-related novelty contrasts of individual stimuli. A, Lure A > repetition A; B, lure B > repetition B. (, sagittal view. Results

are illustrated on the group T1 template ( 1 <<0.005, k = 10 voxels).

Puoxel-level

conventional voxel-by-voxel drawing techniques. The outer border con-
tours were converted to NIfTI images for further processing (Wisse et al.,
2012; Kuijf, 2013).

Subfields in the head and body of the HC were traced according to the
recently published protocol for hippocampal subfield segmentation at 7
T (Wisse et al., 2012). The hippocampal head and body was divided into
the subiculum, CA1, CA2, CA3, and DG. For further analyses, the CA2
was collapsed with CA3 to a combined CA2-3 region.

An important aim in our study was to separate the DG and CA3
functionally. The Wisse et al. (2012) protocol is the only segmentation
protocol that enables the division of these subfields on 7 T MRI data.
However, it has to be noted that the suggested boundary between CA3
and DG slightly underestimates CA3 because it does not include the part
of CA3 that is folded within DG. Because this boundary was not visible on
our T2*-weighted images, we relied on the geometrical boundary sug-
gested by the protocol because it can be identified and replicated across
subjects reliably. The hippocampal tail was not delineated.

Tracing of the EC started anteriorly at the level of the amygdala, mov-
ing caudally along the parahippocampal gyrus. In the anterior part, the
EC borders the amygdala nuclei medially (Fischl et al., 2009). As soon as
the gyrus ambiens disappears and the hippocampal fissure opens, the EC
borders the parasubiculum medially. Laterally, the EC borders the PRC.
The opening of the collateral sulcus typically coincides with the lateral
border of the EC and was therefore chosen as the lateral boundary. Con-
trary to other protocols for the EC and PRC (Insausti et al., 1998), the
part of the EC within medial banks of the collateral sulcus that depends
on the depth of the collateral sulcus was not segmented because this
border shows remarkable within- and between-subject variability and is
also sometimes difficult to identify due to partially occurring susceptibil-
ity artifacts.

The PRC was defined as the region between the medial and lateral
edges of the collateral sulcus (covering medial and lateral banks). Seg-
mentation of the PHC started one slice after the disappearance of the
collateral sulcus directly posterior to PRC and EC. Labeling was contin-
ued posteriorly, ending on the last slice, where the inferior and superior
colliculi were jointly visible. The PHC was delineated as the region be-
tween subiculum (medial border) and the deepest point of the collateral
sulcus (Zeineh et al., 2001) (see Fig. 2C for examples).

Results

Behavioral performance

During the memory task, subjects saw sequences with several
presentations of the same two stimuli (A and B; Fig. 1). Their task
was to indicate the third occurrence of the first stimulus seen in a
sequence via button press. Given this, the subjects were required
to distinguish between the two similar stimuli in each of the
sequences. To assess subjects’ behavioral performance, button

presses were evaluated. Missed or invalid button presses were
counted as incorrect responses. The average incorrect rate was
2% (corresponding to 3 false sequences), indicating that sub-
jects were highly accurate in discriminating between the sim-
ilar scenes. After the MRI session, subjects were asked to draw
both scenes in as detailed a manner as possible. These debrief-
ings confirmed the results and showed that all of the remain-
ing 19 subjects had a highly detailed memory for the whole
indoor scene.

DG shows less repetition suppression for lures compared
with repetitions

The sequences that were used in the task consisted of presenta-
tions of the same two stimuli. Both stimuli (A and B) had the
same probability to be the first stimulus (target) in a given se-
quence. The second stimulus within a sequence could be either a
repetition of the first one or a presentation of the other stimulus.
We refer to the presentation of the other stimulus as a lure trial
and to the exact repetition of a stimulus as a repetition trial. Note
that, in contrast to earlier studies, being a lure or a repetition
stimulus was independent of the identity of the stimulus. This
depended only on the position within the sequence.

Two different contrasts were analyzed. First, we assessed
which regions show repetition suppression by comparing all first
presentations within each sequence (the first stimulus of each
sequence) with repetitions (first > repetitions). Second, we con-
trasted all lure trials against repetitions (lures > repetitions). To
assess the regions that were significantly activated across subjects,
we calculated second-level group activation maps after cross-
participant alignment using ROI-ANTS (see Materials and Meth-
ods). Activated clusters were identified within bilateral HC
(small-volume correction: p,qerjever < 0.005 and p e < 0.05;
see Materials and Methods for details). Higher activation in first
presentations compared with repetitions was found in the right
CA1l (Fig. 3A, Table 1). However, there were no voxels that
showed significant repetition enhancement (i.e., repetition >
first). We did observe significantly higher activation for lure trials
compared with repetitions in the DG of the right anterior HC
(Fig. 3A, Table 1). Additional activation clusters in the subicu-
lum, CA1, and CA1/DG that did not survive multiple compari-
sons can be found in Table 1. For completeness, we also show the
B estimates across all conditions from all anatomical ROIs that
can be found in Figure 4.
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We extracted mean f3 estimates for the significantly activated
clusters on the group level in the right CA1 and DG. Mean activity
within these clusters is shown for first presentations, repetitions,
and lures in Figure 3B.

An exploratory analysis was done to further investigate the
nature of the novelty signal related to lures and determine
whether there are distinct novelty signals for the two different
stimuli. As mentioned previously, this was only possible due to
the use of few stimuli in our paradigm (cf. trial unique stimuli
in Bakker et al., 2008). Therefore, we calculated the individual
contrasts for stimulus A and B (lure A > repetition A and lure
B > repetition B). The different contrasts yielded two spatially
related but distinct clusters in the anterior DG. Although nei-
ther cluster (cluster A: p,oer-tever < 0.005 (unc), k = 10 voxels;
cluster B: pyoyer-tever < 0.005 (unc), k = 30 voxels; Figure 3C)
survived multiple comparisons, interestingly, the two result-
ing clusters were entirely nonoverlapping (i.e., the two clusters
did not share any voxels in common).

DG but not other subregions contains representational
stimulus information

To assess the fine-grained activity patterns for A and B stimuli, a
multivariate classifier (linear CSVMC) was trained on the A and
B stimulus trials from three runs. Classifier performance was then
tested on the unseen portion of trials corresponding to the left-
out run (see Materials and Methods). This analysis was per-
formed separately for first presentation, repetition, and lure
trials. Each classifier yielded an accuracy value for each condition
(first presentation, repetition, and lure trials) and hippocampal
subfield (subiculum, CA1, CA2/CA3, DG) for each participant
(Fig. 5A). For every analysis, a comparison between the accura-
cies in the left and right hemisphere was conducted using 2 X 4
repeated-measures ANOVAs with the within-subject factors
hemisphere and subfield. None of these tests demonstrated any
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Beta estimates across MTL regions. Beta estimates were extracted for each MTL region and hippocampal subfield for first presentations, repetitions, and lures.

significant hemispheric differences, so all results reported are col-
lapsed across hemispheres.

Mean group classifier accuracies were tested for signifi-
cance using nonparametric permutation testing as well as one-
sample ¢ tests (see Materials and Methods). Mean group
classification performance in the top 1% of the random per-
mutations indicated above-chance accuracy (at p < 0.001). It
was not possible to decode stimulus identity from first presen-
tations or repetition trials with accuracies significantly above
chance. Classifier accuracies derived from lure trials were sig-
nificantly different from chance level (50%) only in DG (M =
57.2%, SEM = 1.6, permutation testing: p = 0.001, t test:
tagy = 4.6, p < 0.001) (corrected for multiple comparisons
using Holm’s sequentially rejective Bonferroni correction
with an initial critical @ of p < 0.004).

To test whether classifier performance is significantly differ-
ent within the 4 hippocampal subregions across the 3 task condi-
tions, we performed a 3 X 4 repeated-measures ANOVA with the
within-subject factors condition (first presentation, repetition,
and lure trials) and subfield (subiculum, CA1, CA2-3, and DG).
This ANOVA revealed a significant main effect for the factor
condition (F(, ,,,6) = 4.2, p = 0.047, Greenhouse—Geisser cor-
rected) and a significant condition X subfield interaction
(F3.205015 = 4.4, p = 0.006, Greenhouse—Geisser corrected).
This was due to significantly higher classification accuracy during
lure trials in DG (M = 57.2, SEM = 1.6) compared with the
subiculum (M = 51, SEM = 1.5, t;5) = —2.5, p = 0.02), CAl
(M =48.8,SEM = 1.9, 15y = —3.7,p = 0.002),and CA2-3 (M =
51.7, SEM = 1.5, 14y = —2.4, p = 0.03). Furthermore, classifi-
cation accuracy was higher in DG during lure trials (M = 57.2,
SEM = 1.6) compared with first presentation trials (M = 49.4,
SEM = 0.8, t(,) = —5.3, p = 0.000) and repetition trials (M =
48.6, SEM = 2.4, t,5 = —3, p = 0.008, corrected by using
Holm’s sequentially rejective Bonferroni correction, with an ini-
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x In an additional analysis focused on
decoding stimulus identity during lure
trials, we applied mean removal (mean
centering) before the MVPA, which
yielded a very similar pattern of results.
Permutation and t tests confirmed that
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it was possible to significantly decode
stimulus information of lures from
the DG but not from other subfields
(DG: Pperm = 0.000, P, e = 0.000;
CAL: Pperm = 0.923, pioy = 0.362;
CA2-3: Poerm = 0.118, p, oy = 0.224;
SUB: Poerm = 0.207, P, oy = 0.568). The
1 X 4 ANOVA comparing the decoding
accuracy across conditions in DG again
showed a significant main effect of con-
dition (F(5s4) = 5.1, p = 0.004). This
was due to significantly higher classifi-
cation accuracy during lure trials in DG
(M = 56.4, SEM = 1.4) compared with

CA2-3 DG

Lures
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PHC PRC EC
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Figure 5.

chance level. Error bars indicate SEM. sub, Subiculum.

Table 2. Mean dassifier accuracies for firsts, repetitions, and lures in MTL
structures and hippocampal subfields

MTL structures

Hippocampal subfields

PHC PRC EC SUB (A1 (A2-3 DG

Firsts

Mean 49.8 49.5 49.6 50.6 51 49.9 49.4

SEM 0.5 0.5 0.8 0.8 1 0.5 0.8

Prtest 0.78 0.42 0.63 0.43 0.34 0.79 0.88

Ppermutation 0652 0.645 0644 0332 0229 0528  0.687
Repetitions

Mean 513 534 49 50.5 50.5 50.9 48.6

SEM 1.2 2.0 1.6 2.0 1.6 1.4 24

Prtest 0.32 0.11 0.53 0.81 0.76 0.52 0.56

Ppermutation 0224 0.015 0.741 0.093 0716 0.245 0.092
Lures

Mean 49.6 51.7 522 51 488 51.7 57.2

SEM 2.1 1.8 2.1 1.5 1.9 15 1.6

Prtest 0.85 0.36 0.32 0.52 0.53 0.25 0.00%

Ppermutation 0584 0126 0.066  0.234 0773 0.120  0.001*

Classification accuracies were tested for significance using one-sample ¢ test (p; ;) as well as permutation tests
with 1000 iterations and aleave-one-run-out cross-validation approach ( Ppermutation)- Please note that the analysis
regarding MTL structures corresponds ton = 15 (due to dropout in the anterior temporal lobe), whereas the subfield
analysis involved n = 19. SUB, Subiculum.

*Corrected results using Holm’s sequentially rejective Bonferroni correction with an initial critical « of p <<0.004.

tial critical o of p < 0.01; Fig. 5A, Table 2). In other words, when
A and B were presented as lures, they could be decoded from each
other, whereas this was not possible when A and B were presented
as first presentations or repetitions.

(lassification accuracies for first presentations, repetitions, and lures across hippocampal subfields and extrahip-
pocampal MTL structures. A linear classifier (linear support vector machine) was trained to distinguish between the presentation of
stimulus A and B. 4, Although classification accuracies (in percentages) for hippocampal subfields are not significantly different
from chance level (50%) in first presentations and repetitions, they exceed chance level significantly for lure-related activity in the
DG (permutation testing: p = 0.001, ttest: p << 0.001). B, Classification accuracies (in percentges) in extrahippocampal regions in
the MTL are neither significantly different from chance level in first presentations, repetitions, and lures. The dashed line indicates

the subiculum (M = 50.8, SEM = 1.4,
thgy = —2.5, p = 0.024), CAl (M =
48.1,SEM = 2, 1) = —3.8,p = 0.001),
and CA2-3 (M = 51.8, SEM = 1.4,
tagy = —2.2, p = 0.039, corrected by
using Holm’s sequentially rejective
Bonferroni correction with an initial
critical @ of p < 0.0125).

An interesting question concerns why
we were able to decode stimuli A and B
successfully in the DG region during lure
trials, but not first presentations or repe-
titions. Because the ability to decode two
stimuli (i.e., classifier accuracy) depends
on the extent to which their representa-
tions (or multivoxel patterns) overlap, we
considered how this might change as a function of trial type. To
do this, we conducted a simulation in which the underlying rep-
resentations of stimulus A and B were overlapping, given their
high level of perceptual similarity. For example, whereas stimu-
lus A might activate units 1-5, stimulus B activates 3—7. There-
fore, the nature of representations in our simulation is
consistent with theoretical models suggesting that, when there
are small differences between input patterns (e.g., within the
EC), neural representations within DG will still overlap to a
substantial degree (O’Reilly and McClelland, 1994; Knierim
and Neunuebel, 2016).

Based on previous work showing that neurons show repeti-
tion suppression in similar settings to our own (Miller and Desi-
mone, 1994; Holscher and Rolls, 2002), in which the stimulus set
is small and extensively familiarized, we assumed that the first
presentation would maximally activate units, whereas second
presentations (repetitions, lure trials) would activate these units
to alesser degree (i.e., in our model, the r parameter specifies the
degree to which neurons respond: e.g., 0.2 means 20% of their
response on the first presentation). Consider, for example, a lure
trial (e.g., stimulus A followed by stimulus B; Fig. 6A): units 3-5
(i.e., that respond to both stimuli) would show reduced activity
(i.e., 20%) compared with units 6-7 (i.e., that show selective
response to stimulus B), which would show maximal activity
(100%), with units 1-2 (i.e., selective for stimulus A) being inac-
tive when stimulus B is being presented given that the delay be-
tween stimuli was ~3.5s.

PHC PRC EC

Lures
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Simulation of degree of representational overlap of the two stimuli in DG as a function of trial type. A, We assume that the underlying patterns of stimulus A and B are partially

overlapping in DG, consistent with theoretical models (0'Reilly and McClelland, 1994; Knierim and Neunuebel, 2016). Although stimulus A activates units 1-5, stimulus B activates units 3—7. We
further assume that first presentations activate these units maximally, whereas repetitions activate these units with decreased activity. For lure trials, we assume that the initially activated units
(e.g., from stimulus A) are inactive by the time of the lure presentation ~3.5 s later (e.g., stimulus B). B, Euclidean distance between the two patterns of activity (i.e., relating to stimulus A and B)
as a function of trial type (first presentation, repetition, lure) and the amount of repetition suppression (i.e., the r parameter). See main text for details.

To evaluate the effect of the amount of repetition suppression,
we varied the r parameter and calculated the Euclidean distance
between the two activity patterns (i.e., pertaining to stimuli A and
B), a metric that naturally relates to the ability of a classifier to
decode the stimuli. Our simulation shows that as the amount of
repetition suppression increases (i.e., as r decreases), the Euclid-
ean distance between activity patterns increases during lure trials,
whereas there is no effect of the r parameter during first or repe-
tition trials (Fig. 6B). This implies that, if a region exhibits repe-
tition suppression (Miller and Desimone, 1994) to any degree,
the ability of a classifier to decode two similar stimuli with repre-
sentations that overlap will be greater during lure trials compared
with first and repetition trials. Therefore, our simulations pro-
vide one possible explanation for successful decoding in the DG
region only during lure trials. It is worth noting, however, that we
cannot entirely exclude other potential explanations for the pro-
file of findings observed, including those related to the task being
performed.

No evidence for representational information in regions
upstream of the MTL

To investigate whether the two similar stimuli are already sepa-
rable in regions upstream the MTL, we trained another linear
support vector machine in a separate analysis on the voxels of the
EC, PRC, and PHC in repetition and lure trials. Because four
subjects had signal dropouts in the anterior EC, we performed a

separate analysis including only 15 subjects to prevent any bias of
the results. Again, the results did not differ significantly across
hemispheres, so all results reported are collapsed across hemi-
spheres. It was not possible to decode stimulus identity with
above-chance accuracy in extrahippocampal regions in repeti-
tion or in lure trials (Fig. 5B, Table 2).

Discussion

We used 7 T ultra-high-resolution fMRI to measure activity in
medial temporal brain regions and hippocampal subfields in a
memory task that putatively imposed high demands on pattern
separation. Convergent results from multivariate and univariate
analyses indicate that the DG, but not other hippocampal sub-
fields, EC, PRC, or PHC harbors detectably distinct neural rep-
resentations for similar events. These findings provide strong
evidence that the human DG performs pattern separation.

In our paradigm, stimuli A and B were highly familiar because
they were experienced before the fMRI scanning and used repeat-
edly in the experiment. Despite this high level of familiarity, we
expected to observe novelty responses based on previous findings
in the well established A-B-B-A type paradigm used in nonhu-
man primate studies, in which repetition suppression responses
are typically observed even if the same stimuli are used repeatedly
across sequences (Miller and Desimone, 1994; Hoélscher and
Rolls, 2002). Indeed, we did observe repetition suppression ef-
fects in which items that were repeated within a sequence elicited
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reduced neural responses (cf. first presentations) in CAl. How-
ever, increased responses related to lure stimuli (cf. exact repeti-
tions) were found exclusively in the DG. We refer to the activity
increase for lures as “novelty” because, in any given short se-
quence, they appeared for the first time. Therefore, unlike
previous studies (Bakker et al., 2008; Lacy et al., 2011), this
within-sequence “novelty” was not related to the use of trial
unique stimuli, but rather to the first appearance in a sequence.

As mentioned previously, the lure-related novelty responses
that we observed in the DG (and in DG/CA3 in Bakker et al.,
2008) do not alone provide sufficient evidence to justify the in-
ference of the operation of pattern separation computations in
this region because they are also consistent with the hypothesis
that they reflect generic novelty signals produced by a match—
mismatch process (Kumaran and Maguire, 2009). Importantly,
we provide two lines of evidence to bolster the validity of an
inference about pattern separation from such novelty responses.
First, our results suggest that novelty responses for different lures
(A and B) were topographically distinct in right anterior DG as
determined by nonoverlapping subsets of voxels, as would be
predicted by idealized models of pattern separation (McClelland
etal., 1995; Norman and O’Reilly, 2003) in which even very sim-
ilar stimuli are represented by orthogonal representations. Nota-
bly, we were able to achieve this through a paradigm optimized to
detect this effect through the use of only two stimuli (cf. trial
unique in Bakker et al., 2008) and ultra-high-resolution fMRI.

Second, our study also afforded the unique opportunity to
combine MVPA with univariate analyses to characterize the link
between these lure-related novelty responses and the underlying
representations of the two stimuli. MVPA allowed us to deter-
mine whether fine-grained patterns of distributed voxels within a
region represent discriminative information (Norman et al.,
2006; Sapountzis et al., 2010; Jimura and Poldrack, 2012). This
MVPA analysis revealed representational stimulus information
selectively in DG, but not in CA2-3 or CA1l. Decoding accuracies
were not only significantly higher in DG compared with any
other hippocampal subregion, it was also not possible to signifi-
cantly decode stimulus information in regions upstream the
MTL such as the EC, PRC, or PHC. These results, therefore,
demonstrate that representations for similar stimuli overlap in
neocortical regions but are less overlapping in the DG (McClel-
land et al., 1995; O’Reilly et al., 2014).

The accuracies of the multivariate classifier were significantly
higher in DG during lure trials compared with first presentations
and repetitions. In other words, when A and B were presented as
lures, they could be decoded from each other, whereas this was
not possible when presented as first presentations or repetitions.
Our simulation (Fig. 6) provides a mechanistic account for these
effects by showing that, for a region that shows repetition sup-
pression, the ability of a classifier to distinguish activity patterns is
higher in lure trials (cf. first presentations, repetitions). Although
the DG region tended to show repetition suppression (Fig. 4), this
was not significant at the statistical threshold used. However,
given that our model shows that enhanced decodability is a con-
tinuous function of the degree to which the region shows repeti-
tion suppression (i.e., the r parameter in our model: Fig. 6), our
simulations support one potential reason that successful decod-
ing was possible in the DG region only during lure trials.

Together with the results of the univariate analyses, our find-
ings suggest that, at least in our paradigm, lure-related novelty
responses do indeed reflect neural representations that are pat-
tern separated in DG. Further, the combination of univariate
results and successful multivariate decoding demonstrate that
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stimulus representations in the DG are both stable (i.e., across
repetitions) and dynamic (i.e., show lure-related novelty re-
sponses). Although this result provides novel evidence about the
nature of representations within the human DG, it does not nec-
essarily arbitrate between models that include the potential for
learning within connections between the EC and DG (Treves and
Rolls, 1992), in contrast to those that favor fixed random projec-
tions between these two regions (O’Reilly and McClelland, 1994).

Interestingly, we did not find lure-related novelty responses or
significant stimulus information at the multivariate level in the
CA3 region, the main target of projections from the DG. There
are several potential explanations for our findings: first, our re-
sults parallel previous neurophysiological evidence showing that
the correlation between population activity recorded while the
rat experienced two very similar environments was considerably
lower in DG than in CA3 (Leutgeb et al., 2007) under conditions
that have parallels with our paradigm (i.e., the two environments
were highly similar, akin to stimulus A and B in our experiment,
which differed by the location of only two objects). Interestingly,
in the Leutgeb et al. (2007) study, this difference between DG and
CA3 disappeared as the environments morphed into more dis-
similar shapes, when representations in both subregions were
effectively decorrelated between the two environments. Second,
from an anatomical perspective, a degree of reduction of the
orthogonality of representations in CA3 (cf. DG) would be ex-
pected based on the convergent nature of anatomical projections
from DG to CA3 (Treves and Rolls, 1994). Third, recent evidence
suggests that the rodent CA3 may be functionally divided into
proximal and distal regions as a function of their proximity to the
DG, with the functional (i.e., in terms of pattern separation) and
anatomical (i.e., in terms of amount of recurrent excitatory con-
nections) properties of the proximal CA3 being more akin to the
DG. Given that we effectively collapsed across proximal and distal
CA3 regions, one would predict, based on recent evidence, that
representations in CA3 would be less pattern separated than DG
(Lee et al., 2015).

Our findings, therefore, are highly consistent with previous
studies in rodents (Leutgeb et al., 2007; Neunuebel and Knierim,
2014; Lee et al., 2015). It is important to note, however, that DG
and CA3 are functionally embedded into a distributed network
of brain regions that comprise other hippocampal subfields as
well as extrahippocampal MTL structures. To understand the
network-level organization of pattern separation, it is necessary
to simultaneously investigate activity in all of these regions and
thereby to determine whether pattern separation is limited to
DG/CA3. fMRI allows such coverage and therefore offers the
potential to provide a comprehensive understanding of the
network-level organization of pattern separation processes.

fMRI studies showed that patterns of activity across the HC
can reliably distinguish between different episodic events even if
they were highly similar (Chadwick et al., 2011; Bonnici et al.,
2012b). Hippocampal activity patterns of very similar scenes
were also more distinct within the HC compared with regions
upstream of the MTL (Bonnici et al., 2012b). These studies,
therefore, provide evidence that the HC as a whole supports pat-
tern separation, but do not localize this computation to any sub-
region. Although a recent study presented evidence that
multivariate voxel patterns of two similar environments were
more distinct in DG/CA3 compared with CA1, the interpretation
of this finding is complicated because this analysis did not involve
a direct comparison of the representations of the two similar
environments in DG/CA3 and CALl. Instead, a “remapping” in-
dex was computed (Kyle et al., 2015) by comparing the represen-
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tational similarity of each environment to itself (i.e., measure of
consistency) with its average representational similarity to all
other environments. Further, this study was not able to localize
their effects to the DG region specifically, as in our study. One
other study showed that it is possible to decode representations of
similar scenes from hippocampal subfields (Bonnici et al., 2012a)
and accuracy of decoding was not significantly different between
subfields. Compared with these previous MVPA studies at 3 T,
our ultra-high-resolution fMRI at 7 T provided us with an op-
portunity to search for representations at a 6- to 7-fold smaller
scale. A single voxel in our study would contain ~30,000 granule
neurons, whereas this would have been 200,000 per voxel in ear-
lier high-resolution studies at 3 T (Boldrini et al., 2013). Our
methodology therefore was critical in demonstrating that repre-
sentations of very similar events are indeed less overlapping in
DG compared with CA1, CA2-3, and the subiculum.

To summarize, we used ultra-high-resolution 7 T fMRI in
combination with a novel paradigm and MVPA to investigate the
representation of similar stimuli within human hippocampal
subfields. Our MVPA results provide evidence that the represen-
tations of highly similar scenes are less overlapping in the DG
compared with CA2-3 and other hippocampal subfields, as well
as the EC, PRC, and PHC. Further, we demonstrate a mechanistic
link between the genesis of lure-related novelty signals in our
paradigm and the underlying stimulus representations in DG.
Together, our results provide strong evidence that the human DG
plays a unique role in pattern separation and suggest that stimu-
lus representations within the DG are both stable and dynamic
across time.
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