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a b s t r a c t

In order to perform predictions of a photovoltaic (PV) system power production, a neural network ar-
chitecture system using the Nonlinear Autoregressive with eXogenous inputs (NARX) model is imple-
mented using not only local meteorological data but also measurements of neighbouring PV systems as
inputs. Input configurations are compared to assess the effects of the different inputs. The added value of
the information of the neighbouring PV systems has demonstrated to further improve the accuracy of
predictions for both winter and summer seasons. Additionally, forecasts up to 1 month are tested and
compared with a persistence model. Normalized root mean square errors (nRMSE) ranged between 9%
and 25%, with the NARX model clearly outperforming the persistence model for forecast horizons greater
than 15 min.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The challenge for electrical grid operators is to continuously
synchronize electrical energy demand and supply. As global de-
mand for renewable energy is increasing, the economic and tech-
nical issues of photovoltaic (PV) solar power penetrations into the
power grid must be addressed. Especially since natural variability
of the solar resource, seasonal deviations in production and the
high cost of energy storage raises concerns regarding reliability and
feasibility of solar power systems. This is due to the fact that solar
energy is highly dependent on weather conditions including cloud
structure and day/night cycles. Clouds can cause significant ramps
in solar insolation and PV output, which may be difficult to handle
by the grid operator. Therefore, integration of electricity produced
by solar power systems requires accurate solar energy forecasts.

Solar energy forecasts allow grid operators to adapt the load in
order to optimize the energy transport, allocate the needed balance
energy from other sources if no solar energy is available and plan
maintenance activities at the production sites. Accurate solar
forecasting methods improve the quality of the energy delivered to
the grid and reduce the additional cost associated with weather
dependency. The combination of these two factors has been the
main motivation behind considerable research activities in solar
forecasting.

Linear models, such as BoxeJenkins and autoregressive inte-
grated moving average (ARIMA) type models are regularly used to
generate forecasts. They assume linear correlation structures
among the time series values and thus no nonlinear patterns can be
captured Zhang [30]. Subsequently, Reikard [22], Paoli et al. [25],
and Pedro & Coimbra [23] used nonlinear models that show more
flexibility in capturing the data underlying characteristics and
those nonlinear models outperformed linear models. Moreover, at
shorter time interval (less than 1 h), short-term patterns dominate
and Artificial Neural Networks (ANN, see Section 3 for definitions
and properties) demonstrated good results in solar forecasting
Diagne et al. [5].

In Ref. [26] ANN were used to perform one-step ahead fore-
casting of hourly values of global irradiance and they revealed that
those results outperform linear models results. They also compared
various models in terms of error and training time and found that
the LevenbergeMarquardt algorithm achieved the best
performance.

In Ref. [29] a comparative study between different ANN models
was conducted to predict insolation 1-day ahead, in which the
recurrent neural network outperformed the feedforward neural
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Fig. 1. Nonlinear model of a neuron (Redrawn from Ref. [8]).
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network. Additionally, in Ref. [13] the researchers implemented a
multilayer neural network for half hour cloudiness forecasting and
considered it an important tool for the estimation of cloudiness
affecting solar radiation.

ANN forecasting models for hourly solar irradiation for times of
up to 6 days ahead were tested in Refs. [14]; concluding that the
developed intelligent models outperformed satellite-based models.
Moreover, an input selection scheme was used and results revealed
that models with slightly larger sets of inputs generally perform
better for same-day and 1-day ahead forecasts.

In Ref. [4] forecasting the daily solar radiationwith two dynamic
artificial neural networks (Feedforward Time Delay Neural Network
and Nonlinear Autoregressive with eXogenous inputs (NARX)) was
proposed. Both models had a satisfactory performance, facilitating
energy management of solar systems when storage systems are
adopted.

Several studies that compare ANN with other simpler time se-
ries techniques (AR, ARIMA, etc.) have been conducted in the past.
In Ref. [10] different solar forecasting techniques' performances are
assessed based upon a forecasting skill given as

s ¼ 1� RMSE
RMSEp

(1)

where RMSEp denotes the root mean square error of the persis-
tence model. Thus, a forecasting skill closer to 1 shows that the
model being assessed has significantly improved the accuracy
relatively to the persistence model.

Bacher et al. [1] compare an AR and ARX model for short-term
and medium-term solar forecasting and conclude that the most
important input is the lagged PV values for short-term horizon (2 h)
and, for long horizon NWP models become more important. The
authors showed a forecasting skill s of 0.27 and 0.34 for a horizon of
1 he6 h for the AR and ARX model, respectively. Paoli et al. [22]
presented a forecasting skill s of 0.19 and 0.20 for AR and ANN
respectively, for one day ahead. The forecasting skill in Ref. [16] for
intra-day forecasts was 0.16 and 0.17 for an AR and ANN model,
respectively; for day ahead, the forecasting skill was similar varying
between 0.18 and 0.20 for the AR and ANN model respectively.
Voyant et al. [28] suggests that an ANNmodel for daily forecasts on
6months-cloudy period improves the power production prediction
by 9% and 1% relatively to the persistence and ARMA model,
respectively. Pedro and Coimbra [23] also presented a comparison
between ARIMA and ANN to predict 1 h and 2 h average power
output; the forecasting skill for the 1 h forecasts were 0.02 and 0.18,
and for the 2 h forecasts were 0.10 and 0.11, for the ARIMA and ANN
model respectively; thus showing neural networks have greater
potential for short-term forecasting.

The present work improves on A.G.R. Vaz [27] and uses an ANN
model to capture the short-term (15 min) ramping patterns caused
by cloud formations and to forecast a PV system power output up to
1-month ahead. Moreover, using different input combinations, we
assess whether or not solar power forecasts can be improved by
knowing beforehand the power output of other neighbouring (few
km distance) grid-connected PV systems and meteorological in-
formation. Additionally, the forecasting accuracy of the ANN is
compared to the persistencemodel. In Section 3, principles of ANNs
are briefly discussed, and in Section 4 the used methodology is
presented.

2. Clear sky persistence model

The persistence model is a simple forecasting model that re-
quires knowledge of clear sky irradiance. Usually, this simple
forecasting tool is very accurate for very short-time horizons and
for low irradiance variability. The model has the clear sky condi-
tions persist for the next time-step and meets the definition of
Marquez and Coimbra [15] applied to the power production of a PV
system,

bk*ðt þ DtÞ ¼ bk*ðtÞ ¼ PVPPðtÞmeasured
PVPPðtÞclr

(2)

PVPPðt þ DtÞ ¼ bk*ðt þ DtÞ � PVPPðt þ DtÞclr (3)

where bk* is defined as clear-sky index, t denotes the time instant,
PVPP(t) is the measured photovoltaic power production and
PVPP(t)clr is the photovoltaic power production for clear sky con-
ditions, calculated according to Ineichen and Perez [9]. Other clear
sky models are possible and Gueymard [7] is suggested for thor-
ough analyses of different models.

3. Artificial neural networks

3.1. Definitions and properties

In its most general form, an ANN is a machine that models a task
or function of interest, performing useful computation through a
process of learning. In fact, the artificial neural network derives its
computing power through its massively parallel distributed struc-
ture and its ability to learn and generalize, which means finding
reasonable outputs whenever inputs are not encountered during
training (learning) [8].

The ANN consists of simple processing units, the neuron, and
directed, weighted connections between those neurons. The inputs
channels have an associated weight, such that the incoming in-
formation xi is multiplied by a corresponding weight wi. The
network input is the result of the so-called propagation function.
Here, the strength of a connection between two neurons i and j is a
connecting weight wij. Experimental knowledge, acquired by the
network through a learning process, is stored by massively inter-
connecting these units (synaptic weights). These connecting
weights can be inhibitory or excitatory and by being connected
with the neurons, data are transferred.

The output is a function of the particular activation function
chosen and a possible bias. The latter is similar to a weight, albeit it
has a constant input of 1. This bias term is used by the neuron to
generate an output signal in the absence of input signals. Fig. 1 il-
lustrates the nonlinear model of a neuron [8].

The transfer function or activation function controls the
amplitude of the output of the neuron and is based on the neuron
reactions to the input values and depends on the level of activity of
the neurons (activation state). Essentially, neurons are activated



Fig. 2. Feedforward neural network with one hidden layer, one input layer and one
output layer (Redrawn from Ref. [8]).
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when the network input exceeds the uniquely maximum gradient
assigned value of the activation function, known as threshold. The
activation function is dependent of the previous activation state of
the neuron and the external input. It is also referred as a squashing
function because limits the permissible amplitude range of the
output signal to some finite value. Although theoretically any dif-
ferential function can be used as an activation function, the identity
and sigmoid functions are the most used. In fact, an important
feature of the ANN theory is the need for differentiability.

Typically, the normalized amplitude range of the output of a
neuron is written as the closed unit interval [0, þ1] or alternatively
[�1, þ1]. The sigmoid function, whose graph is s-shaped, is one of
the most common forms of activation used in the construction of
ANNs. It exhibits a balance between linear and nonlinear behaviour.
The logistic function assumes a continuous range of values from
0 to þ1, and it is easily differentiated.

The hyperbolic tangent function tanh is also, often, used because
of the simplicity in finding its derivatives. In this case, the activation
function assumes an antisymmetric formwith respect to the origin,
ranging from �1 to þ1. This function is applied in the hidden layer
of the network and takes the input with any value between plus
and minus infinity to generate an output in the range between �1
and þ1.

The identity or linear function f(x) ¼ x, where the inputs and
outputs range fromminus infinity to plus infinity, is a flow-through
mapping of the networks' potential to its outputs.

3.1.1. Feedforward neural networks
In the simplest form of a layered network, an input layer of

source nodes projects onto an output layered network, but not vice
versa. This network is designated as a feedforward type. Feedforward
neural network is a nonlinear function of its inputs, which is the
composition of the functions of its neurons. The network consists of
set of sensory units that constitute the input layer and an output
layer of computation nodes. The information runs through the
connected neurons only in the forward direction or layer-by-layer
basis, from inputs to outputs; such network is called a single-
layer network, with the designation referring to the output layer
of neurons.

3.1.2. Multilayer neural networks
Most neural networks applications require the use of multilayer

networks where each output is a nonlinear function of the
nonlinear functions computed by the hidden neurons. The neurons
are grouped in input layer, hidden processing layers and output
layer. This function of hidden neurons intervenes between the
external input and the network output in some useful manner.
Haylin [8] mentions that the hidden neurons in the hidden layer
enable the network to extract higher-order statistics and to learn
complex tasks by extracting progressively more meaningful fea-
tures from the input patterns.

For prediction purposes, data is presented to multilayer net-
works as a sliding window over the time series observations. Ac-
cording to Bramer [3] the task of themultilayer network is to model
the underlying generator of the data during training, so that a valid
forecast is made when the trained neural network is subsequently
presented with a new input vector value. When examples of the
observation data are trained, the networks can learn the charac-
teristic features “hidden” in the examples of the collected data and
even generalize the knowledge learnt. In fact, the network exhibits
high degrees of connectivity, determined by the synapses of the
network. A change in the connectivity of the network requires a
change in the population of synaptic or their weights. Fig. 2 displays
the architecture of a multilayer feedforward neural network with
one hidden layer.
3.1.3. Dynamic driven recurrent networks
Most dynamical systems involve an autonomous part and a part

governed by external force that usually is difficult to identify or
noisy. Forecasting deals with dynamic models whose inputs and
outputs are related through differential equations, or, for discrete-
time systems, by recurrent equations.

Therefore, this work uses recurrent networks as inputeoutput
mapping networks. A recurrent network distinguishes itself from a
feedforward neural network in that it has at least one feedback loop.
The presence of feedback loops has a profound impact on the
learning capability of the network and on its performance.
Furthermore, the feedback loops involve the use of unit-delay el-
ements (z�1), which result in nonlinear dynamical behaviour.

Basically, an external input is applied and the recurrent network
has a temporary response, being considered as dynamically driven
recurrent network. This characteristic enables recurrent networks
to acquire state representations, which are fundamental for appli-
cations such as nonlinear predictions and modelling.

3.1.4. NARX model
The inputeoutput recurrent model is illustrated in Fig. 3, with a

design that follows the typical multilayer perceptron, which are
neurons with adjustable synaptic weights and bias. Typically, this
model has supervised learning, involving modification of the syn-
aptic weights of the neural network by applying a set of labelled
training samples. To a unique input signal there is a corresponding
desired response. After being presented with an example picked
from the set, the synaptic weights of the network are modified to
minimize the differences between the desired response and the
actual value response of the network produced by the input signal.
A tapped-delay-line (TDL) memory of q elements is applied to the
model inputs. A delay line tap extracts a signal output from
somewhere within the delay line and usually sums with other taps
to form an output signal. Moreover, via another TDLmemory with q
units, the single output is also fed back to the input. Thus, the
contents from both TDL memories are fed to the input layer of the
multilayer perceptron.

In Fig. 3, u(n) denotes the present value of the model input and
y(n þ 1) corresponds to the value of the model output. Hence, the
present and past values of the input, which are exogenous inputs
generated from outside the network, and delayed values of the



Fig. 3. Nonlinear autoregressive with exogenous inputs (NARX) mode (Redrawn from
Ref. [8]).
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output, on which the model output is regressed, are the data
window of the signal vector applied to the input layer.

This recurrent network described above is also referred as
nonlinear autoregressive with exogenous inputs (NARX) model.

Equation (4) demonstrates the dynamic behaviour of the NARX
model, where F is a nonlinear function of its arguments. The two
delay line memories in the model are generally different, albeit
they can have the same q size.

yðnþ 1Þ ¼ FðyðnÞ; … ; yðn� qþ 1Þ;uðnÞ; …; uðn� qþ 1ÞÞ
(4)

3.1.5. Training
The training of the network is repeated for many examples in

the set until the network reaches a steady state where there are no
further important changes in the synaptic weights. However,
overfitting may occur. This is caused when the validation error in-
creases while training error decreases progressively. To avoid it
[21]; solved the training termination problem based on stopping
criteria by developing an automated stopping principle using a
predetermined number of training steps. Consequently, when the
training stopping achieves that stage, the network reaches the
maximum generalization. This action is known as early stopping.
Additionally, in Ref. [24] the method of early stopping with cross-
validation is suggested. This method proposes the division of
collected data into a training set and a test set, and for further
partitioning of the training set into the estimation set and valida-
tion set.

Thus, before activating the network, the time series were
divided into three different sets: training, testing and validation
sets. The range selected for the training, testing, and validation sets
was 70%,15%, and 15% Beale et al. [2], respectively, of the time series
used as inputs. This division intends to avoid the risk of using a
testing set characterized by a certain type of trend.
During the training phase the true output is available and,
therefore, is used to reduce the associated errors (serieseparallel
architecture, see Fig. 4b). With this mechanism the ANN adopts the
feedforward architecture with more accurate inputs. After the
training phase the architecture changes and the output is fed back
to the input of the feedforward neural network (Parallel architec-
ture, see Fig. 4a) to perform multistep predictions, which is part of
the standard NARX architecture.

4. Methodology

4.1. Data collection

In the present work, we selected variables that are directly or
indirectly influenced by cloud movements. For that reason, the
fundamental inputs selected were the time series of meteorological
data (solar radiation and ambient temperature) and data of five
geographically separated PV systems from different households in
the city of Utrecht, The Netherlands, collected from the 1st of
August of 2012 to the 31st of July of 2013. Usually, the weather in
the summer in Utrecht can be characterized as pleasantly warm,
with more than 200 h of sunshine in June. On the other hand, the
winter becomes chilly with the average high temperature dropping
to 4� Celsius, with less than 40 h of sunshine in December and
January.

The meteorological data was collected from the Royal
Netherlands Meteorological Institute (KNMI) website [12] and the
performance data regarding the PV systems was collected by the
PV-Group of the Copernicus Institute of Sustainable Development,
Utrecht University, using meters with Wh pulse outputs. KNMI
employs a Kipp&Zonen CM11 [11] pyranometer to measure global
horizontal irradiance. Fig. 5 illustrates the geographic distribution
of the PV systems (red (in the web version) circles) and the location
where the Utrecht meteorological data is collected (blue (in the
web version) circle at De Bilt). The PV systems were designated as
Centre, West, East, North and South PV systems; technical data are
shown in Tables 1 and 2.

Figs. 6 and 7 illustrate the raw PV power output of 5 different
systems and meteorological data from the 1st of August of 2012
until the 31st of July of 2013.

4.2. Data preprocessing

The raw energy data collected once every minute from the PV
systems was smoothed using a moving average and it was used to
determine the PV power with 15 min steps.

Conversely, ambient temperature (in degrees Celsius) and solar
irradiance (W/m2) data from the meteorological station had origi-
nally 1 h time steps and interpolation was required to temporally
combine at higher frequencies the PV systems output and solar
irradiance ground measurements. As stated in Refs. [17]; sun po-
sition and solar zenith angle are non-linear functions of time, and,
thus, solar irradiance is not a linear process and direct linear
interpolation is incorrect. As an alternative, clear sky index
interpolation bk*ðt2Þ is used to interpolate meteorological data to
15 min time steps [The persistence model will result in
GHIðt2Þ ¼ bk*ðt2Þ GHIclrðt2Þ].

All of the missing observations (Table 1) were considered as
undefined numbers and were ignored by the ANN. Additionally, all
observations between 9.00 pm and 6.30 am of each day (night
time) were removed in order to reduce the complexity and simu-
lations' running time.

To complete the data preprocessing, all time series were
normalized between 0 and 1 because each dataset had different
magnitudes.



Fig. 4. NARX network architecture variations (Redrawn from Ref. [2]).

Fig. 5. Map of Utrecht illustrating the distribution of the PV systems and the meteorological station (Google Maps, 2014).

Table 1
Technical information of PV systems.

PV system Max power installed
(Watt)

Date of installation Distance to centre
PV (km)

Distance to meteorological
station (km)

Missing data points in the raw dataset
(total of 525600 points)

Centre 500 1 Nov 2003 e 5.5 5194
West 720 29 Nov 2002 2.5 8 951
East 1650 1 Mar 2002 5.5 2.6 3879
North 880 1 Jan 2004 7.4 11 460
South 570 1 Nov 2001 3.5 5.3 1451
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4.3. Artificial neural network paradigms

Selecting the number of hidden neurons involves a heuristic
approach. After testing a range of hidden neurons, it was found that
Table 2
Location of the PV systems in Utrecht.

PV system Latitude Longitude Altitude (m)

Centre 52� 5014.9900 N 5� 50 53.2600 E 5
West 52� 40 59.8800 N 5� 30 46.7900 E 1
East 52� 30 43.5600 N 5� 70 50.5500 E 3
North 52� 80 12.4800 N 5� 10 35.2900 E 0
South 52� 50 59.6300 N 5� 80 13.8800 E 5
the difference in the final results was negligible, and, therefore, the
MATLAB Neural Network Toolbox's default value of 10 hidden
neurons was used. Moreover, the selection of the number of the
tapped-delay-lines (TDLs) is to a certain degree similar to the
hidden neuron selection process. Having the hidden neurons
selected, the influence of feedback delays in the neural network
was also tested. Similarly, the variation in the network's final results
was insignificant and, thus, 2 TDL were used throughout this work.

The transfer functions selected for the hidden layer and the
output layer are the hyperbolic tangent and linear function,
respectively. Therefore, to be consistent with the transfer function
being used, the input data was scaled between �1 and þ1. Yet, the
data was scaled back to the original dimensions (0e1) after the



Fig. 6. Time series generated by the PV system from August of 2012 to July of 2013, on a 1 min basis.
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network being processed.
The data from the Centre PV system was used as target series

and the other PV and meteorological data were used as exogenous
inputs. Many different exogenous inputs combinations were per-
formed to understand the impact on the target data series.

Every time a network was trained a different solution was
achieved given the different initial weights and bias values. Thus, to
ensure good accuracy, each architecture was simulated eleven
times and the median of the eleven simulations was calculated; the
Fig. 7. Meteorological data from August o
results larger than 15% of the median are disregarded to eliminate
outliers. Furthermore, the mean value of the remaining results was
calculated and assumed as the final value of the performance of
that specific network architecture.

In this work, the LevenbergeMarquardt algorithm was the al-
gorithm used for every training process and the number of epochs
is set to a maximum of 1000 (see Ref. [20] for a thorough
description of the algorithm). Moreover, the number of training
interactions is defined automatically as the early stopping principle
f 2012 to July of 2013, on a 1 h basis.
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was applied.
4.4. Optimization

The following different scenarios were applied to help selecting
the best network (with the lowest forecasting error) architecture
and to learn about the impact of using variations of the exogenous
variables.

� Case 1 e NARX network with data of 4 PV systems as exogenous
inputs.

� Case 2 e NARX network with data of 2 PV systems as exogenous
inputs.
� Case 2.1 e West and East PV systems
� Case 2.2 e North and South PV systems

� Case 3 e NARX network with Meteorological data as exogenous
inputs

� Case 4 e NARX network with data of 4 PV systems and Meteo-
rological data as exogenous inputs

� Case 5 e Multistep ahead forecasting

The first 4 scenarios were used to predict values for the last
month of the dataset (for the summer and winter season) on a one
step forecast basis, i.e. to forecast the PV output at tþ 15minwe use
the exogenous inputs' time series until t. These cases were applied
for the entire dataset (1 year) and for the dataset divided in two
sections. This allowed the determination of the most relevant data
and selection of the best configuration amongst the previous
scenarios.

On the other hand, Case 5 intends to study the step ahead NARX
neural network forecasting performances, which means, trying to
forecast the PV output at tþ 15min using the input time series until
t� dt, where “dt” varies between 15min, 30 min, 1 h, 24 h, 4 days, 7
days, 15 days, 20 days, and 1 month.
4.5. Prediction accuracy evaluation

To quantify the quality of a prediction, let us assume the time
series target value y(t) and the predicted value yf(t) for a series of
length n. The normalize root mean square error (nRMSE) is repre-
sentative of the size of a “typical” error and tends to exaggerate
large errors because squaring gives more weight to very large
errors.

RMSE ¼ 1
ymax � ymin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
yðtÞ � yf ðtÞ

�2
n

vuut
(5)

where ymax and ymin are the maximum and minimum observed
values [4].

The coefficient of variation (CV) was also calculated, which is
determined by the ratio between the standard deviation (s) and the
mean (M) of the nRMSE trials. The lower the CV value, the smaller
the deviations between the multiple trials. Consequently, this may
suggest a good model fit and gives a rather good idea of how the
ANN trials differ between themselves.

CV ð%Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�
xi�

P
x

N

�2

N

vuut
P

x
N

� 100 ¼ s

M
� 100 (6)

where xi �
P

calculates the difference between a nRMSE trial and
the mean nRMSE value of all trials; N is the number of trials.
5. Results

Table 3 displays the different situations for which the networks
for case 1 to 4 were used. Neural network predictions were per-
formed for different seasons (winter and summer) by dividing the
original dataset in two different subsets. In the “Winter” dataset,
data points from August 2012 to December 2012 (5 months) were
used to train the network, and then January of 2013 was forecasted.
The “Summer” dataset required training the network from
February 2013 to June 2013, and later July 2013 was predicted.
Finally, given the fact the original dataset is from August 2012 to
July 2013, it was only possible to perform forecasts for July 2013
using the entire dataset. This is the reason for designating “1-
yearesummer” for this situation (see Table 3). The first 11
months were used for training the network and after that the last
month (July 2013) was forecasted.

Table 4 and Fig. 8 show results of the different network con-
figurations in each case when performing multistep predictions. “t”
denotes the training and modelling of the NARX network, whereas
“f” denotes the process of forecasting the last month of the time
series.

Winter forecasts showed lower nRMSEf values than summer
forecasts, which may be a consequence of the easy predictability of
low variability depicted in overcast days. On the other hand, sig-
nificant variability was visible during July of 2013 (summer fore-
casts), and consequently, the nRMSEf is likely to increase.

Although nRMSEf's magnitude varied in the three different sit-
uations presented, one may detect that the behaviour is similar for
the different exogenous inputs' cases proposed, i.e., a tendency was
identified regarding which exogenous inputs perform better within
the network. For the three different situations the best perfor-
mance was obtained by combining all exogenous inputs available.
Similarly, in case 2.2 the nRMSEf values are worse than case 2.1
regardless of being summer or winter. Even though the nRMSEf
accuracy may differ for different time series lengths, results indi-
cate that the type of correlation between exogenous inputs and
output variables is the key factor.

Case 2.2 presented the highest nRMSEf results (0.079 for the
Winter situation, 0.121 for the Summer situation, and 0.140 for the
1year-summer situation), probably due to the fact that the distance
between the North PV system and South PV system is higher than,
for instance, between the West PV system and the East PV system.
Consequently, the interactions between the North and South PV
systems appear to have less impact in the final output than other
cases.

Although both NARX neural networks in Case 2.1 and Case 2.2
use data of 2 PV systems as exogenous inputs, theWest and East PV
systems combination (Case 2.1) clearly outperforms the North and
South PV systems input combination, with a 20% relative reduction
of the nRMSEf value for the winter situation, 13% relative reduction
for the summer situation and a 17% relative reduction for the 1year-
summer situation. This may be due to a closer distance between the
West and East PV systems with the target system (notably within
the decorrelation length ofz5 km at 15 min interval (see Ref. [6])),
and, thus, a more relevant correlation between the time series.
Indeed, Still, the NARX neural network in Case 1 can improve the
prediction accuracy when combining the 4 PV systems: the 0.059
nRMSEf for winter, 0.099 nRMSEf for summer, and 0.014 nRMSEf
for the 1-year summer situation, represent, respectively, a 6%, 6%,
and 2% accuracy improvement comparing to Case 2.1.

Furthermore, in Case 3 where meteorological data was used as
exogenous inputs, the NARX network had the least accurate per-
formance in the winter case (nRMSEf 0.083), but in the 1year-
summer situation had the most accurate value (nRMSEf 0.106)
relatively to the other cases in the same 1year-situation.



Table 3
Analysis information of time series after applying 15 min time intervals.

Designation Range Total data points Training Forecasting (last month of the time series)

Winter 1/08/2012e1/01/2013 10672 Aug 12 e Dec 12 8874 points (5 months) January 2013 1798 points (1 month)
Summer 1/02/2013e31/07/2013 10498 Feb 13 e Jun 13 8700 points (5 months) July 2013 1798 points (1 month)
1 year e Summer 1/08/2012e31/07/2013 21170 Aug 12 e Jun 13 19372 (11 months) July 2013 1798 points (1 month)

Table 4
NARX network exogenous inputs, results of RSME and CV “t” (training) and “f” (forecasting) for the different cases and seasons. The output variable is fixede PV Centre. In bold
best performances (lowest errors).

NARX network with 10 hidden neurons & 2 TDL Exogenous inputs

4 PV systems
(N.S.E.W)

2 PV systems e west
and east

2 PV systems e north
and south

Meteorological 4 PV Systems (N.S.E.W)
and meteorological

Case 1 Case 2.1 Case 2.2 Case 3 Case 4

5 months training & 1
month forecasting

Winter forecasting nRMSEt 0.007 0.006 0.013 0.012 0.007
nRMSEf 0.059 0.063 0.079 0.083 0.058
CVnRMSEt 35% 41% 16% 46% 26%
CVnRMSEf 19% 27% 8% 29% 14%

Summer forecasting nRMSEt 0.019 0.022 0.029 0.025 0.013
nRMSEf 0.099 0.105 0.121 0.109 0.085
CVnRMSEt 11% 14% 17% 51% 12%
CVnRMSEf 6% 7% 8% 25% 13%

11 months training & 1
month forecasting

1 year e Summer
forecasting

nRMSEt 0.051 0.052 0.077 0.045 0.029
nRMSEf 0.114 0.116 0.140 0.106 0.092
CVnRMSEt 6% 13% 9% 7% 11%
CVnRMSEf 3% 7% 5% 4% 11%
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Adding the meteorological data and the 4 PV systems as exog-
enous inputs (Case 4) further improved the NARX neural network
prediction accuracy with the nRMSEf decreasing by another 2% in
the winter situation, 14% in the summer situation, and 19% in the
1year-summer situation. Thus, combining all the information
available revealed to be the best method. The following section
used the Case 4 NARX network architecture in the 1year-summer
situation to illustrate graphically the training and forecasting. The 1
year-summer situation was also selected in case 5 due to the fact
that it has more data points and, although the nRMSEf are higher
than in the case where subsets of the original dataset are used, CVf
shows in Table 4 that the multiple trials were more consistent than
in the other cases.

Figs. 9e11 display the one-step predictions using the best
network configuration achieved (Case 4). This is merely an example
Fig. 8. nRMSEf (“f” denotes forecasting) results for different cases. The x label illus-
trates the exogenous inputs used in the NARX Network e Case 1 (4 PV systems (N, S, E,
W)); Case 2.1 (2 PV systems (W, E)); Case 2.2 (2 PV systems (N, S)); Case 3 (Meteo-
rological); Case 4 (4 PV systems (N, S, E, W) & Meteorological).
of the expected output values using a NARX neural networkwith 10
hidden neurons, 2 TDL and 6 exogenous inputs. Fig. 10 shows fore-
casts of the Centre PV system output (in green) for July 2013, using
11months (Fig. 9) for training, testing and validation. The network
forecasting results can successfully approximate the expected tar-
gets and the intra-hour ramping is well captured. Moreover, the
early and late variations of the day are effectively captured.
5.1. Case 5 e multistep forecasting

As mentioned above, in the previous cases the past steps (TDL)
of the exogenous inputs and outputs were used to perform several
one-step predictions until achieving one month of forecasts. In
multiple step forecasting, and as an example, a 1 h forecast for a 15-
min resolution using a NARX neural network with 2 TDL consisted
in considering the t � 15 min and t � 30 min values to predict the
t � 1 h value (instead of the t þ 30 min and the t þ 45 min values).

Fig. 12 shows the comparison between the NARX model and the
persistence model. The purpose of this comparison is to highlight
the time scales most favourable for the application of the NARX
model.

The global minimum errors of both models occurred with a
single step ahead predictions (15 min), albeit the NARX model
(0.092 nRMSEf) was outperformed by the persistence model
(nRMSEf 0.091) by a marginal fraction. However, the persistence
model was surpassed by the NARX model beyond the 15 min step
forecasts, which is expected considering the very good ability of the
NARX model to capture the underlying time series' patterns.

After (t � dt), the NARX model's performance improves, for the
July 2013 forecasts, relatively to the persistence model. The NARX
model's forecasts up to 1 h ahead, which in this study is a 4 step
forecast due to the fact that the time interval is 15-min, resulted in a
0.103 nRMSEf, whereas for the persistence model resulted in a 0.16
nRMSEf. Both methods' performances decrease with time, but
when dt ¼ 15 min, a local minimum (nRMSEf 0.19 for the NARX
model and 0.25 for the persistence model) is achieved. After
dt ¼ 24 h the curves' slope becomes more gradual.



Fig. 9. Example of training (in blue), validation (in green) and test (in red) from 1st of August 2012 to 30th of June 2013 for the Centre PV system, using a NARX network with 4 PV
systems and meteorological data as exogenous inputs. The y-axis shows normalized output [0, 1] and the time interval is 15 min. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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The difference between the accuracy of the NARX neural
network performance for a 1 month forecast horizon and the 15-
min forecasting horizon is very significant, being the nRMSEf
value at dt ¼ 24 h, 2 times greater than the nRMSEf at dt ¼ 1 month
for the persistence model and NARX model. Indeed, our NARX
Fig. 10. Closer look of the example of the network forecasts (green) and the expected target (
and the time interval is 15 min. (For interpretation of the references to colour in this figur
model appears to be more appropriate for short-time horizons,
given the fact that for longer horizons the NARX model's nRMSE is
identical to the nRMSE of the persistence model.

In our work, the forecasting skill s (introduced in Refs. [10]),
increases for intra-hour forecasts, reaching 0.36 in the 1 h
blue) for the Centre PV system, for July 2013. The y-axis shows normalized output [0, 1]
e legend, the reader is referred to the web version of this article.)



Fig. 11. Closer look of the first 10 days of the example of the network forecasts (green) and the expected target (blue) for the Centre PV system, for July 2013. The y-axis shows
normalized output [0, 1] and the time interval is 15 min. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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forecasting; however, after the 1 h forecasting, s decreases sharply
and has values close to 0 for the 20 days and 1month forecasts. One
may verify that our results are similar to the results found in the
literature (see Section 1), particularly for short/medium term
predictions.

6. Conclusion

A NARX model for solar power forecasting was developed.
Several input combinations allowed the determination of the
relevant parameters to the forecast performance of a PV system. For
the different input combinations, three situations were applied, to
be exact, one with the entire dataset, and two others as the result of
Fig. 12. Comparison of nRMSEf (“f” denotes forecasting) results for July 2013 between
persistence model and NARX model [training the network until tþ 45 min], with dt
varying between 15 min and 1 month.
splitting the original dataset. This allowed us to analyse the winter
and summer seasons.

In general, the NARX model for the winter season had lower
nRMSE (root mean square error) values, albeit this was more
related to the fact that overcast days are rather easy to predict and
low variability was associated with the predicted month. NARX
model's summer forecasts showed accurate nRMSE values, and
while using the original dataset (1 year in a 15 min interval) the
results were more consistent during the many performed trials.

It was shown that considering more information of neighbour-
ing distributed PV systems can enhance the forecasts accuracy.
Moreover, adding meteorological information to the network using
the information of the 4 PV systems has proved to further improve
the accuracy. Yet, the network that solely used meteorological data
as exogenous inputs also showed accurate forecasts.

For forecasts up to 15-min ahead, the persistence and the NARX
method showed similar performances. However, the NARX model
clearly outperformed the persistence model beyond 15-min fore-
casts, which indicates that considering recent past observations is a
better method to perform predictions. Global minimum and local
minimum were achieved for 15 min forecasts (9% nRMSE for both
the NARX and persistence model) and 24 h (19% and 20% nRMSE
value for the NARX and persistence model respectively), for the
input and output data considered. Thus, we can also determine that
for the PV system output and for the predicted month, a current
value of the PV system shows very good ability to recognize pat-
terns of the 24 h previous observation. The NARX model is highly
effective in multistep predicting, even for many points.

Neural networks associated with other models, such as the total
sky imagery or satellite based models, or more PV systems [6], may
well be a fundamental instrument to improve intra-day forecasts
accuracy. The intra-day horizon is currently of smaller economic
value than the day-ahead forecasts; however, substantial markets
opportunities will probable occur when solar PV penetration is
increased and accuracy of intra-day forecasts is further improved.
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