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1
CT perfusion imaging has become established as a method of choice for the assessment of 
ischemic stroke. However, current CT perfusion analysis methods have several shortcomings 
and do not exploit the imaging technique to its full potential. This thesis presents an 
analysis method that is intrinsically robust and flexible. The method may furthermore aid in 
predicting hemorrhagic transformation; an adverse effect of thrombolytic stroke treatment. 
The application of this method to thin slice, high-resolution scans may well improve the 
diagnostic and prognostic value of CT perfusion imaging.

1.1 TIME IS BRAIN

“Time is brain!” This is a frequently heard phrase in stroke treatment, emphasizing that 
rapid diagnosis and therapy is required as brain tissue is quickly lost as stroke progresses.46 
Rapid, effective treatment can prevent long-term disability and save lives.

The clinical use of thrombolytic (blood clot dissolving) drugs in the 1990’s, recombinant 
tissue plasminogen activator (rt-PA) in particular, enabled active treatment of acute ischemic 
stroke rather than providing supportive therapy alone.111 rt-PA was first used to treat acute 
myocardial infarction and later approved for use in ischemic stroke. The earlier rt-PA is used, 
the more beneficial it is; shorter treatment delay results in a much greater treatment effect 
(Fig. 1.1). When treated within 3 hours of symptom onset, it results in an overall benefit of 
10% with respect to living without disability, although it has the adverse effect of increasing 
the risk of developing symptomatic intracranial hemorrhages which also increases the 
risk of early death.38,89,140 It was found that 2% of stroke patients who do not receive rt-PA 
treatment develop space-occupying hematoma, versus 10% of the patients who do receive 
this treatment.15 The treatment improves outcome if given up to 4.5 hours after onset, but 
effects of later treatment are unclear and still being tested. No baseline clinical variables are 
known to predict hemorrhage due to rt-PA treatment.142

A thorough Cochrane review study by Wardlaw et al. (2014), weighing risks and benefits, 
advises: “People who think that they are experiencing a stroke should get to hospital quickly, 
be assessed by a stroke doctor, have a brain scan and receive clot-dissolving treatment as 
fast as possible.”140
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Fig. 1.1: Effect of rt-PA treatment delay on the chance of good stroke outcome. Good stroke 
outcome was defined as symptom free or having residual symptoms without loss of activity 
(modified Rankin Scale < 2). The white box shows the point at which the estimated treatment 
effect crosses 1; at this point treatment has no effect, i.e. the chance on good outcome is the same 
as without treatment. The black box shows the point at which the lower 95% confidence interval 
for the estimated treatment effect first crosses 1. From: Emberson et al. (2014).38 Reprinted with 
permission from author.

Thus far, treatment delay is the major criterion for deciding whether or not to give rt-
PA treatment. Mainly due to this criterion just 11% of the ischemic stroke patients in 
the Netherlands are currently found to be eligible for intravenous rt-PA treatment.12 As 
described below, this number may be increased by using functional imaging in addition to, 
or even instead of treatment delay as selection criterion. Besides intravenous thrombolysis 
(IVT), the thrombolytic drugs may also be administered intra-arterial (IAT), i.e. injected 
through a microcatheter at the occlusion site. Via the same route as IAT, the thrombus may 
furthermore be retrieved mechanically (mechanical thrombectomy, MT). Although delaying 
treatment, intra-arterial treatment (IAT and/or MT) was recently proven to be safe and 
effective in patients with a proximal occlusion of the anterior circulation when administered 
within 6 hours.16,44

Functional brain imaging techniques based on X-ray computed tomography (CT), 
magnetic resonance (MR), positron emission tomography (PET), or single photon emission 
computed tomography (SPECT) can provide insight in the size and location of the infarcted 
area, and may identify salvageable tissue. Because of their relatively high resolution, 
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1
wide availability, and short preparation and scanning time, CT and MR imaging are most 
frequently used in stroke. This includes CT perfusion (CTP) imaging, diffusion-weighted MR 
imaging (DWI), and a variety of perfusion-weighted MR imaging (PWI) techniques. These 
functional imaging techniques have shown to be effective in influencing the selection of 
patients within, but also beyond the 3 and 4.5 hour window of treatment delay.19,47,94 In a 
review study by Burton et al. (2015) it was found that when CTP imaging is used for rt-PA 
treatment selection by identifying the volume of infarct and salvageable tissue, patients 
with a treatment delay beyond 3 hours even showed far lower mortality rates and better 
outcomes than patients treated within 3 hours.26 These results suggest that more patients 
beyond current time windows could benefit from thrombolysis with the aid of functional 
imaging.

Although MR imaging does not use ionizing radiation and allows full brain coverage, CT 
is still the preferred modality for stroke diagnosis because of its accessibility and simplicity. 
CT is widely available in the emergency setting and less time consuming than MR, it can 
be obtained at less cost, and it can be performed at no risk to a patient with metal foreign 
bodies or implantable medical devices.126,149

The aim of the study presented in this thesis is to develop quantitative analysis methods 
that could increase the effectiveness of functional CT imaging in selecting patients for rt-PA 
treatment. This includes enhancing current CTP analysis, the use of CTP imaging to estimate 
the risk of developing hemorrhages, and high-resolution CTP analysis.

1.2 CT IMAGING IN STROKE

A series of multiple concurrent CT imaging techniques, known as multi-modal CT, is currently 
being used for stroke assessment. Each technique has its own qualities, which are described 
in the next sections.

1.2.1 Non-contrast CT
In the Netherlands, about 84% of the strokes are caused by blockage of a blood vessel 
(ischemic strokes), whereas the remaining 16% are caused by an intracranial bleeding 
(hemorrhagic strokes).36 The primary goal of imaging in acute stroke is to differentiate 
between these two types. Since the X-ray attenuation coefficient of blood is higher than that 
of brain tissue, standard non-contrast CT (NCCT) can be used to detect hemorrhages (Fig. 
1.2). Furthermore, occlusions of large cerebral arteries in early ischemic stroke may also 
show up on NCCT, which is known as hyperdense artery sign (Fig. 1.3a). Ischemic infarction 
may be seen as a hypodense area relative to the surrounding tissue.
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a. b.

Fig. 1.2: Intracranial bleeding on non-contrast CT. a) A non-contrast CT brain scan without a 
bleeding. b) A non-contrast CT brain scan showing two hemorrhagic sites in the right hemisphere 
(encircled).

a. b.

Fig. 1.3: NCCT and CTA showing a hyperdense thrombus. The non-contrast CT image (a) clearly 
shows a hyperdense right middle cerebral artery thrombus (left in the image). The occlusion due 
to this thrombus is visible in the CT angiography image (b) as the absence of contrast material. 
Courtesy of Santos et al. (2015).122

1.2.2 CT Angiography
Contrast-enhanced CT angiography (CTA) is performed to determine the site and extent 
of arterial occlusion in ischemic stroke. It is also possible to assess the degree of collateral 
circulation behind the arterial occlusion. Iodinated contrast material is injected in a 
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1
peripheral vein (Fig. 1.4), and the CTA scan is acquired when the intensity of this bolus in 
the cerebral arteries is maximal (Fig. 1.3b and Fig. 1.5). Since modern CT scanners allow fast 
helical scanning, a large axial coverage can be achieved, including all vessels ascending from 
the top of the aortic arch to the vertex of the head.

Fig. 1.4: Patient undergoing contrast-enhanced CT brain imaging. From left to right; CT scanner, 
patient on motorized table, dual power injector with contrast material and saline solution, 
radiologic technologist behind radiation shielding window. Reprinted with permission from Mayo 
Foundation for Medical Education and Research.

a. b.

Fig. 1.5: Middle cerebral artery occlusion on CT angiography. A 10 mm thick axial (a) and 15 mm 
thick coronal (b) maximum-intensity projection showing the cerebral vessels. The arrows indicate 
the position of the occlusion.



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

Chapter 1

14

1.2.3 CT Perfusion Imaging
In addition to NCCT and CTA, CTP imaging has become an established method to further 
diagnose ischemic stroke and individualize treatment. Analogous to CTA, CTP imaging starts 
with the injection of a bolus of iodinated contrast material, but instead of a single CT scan, a 
series of scans is acquired that tracks the bolus passage through the brain over time (Fig. 1.6). 
By means of tracer kinetic analysis, a number of informative perfusion maps can be extracted 
from this series of scans; this is detailed in Section 1.3. Examination of these perfusion maps 
gives insight in the perfusion status of the brain tissue, allowing differentiation between 
healthy tissue, salvageable tissue, and irreversibly infarcted tissue (Fig. 1.7).

0 s 16 s 20 s 30 s

Fig. 1.6: Four acquisitions of a CT perfusion series. The first acquisition in the series (0 s) does not 
show any contrast enhancement yet. The bolus arrived in the brain at about 12 s after, and the 
large arteries clearly show up enhanced on the scan acquired at 16 s. At 20 s the enhancement is 
maximal throughout the brain, and at 30s only the veins are still clearly enhanced.

a. b. c. d.

Fig. 1.7: CT perfusion maps. Parameter maps showing cerebral blood flow (a), cerebral blood 
volume (b), and mean transit time (c). d) A so-called summary map, in which salvageable tissue is 
colored green, and irreversibly infarcted tissue color red. These images clearly show a perfusion 
defect in the perfusion area of the middle cerebral artery of the right hemisphere (left in the 
image). Screenshots from Philips Extended Brilliance Workspace 4.0.

In order to track a complete bolus passage through the brain, the total scan duration needs 
to be in the order of one minute. For the CTP scans used in the studies in this thesis, 25 CT 
volumes were acquired at an interval of approximately 2 s, resulting in a total duration of 
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1
50 s. Although this is sufficient for calculating the conventional perfusion maps, this duration 
may be too short to estimate vascular permeability, which is explained in more detail in 
Sections 1.3.2 and 1.3.3. For this reason the standard protocol was extended by 6 additional 
CT volumes at an interval of approximately 30 s, resulting in a total duration of 210 s. Section 
1.4 explains the scan protocol in more detail.

Although CT brain perfusion imaging has been possible since the early eighties, clinical 
practice had to wait for this technology to become available until the introduction of multi-
slice CT scanners in the late nineties.103 Because of the improvements in speed and axial 
coverage it is now possible to acquire large enough volumes in short enough time. Since 
it is difficult to acquire spiral CT scans at short intervals, axial coverage is often limited 
by the detector size. Typical multi-slice coverage varies from 40 to 160 mm, but only the 
largest, 160 mm, provides full brain coverage. Slice thickness is typically 0.5 to 1 mm. In 
order to reduce dose, data, and processing time, however, scans are often reconstructed 
with a slice thickness of 5 mm (Fig. 1.8). The slices, with a field-of-view of approximately 
200 mm × 200 mm, are reconstructed in a 512 × 512 matrix.

Fig. 1.8: CTA and CTP coverage and slice thickness. A sagittal maximum intensity projection 
(319 mm × 230 mm) of the vessels in the head and neck as imaged with CT angiography (red), 
overlaid by a thick sagittal slab highlighting bone (white) and tissue (dark gray). The lines indicate 
a volume of 13 adjacent 5 mm thick slices as imaged in a typical CT perfusion scan.
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Because CTP imaging acquires a contrast bolus passage over time, each voxel of the 3D 
scan with N acquisitions contains a time-attenuation curve (TAC) with N time points (Fig. 
1.9). A voxel with a high blood volume is perfused by high amount of contrast material 
and therefore it shows high enhancement in its TAC. Because the logarithm of the X-ray 
attenuation scales linearly with the concentration of contrast material, there also exists a 
linear relationship between the enhancement curve and the change in contrast material 
concentration. This feature of CT imaging facilitates quantitative analysis. To identify the 
baseline necessary for calculating contrast enhancement, the contrast material is injected at 
the same time as the CTP acquisition starts, which means that the first volumes are acquired 
before the bolus arrives in the brain.
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Fig. 1.9: Arterial contrast enhancement curve. This plot shows the average enhancement curve 
as measured in the arterial voxels in a middle cerebral artery. 25 CT volumes were acquired at 
a 2 second interval, followed by 6 volumes acquired at a 30 second interval. After recirculation 
through lungs and heart, the contrast agent bolus peaks for a second time at approximately 27 
seconds after the first pass peak. There exists a linear relationship between these measurements 
and the contrast material concentration.

Despite the many benefits, CT has the disadvantage of exposure to ionizing radiation. A 
NCCT of the brain is usually acquired at a tube voltage of 120 kV (peak, kVp) and a current-
exposure product of 300 mAs.2 This results in an effective dose of 1 to 3 mSv per acquired 
volume, which can be compared with an annual effective dose from natural background 
radiation of approximately 2 to 3 mSv. In order to limit the radiation dose in the sequential 
acquisition of 25 or more volumes in a CTP series, the volumes are acquired with relatively 
low X-ray tube current and low exposure time. Most adult brain CTP scans that were used in 
the studies described in this thesis were acquired at 80 kVp and 150 mAs, as recommended 
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1
by the American Association of Physicists in Medicine (AAPM) guidelines.1 Depending on 
the axial coverage, this results in an effective dose of 2 to 6 mSv per CTP series. Imaging at 
80 kVp instead of 120 kVp not only reduces radiation exposure, but also increases iodine 
contrast enhancement relative to soft tissue.148 State-of-the-art iterative reconstruction and 
filtering techniques may substantially improve image quality and therefore allow acquisition 
with even lower exposures.

1.2.4 CTP Preprocessing
After image acquisition and tomographic reconstruction, additional preprocessing is 
required before tracer kinetic analysis can be applied. The acquired volumes need to be 
aligned in order to correct for head movement, and noise needs to be reduced to obtain 
perfusion parameters with sufficient precision. Besides the relatively high noise levels as 
compared to conventional CT scans due to low mAs, the limited contrast material dose and 
bolus dispersion result in low signal-to-noise ratios.

Severe head movement during X-ray exposure causes artifacts in tomographic 
reconstruction. Volumes containing such artifacts should be discarded in analysis. Motion in 
between exposures can be corrected by aligning the volumes. Although moderate to severe 
head movement occurs in a quarter of the CTP scans in stroke,39 the brain is unlike most 
other organs not, or to a lesser extent, affected by non-rigid deformation due to breathing, 
swallowing and cardiac pulsation. This means that rigid registration is sufficient for proper 
alignment. The application of 3D rigid registration to thin-slice reconstructed CTP data 
effectively removes all motion.

Noise reduction is typically performed by application of an isotropic Gaussian filter or an 
edge-preserving filter to the individual volumes. The latter enables averaging larger regions 
(in the order of 1 cm3 in CTP) while minimizing partial volume effects, i.e. crosstalk between 
different structures. By using the information in the temporal domain of the CTP series, 
more effective edge-preserving filters, such as TIPS, have been developed recently.91 Such 
filters not only compare voxel values, but entire TACs in order to determine the local shape 
of the filter kernel.

1.3 CT PERFUSION ANALYSIS IN STROKE

1.3.1 Physiology of Brain Tissue Perfusion
Besides the arterial and venous enhancement curves, every tissue voxel is also represented 
by an enhancement curve, describing mostly the inflow and outflow of contrast material in 
the capillaries, as described later on in more detail. Since the shape of these tissue TACs is 
affected by the perfusion properties of the tissue such as the blood volume, analysis of these 
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curves can provide estimates for these perfusion parameters. Three perfusion parameters 
that are of importance to stroke imaging are cerebral blood volume (CBV), cerebral blood 
flow (CBF) and mean transit time (MTT).

CBV is the space occupied by the intravascular blood per unit of brain tissue. Since gray 
matter has a high metabolic rate due to the vast number of synaptic connections, it has 
more dense capillary beds and therefore higher CBV than white matter (Fig. 1.10). For the 
healthy human brain CBVs have been reported between approximately 1.5 to 3 ml/100g 
for white matter and 3 to 5.5  ml/100g for gray matter.58,59,86 These volumes only include 
the smallest of vessels, i.e. arterioles, capillaries, and venules. CBV can be estimated by 
measuring the scaling factor between the enhancement curve of a voxel with 100% blood 
volume, i.e. a large artery or vein, and the enhancement curve of the tissue.

Fig. 1.10: Cortical blood vessels. Scanning electron microscope image of the blood vessels in 
the human cerebral cortex. This sample shows an artery within the subarachnoid cavity at the 
surface of the brain (top), which sends down thin, densely branched arterioles to deliver blood 
throughout the entire cortex. The thickness of the human cerebral cortex, and thus of the imaged 
capillary beds is approximately 2.5  mm. Reprint from Rodríguez-Baeza et al., as published in 
Schoonover, Portraits of the Mind, 2010.

CBF is the total volume of blood that flows through a unit of brain tissue per unit of time, 
and varies between approximately 20 to 30  ml/100g/min for white matter and 40 to 
80 ml/100g/min for gray matter.58,59,151,153 The CBF value scales with the CBV as well as the 
average blood velocity in the tissue.

The total cross-sectional area available for blood flow increases with decreasing vessel 
size. Therefore, the pressure and velocity of the blood decrease as it enters the capillaries 
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1
(Fig. 1.11). Since the capillary bed provides many different routes, the time for a molecule 
of contrast material to flow through the capillary bed may vary. MTT is the average time 
it takes for the contrast material to flow through the smallest vessels and capillary bed. 
This time varies between approximately 3.5 to 5 s for healthy white matter and 3 to 4 s 
for healthy gray matter.58 MTT is, as in whole organ perfusion, interrelated to CBV and CBF 
according to the central volume principle, i.e. MTT = CBV/CBF.134
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Because CBF and MTT measurement can be rather sensitive to noise, CTP assessment usually 
includes a fourth parameter map, visualizing the delay between the arterial and tissue time-
to-peak (TTP). Since TTP depends on MTT, delay in bolus arrival, as well as on bolus shape, it 
cannot be considered a true property of the tissue. Nevertheless, this parameter is of great 
value to the observer in the detection of small lesions.

In vessels smaller than approximately 500 µm in diameter, the blood viscosity decreases 
with vessel diameter. This behavior is known as the Fåhræus-Lindqvist effect and is caused 
by the formation of a red blood cell free layer near the vessel wall.41 Due to the difference 
in velocity between these layers, the volume fraction of red blood cells (the hematocrit) 

Fig. 1.11: Total cross-sectional area and blood velocity of different vessels. Since the total cross-
sectional area increases with decreasing vessel size, the pressure and velocity decrease when 
blood enters the capillaries. Reprint from Marieb, Human Anatomy and Physiology, 2010.
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in small vessels differs from the volume fraction in large vessels; since the velocity of the 
red blood cells is higher than the velocity of the plasma layer near the vessel wall, the 
hematocrit in small vessels is approximately 0.25, whereas the hematocrit in large vessels 
is approximately 0.45 in healthy people.116 Because the plasma fraction carries the contrast 
material, the difference in hematocrit biases the observed CBV. In order to correct for this 
difference, CBV (ml/100g) is calculated as:
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In this equation,  = 1.05 g/ml, which is the average density of brain tissue. 
(1 − Htlarge) = 0.55 is the volume fraction of the blood plasma in large vessels and (1 –
 Htsmall) = 0.75 is the volume fraction of the blood plasma in small vessels. The unitless 
value Vi is the observed intravascular blood volume fraction of the tissue, i.e. the scaling 
factor between the enhancement curve of a large vessels and the enhancement curve of 
the tissue. The same correction applies to CBF. However, for the sake of readability and 
simplicity, this correction factor will not be included in the equations in Section 1.3.3 and 
in the equations in the next chapters, i.e. equations will be presented as if CBV = Vi. 

1.3.2 Pathophysiology in Ischemic Stroke 
Due to the blockage of a blood vessel, brain tissue affected by an early ischemic stroke is 
characterized by reduced CBF. The brain is much more susceptible to ischemia than other 
organs, with brain tissue losing function if deprived of oxygen and glucose for only a few 
minutes. As the stroke progresses, the central region of lowest CBF (less than 20 to 25 
ml/min/100g) will suffer irreversible damage leading to cell death.96 This infarct core then 
shows reduced CBV. The rim of affected, but potentially salvageable tissue surrounding 
the infarct core is referred to as the ischemic penumbra (neo-Latin: partial shade) and 
demonstrates reduced CBF with normal CBV, and thus increased MTT, due to low local 
blood pressure. CBV might even be increased as a result of autoregulatory vasodilation. 
Collateral circulation from other arteries may provide additional flow in the penumbra. 
The function loss of brain tissue in the ischemic penumbra may still be restored by timely 
reperfusion. 

                                                       Eq. 1.1

In this equation, ρ = 1.05 g/ml, which is the average density of brain tissue. (1 − Htlarge) = 0.55 
is the volume fraction of the blood plasma in large vessels and (1 – Htsmall)  = 0.75 is the 
volume fraction of the blood plasma in small vessels. The unitless value Vi is the observed 
intravascular blood volume fraction of the tissue, i.e. the scaling factor between the 
enhancement curve of a large vessels and the enhancement curve of the tissue. The same 
correction applies to CBF. However, for the sake of readability and simplicity, this correction 
factor will not be included in the equations in Section 1.3.3 and in the equations in the next 
chapters, i.e. equations will be presented as if CBV = Vi.

1.3.2 Pathophysiology in Ischemic Stroke
Due to the blockage of a blood vessel, brain tissue affected by an early ischemic stroke is 
characterized by reduced CBF. The brain is much more susceptible to ischemia than other 
organs, with brain tissue losing function if deprived of oxygen and glucose for only a few 
minutes. As the stroke progresses, the central region of lowest CBF (less than 20 to 25 ml/
min/100g) will suffer irreversible damage leading to cell death.96 This infarct core then shows 
reduced CBV. The rim of affected, but potentially salvageable tissue surrounding the infarct 
core is referred to as the ischemic penumbra (neo-Latin: partial shade) and demonstrates 
reduced CBF with normal CBV, and thus increased MTT, due to low local blood pressure. 
CBV might even be increased as a result of autoregulatory vasodilation. Collateral circulation 
from other arteries may provide additional flow in the penumbra. The function loss of brain 
tissue in the ischemic penumbra may still be restored by timely reperfusion.

The difference between infarct core and penumbra, also known as target mismatch, is a 
predictor for patient outcome after treatment.79 A small infarct core correlates with reduced 
risk, whereas a large salvageable penumbra correlates with increased benefit. In such cases 
it might be beneficial to give rt-PA treatment beyond the 4.5 hour time window, or if the 
time of onset is unknown, as there is a more favorable risk/benefit ratio.19

Since true quantitative measurement of perfusion values is difficult, there are currently 
no established threshold values for CBV, CBF, or MTT for differentiating between infarct core, 
penumbra and healthy tissue. Relative values for CBF and MTT, i.e. the difference between 
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the values observed in the ipsi-lateral (side of interest) hemisphere and in the contra-lateral 
hemisphere, were often found to be more reliable than absolute values. Table 1.1 gives an 
overview of several CT perfusion thresholds for infarct core and penumbra classification.32

Table 1.1: Threshold values for infarct core and penumbra classification. CT perfusion thresholds 
reported in 10 different studies published before August 2009. Different values for the same threshold 
are comma separated. rCBF, rCBV and rMTT are ratios between ipsi-lateral and contra-lateral 
hemisphere. From: Dani et al. (2011).32

Mixed gray/white matter Gray matter White matter
Parameter Core Penumbra Core Penumbra Core Penumbra
CBF (ml/100g/min) - <28 - <25 <9.0 -
CBV (ml/100g) <2.0 <1.7 - - <0.8 -
MTT (s) >6.1 >6.5, >7.0 - - - -
rCBF (%) <34 <50, <50 <20 <48 - -
rCBV (%) - <85, <90 - <60 - -
rMTT (%) - >145, >220 - >160 - -

Besides the loss of neurons and glial cells, ischemia in brain tissue may result in blood-
brain barrier (BBB) damage. BBB opening, i.e. loss of microvascular integrity, has been 
hypothesized to be a predictor for hemorrhagic transformation (HT, development of an 
intracranial bleeding) in ischemic stroke.18,49,88,96 The BBB, which is unique to the capillaries 
of the brain, is a highly selective permeability barrier consisting of endothelial cells that are 
connected by tight junctions and surrounded by an extracellular matrix (basal lamina) (Fig. 
1.12a). When intact, this barrier prevents passage of large hydrophilic molecules such as CT 
contrast material. However, when the BBB is damaged (Fig. 1.12b) CT contrast material may 
penetrate the tight junctions and basal lamina and leak into the extravascular space, which 
could be quantified by CT perfusion imaging provided that the net outflow is sufficiently 
large.
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Fig. 1.12: Blood-brain-barrier damage. a) A schematic cross-section of a healthy brain vessel. The 
tight junctions (green) exist as a continuous strand in between adjacent endothelial cells (red). b) 
Hypoxic-ischemic blood-brain barrier damage in mice. 3D reconstructed confocal laser scanning 
microscopy images from 10 μm thick cryosections containing a vessel. Tight junction proteins 
(occludine) were stained green, endothelial cells were stained red, and nuclei were stained blue. 
Healthy vessels (left) show continuous, linear labeling of occludine (arrows), whereas hypoxic 
vessels (right) show occludine rearrangement and gap formation (arrows). From: Bauer et al. 
(2010).13 Reprinted by permission from Macmillan Publishers Ltd: J. Cereb. Blood Flow Metab., 
copyright 2010.

1.3.3 Mathematics of Perfusion Analysis
In order to extract perfusion parameters from CTP data, some mathematical abstraction of 
the perfusion process is required. The shape of the contrast bolus in the arteries and the 
perfusion parameters introduced in the previous sections, i.e. CBV, CBF, and MTT, as well as 
permeability, will somehow determine the shape of the enhancement curve as measured 
in the tissue.

By modelling tissue perfusion as a linear time-invariant (LTI) system, a translation from 
physiology to mathematics can be made. LTI theory investigates the response of linear and 
time-invariant dynamic systems to arbitrary input signals. In CTP, the input signal of this 
system is the arterial input function (AIF), Ca(t), which is the enhancement curve observed in 
a large artery. The enhancement curve observed in a voxel in the tissue of interest, Ct(t), is 
the response of the system. The system’s impulse response function (IRF), h(t), characterizes 
the perfusion as it allows calculating Ct(t) from Ca(t) by means of convolution:
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characterizes the perfusion as it allows calculating Ct(t) from Ca(t) by means of 
convolution: 
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The IRF h(t) can be thought of a tissue enhancement curve in response to an infinitesimal 
small arterial bolus. Obtaining the h(t) from the observed Ct(t) and Ca(t) in order to 
estimate values for the perfusion parameters is a so-called inverse problem. 

Since there is no general approach to solving inverse problems, different CTP analysis 
methods exist. Most methods use deconvolution techniques based on either Fourier 
transformation or singular value decomposition (SVD) to invert the input signal Ca(t). Table 
1.2 gives an overview of methods used in software from different CT vendors. 
Deconvolution of Eq. to obtain h(t) is an ill-posed problem; due to measurement noise and 
the lack of high frequency information caused by dispersion of the arterial bolus, the 
solutions might be non-physical and very sensitive to small fluctuations in the noise or in 
the signal. This means that regularization in the form of a smoothness restriction is 
required in order to find a stable solution. Other methods, such as the maximum slope 
method try to directly estimate perfusion values from Ct(t) and Ca(t), without involving 
h(t).93 Those methods however require strict assumptions that do not apply in clinical 
practice, and thus result in biased measurements. 

 

                                                 Eq. 1.2

The IRF h(t) can be thought of a tissue enhancement curve in response to an infinitesimal 
small arterial bolus. Obtaining the h(t) from the observed Ct(t) and Ca(t) in order to estimate 
values for the perfusion parameters is a so-called inverse problem.

Since there is no general approach to solving inverse problems, different CTP analysis 
methods exist. Most methods use deconvolution techniques based on either Fourier 
transformation or singular value decomposition (SVD) to invert the input signal Ca(t). Table 
1.2 gives an overview of methods used in software from different CT vendors. Deconvolution 
of Eq. 1.2 to obtain h(t) is an ill-posed problem; due to measurement noise and the lack of 
high frequency information caused by dispersion of the arterial bolus, the solutions might 
be non-physical and very sensitive to small fluctuations in the noise or in the signal. This 
means that regularization in the form of a smoothness restriction is required in order to 
find a stable solution. Other methods, such as the maximum slope method try to directly 
estimate perfusion values from Ct(t) and Ca(t), without involving h(t).93 Those methods 
however require strict assumptions that do not apply in clinical practice, and thus result in 
biased measurements.

Table 1.2: CT brain perfusion analysis methods used in software from different CT vendors. Most 
methods apply deconvolution using singular value decomposition (SVD) or Fourier transformation 
(‘inverse filter’). The ‘maximum slope’ and ‘least mean square’ methods apply direct curve fitting to 
the enhancement curves. The ‘box-modulation transfer function’ (box-MTF) convolves the AIF with a 
2-parameter box-shaped IRF. From Kudo et al. (2013).76

Manufacturer Software version Algorithm
GE Healthcare CT Perfusion 3 SVD
GE Healthcare CT Perfusion 4 SVD
Hitachi Medical Systems Perfusion Analysis 3.0 ‘Inverse filter’
Philips Healthcare EBW 4.0 ‘Standard SVD’
Philips Healthcare EBW 4.0 ‘Beta-SVD’
Siemens Healthcare Syngo MMWP VE36A ‘Maximum slope’
Siemens Healthcare Syngo MMWP VE36A ‘Least mean square’
Toshiba Medical Systems CBP Study Ph8 ‘box-MTF’
Toshiba Medical Systems CBP Study Ph8 ‘Reformulated SVD’

The method used in this thesis is rather different from common CTP analysis methods. 
Instead of estimating perfusion values from the deconvolved IRF h(t), a mathematical model 
for h(t) based on the perfusion parameters is assumed. The method optimizes the values 
for the parameters in the model for h(t) such that h(t) ∗ Ca(t) matches the observed Ct(t) the 
best. This approach is explained in more detail in Chapter 2.



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

Chapter 1

24

The shape of h(t) is best explained by transit times. As explained in Section 1.3.1, the transit 
time is the time it takes for the contrast material to flow through the smallest vessels and 
capillary bed. Since this trajectory occupies a volume smaller than a voxel, the contrast 
material will keep contributing to the signal enhancement of this voxel during the entire 
transit of this trajectory. The IRF of this single trajectory will therefore be a block-shaped 
function having a width equal to the duration of the transit. The IRF of the capillary network 
within a voxel is the sum of the IRFs of all possible trajectories. Since there is a plurality of 
possible routes through the network, all with distinct transit times, a realistic IRF will have 
a smooth decay following some distribution rather than a sharp discontinuity. This principle 
is explained in Fig. 1.13.

Because Ca(t) is usually measured in a large artery at some distance from the tissue of 
interest, the IRF may be shifted to the right in order to incorporate the delay in bolus arrival. 
Occasionally, when a collateral artery provides Ca(t), the delay may even be negative as the 
bolus could arrive earlier in the healthy tissue than in the collateral artery in the affected 
hemisphere. In that case the IRF should be shifted to the left. It was found that delay-
insensitive methods provide more accurate results.73,77,123 From the commercial methods 
listed in Table 1.2, only the ‘least mean square’ method was found to be delay-independent 
for all perfusion parameters.76

In tissue affected by ischemic stroke, the IRF will be lower and wider due to the decreased 
CBF. In case of leakage due to BBB opening, a fraction of the contrast material might enter 
and remain in the extravascular space in the tissue until it is washed out. This effectively 
prolongs the mean transit time and increases the apparent blood volume. When the 
rate of outflow to the extravascular space (Ktrans) is small, however, the vascular CBV can 
be distinguished from the extravascular distribution volume, Ve. The effect of Ktrans and Ve 
on h(t) is shown in Fig. 1.14. In the (hypothetical) case that the leakage is irreversible, i.e. 
contrast material is not washed out of the extravascular space, then Ve = ∞ and h(∞) = Ktrans. 
Measurement of Ktrans requires extended scan duration as explained in Section 1.2.3. Fig. 
1.15 gives theoretical enhancement curves for tissues with IRFs as in Fig. 1.13f and Fig. 1.14, 
and an AIF as in Fig. 1.9.
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Fig. 1.13: Impulse response function (IRF) of a capillary bed. A single trajectory through a 
capillary bed (a), has a single transit time (c), and therefore the IRF h(t) is a block-shaped function 
having a width equal to the duration of the transit (e). The height of this block-shape is equal to 
the flow, and the area is equal to the volume fraction of the trajectory. A series of trajectories (b), 
has a series of transit times (d), and therefore the net IRF is the sum of the IRFs of all trajectories 
(f). Note that the net flow is equal to the sum of the flows and the net volume fraction is equal 
to the sum of the volume fractions. For a large number of trajectories, as in reality, there is some 
continuous distribution of transit times P(t) as represented by the black lines in (d) and (f).
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Fig. 1.14: Example of an impulse response function with high permeability. In this example the 
mean transit time (MTT) is 7 s and the cerebral blood flow (CBF) is 0.003 s-1. The rate of outflow 
to the extravascular space (Ktrans) is 20% of the CBF; this means extensive blood-brain barrier 
damage. The extravascular distribution volume (Ve) is 50% of the vascular cerebral blood volume 
(CBV). In the (hypothetical) case that the leakage is irreversible, then Ve = ∞ and h(t→∞) = Ktrans 
(dashed curve).
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Fig. 1.15: Tissue time enhancement curves. These noise-free, theoretical tissue enhancement 
curves were generated by convolving the arterial input function in Fig. 1.9 with the impulse 
response functions (IRF) in Fig. 1.13f (blue) and in Fig. 1.14 (red). Due to the low flow and long 
transit time, the red curve has a lower amplitude and a larger width. Due to leakage, the amplitude 
of the ‘tail’ of the red curve is relatively high with respect to its first pass bolus peak.

1.4 CLINICAL STUDY PROTOCOL

1.4.1 Dutch Acute Stroke Study
All clinical scans that were used in this study are from the Dutch acute stroke study (DUST).129 
In brief, DUST was a large prospective multicenter cohort study, which aimed to assess the 
prognostic value of CTP and CTA in ischemic stroke patients for 90-day clinical outcome. 
The DUST study enrolled 1476 patients in 14 Dutch centers between May 2009 and August 
2013. The DUST study was approved by the local institutional ethical review boards of the 



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

Introduction

27

1
participating centers, and all patients or family gave signed informed consent. In case a 
patient died before informed consent could be obtained, the medical ethics committee 
waived the need for informed consent. Inclusion criteria for DUST were: age above 18 years, 
suspected ischemic stroke of less than 9 hours duration and a National Institutes of Health 
Stroke Scale (NIHSS, a stroke severity scale)25 score ≥2, or 1 if an indication for rt-PA therapy 
is present. Exclusion criteria were known renal failure or contrast allergy. On admission, all 
patients underwent NCCT, as well as CTP and CTA. Follow-up NCCT imaging was performed 
after three days or earlier in case of discharge or in case of clinical deterioration. The DUST 
study protocol and main findings have been published by Van Seeters et al (2014, 2015).129,130

1.4.2 CTP Acquisition Protocol
CTP was performed on admission before or immediately after possible rt-PA treatment. 
Scans were acquired on 40 to 320-slice scanners (Philips, Siemens, GE, Toshiba), generally 
at 80  kVp and 150  mAs. The scans had a total acquisition time of about 210 seconds, 
divided into a first part of 25 acquisitions with an approximately 2 second interval starting 
at contrast injection, followed by another 6 acquisitions with an approximately 30 second 
interval starting at 60 seconds after contrast injection. The second part of 6 acquisitions was 
required for permeability measurements (used in the studies described in Chapters 3, 4, and 
5). Before scanning, 40 ml of non-ionic contrast agent was injected intravenously at a rate of 
6 ml/s, followed by a 40 ml saline flush.

Axial CTP coverage ranges from 40 mm to full-brain, covering at least the basal ganglia 
and the upper part of the lateral ventricles, thus ensuring inclusion of both levels of the 
Alberta Stroke Program Early CT Score (ASPECTS).10 The scan volume was lowered if a 
posterior circulation stroke was suspected. The slices had a field-of-view of approximately 
200  mm  ×  200 mm. The scans were reconstructed in a 512  ×  512 matrix using filtered 
backprojection with a medium smooth reconstruction kernel (vendor-specific), yielding a 
pixel size of approximately 0.4 mm × 0.4 mm. All CTP scans were reconstructed to a slice 
thickness of 5 mm, but in addition a large number of thin slice reconstructions (0.625 to 
1.25 mm) were also computed.

1.5 OUTLINE OF THE THESIS

This thesis is concerned with the development of quantitative analysis methods that could 
increase the effectiveness of functional CT imaging in selecting patients for rt-PA treatment. 
Model-based perfusion analysis with non-linear regression provides the core of the research.

Chapter 2 introduces a simple, but flexible and robust model-based analysis method 
allowing measurement of cerebral blood volume, cerebral blood flow, and mean transit 
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time. This method is compared with the current state-of-the-art method and a commercial 
method by means of a digital perfusion phantom and with the aid of 50 clinical CT perfusion 
scans.

Chapter 3 extends this method with permeability measurement. Vascular permeability 
could be a predictor of hemorrhagic transformation (HT) after rt-PA treatment. The reliability 
of the permeability parameters are evaluated in comparison with frequently used Patlak 
analysis. Confidence intervals are estimated using simulated time-attenuation curves and 
clinical data from 20 patients.

In Chapter 4, the predictive power for HT development is compared between different 
perfusion and permeability parameters. Receiver-operating characteristic analyses are 
performed on the admission CT scans of 20 patients with HT on follow-up CT, and 40 patients 
without HT.

Chapter 5 assesses the influence of reconstruction slice thickness on the CT perfusion 
and permeability measurements. Thin slices may increase sensitivity for stroke detection. 
The CT perfusion scans from 50 patient studies are analyzed at four slice thicknesses. 
Specifically, the influence of Gaussian and bilateral filtering, the arterial input function, and 
motion correction on the perfusion values is investigated.

The study in Chapter 6 compares the performance for small lesion (<20 mm) detection 
between standard thick slice and thin slice reconstruction. The CTP parameter maps of 41 
cases and 82 controls are randomized and evaluated for the presence of a small focal deficit. 
Performance is compared using McNemar’s test.

Chapter 7 summarizes the previous chapters, and gives an overall discussion and future 
outlook.
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1.6 LIST OF ABBREVIATIONS

Abbreviation Full phrase
AAPM American Association of Physicists in Medicine
AATH Adiabatic approximation to the TH model
AIF Arterial input function
ASPECTS Alberta Stroke Program Early CT Score
AUC Area under the curve
BAT Bolus arrival time
BBB Blood-brain barrier
CBF Cerebral blood flow
CBV Cerebral blood volume
CI Confidence interval
CT Computed tomography
CTA CT angiography
CTP CT perfusion
DCE Dynamic contrast enhancement
DUST Dutch stroke study
DWI MR Diffusion weighted imaging
FWHM Full width at half maximum
HT Hemorrhagic transformation
HU Hounsfield units
IAT Intra-arterial thrombolysis
IQR Interquartile range
IRF Impulse response function
IVT Intra-venous thrombolysis
MR Magnetic resonance
MT Mechanical thrombectomy
MTT Mean transit time
NCCT Non-contrast CT
NIHSS National Institutes of Health Stroke Scale
NLR Non-linear regression
PET Positron emission tomography
PS Permeability-surface area product
PVE Partial volume effect
ROC Receiver operating characteristic
ROI Region of interest
SD Standard deviation
SNR Signal-to-noise ratio
SPECT Single photon emission computed tomography
SVD Singular value decomposition
rt-PA Recombinant tissue plasminogen activator
TAC Time-attenuation curve
TH Tissue homogeneity model
TIPS Time-intensity profile similarity
TTP Time-to-peak
VOF Venous output function
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Model-based Perfusion Analysis

Based on: Bennink E, Oosterbroek J, Kudo K, Viergever MA, Velthuis BK, Jong HWAM de. A fast non-
linear regression method for CT Brain Perfusion Analysis. Submitted for journal publication. 2015.
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ABSTRACT

Although CT perfusion (CTP) imaging enables rapid diagnosis and prognosis of ischemic 
stroke, current CTP analysis methods have several shortcomings. We propose a fast non-
linear regression (NLR) method that has important advantages over the current state-of-
the-art method, block-circulant singular value decomposition (bSVD), notably improved 
robustness to local tracer delay, fewer tuning parameters, and extensibility to permeability 
estimation.

The method is compared with bSVD and with a commercial SVD-based method. The 
three methods were quantitatively evaluated by means of a digital perfusion phantom, 
described by Kudo et al. (2013),76 and qualitatively with the aid of 50 clinical CT perfusion 
scans.

All three methods yielded high Pearson correlation coefficients (>0.9) with the ground 
truth in the phantom. The NLR perfusion maps of the clinical scans showed higher correlation 
with bSVD than the perfusion maps from the commercial method. Furthermore, it was 
shown that NLR estimates are robust to noise, truncation and tracer delay.

In conclusion, the proposed fast NLR method provides a simple, robust, and flexible 
way of estimating perfusion parameters from CTP scans. This suggests it could be a viable 
alternative to current commercial and academic methods.
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2.1 INTRODUCTION 

CT perfusion (CTP) imaging of the brain enables rapid diagnosis of ischemic stroke by 
generating maps of the cerebral blood volume (CBV), cerebral blood flow (CBF), and mean 
transit time (MTT). Low CBV is an indicator for infarction, whereas tissue at risk shows low 
CBF but normal CBV. The tissue at risk, or penumbra, may be saved by prompt and correct 
diagnosis and treatment.

Brain perfusion parameters are commonly derived from a so-called impulse response 
function (IRF) of the local tissue. The analysis to retrieve this IRF usually involves deconvolution 
algorithms. Block-circulant singular value decomposition (bSVD) is considered the state-of-
the-art deconvolution method because it has been shown to give the most accurate and 
delay-insensitive estimates.77 The latter property is important in regions that experience 
a delayed arrival of the tracer bolus, as is often the case in tissue supplied by collateral 
flow. It was found that tracer delay-sensitive methods underestimate the CBF and therefore 
overestimate the final infarct area, whereas the values from delay-insensitive methods 
correspond well with the infarct area.78 However, bSVD use is limited to measuring CBV, 
CBF, and MTT, whereas permeability measurements might be of interest for predicting 
hemorrhagic transformation (see Chapters 3 and 4). bSVD furthermore requires various 
algorithm parameter settings, such as the method and strength of noise reduction, or the 
way in which CBV and MTT are calculated.

We propose the use of a flexible, model-based, non-linear regression (NLR) method that 
has some advantages over deconvolution methods and is aimed at having better performance 
than bSVD. The method provides a unified way of estimating CBF, CBV, and MTT, and it can be 
extended to account of vascular permeability, which is detailed in the next chapter. Because 
extrapolation of data requires a model, it is furthermore hypothesized that the model-based 
NLR method will be more robust to time-attenuation curve (TAC) truncation. Truncation is a 
common issue in CTP scans of patients with poor cardiac output or large vessel occlusion, in 
which case the acquisition times are too short to capture complete TACs.22,72

The performance of the NLR method will be evaluated against bSVD and against the 
delay-insensitive deconvolution method found in the Philips EBW 4.5 Brain Perfusion 
package (Philips Healthcare, Best, the Netherlands). This will be done quantitatively, on the 
basis of the digital perfusion phantom developed by Kudo et al. (2013),76 and qualitatively 
on the basis of 50 clinical CT brain perfusion scans.
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2.2 METHODS

2.2.1 Digital Perfusion Phantom
In order to compare the performance of the three methods in quantifying CT brain perfusion, 
the digital perfusion phantom of Kudo et al. was analyzed. In their publication the phantom 
was described in detail.76 It was used for assessment of bSVD and various other methods for 
CT and MR perfusion analysis. The phantom consists of 15 slices with 7 × 7 matrices of tiles 
with synthetic TACs with uncorrelated Gaussian noise. There are 30 samples per TAC with 
an interval of 2 seconds. The standard deviation of the noise is 7.2 HU, which is realistic for 
e.g. 5 mm thick slices acquired at 80 kVp and 150 mAs. The arterial input function (AIF) and 
venous output function (VOF) were modelled as gamma-variate curves. Recirculation was 
not taken into account.

Each tile represents a patch of uniform tissue, and consists of voxels with identical 
perfusion parameters and equal Gaussian noise level, but different noise realizations. 
Horizontally in the tiles the MTT was varied (24, 12, 8.0, 6.0, 4.8, 4.0, and 3.4 s), while vertically 
the tracer delay was varied (0.0 to 3.0 s in steps of 0.5 s). The 15 slices of the phantom have 
5 different CBV values (1.0 to 5.0 ml/100g) and three types of IRFs (exponential, linear, and 
box-shaped). The CBF can be determined through the central volume principle: MTT = CBV/
CBF.

Prior to analysis, the slices in the phantom were filtered with a 2D Gaussian kernel with 
a standard deviation of 2.5 pixels. No additional filtering was applied.

2.2.2 Non-linear Regression Method
As explained in Section 1.3.3 of the first chapter, tissue perfusion can be modeled by means 
of an impulse response function (IRF) h(t). Convolution of the measured AIF, Ca(t), with a 
computed estimate of h(t), gives an estimate of the enhancement curve of the tissue, Ct(t):

2.2 Methods 

2.2.1 Digital Perfusion Phantom 
In order to compare the performance of the three methods in quantifying CT brain 
perfusion, the digital perfusion phantom of Kudo et al. was analyzed. In their publication 
the phantom was described in detail.76 It was used for assessment of bSVD and various 
other methods for CT and MR perfusion analysis. The phantom consists of 15 slices with 
7 × 7 matrices of tiles with synthetic TACs with uncorrelated Gaussian noise. There are 30 
samples per TAC with an interval of 2 seconds. The standard deviation of the noise is 
7.2 HU, which is realistic for e.g. 5 mm thick slices acquired at 80 kVp and 150 mAs. The 
arterial input function (AIF) and venous output function (VOF) were modelled as gamma-
variate curves. Recirculation was not taken into account. 

Each tile represents a patch of uniform tissue, and consists of voxels with identical 
perfusion parameters and equal Gaussian noise level, but different noise realizations. 
Horizontally in the tiles the MTT was varied (24, 12, 8.0, 6.0, 4.8, 4.0, and 3.4 s), while 
vertically the tracer delay was varied (0.0 to 3.0 s in steps of 0.5 s). The 15 slices of the 
phantom have 5 different CBV values (1.0 to 5.0 ml/100g) and three types of IRFs 
(exponential, linear, and box-shaped). The CBF can be determined through the central 
volume principle: MTT = CBV/CBF. 

Prior to analysis, the slices in the phantom were filtered with a 2D Gaussian kernel with a 
standard deviation of 2.5 pixels. No additional filtering was applied. 

2.2.2 Non-linear Regression Method 
As explained in Section 1.3.3 of the first chapter, tissue perfusion can be modeled by 
means of an impulse response function (IRF) h(t). Convolution of the measured AIF, Ca(t), 
with a computed estimate of h(t), gives an estimate of the enhancement curve of the 
tissue, Ct(t): 

        t aC t C t h t t     Eq. 2.1 

The residual term (t) is the difference between the estimated and measured TACs, 
caused both by measurement noise in Ct(t) and Ca(t) and by shortcomings of the model. 

Non-linear regression is used to iteratively adapt the parameters in h(t), i.e. CBV, MTT, and 
tracer delay, to minimize the sum of squares of (t). Weights might be used in the 
regression to incorporate additional constraints or prior knowledge. A relatively simple 
box-shaped IRF enables fast NLR analysis which is advantageous in time-critical stroke 
analysis (see Fig. 3.11 in the next chapter for computation times): 

                                                 
Eq. 2.1

The residual term ε(t) is the difference between the estimated and measured TACs, caused 
both by measurement noise in Ct(t) and Ca(t) and by shortcomings of the model.

Non-linear regression is used to iteratively adapt the parameters in h(t), i.e. CBV, MTT, 
and tracer delay, to minimize the sum of squares of ε(t). Weights might be used in the 
regression to incorporate additional constraints or prior knowledge. A relatively simple box-
shaped IRF enables fast NLR analysis which is advantageous in time-critical stroke analysis 
(see Fig. 3.11 in the next chapter for computation times):
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       box CBF U U MTTd dh t t t t t       Eq. 2.2 

In Eq., U(t) is the unit step function and td is the delay in bolus arrival between the AIF and 
the tissue curve. A similar model, the so called box-modulation transfer function (box-
MTF), was introduced by Nambu et al. (1996)101. This model, however, did not include a 
delay parameter and was thus found to be tracer delay-sensitive. Accordingly, it was 
outperformed by the bSVD method76. 

The convolution in Eq., with the IRF hbox(t) as given in Eq., can also be defined in terms of 
differential equations, i.e. as the solution of: 
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
        Eq. 2.3 

When Eq. is integrated, the convolution can be calculated efficiently by sampling the 
integral of the arterial enhancement curve: 

        
MTT
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    
 
    Eq. 2.4 

To prevent aliasing artifacts owing to sampling, frequency components in the IRF above 
the Nyquist frequency should be suppressed. A Bartlett kernel (triangular) with a width of 
twice the sample interval was therefore used to sample the integral of Ca(t) and to filter 
Ct(t). Section 3.2.4 of the next chapter explains this in more detail. 

The shape of the IRF is the only choice to be made for application of this NLR method in 
CTP analysis. 

2.2.3 bSVD Deconvolution 
The convolution in Eq. can be written as the matrix operation b = Ax + ε, where vector b is 
Ct(t), A is a matrix with zero-padded, circularly shifted versions of the AIF Ca(t) at regular 
intervals of t, vector x is the IRF, and vector ε is a residual term. The least-squares solution 
of the IRF x can be found by inverting A. The bSVD method uses singular value 
decomposition (SVD) to find a pseudo-inverse of A, which for circulant matrices is 
mathematically equivalent to applying a Fourier transform. 

In order to suppress noise in the resulting IRF, the least significant eigenvectors are 
consecutively removed until x has an oscillation index below a certain threshold.45 In this 
study a threshold of 0.095 is used, as suggested by Wu et al. (2003).152 The CBF is defined 
as the maximum value in the vector x. The CBV is estimated by calculating the ratio 
between the integrals of Ct(t) and Ca(t). 
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                               Eq. 2.4

To prevent aliasing artifacts owing to sampling, frequency components in the IRF above the 
Nyquist frequency should be suppressed. A Bartlett kernel (triangular) with a width of twice 
the sample interval was therefore used to sample the integral of Ca(t) and to filter Ct(t). 
Section 3.2.4 of the next chapter explains this in more detail.

The shape of the IRF is the only choice to be made for application of this NLR method in 
CTP analysis.

2.2.3 bSVD Deconvolution
The convolution in Eq. 2.1 can be written as the matrix operation b = Ax + ε, where vector b 
is Ct(t), A is a matrix with zero-padded, circularly shifted versions of the AIF Ca(t) at regular 
intervals of t, vector x is the IRF, and vector ε is a residual term. The least-squares solution of 
the IRF x can be found by inverting A. The bSVD method uses singular value decomposition 
(SVD) to find a pseudo-inverse of A, which for circulant matrices is mathematically equivalent 
to applying a Fourier transform.

In order to suppress noise in the resulting IRF, the least significant eigenvectors are 
consecutively removed until x has an oscillation index below a certain threshold.45 In this 
study a threshold of 0.095 is used, as suggested by Wu et al. (2003).152 The CBF is defined as 
the maximum value in the vector x. The CBV is estimated by calculating the ratio between 
the integrals of Ct(t) and Ca(t).
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The commercial method (Philips) is also SVD-based, but no detailed technical 
information about this algorithm is available. The code for the both the NLR method and 
the bSVD method was developed in-house; the bSVD method was implemented following 
the description of Wu et al. (2003).152

2.2.4 Clinical Data 
Fifty consecutive patients were included retrospectively from a single center (University 
Medical Center Utrecht) participating in the Dutch acute stroke study (DUST). The inclusion 
criteria and the CTP acquisition protocol are described in Section 1.4.

All scans included in this study were acquired on a 256-slice Philips Brilliance iCT scanner 
(Philips Healthcare, Best, the Netherlands) at 80 kVp and 150 mAs. The scans had a total 
acquisition time of about 50 seconds, divided into 25 acquisitions with an approximately 2 
second interval. Since standard perfusion analysis does not require extended acquisition, 
the second (extended) part of the CTP scans was not used (see Section 1.4.2). This resulted 
in an effective radiation dose of 2.7 mSv. The axial coverage was 60 to 65 mm and the field-
of-view was approximately 200  mm  ×  200 mm. The scans were reconstructed to a slice 
thickness of 5 mm, and the pixel size was 0.39 mm × 0.39 mm.

2.2.5 Preprocessing
Prior to analysis the scans were corrected for motion using a rigid registration method67 
and filtered using a bilateral filter.137 This filter computes a bilateral weight based on the 
Euclidean distance between two voxels and the squared difference in average intensity 
between the TACs of those voxels. The values of the 3D bilateral kernel b(ξ,x) at coordinate 
ξ is defined by

The commercial method (Philips) is also SVD-based, but no detailed technical information 
about this algorithm is available. The code for the both the NLR method and the bSVD 
method was developed in-house; the bSVD method was implemented following the 
description of Wu et al. (2003).152 
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2.2.6 Analysis
Whenever possible an internal carotid artery was chosen to provide the AIF. If this location 
happened to be outside the imaged volume, a middle or anterior cerebral artery was chosen. 
VOFs were selected in the superior sagittal sinus or the transverse sinus near the torcular 
herophili. The same AIF and VOF locations were used for all three methods.

All three analysis methods generated CBV, MTT, and CBF perfusion maps for the digital 
phantom and for the clinical data. It should be noted that, although three parameters were 
measured, these perfusion parameters just capture two degrees of freedom because of 
their interrelation (central volume principle): MTT = CBV/CBF. The area under the curve of 
the VOF was used to correct the CBV and CBF values for partial volume effects in the AIF. CBV 
and CBF values were furthermore corrected for the difference in hematocrit between large 
and small vessels (see Eq. 1.1 in Section 1.3.1).71

Similarly to the approach by Kudo et al. (2013), the average perfusion value in each tile 
was calculated by averaging all pixels in a 28 × 28 pixel region centered on each 32 × 32 pixel 
large tile.76 In order to compare the observed values with the ground truth, linear fits 
through the origin and Pearson correlation coefficients (ρ) were calculated for the three IRF 
types separately, and for the IRF types combined. Good correlation was defined as ρ > 0.9.

To assess the effect of noise on the perfusion values, the phantom data were filtered 
with eight 2D Gaussian filter kernels with decreasing radius. This resulted in 8 increasing 
noise levels, ranging from 0.84 HU (SD) at a kernel size of 2.5 pixels (SD) to 2.3 HU at a 
kernel size of 0.93 pixels. At each noise level Pearson coefficients of correlation with the 
ground truth were calculated, as well as the median and the interquartile range of the bias 
in average tile value as compared with the lowest noise level. Pearson coefficients were 
calculated per IRF and then averaged.

The effect of truncation of the attenuation curves was assessed by truncating the 
phantom data from 58 to 30 s in steps of 4 s, i.e. by 2 samples (vertical lines in Fig. 2.1a and 
b). In each step, Pearson coefficients of correlation with the ground truth were calculated, as 
well as the median and interquartile range of the bias in average tile value as compared with 
data of 58 s duration. Again Pearson coefficients were calculated per IRF and then averaged.
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Fig. 2.1: Examples of enhancement curves. a) The arterial input function (AIF) and venous output 
function (VOF) measured in the filtered digital phantom. b) Three enhancement curves measured 
in the tile with 1) a box-shaped IRF with CBV of 5 ml/100g, MTT of 24 s, and 3.0 s delay, 2) a linear 
IRF with CBV of 3.0 ml/100g, MTT of 6.0 s, and 1.5 s delay, and 3) an exponential IRF with CBV 
of 1 ml/100g, MTT of 3.4 s, and no delay. The seven vertical gray lines, starting at 30 s, mark the 
samples at which the curves were truncated.

For the analysis of the clinical data, bSVD was considered the reference method. The 
perfusion maps of the commercial method and of the NLR method were each compared 
with that obtained by using bSVD. Linear fits through the origin and Pearson correlation 
coefficients were calculated per patient, using all parenchymal voxels. Mean CBF, CBV, and 
MTT values were calculated in the brain tissue in both the ipsilateral and the contralateral 
hemisphere. Symmetry lines were drawn manually to separate the hemispheres.

The acquisitions before bolus arrival, which is estimated by curve-fitting of the AIF, were 
averaged to obtain a non-contrast CT image. Only the voxels that had an average CT value 
>17 HU and <55 HU were classified as parenchymal tissue and included in the analysis. 
Voxels with a blood volume >9 ml/100g were classified as vessels and excluded from the 
analysis.

2.3 RESULTS

2.3.1 Phantom Data
Fig. 2.2 shows an example of the ground truth and estimated perfusion maps of one of 2D 
slices in the phantom. Although all three methods were supposed to be delay-insensitive, 
the perfusion maps of the commercial method and bSVD both showed diagonal bands in 
the CBF and MTT maps. Also, the response to high CBF and low MTT values seemed to be 
reduced for both methods. The commercial method furthermore showed overestimated 
CBV values.
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Fig. 2.2: Example of digital phantom perfusion maps. Ground truth maps and measured perfusion 
maps of the last slice of the digital phantom, i.e. a box-shaped IRF and CBV of 5 ml/100g. The 
phantom was filtered using a 2D Gaussian kernel with an SD of 2.5 pixels. All tiles in this slice have 
the same box-shaped IRF and a CBV of 5 ml/100g, while the MTT was varied horizontally (24 to 
3.4 s, from left to right), and the tracer delay was varied vertically (0 to 3 s, from top to bottom). 
The CBF can be determined by the central volume principle: CBV = CBF × MTT.

The slopes and correlation coefficients of the average measurements with respect to the 
ground truth are given in Table 2.1. All methods showed good correlation with the ground 
truth for each of the three IRF shapes (ρ > 0.90). For the three IRF types combined, however, 
the Pearson coefficients for CBF measured with the commercial method and NLR were 
smaller than 0.9. The R2 values and the correlation coefficients were highest for CBV and 
were comparable amongst the three methods. The bSVD and NLR methods showed higher 
R2 values and correlation coefficients for CBF and MTT than the commercial method.
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Table 2.1: Responses to digital phantom. Slope and goodness of fit (R2) and Pearson correlation 
coefficient (ρ) for the relation between the observed perfusion values and the ground truth values of 
the phantom. The slopes and R2 values were calculated for a linear fit through the origin. The values 
were measured for each IRF shape separately (exponential, linear, and box-shaped) as well as for the 
three shapes combined (‘All’). The best fits and highest correlation coefficients are bold-faced.

Slope (R2) Pearson ρ
Commercial
method

bSVD NLR Commercial
method

bSVD NLR

Exponential

CBF 0.55 (0.84) 0.58 (0.93) 0.47 (0.96) 0.96 0.97 0.98
CBV 1.12 (0.96) 0.95 (0.96) 0.86 (0.95) 0.98 0.98 0.97
MTT 1.13 (-0.18) 1.02 (0.32) 1.25 (0.59) 0.96 0.96 0.93

Linear

CBF 0.66 (0.83) 0.71 (0.95) 0.68 (0.98) 0.95 0.98 0.99
CBV 1.18 (0.98) 0.98 (0.99) 0.96 (0.99) 0.99 1.00 0.99
MTT 1.09 (0.59) 0.99 (0.85) 1.22 (0.90) 0.98 0.98 0.97

Box-shaped

CBF 0.76 (0.69) 0.83 (0.85) 1.12 (0.98) 0.90 0.94 0.99
CBV 1.20 (0.98) 0.99 (0.99) 1.00 (1.00) 0.99 1.00 1.00
MTT 0.91 (0.51) 0.83 (0.85) 0.96 (0.99) 0.97 0.98 0.99

All

CBF 0.65 (0.72) 0.71 (0.85) 0.76 (0.71) 0.89 0.93 0.84
CBV 1.17 (0.97) 0.97 (0.98) 0.94 (0.96) 0.98 0.99 0.98
MTT 1.04 (0.34) 0.95 (0.68) 1.14 (0.81) 0.93 0.94 0.92

2.3.2 Response to Noise
Fig. 2.3 shows an example of the ground truth and estimated perfusion maps of one of 2D 
slices in the phantom, filtered with a smaller 2D Gaussian kernel (SD 0.93 pixels, vs. 2.5 
pixels for Fig. 2.2). This resulted in perfusion maps with higher noise level than those in Fig. 
2.2. The visual differences between maps of the same method in Fig. 2.2 and Fig. 2.3 were 
small. The CBV and MTT maps showed a rather uniform noise level throughout each slice, 
but the noise level of the CBF seemed to increase with the CBF value (top right map in Fig. 
2.3).

As concerns correlation with the ground truth, all methods showed a similar trend in 
response to noise (Fig. 2.4). Only the MTT values showed a linear decrease in correlation as 
a function of the noise level, in roughly the same fashion for each of the methods (Fig. 2.4c).

The bias with respect to the low-noise maps as a function of noise level (Fig. 2.5) differed 
substantially between the three methods. Median CBF measured with the commercial 
method and with NLR increased with the noise level, but decreased when measured with 
bSVD. Median CBV values measured with bSVD and NLR were not strongly influenced by 
noise, but CBV values measured with the commercial method increased with noise level. 
Median MTT measured with NLR showed no bias due to noise, but increased with noise 
when measured with the commercial method and with bSVD.
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Fig. 2.3: Example of digital phantom maps with increased noise. Ground truth maps and 
measured perfusion maps in the same phantom slice as shown in Fig. 2.2. In this case, however, 
the phantom was filtered using a 2D Gaussian filter with an SD of just 0.93 pixels, resulting in a 
higher noise level (noise SD=2.3 HU).
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Fig. 2.4: Correlation with ground truth as a function of noise level. a) Cerebral blood flow, b) 
cerebral blood volume, and c) mean transit time. The figures show the Pearson coefficients of the 
correlation of the estimated perfusion values with the ground truth in the phantom, as a function 
of the noise level.
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Fig. 2.5: Bias of the perfusion analysis methods due to noise. a) Cerebral blood flow, b) cerebral 
blood volume, and c) mean transit time. The figures show the median and interquartile ranges 
of the bias of the estimated perfusion values to low-noise estimates, as a function of noise level.

2.3.3 Response to Truncation
The commercial and bSVD methods gave visually similar responses to truncation of 
attenuation curves, as is illustrated in Fig. 2.6. The NLR method showed the smallest 
differences with the analysis on the full curves (Fig. 2.2). The estimates in the first row 
(MTT = 24 s) were the most affected by truncation, resulting in underestimated CBV values 
for the commercial and bSVD methods, and increased noise in CBV values for the NLR 
method.
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Fig. 2.6: Example of digital perfusion phantom maps with truncated attenuation curves. Ground 
truth maps and measured perfusion maps in the same phantom slice as shown in Fig. 2.2. In this 
case, however, just 18 out of 30 samples (34 s) were analyzed, resulting in truncated attenuation 
curves (Fig. 2.1b). The phantom was filtered using a 2D Gaussian filter with an SD of 2.5 pixels.
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The NLR method correlated better with the ground truth than the commercial method and 
bSVD (Fig. 2.7), especially when large numbers of samples were removed. The Pearson 
coefficients of the commercial method and bSVD showed similar trends.
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Fig. 2.7: Correlation with ground truth as a function of truncation level. a) cerebral blood flow, 
b) cerebral blood volume, and c) mean transit time. The figures show the Pearson coefficients of 
the correlation of the estimated perfusion values with the ground truth in the phantom versus 
the number of removed samples.

As for bias owing to truncation of the TACs: The bSVD method showed a negative bias in 
CBF and CBV as result of truncation, the NLR method seems to have no bias in either of the 
parameters, and the commercial method showed rather irregular biases as a function of the 
number of removed samples (Fig. 2.8). When 14 samples were removed, the commercial 
method failed to estimate the area under the VOF, for which reason the CBF and CBV were 
overestimated by 42% and 27%, respectively.
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Fig. 2.8 Bias of the perfusion analysis methods due to truncation. a) Cerebral blood flow, b) 
cerebral blood volume, and c) mean transit time. The figures show the median and interquartile 
ranges of the bias of estimated perfusion values to the estimates without removed samples, as a 
function of the number of removed samples.
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2.3.4 Clinical Data 
Although the commercial method and bSVD were about five times faster than NLR, all 
three methods were able to analyze single clinical CTP slices within a second on a high-end 
desktop computer, and are therefore fast enough for clinical use.

Fig. 2.9 shows an example of three NLR perfusion maps of clinical data. The slopes and 
Pearson coefficients of the correlation of the commercial method and NLR with the bSVD 
standard are given in Table 2.2, along with the ipsilateral and contralateral perfusion values.

The NLR method provided higher correlation with bSVD than the commercial method 
in all cases. There were however considerable differences between the average perfusion 
values measured by the three methods. The CBF values measured with NLR were more than 
2× as high as measured with bSVD, and those measured with the commercial method 1.5× 
as high. CBV values were comparable between NLR and bSVD inasmuch as both the slope 
and correlation coefficient were close to 1. The CBV values measured with the commercial 
method were 1.4× higher than those measured with bSVD. The average MTT values 
were comparable between the commercial method and bSVD, although the correlation 
coefficients were low. The MTT values measured with NLR were lower than those measured 
with bSVD.

Table 2.2: Responses to clinical data. Slopes and Pearson coefficients of the correlation of the 
commercial and NLR methods with the bSVD standard, and the ipsilateral and contralateral CBF 
(ml/100g/min), CBV (ml/100g), and MTT (s). The presented values are medians of the 50 CT perfusion 
scans, with interquartile ranges between brackets.

Commercial method bSVD NLR

Linear correlation with bSVD:
Slope

CBF 1.55 (1.37, 1.83) 1 2.34 (1.92, 2.65)
CBV 1.38 (1.22, 1.53) 1 1.06 (1.02, 1.09)
MTT 0.97 (0.85, 1.09) 1 0.74 (0.54, 0.82)

Linear correlation with bSVD:
Pearson ρ

CBF 0.66 (0.56, 0.76) 1 0.80 (0.76, 0.84)
CBV 0.73 (0.69, 0.75) 1 0.99 (0.99, 0.99)
MTT 0.51 (0.39, 0.76) 1 0.65 (0.54, 0.76)

Ipsi-lateral value

CBF 34.5 (23.9, 41.5) 23.0 (15.5, 26.2) 44.8 (28.7, 60.7)
CBV 3.70 (3.08, 4.29) 2.62 (2.05, 3.11) 2.85 (2.01, 3.37)
MTT 8.33 (6.85, 10.1) 8.00 (7.23, 8.76) 6.27 (4.11, 7.95)

Contra-lateral value
CBF 38.1 (28.1, 50.9) 24.9 (16.3, 29.6) 57.2 (37.1, 74.0)
CBV 3.77 (2.98, 4.45) 2.70 (2.08, 3.14) 2.88 (1.93, 3.39)
MTT 6.30 (5.58, 7.33) 7.01 (6.34, 7.72) 3.71 (3.22, 4.63)
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Filtered CBF CBV MTT

Fig. 2.9: Clinical perfusion maps. Axial slice of a filtered clinical CT perfusion image and its cerebral 
blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) maps. These maps 
were generated using the non-linear regression method (NLR).

2.4 DISCUSSION

This study has demonstrated that the proposed NLR method for CT brain perfusion analysis 
competes with current commercial and academic state-of-the-art methods. NLR provides a 
unified way of estimating CBF, CBV, and MTT, it requires few tuning parameters, and it can 
be extended to account of vascular permeability and to include additional constraints or 
prior knowledge about the IRF. The method was found to be robust to noise, to truncation, 
and to tracer delay. 

2.4.1 Phantom Data
The commercial method, NLR, and bSVD all showed high Pearson correlation coefficients 
with the ground truth (ρ > 0.9).

Both being SVD-based, the commercial method and bSVD showed perfusion maps with 
visually similar trends. Both methods underestimated CBF values and overestimated MTT 
values in hyperperfused areas, i.e. at the right side of the phantom. It is likely that this 
occurred because of regularization (smoothing) of the IRF, which decreased the amplitude. 
The responses of the NLR method were more linear, which is reflected by the higher R2 
values for the linear fits.

All methods, but NLR in particular, showed that the perfusion values measured in the 
phantom were dependent on IRF shape. It was found that when the distribution of transit 
times in the IRF becomes wider (the exponential IRF having the widest distribution and the 
box-shaped IRF the smallest), the estimated CBF values decreased and MTT values increased. 
For both SVD-based methods this is most likely the result of the SVD regularization, which 
decreases the amplitude of the IRF as described above, whereas for the NLR method this is 
caused by the underlying model assuming a flat, box-shaped IRF.
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2.4.2 Response to Noise
The effect of noise on the correlation of the perfusion maps with the ground truth was 
similar for all methods. The bias of the median perfusion values due to noise exhibited 
different trends, however, owing to fundamental differences between NLR and the SVD-
based methods.

The NLR method showed a positive bias on CBF, but no bias on CBV and MTT. This can be 
explained by the fact that it is difficult to estimate high flow values since the dispersed AIF 
acts as a low-pass filter that limits temporal resolution. The noise on CBF therefore increases 
with increasing CBF (note that CBF = CBV/MTT), which results in a skewed distribution and 
a positive bias.

The commercial method and bSVD, both SVD-based, apply adaptive regularization to 
suppress noise in the IRF. An increased noise level requires stronger smoothening of the 
IRF, resulting in a wider curve with lower amplitude, i.e. higher MTT and lower CBF. For 
this reason both methods showed a positively biased median MTT due to noise. The bSVD 
method furthermore showed a negatively biased CBF. The CBF of the commercial method 
was however positively biased due to the overestimated CBV.

Although all three methods showed biased CBF values due to noise, the impact of these 
biases in clinical applications will probably be moderate. As discussed above, the biases are 
most significant in the hyperperfused (healthy) areas, and are therefore unlikely to affect 
tissue classification.

2.4.3 Response to Truncation
It was found that the NLR method was more robust to truncation than the commercial and 
bSVD methods, since it yielded perfusion values with higher correlation to the ground truth, 
and no bias in median value due to truncation. Whereas the SVD-based methods do not 
assume a model, the box-shaped IRF model used by the NLR method allows extrapolation 
of the truncated curves, resulting in unbiased estimates.

It was unclear why the commercial method showed a rather irregular bias in CBF and 
MTT due to truncation.

The commercial method furthermore showed severely overestimated CBV and CBF 
values when the attenuation curves were truncated by 14 samples. This was caused by 
erroneous curve-fitting of the truncated VOF.

2.4.4 Clinical Data
With respect to the clinical scans, the NLR perfusion maps showed higher correlation with 
bSVD than the maps generated by the commercial clinical software.

The CBF estimates in the 50 perfusion scans were more than 2× higher when measured 
with the NLR method than measured with the bSVD method, and were also higher than 
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measured with the commercial method. This large difference can be explained by the 
opposite biases due to noise found in the phantom study, and also by the difference in 
slope as measured with the box-shaped phantom IRF (Table 2.1). This suggests that the 
physiological IRF mostly resembles this box-shape, which is supported by simulations 
published by Bredno et al. (2010), and assumed in many tracer-kinetic models for tissue 
perfusion.24,69,80,132

MTT values measured with NLR were lower than those measured with bSVD. This is also 
in line with the biases due to noise as found in the phantom study.

The commercial method showed higher CBV values than bSVD and NLR in the 50 
perfusion scans, as well as elevated CBV values with respect to the ground truth in the 
perfusion phantom. Possible explanations are differences in hematocrit correction or in 
curve fitting of the AIF and VOF.

Although ground truth perfusion values for the clinical scans were not available, which 
is a limitation of this study, highly quantitative Xe-CT and 15O-PET studies confirmed average 
literature CBF values of about 50  ml/100g/min and average transit times of about 3 to 
5 s in the healthy hemisphere (gray and white matter combined).58,151,153 The NLR method 
provided better matching values (57 ml/100g/min and 3.7 s) than the commercial method 
(38 ml/100g/min and 6.3 s) and bSVD (25 ml/100g/min and 7.0 s). A previous study also 
reported that bSVD underestimates quantitative CBF values, presumably due to image 
noise.123

2.4.5 Limitations
The study has other limitations besides the lack of ground truth clinical perfusion values 
as mentioned in the previous paragraph. Although the IRF of cerebral tissue is frequently 
modeled as a box function, the true physiological shape is unknown. To our knowledge no 
accurate IRF has ever been measured with high resolution. The phantom study showed, 
however, that the investigated methods all correlated well with the ground truth, regardless 
of the IRF shape used. 

It should also be noted that the commercial method uses a different curve fitting 
algorithm for partial volume correction than the NLR and bSVD methods. This means that 
the differences in CBV and CBF might have been influenced by the robustness of curve 
fitting, especially in the case of the truncated VOF curves. MTT values are not changed by 
partial volume correction.
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2.5 CONCLUSIONS

Being model-free, i.e. being independent of an assumption of IRF shape, is often presented 
as an advantage of SVD-based methods. This study showed, however, that the use of a 
tracer kinetic model has some striking advantages over SVD-based methods. Least-squares 
fitting of the IRF model does not require regularization, it enables extrapolation in case of 
truncated data, and all required parameters can be modeled and measured in a unified way. 
This results in better robustness to noise, to truncation, and to tracer delay. However, since 
the clinically used thresholds were established on perfusion estimates that were most likely 
biased, they cannot be applied to perfusion maps generated by a different method and may 
therefore need revision.

In conclusion, the proposed fast NLR method provides a simple, flexible, and reliable 
way of estimating perfusion parameters from CT perfusion scans. This suggests it could be 
a viable alternative to the current commercial and academic perfusion analysis methods.
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3
Model-based Permeability Analysis

Based on: Bennink E, Riordan AJ, Horsch AD, Dankbaar JW, Velthuis BK, Jong HWAM de. A fast nonlinear 
regression method for estimating permeability in CT perfusion imaging. Journal of Cerebral Blood Flow 
and Metabolism. 2013;33:1743-1751.
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ABSTRACT

Blood-brain-barrier damage, which can be quantified by measuring vascular permeability, is 
a potential predictor for hemorrhagic transformation in acute ischemic stroke. Permeability 
is commonly estimated by applying Patlak analysis to CT perfusion data, but this method 
lacks precision. Applying more elaborate kinetic models by means of non-linear regression 
(NLR) may improve precision, but this is more time-consuming and therefore less appropriate 
in an acute stroke setting. We propose to extend the fast method introduced in Chapter 2 to 
include permeability and obtain a simplified NLR method that may be faster and still precise 
enough for clinical use.

The aim of this study is to evaluate the reliability of in total 12 variations of Patlak 
analysis and NLR methods, including the simplified NLR method. Confidence intervals for 
the permeability estimates were evaluated using simulated CT time-attenuation curves with 
realistic noise, and clinical data from 20 patients.

Although fixating the blood volume improved Patlak analysis, the NLR methods yielded 
significantly more reliable estimates, but took up to 12× longer to calculate. The simplified 
NLR method was approximately 4× faster than other NLR methods, while maintaining the 
same confidence intervals.

In conclusion, the simplified NLR method is a new, reliable way to estimate permeability 
in stroke, fast enough for clinical application in an acute stroke setting.
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3.1 INTRODUCTION

It has previously been hypothesized that blood-brain-barrier (BBB) damage is a predictor for 
hemorrhagic transformation (HT) in acute stroke.18,33,88 With CTP imaging, frequently used 
for the evaluation of acute stroke, BBB damage can be quantified by measuring vascular 
permeability. Along with other perfusion parameters, including cerebral blood volume 
(CBV) and flow (CBF), vascular permeability is a tissue property that can be estimated by 
comparing tissue time-attenuation curves (TACs) to the curve of a reference artery or arterial 
input function (AIF). Whereas CBF and CBV can be measured by imaging the first pass bolus 
passage, leakage of contrast agent to the extravascular space is a slower process, only 
discernible in a delayed phase, and therefore requiring longer scan times. In stroke imaging, 
permeability is most frequently estimated using linearized regression, i.e. by graphical 
analysis of a Patlak plot.33,81,88,109,110 This technique transforms the data in the enhancement 
curves so that, in case of irreversible leakage, the data points lie on a straight line when the 
capillary tracer concentration reaches steady-state. The permeability transfer constant Ktrans 
is the slope of this line, and the relative blood volume is the intersection with the y-axis. 
Patlak analysis is used in e.g. Extended Brilliance Workspace 4.5 (Philips Healthcare, Best, 
the Netherlands), syngo Volume Perfusion-CT Neuro 2010 (Siemens Healthcare, Erlangen, 
Germany), and Vitrea fX 6.4 (Toshiba Medical Systems, Otawara-shi, Japan).

The Patlak method is preferred in the acute stroke setting, because it is fast, despite some 
inherent drawbacks. First, due to the linearized regression, only the steady-state data points, 
i.e. the last part of the scan, can be used. The estimated values are therefore dependent on 
the definition of the onset of this steady-state, and potentially useful information in the first 
part of the signal is disregarded. Second, linear least-squares regression assumes that the 
errors on the samples are normally distributed. For linearized data this is not the case and 
therefore the result will not be an optimal least-squares fit.97 Third, other parameters, such 
as the CBV and CBF, are estimated using a different method, which usually includes Gaussian 
or gamma variate curve fits, or a regularized inverse filter.78 Because two different methods 
are used for estimating parameters that essentially describe the same tissue model, the 
results may disagree. For example, the CBV, which should measure the intravascular volume 
only, may be overestimated by methods that do not take into account the additional 
extravascular distribution volume due to increased permeability of the BBB.71,119

A tissue perfusion model, as described in the previous chapter, extended to account 
of permeability, could serve as an alternative to the Patlak method. Such a model, applied 
with non-linear regression (NLR), utilizes the full length of the TACs, does not transform the 
measurement errors, and allows simultaneous measurement of all perfusion parameters. 
For these reasons NLR methods may provide a superior alternative to the use of Patlak 
plots in stroke imaging.18,85,132 However, NLR methods rely on iterative algorithms that are 
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relatively time-consuming. A rapid diagnosis is crucial for treatment of acute stroke, and 
therefore these methods may not be practical in an acute stroke setting.

The purpose of this study was to compare the reliability and computation time of 
permeability estimation using various implementations of the Patlak method and NLR 
methods using clinical and simulated data. In addition, a novel simplified NLR method is 
proposed as a faster potential alternative to existing NLR methods.

3.2 METHODS

This section first describes a first pass bolus model that is required for the calculation of 
some of the Patlak methods. Second, details are provided for the theory and technical 
implementation of different Patlak and NLR methods. Third, a novel method for non-linear 
regression, based on the AATH model, is introduced.83 Table 3.1 summarizes all in this study 
included methods for estimating permeability. Finally, methods for evaluating the models’ 
reliability of estimating Ktrans in both simulated data and clinical CTP scans are presented.

Table 3.1: Overview of the methods. An overview of the studied methods and their free and fixed 
parameters, according to Eq. 3.10. MTT = 0 means that the method does not account of transit time, 
Ve = ∞ assumes irreversible leakage, and td = 0 indicates a delay-sensitive method.

Method Free parameters CBV MTT Ktrans Ve td

Patlak 2 P 0 P ∞ 0
Patlak + delay 3 P 0 P ∞ P*
Patlak fixed 2 P* 0 P ∞ 0
Patlak fixed + delay 3 P* 0 P ∞ P*
AATH 4 P P P P 0
AATH + delay 5 P P P P P

NLR 3 P P P ∞ 0
NLR + delay 4 P P P ∞ P

NLR + Ve 4 P P P P 0
NLR + Ve + delay 5 P P P P P

Simpl. NLR 3 P P P ∞ 0
Simpl. NLR + delay 4 P P P ∞ P

*Estimated using gamma variate curve fitting.

3.2.1 First Pass Bolus Fitting
Some implementations of the Patlak plot (described below) require estimates of the CBV 
and time-to-peak (TTP). To obtain these values, and estimates for the CBF and mean transit 
time (MTT), the enhancement curves can be analyzed using a broad range of methods. 
Despite that more sophisticated methods exist for estimating the CBF and MTT, this study 
uses gamma variate curve fitting of the first pass bolus for obtaining the CBV and TTP, 
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because the variability in outcome between the methods for estimating these parameters 
was found to be very small.78

A gamma variate fit gives a robust estimate of the area under the curve (AUC) and TTP of 
the first-pass bolus in the enhancement curves.6,43,95 Subsequently, the CBV can be estimated 
by dividing the AUC of the tissue curve by the AUC of the AIF.71 The bolus arrival time (BAT), 
which is in this study used to define the start of contrast enhancement, is defined as the 
0.05% quantile of the gamma variate fit (Fig. 3.6b).

3.2.2 Patlak Linearized Regression
An underlying assumption of Patlak analysis is that the vascular leakage is unidirectional, i.e. 
irreversible during the acquisition time (Fig. 3.1). In that case the total tracer concentration 
in the tissue, Ct(t), can be described as a function of the capillary concentration Cc(t), the 
intravascular CBV, and a transfer constant Ktrans that represents the flow from the intra- to 
the extravascular space:
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Fig. 3.1: Unidirectional two-compartment model. The solid circle represents the intravascular 
compartment, and the dashed square represents the extravascular, extracellular compartment. The 
Patlak model assumes irreversible leakage, meaning unidirectional flow from the intravascular 
compartment to the extravascular, extracellular compartment. The magnitude of this flow is equal 
to Ktrans × Cc(t). Note that the tissue concentration, Ct(t), is the weighted sum of both the 
intravascular concentration, Cc(t), and the extravascular concentration (Eq.). 
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intravascular concentration, Cc(t), and the extravascular concentration (Eq. 3.1).

If both sides of the equation are divided by Cc(t), a parametric relationship is found that 
should be linear when the capillary concentration reaches a steady state:
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  Eq. 3.3 

Eq. shows that when a linear fit y(t) = ax(t) + b is applied to the Patlak plot of the delayed 
phase33 of the enhancement curves, the slope of the fit (a) and its intersection with the y-
axis (b) give an estimation of respectively the transfer constant Ktrans and the CBV (Fig. 3.2). 

The onset of the delayed phase, in which steady state is reached, is in this study 
empirically defined as the arterial TTP plus 3.5× the standard deviation of the first pass 
bolus, measured using a gamma variate curve fit as described above. This is a reliable 
method since gamma variate fits give a robust estimate of the width and position of the 
first pass bolus peak. 

 

 

Fig. 3.2: Graphical Patlak analysis using a parametric Patlak plot. The AIF shown in Fig. 1.9 and the 
tissue TAC shown in Fig. a were used to generate the Patlak plot in Fig. b. x(t) and y(t) are defined in 
Eq. and Eq.. A linear fit (dashed) to the steady-state data points gives estimates for the permeability 
(Ktrans; slope) and blood volume (CBV; intercept). Note that, due a small delay between bolus arrival 
in the artery and in the tissue, the first-pass part of the curve is slightly skewed.33 This phenomenon 
has no significant effect on the data points in the steady state. 
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Eq. 3.2 shows that when a linear fit y(t) = ax(t) + b is applied to the Patlak plot of the delayed 
phase33 of the enhancement curves, the slope of the fit (a) and its intersection with the 
y-axis (b) give an estimation of respectively the transfer constant Ktrans and the CBV (Fig. 3.2).

The onset of the delayed phase, in which steady state is reached, is in this study empirically 
defined as the arterial TTP plus 3.5× the standard deviation of the first pass bolus, measured 
using a gamma variate curve fit as described above. This is a reliable method since gamma 
variate fits give a robust estimate of the width and position of the first pass bolus peak.
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Fig. 3.2: Graphical Patlak analysis using a parametric Patlak plot. The AIF shown in Fig. 1.9 and 
the tissue TAC shown in Fig. a were used to generate the Patlak plot in Fig. b. x(t) and y(t) are 
defined in Eq. 3.2 and Eq. 3.3. A linear fit (dashed) to the steady-state data points gives estimates 
for the permeability (Ktrans; slope) and blood volume (CBV; intercept). Note that, due a small delay 
between bolus arrival in the artery and in the tissue, the first-pass part of the curve is slightly 
skewed.33 This phenomenon has no significant effect on the data points in the steady state.

Patlak Analysis with a Fixed Offset
The blood volume can be read from the Patlak plot. Alternatively, if an estimate of CBV is 
available from e.g. first pass bolus analysis, Ktrans can be estimated more robustly, using the 
prior estimated CBV as a fixed offset (see Eq. 3.2).23

For comparison, both the ‘standard’ and the ‘fixed’ Patlak methods are examined (Table 
3.1).

Patlak Analysis with Delay Correction
In CTP imaging the arterial concentration Ca(t) rather than the capillary concentration Cc(t) is 
measured to solve Eq. 3.2. In comparison to Ca(t), the average capillary tracer concentration 
can be affected by an arterial delay and the transit time in the tissue. Schneider et al. (2011) 
suggested correcting for such a delay by incorporating the difference in TTP between the 
tissue curve and the AIF, tdTTP, taken from gamma variate curve fits to the first pass bolus, 
into Eq. 3.2:128
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In line with this, both the ‘standard’ and ‘fixed’ Patlak methods are also extended with a 
delay correction (Table 3.1). The gamma variate fits to the AIF and tissue enhancement 
curves provide a robust estimate of the TTP values if the leakage is small. 

3.2.3 Non-linear Regression 

Permeability-enabled Perfusion Models 
As explained in Section 1.3.3, tissue perfusion can be modeled by means of an impulse 
response function (IRF) h(t). Convolution of the measured AIF, Ca(t), with a computed 
estimate of h(t), gives an estimate of the enhancement curve of the tissue, Ct(t): 
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Sawada et al. (1989) found that the detailed Tissue Homogeneity (TH) model, describing 
the blood flow and permeability using a complex set of differential equations, fitted the 
physiology of the brain the best because of the high density and tortuous nature of the 
brain capillary network.61,124,132 The full TH model, however, lacks a closed-form time 
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solution. Lawrence and Lee (1998) noticed that, because the contrast agent concentration 
in the extravascular space changes slowly relative to that in the intravascular space, the 
impulse response function of the TH model can be very well approximated by a box function 
followed by an exponential decay.83 In this adiabatic approximation to the TH model (AATH), 
a box function with a width of tt seconds (the transit time) represents the intravascular 
phase, and an exponential decay represents the extravascular phase:
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In Eq., U(t) is the unit step function and Ve is the extravascular distribution volume (Fig. 
3.3). Note that the intravascular CBV equals tt × CBF. Because this model gives estimates 
for tt and CBF as opposed to models that only estimate CBV, this type of model is often 
referred to as a distributed parameter model, in contrast to lumped parameter models like 
the extended Tofts model (ETM).136 

 

 

Fig. 3.3: Bidirectional two-compartment model. The circle represents the intravascular 
compartment, and the square represents the extravascular, extracellular compartment. In contrast 
to the Patlak model, the AATH model also takes leakage from the extravascular, extracellular 
compartment to the intravascular compartment into account. Ve is the apparent volume fraction of 
this extravascular compartment. Note that the inverse permeability rate constant, Kep, 
equals Ktrans/Ve. 

 

The AATH model describes the tracer concentration dynamics in a small volume 
containing a single capillary vessel with a uniform (plug) flow. In reality, however, brain 
tissue is heterogeneous and even a small volume contains capillaries with variable lengths. 
This heterogeneity causes a small tissue volume to have a distribution of transit times 
P(tt;MTT), rather than one unique transit time tt (see Section 1.3.3). MTT is the mean 
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In Eq. 3.7, U(t) is the unit step function and Ve is the extravascular distribution volume (Fig. 
3.3). Note that the intravascular CBV equals tt × CBF. Because this model gives estimates 
for tt and CBF as opposed to models that only estimate CBV, this type of model is often 
referred to as a distributed parameter model, in contrast to lumped parameter models like 
the extended Tofts model (ETM).136
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Fig. 3.3: Bidirectional two-compartment model. The circle represents the intravascular 
compartment, and the square represents the extravascular, extracellular compartment. In 
contrast to the Patlak model, the AATH model also takes leakage from the extravascular, 
extracellular compartment to the intravascular compartment into account. Ve is the apparent 
volume fraction of this extravascular compartment. Note that the inverse permeability rate 
constant, Kep, equals Ktrans/Ve.

The AATH model describes the tracer concentration dynamics in a small volume containing 
a single capillary vessel with a uniform (plug) flow. In reality, however, brain tissue is 
heterogeneous and even a small volume contains capillaries with variable lengths. This 
heterogeneity causes a small tissue volume to have a distribution of transit times P(tt;MTT), 
rather than one unique transit time tt (see Section 1.3.3). MTT is the mean transit time of 
this distribution. When this distribution is taken into account, the full model that is used in 
this study becomes:
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In this equation, hAATH(t;tt) is the IRF of the AATH model for transit time tt, and P(tt;MTT) is 
the probability for tt given an MTT. 

Bredno et al. (2010) found, using highly detailed simulations, that an exponential decay 
with a delay of a × MTT is a good approximation for P(tt;MTT) in case a = 0.632.24 The 
equation for this distribution can be written as: 
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Solving the model assumes knowledge about the capillary concentration. In practice, due 
to resolution and noise limits, the AIF is measured in a large artery, often located away 
from the tissue of interest, so extra travel time for the contrast to arrive in the tissue 
needs to be accounted for. This is particularly important in the study of tissue regions that 
are fed through collateral routes. It has been shown that the performance of other 
deconvolution methods is improved by making them delay-insensitive.73,77 This can be 
done by introducing an additional parameter for the delay, td. In the rare case that a 
collateral artery is chosen for the AIF, td could even be negative at the contralateral side. 
By substituting Eq. and Eq. into Eq., and introducing td, the following solution is obtained: 
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The parameter E (0 ≤ E ≤ 1) in this equation is the fraction of the flow that leaks into the 
extravascular space, i.e. Ktrans = E × CBF. 

The AATH model (Eq.), and also the tracer-kinetic models used by Larson et al. (1987), are 
subclasses of hfull(t) in which a approximates 1 and td = 0.80 The extended Tofts model, 
frequently used in DCE-MR analysis, reduces complexity by combining the flow and transit 
time into a single variable for the blood volume (a lumped parameter), requiring that MTT 
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an additional parameter for the delay, td. In the rare case that a collateral artery is chosen 
for the AIF, td could even be negative at the contralateral side. By substituting Eq. 3.7 and Eq. 
3.9 into Eq. 3.8, and introducing td, the following solution is obtained:

transit time of this distribution. When this distribution is taken into account, the full model 
that is used in this study becomes: 
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The parameter E (0 ≤ E ≤ 1) in this equation is the fraction of the flow that leaks into the 
extravascular space, i.e. Ktrans = E × CBF.

The AATH model (Eq. 3.7), and also the tracer-kinetic models used by Larson et al. (1987), 
are subclasses of hfull(t) in which a approximates 1 and td = 0.80 The extended Tofts model, 
frequently used in DCE-MR analysis, reduces complexity by combining the flow and transit 
time into a single variable for the blood volume (a lumped parameter), requiring that MTT 
approximates 0 and td = 0. The IRF for the standard Patlak model, i.e. assuming irreversible 
leakage, would require that MTT approximates 0, td = 0 and Ve = ∞.109

Simplified Non-Linear Regression
Non-linear regression with 5 unknown variables is a computational intensive task. 
Bottlenecks involve the calculation of exponentials, divisions, and a convolution operation 
in each iteration.

However, the computational complexity is highly reduced by two simplifications to 
h(t). Assuming that a approximates 1 and Ve = ∞, the two exponentials can be reduced to 
respectively 0 and 1, and h(t) can be written as the sum of two step functions:
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However, the computational complexity is highly reduced by two simplifications to h(t). 
Assuming that a approximates 1 and Ve = , the two exponentials can be reduced to 
respectively 0 and 1, and h(t) can be written as the sum of two step functions: 
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The integral of Ca(t) just needs to be calculated once, and the convolution of the Ca(t) with 
hS(t) can be reduced to two interpolations into this integral, at respectively t − td and 
t − td − tt. 

This simplified version of h(t) can be used to give estimates of MTT, CBF, Ktrans, and td that 
would be found if the full model was used. These estimates are also used as initial 
parameters to initialize fitting the full model. 

3.2.4 Discretization 
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According the Nyquist criterion, the small discrete number of CTP samples in a TAC allow 
only certain frequencies to be reconstructed from the signal. Other frequencies need to be 
removed from the signal; if h(t) is not band-limited, then high-frequency aliasing causes 
spurious local minima that spoil the regression. To suppress frequency components above 
the Nyquist frequency, both h(t) and Ct(t) were band-limited using a Bartlett kernel 
(triangular). To fulfill the Nyquist criterion, the FWHM of the kernel was set to 2× the 
sample interval, which is in this case 2× 2 s. 
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The integral of Ca(t) just needs to be calculated once, and the convolution of the Ca(t) with 
hS(t) can be reduced to two interpolations into this integral, at respectively t − td and t − td − tt.
This simplified version of h(t) can be used to give estimates of MTT, CBF, Ktrans, and td that 
would be found if the full model was used. These estimates are also used as initial parameters 
to initialize fitting the full model.
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3.2.4 Discretization
A crucial step in numerical NLR (and signal-processing in general) is proper band-limiting. 
According the Nyquist criterion, the small discrete number of CTP samples in a TAC allow 
only certain frequencies to be reconstructed from the signal. Other frequencies need 
to be removed from the signal; if h(t) is not band-limited, then high-frequency aliasing 
causes spurious local minima that spoil the regression. To suppress frequency components 
above the Nyquist frequency, both h(t) and Ct(t) were band-limited using a Bartlett kernel 
(triangular). To fulfill the Nyquist criterion, the FWHM of the kernel was set to 2× the sample 
interval, which is in this case 2× 2 s.

Fig. 3.4 shows an example of an analytical, continuous IRF h(t) and its band-limited, 
sampled version.
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Fig. 3.4: Band-limited IRF. An example of h(t) (solid line) and its band-limited, sampled 
version (dots). In this case a = 0.632, and the values of the perfusion variables are MTT = 7 s, 
CBF = 30 ml/100g/min, Ktrans = 3 ml/100g/min, Ve = 2.5 ml/100g and td = 1 s.

Band-limited sampling of analytical functions is usually done by computing a high-resolution 
version of the function, followed by downsampling with a band-limiting (smoothing) kernel. 
The convolution of the basis functions of h(t), the unit step function U(t) and the truncated 
exponential U(t)e-kt, with a Bartlett kernel b(t;d), however, have relatively simple analytical 
solutions. These solutions are given in Eq. 3.13 and Eq. 3.14, and shown in Fig. 3.5. The 
parameter d is the FWHM of the triangular Bartlett kernel. These solutions enable the band-
limited IRF to be expressed in analytical form, which is more precise and does not require 
the computation of a high-resolution version.

Fig. 3.4 shows an example of an analytical, continuous IRF h(t) and its band-limited, 
sampled version. 
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Fig. 3.4 shows an example of an analytical, continuous IRF h(t) and its band-limited, 
sampled version. 

 

 

Fig. 3.4: Band-limited IRF. An example of h(t) (solid line) and its band-limited, sampled version 
(dots). In this case a = 0.632, and the values of the perfusion variables are MTT = 7 s, 
CBF = 30 ml/100g/min, Ktrans = 3 ml/100g/min, Ve = 2.5 ml/100g and td = 1 s. 
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Fig. 3.5: Band-limited basis functions. a) Unit step function (solid line) and its band-limited 
version (dashed) as in Eq (d = 2). b) Truncated exponential (solid line), and its band-limited version 
(dashed) as in Eq (d = 2 and k = 0.1).

It should be noted that the functions in Eq. 3.14 become numerically unstable near kt = 0. 
This problem is solved by using a Taylor series approximation near that point.

In case of the simplified NLR method, the IRF h(t) does not need to be calculated. In that 
circumstance it is sufficient to band-limit the AIF instead, which just needs to be done once.

3.2.5 Model Variations
A total of 12 different methods were compared. Both Patlak and the NLR methods include 
parameters that are either free for estimation or fixed to a predefined value. The full tissue 
response model h(t) (Eq. 3.10) has 5 perfusion parameters, CBV, MTT, Ktrans, Ve, and td. 
Table 3.1 gives an overview of all methods and parameters. The initial values for NLR were 
CBV = 4 ml/100g, MTT = 4 s, Ktrans = 1.5 ml/100g/min, Ve = 20 ml/100g, and td = 1 s, and the 
initial step sizes were respectively 2 ml/100g, 5 s, 1.5 ml/100g/min, 25 ml/100g, and 2 s. The 
initial parameters for the full NLR model are optimized by first applying the simplified NLR 
model. For all NLR methods a generic Nelder-Mead downhill simplex method with linear 
constraints was used for optimization.102,114

If global optima are found, which is not guaranteed, then increasing the number of free 
parameters will result in a better fit (a higher R2), but as a counter-effect it may decrease the 
reliability of the estimated values. In other words, adding complexity to a model may not 
necessarily improve the results.
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All methods were implemented in a similar fashion in C routines that are accessible in Matlab 
(version 2011b, The MathWorks Inc., Natick, MA) through the Matlab MEX programming 
interface.

Simulations were applied to gain insight in the response of the models to noise and 
varying perfusion parameters, and CT brain perfusion scans were analyzed to estimate the 
reliability of the measured permeability in clinical practice.

3.2.6 Simulated Data
To evaluate in a setting with controlled noise levels and perfusion parameters, tissue TACs 
were simulated by convolving a measured AIF with a generated IRF, and adding Gaussian 
noise. An AIF (Fig. 3.6a) was extracted from a clinical CTP brain scan as described below.

The AATH model (Eq. 3.7) was used to generate the IRFs, because the TH model is 
thought to match the physiology of the brain better than other published models.61,83,124,132 
The blood flow F was kept constant at a rate of 15 ml/100g/min, which is comparable to an 
ischemic penumbra, and the leakage was assumed to be irreversible.143

The noise level, Ktrans, MTT, and delay were varied between the simulations. Four sets of 
simulations were made. The first is a series of Monte Carlo simulations in which the Ktrans 
was randomized between 0 and 2 ml/100g/min, MTT between 4 and 20 s, and the delay 
between 0 and 5 s. 1000 random simulations were made at noise levels of 0.5, 1.0, and 
2.0 HU (SD).

In the remaining three sets, one out of three parameters was varied while the others 
were fixed to respectively 1 HU for the noise level, 0.5 ml/100g/min for the Ktrans, 12 s for 
MTT. The delay was fixed to 0 s. In the second set only the standard deviation of the noise 
was varied between 0 and 2 HU, in the third set only the Ktrans was varied between 0 and 
2 ml/100g/min, and in the fourth set only MTT was varied between 4 and 20 s.

The simulated TACs were analyzed using all methods listed in Table 3.1, while keeping 
track of the mean, standard error, and approximate standard error of the estimated Ktrans 
values.

Fig. 3.6a, c, and d give an overview of the measured AIF, and the default IRF and 
enhancement curve. Both the IRF and the AIF were band-limited using a Bartlett kernel 
(triangular) with a FWHM of 4 s. Fig. 3.6e and f show how the shape of h(t) (Eq. 3.10) and 
the resulting enhancement curves change with different parameters.
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Fig. 3.6: Time enhancement curves. An overview of the AIF, and simulated impulse response 
functions and tissue enhancement curves. a) The full measured AIF. b) The first 50 seconds of 
the AIF showing the bolus arrival time (BAT) and time-to-peak (TTP), and steady state, estimated 
using a gamma variate fit (dashed line). c) The default impulse response function with an MTT 
of 12 s, a CBF of 15 ml/100g/min, and irreversible leakage with a Ktrans of 5 ml/100g/min. d) A 
simulated enhancement curve, created by convolving the measured AIF (a) with the calculated 
IRF (c), and adding Gaussian noise with a standard deviation of 1 HU (dots). e) An example of h full(t) 
for CBV = 5 ml/100g, MTT = 5 s, td = 0 s, and no leakage (solid line), and hfull (t) for CBV = 3 ml/100g, 
MTT = 12 s, td = 3 s, and reversible leakage with Ktrans = 5 ml/100g/min, and Ve = 10 ml/100g 
(dashed line). f) Simulated tissue enhancement curves, created by convolving the measured AIF 
(a) with the IRFs in (e).
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3.2.7 CT Brain Perfusion Scans
Data Acquisition
CTP scans of 20 consecutive acute ischemic stroke patients were included retrospectively 
from a single center (University Medical Center Utrecht) participating in the Dutch acute 
stroke study (DUST). The inclusion criteria and the CTP acquisition protocol are described in 
Section 1.4.

All included scans were acquired on a Philips Brilliance iCT scanner (Philips Healthcare, 
Best, the Netherlands) at 80 kVp and 150 mAs. These scans had an axial coverage of 65 
mm at most and a field-of-view of approximately 200 mm × 200 mm. All scans had a total 
acquisition time of 210 s (see Section 1.4.2 and Fig. 3.6a) and were reconstructed into thin 
slices.

Pre-Processing
The open source registration toolbox Elastix was used to register the original, 3D high 
resolution CT perfusion data (voxel size 0.39  ×  0.39  ×  0.83  mm3) to the first acquired 
volume.67 Next, slabs of six adjacent registered slices were averaged to obtain 8 to 13 slabs 
of approximately 5 mm per volume.

Noise reduction is crucial in CT perfusion analysis. Because of the limited radiation dose, 
the unfiltered scans have a very low signal-to-noise ratio (SNR), especially in the areas with 
low perfusion where BBB damage is to be expected. Sophisticated noise filtering, where 
e.g. temporal information is used to adapt the filter kernel to its spatial neighborhood, is 
therefore desirable.

A temporal Gaussian filter with a standard deviation of 4 s, followed by a 3D bilateral 
filter (TIPS) with a spatial standard deviation (sd) of 4 mm and a profile-similarity standard 
deviation (sξ) of 50 HU2 were applied to reduce the noise with a minimum loss of resolution.91

Arterial Input Function
The AIF was semi-automatically selected in either an internal carotid or in the basilar artery 
by drawing a circular region of interest in which the TAC with the highest enhancement was 
chosen. To correct the AUC of the AIF for partial volume effect, a venous output function 
(VOF) was in the same way semi-automatically selected in a great sinus perpendicular to the 
slices, which is in line with the clinical protocol.125 A gamma variate curve was fitted to both 
the AIF and VOF to estimate their AUCs, the arterial BAT, and the steady state concentration 
time (see Section 3.2.1).
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Post-Processing
Only the voxels that were classified as penumbra (tissue at risk) were used for statistical 
analysis. This was done because the SNR of the TACs in the infarct (irreversible ischemia) 
is low, which might hamper reliable measurements. The Ktrans in the remainder of the brain 
(healthy tissue) should in theory be nearly zero.

To extract the penumbra and exclude vessels, tissue types in the brain were segmented 
based on the CT values in the first acquisitions of the TIPS filtered scan, before the BAT. By 
removing voxels with a CT value smaller than 17 HU or larger than 55 HU (unenhanced), air, 
fat, and bone are excluded from the analysis, while gray and white matter remain included. 
Within the brain tissue the infarct and penumbra were defined based on the CBV and 
relative MTT (rMTT) that were estimated by the simplified NLR method.

In order to calculate the rMTT, a symmetry plane was manually drawn to separate the 
hemispheres. The original MTT map is mirrored over this plane and blurred by a 3D Gaussian 
kernel with a standard deviation of 3 mm. The rMTT values are found by dividing the original 
MTT map by the mirrored, blurred map.

Wintermark et al. (2006) found that the CBV most accurately describes the infarct, with 
an optimal threshold at 2.0  ml/100g, and that the rMTT most accurately describes the 
penumbra, with an optimal threshold at 145% and the infarct excluded.147 A CBV threshold 
at 9 ml/100g was used to exclude vessels. 

A correction factor (1 − Htlarge)/(1 – Htsmall) was applied to correct the tracer concentration 
for the difference between in hematocrit (see Eq. 1.1 in Section 1.3.1).71 The values used 
for Htlarge and Htsmall are respectively 0.45 and 0.25.116 This correction affects all perfusion 
parameters that scale with the tracer concentration, i.e. CBV and CBF, but also Ktrans and Ve.

Statistical Analysis
Besides the Ktrans estimate itself, the approximate standard error on the estimated Ktrans for 
each method was calculated in all voxels. 95% confidence intervals (CIs) were calculated by 
applying Student’s t-distribution to these standard errors. Average CIs are more suitable for 
estimating the reliability than the standard deviation for two reasons. First, the standard 
deviation might represent a true variability instead of an error, which is what we like to 
measure. Second, the standard deviation might be biased due to constraints to the estimated 
parameter, i.e. Ktrans cannot be negative, nor can it be larger than the flow.

The estimated values and CIs in the penumbra regions were averaged per patient and 
a Wilcoxon signed-rank test was applied to each pair of methods to test if the differences 
between the methods were significant (p < 0.001).
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3.3 RESULTS

3.3.1 Simulated Data
Fig. 3.7 shows the standard error on the Ktrans estimates in the Monte Carlo simulations 
for each method and at different noise levels. Fig. 3.8 shows graphs of the average Ktrans 
estimates and CIs versus the varied input parameters (noise level, Ktrans, and MTT). A narrower 
CI indicates a more reliable estimate. The results for the 6 delay corrected methods (Table 
3.1) were very similar to the uncorrected methods, and for that reason the results for the 
delay corrected methods are not shown to make the graphs more readable. The NLR and 
simplified NLR methods showed very similar results, which caused these lines to overlap in 
all of the plots.
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Fig. 3.7: Standard errors of the Ktrans estimates for different noise levels. The bars show 
the standard errors of the Ktrans estimates on Monte Carlo simulated TACs with a noise SD of 
respectively 0.5, 1.0, and 2.0 HU.

Because the steady state time was defined as the TTP plus 3.5× the standard deviation of the 
first pass bolus, 9 acquisitions were included for Patlak analysis.

The results showed that noise gives a positive bias to the average Ktrans estimates (Fig. 
3.8a), affecting the standard Patlak, AATH, and NLR+Ve the most. Fig. 3.8c shows that, at the 
default noise level of 1.0 HU, all methods had a positive bias for small Ktrans values, whereas 
the methods that assume irreversible leakage (Ve = ∞) gave unbiased estimates for larger 
Ktrans values. The bias for the methods that assume reversible leakage (AATH and NLR+Ve) is 
also reflected in the high standard errors in Fig. 3.7. Fig. 3.8e shows that the average Ktrans 
is not affected by the MTT for transit times shorter than 12 s. For long transit times, the 
AATH and NLR+Ve methods overestimated the Ktrans, whereas the standard Patlak method 
returned underestimated Ktrans values.



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

Model-based Permeability Analysis

65

3

0.0

1.0

2.0

3.0

4.0

4.0 8.0 12.0 16.0 20.0A
vg

. 9
5%

 C
I (

m
l/

m
in

/1
00

g)

MTT (s)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0A
vg

. 9
5%

 C
I (

m
l/

m
in

/1
00

g)

Ktrans (ml/min/100g)

0.0

1.0

2.0

3.0

4.0

0.0 0.5 1.0 1.5 2.0A
vg

. 9
5%

 C
I (

m
l/

m
in

/1
00

g)

Noise SD (HU)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4.0 8.0 12.0 16.0 20.0

A
vg

. e
st

im
at

ed
 K

tr
an

s

(m
l/

m
in

/1
00

g)

MTT (s)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0

A
vg

. e
st

im
at

ed
 K

tr
an

s

(m
l/

m
in

/1
00

g)

Noise SD (HU)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0

A
vg

. e
st

im
at

ed
 K

tr
an

s

(m
l/

m
in

/1
00

g)

Ktrans (ml/min/100g)

Patlak Patlak fixed AATH NLR NLR + Ve Simpl. NLR

a. b.

c. d.

e. f.

Fig. 3.8: Results of simulated enhancement curves. Graphs a, c, and e show average Ktrans estimates 
of the simulated data, and graphs b, d, and f show their average 95% confidence intervals (CI). A 
narrower CI suggests a more reliable estimate. The NLR and simplified NLR methods showed very 
similar results, which caused these lines to overlap in all of the plots.

In all cases with noise, the NLR methods with irreversible leakage were found to have the 
smallest Cis, whereas the standard Patlak method had the largest CI, implying that it is least 
reliable (Fig. 3.8b, d, and f). All methods gave estimates of which the width of the CI scaled 
linearly with the noise level (Fig. 3.8b). Fig. 3.8d shows that the confidence of the estimation 
did not scale with the Ktrans for the methods that assume irreversible leakage (Ve = ∞). The 
methods that assume reversible leakage, AATH and NLR+Ve, showed an increased CI for 
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Ktrans values in the order of 1 ml/100g/min. For Ktrans values higher than 2 ml/100g/min (not 
shown in the graph), however, the CI of these methods decreases again to reach a steady 
state of 0.4 ml/100g/min at a Ktrans of 10 ml/100g/min, while CIs of the other methods are 
unaffected. In line with Fig. 3.8e, Fig. 3.8f shows that the average CI was not affected by 
the MTT for transit times shorter than 12 s. For long transit times, the AATH, NLR+Ve, and 
standard Patlak methods showed an increased CI.

3.3.2 CT Brain Perfusion Scans
Ktrans maps and CI maps for Ktrans were generated for 20 CTP scans (Fig. 3.9).

a. b.

c. d.

Fig. 3.9: Perfusion maps. An example of a) an unfiltered CTP slice, b) a filtered CTP slice with the 
penumbra mask as overlay, c) an MTT parameter map (s) measured using first pass bolus fitting, 
and d) a Ktrans parameter map (ml/100g/min) measured with the simplified NLR method.
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There was a large variance in Ktrans and CI between the patients (Table 3.2), but the Wilcoxon 
signed-rank tests (Table 3.3) demonstrated that the average CIs were significantly different 
between most methods that assume irreversible leakage.

Table 3.2: Ktrans values and confidence intervals. The Ktrans values and 95% confidence intervals 
(ml/100g/min) in the clinical data and in the simulations (default parameters). The values are ordered 
to the width of the confidence interval in the clinical data. The average confidence intervals are 
visualized in the graph in Fig. 3.10.

Mean Ktrans Mean 95% CI width
Method Clinical data Simulation Clinical data Simulation
Simpl. NLR 0.39 ± 0.23 0.59 0.82 ± 0.29 0.67
Simpl. NLR + delay 0.36 ± 0.21 0.57 0.82 ± 0.29 0.66
NLR 0.34 ± 0.21 0.53 0.85 ± 0.31 0.69
NLR + delay 0.33 ± 0.19 0.53 0.85 ± 0.32 0.67
Patlak fixed 0.43 ± 0.33 0.57 1.42 ± 0.49 0.93
Patlak fixed + delay 0.45 ± 0.35 0.58 1.53 ± 0.56 1.03
AATH 0.87 ± 0.89 1.40 1.95 ± 0.94 1.50
NLR + V

e + delay 0.72 ± 0.73 0.85 1.97 ± 1.06 1.25
AATH + delay 0.83 ± 0.88 0.95 2.04 ± 1.07 1.21
NLR + Ve 0.77 ± 0.77 1.10 2.18 ± 1.20 1.46
Patlak 0.73 ± 0.45 0.69 2.65 ± 1.33 2.11
Patlak + delay 0.78 ± 0.48 0.96 2.78 ± 1.45 2.10

Table 3.3: Significance of the difference in confidence interval. p-values for the Wilcoxon signed-rank 
tests on the 95% CIs for Ktrans between the different methods. Probabilities smaller than 0.001 are 
considered significant and written as 0.
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Patlak + delay 0.001
Patlak fixed 0 0
Patlak fixed + delay 0 0 0
AATH 0.056 0.035 0.015 0.052
AATH + delay 0.13 0.073 0.012 0.030 0.018
NLR 0 0 0 0 0
NLR + delay 0 0 0 0 0 0 0.82
NLR + V

e 0.23 0.15 0.009 0.017 0.005 0.15 0 0

NLR + Ve + delay 0.048 0.030 0.017 0.062 0.74 0.014 0 0 0.002

Simpl. NLR 0 0 0 0 0 0 0 0.002 0 0
Simpl. NLR + delay 0 0 0 0 0 0 0 0 0 0 0.67
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Because the steady state time for Patlak analysis was defined as the TTP plus 3.5× the 
standard deviation of the first pass bolus, on average 9 acquisitions were included for Patlak 
analysis.

Fig. 3.10, and Table 3.2 together with Table 3.3 show that the Ktrans values that are 
estimated using the NLR methods with irreversible leakage (Ve = ∞) were significantly more 
reliable than the Patlak methods. The introduction of reversible leakage, as in the AATH 
method and NLR+ V e, more than doubled the width of the CI of the estimation. The difference 
in reliability between the full and simplified NLR methods was found to be very small.
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Fig. 3.10: Confidence intervals. The mean 95% confidence interval of Ktrans of each method; more 
reliable estimates have narrower confidence intervals.

Fig. 3.10 also shows that fixating the CBV significantly improved the reliability of the Patlak 
estimates.

The delay correction had a minor effect on the CIs. With p-values higher than 0.001, 
the CIs of the standard Patlak, AATH, NLR, NLR+Ve, and simplified NLR methods were not 
significantly different from the delay corrected versions. The delay corrected CBV-fixed 
Patlak method performed slightly but significantly worse than its delay-sensitive version 
(p < 0.001).

Also the MTT distribution parameter a had a minor effect. The CI of the NLR+Ve method 
(a = 0.632) was not significantly different from the interval of the AATH method (a = 1). 
The CIs of the simplified NLR and simplified NLR+delay methods (a = 1) were slightly but 
significantly smaller than respectively the NLR and NLR+delay methods (a = 0.632).
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Fig. 3.11: Computation times. The mean computation per slice (512 × 512 pixels) for each of the 
methods on a low-end desktop computer. Note that the y-axis is logarithmic. The Patlak methods 
that are extended with delay and/or fixed CBV require input from the gamma variate fit-based 
method.

Fig. 3.11 gives an overview of the average computation time for each method. It is not 
surprising that the simplest method, standard Patlak, was the fastest with 0.3 s per slice 
(512 × 512 pixels and 31 acquisitions). The other Patlak methods require additional input 
provided by a gamma variate fit, extending the computation time to 5.9 s per slice. The 
simplified NLR methods had computation times of respectively 5 and 9 s per slice, where the 
other NLR methods required between 19 and 45 s.

3.4 DISCUSSION

This study uses confidence intervals (CIs) to compare the reliability between different 
methods for estimating Ktrans values. The ‘reliability’ can be thought of as a quantity that is 
inversely proportional to the width of these CIs. The experiments showed that the simplified 
NLR method has a CI that is a bit smaller than the full NLR methods, and significantly smaller 
than the Patlak methods in both the simulations and clinical measurements.

‘Reliability’ is a non-scientific term that should be used with care. Some ‘reliability 
metrics’, like the Akaike information criterion, quantify the goodness of fit of a model.3 For 
two reasons, however, this type of metric is not applicable to this study. First, the Patlak 
fits are applied to different (linearized) data than the non-linear fits, and therefore the 
goodness of fit between these methods may not be compared. Second, the reliability of 
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a single parameter, Ktrans, is of importance, rather than the goodness of fit of the complete 
model. Not all time samples have an equal contribution to the estimated Ktrans, and therefore 
the CI, which is specific to this parameter, is more appropriate.

A wider CI means a larger standard deviation in repeated measurements. For Ktrans values 
close to zero, the probability distribution is skewed because the estimates are constrained 
to positive values, and therefore the mean will have a positive bias. This phenomenon is 
visible in Fig. 3.8a and c. The estimated CI, however, appears to be independent of the value 
for Ktrans, which makes it a valid measure for evaluating the reliability of the methods, even if 
the true Ktrans is close to zero. It has been demonstrated that the estimates from the clinical 
data are in line with the simulations, for which reason it can be concluded that the variation 
in average Ktrans between the methods has to be addressed to a variation in the CIs rather 
than a bias in estimates.

The standard Patlak method was found to be two to three times less reliable than the 
NLR and simplified NLR method in both the simulated and clinical cases. However, fixating 
the CBV to a value estimated with a more sophisticated method, which is usually available 
anyway, roughly doubles its reliability. This means that fixating the CBV in the Patlak plot is a 
simple but very effective way to enhance reliability of the permeability estimates in general.

The standard Patlak method showed a decrease in reliability for long transit times. The 
performance of this method could in those cases probably be increased by determining the 
steady state of the tissue TAC instead of the AIF, as was done in this study. A longer MTT 
means that it takes more time for the capillary concentration to reach a steady state and 
therefore fewer samples should be included in the Patlak plot.

The addition of a delay time td as an extra parameter had a minor effect on the reliability 
of the Ktrans. It has although been proven that delay-insensitive methods, i.e. methods that 
incorporate td, give better estimates for the CBV, CBF, and MTT.78 Therefore, and because the 
CIs for the NLR methods did not increase despite the introduction of an extra free parameter, 
it can be concluded that td is an appropriate additional parameter for the NLR methods.

The shape of the MTT distribution, controlled by the parameter a in Eq. 3.10, is another 
feature that could improve the credibility of the IRF and therefore enhance the reliability of 
the Ktrans estimates. The methods that use a = 0.632 instead of a = 1 have impulse response 
functions that are thought to be more realistic, but none of those methods showed 
a significant narrower CI on the clinical data, nor did the simulations show significant 
differences between these methods.23 Although this parameter might increase the accuracy 
of other perfusion parameters, such as the CBF and MTT, it did not affect the estimation of 
Ktrans.

The simulations showed that the AATH and NLR+Ve methods, both assuming reversible 
leakage, overestimate Ktrans in case the leakage is virtually irreversible (Fig. 3.8c). This is 
most likely caused by the error in the estimated extravascular distribution volume, Ve (Eq. 
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3.7 and Eq. 3.10). In case Ve is underestimated, i.e. the model overestimated the washout 
from the extravascular space, then Ktrans needs to be larger to compensate for the measured 
concentration levels. In theory, a Ve of nearly zero allows high Ktrans values without noticeable 
leakage, because any leaked contrast is washed out instantly. The reliability of the AATH and 
NLR+Ve methods increases with larger Ktrans values, in the order of 2 to 10 ml/100g/min, 
which can be explained by the fact that a higher permeability results in better Ve estimates. 
Therefore it cannot be concluded from our study that AATH and NLR+Ve perform worse 
than the other NLR methods in general. Models that account of reversible leakage are more 
applicable in pathologies with high vascular permeability, such as tumors, and in those 
particular cases they will likely give more reliable estimates.

On many points the NLR method provides a more sound theoretical basis than Patlak 
analysis for permeability analysis, and gamma variate fits or deconvolution for perfusion 
analysis.78,152 First, the NLR method does not make any assumptions of the shape of the 
TACs themselves, but rather on the process that transforms the AIF into a tissue curve. The 
curves do not necessarily need to have a gamma variate-like profile, nor do they have to 
reach a steady state. A potential second pass bolus due to recirculation does not hamper 
the analysis. Second, at approximately the length of the MTT after the BAT, the permeability 
will start to affect the shape of the TAC measured in the tissue, including part of the first 
pass bolus. As opposed to the Patlak method, which uses only steady-state samples, the 
NLR methods include all acquired data. This means that no potentially useful information is 
wasted, and the results do not depend on the definition of the steady state. Third, because 
the NLR methods do not transform the TACs, the (approximate) normal distribution of the 
measurement errors is preserved, which fulfills the requirements for proper least squares 
fitting. In linearized regression using a Patlak plot this is no longer the case. Values are divided 
by Cc(t), which is a non-linear operation that distorts the measurement errors. Fourth, all 
perfusion parameters, including permeability, are measured using a single method in which 
a change in one parameter affects all others. This reduces the bias in estimates that are 
influenced by other relevant factors that a method does not account of. For example, if 
the permeability is significant, then the intra-vascular blood volume can be biased if this is 
estimated by a method does not take leakage into the extra-vascular volume into account.

A disadvantage of NLR is that it is an iterative method, and so a straightforward 
implementation is time-consuming. This is most likely the reason why currently this 
technique is not much used in CTP analysis yet. The simplified NLR method, however, tackles 
two bottlenecks by omitting the need for convolutions and the calculation of exponentials, 
and is thereby at least four times faster than the full NLR methods. By further increasing 
the performance using e.g. parallel computing or GPU acceleration the analysis of high-
resolution volumes in a clinical setting might be feasible.
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3.5 CONCLUSIONS

The CI, and thereby the reliability, of the simplified NLR method is similar to the full 
NLR methods, and better than the Patlak methods in both the simulations and clinical 
measurements. The simplified NLR analysis just takes 5 s per 512  ×  512  slice, making it 
suitable for time-critical clinical use. The simplified NLR method therefore seems to be a 
superior alternative to Patlak analysis. The next chapter evaluates the predictive value of 
the simplified NLR method for hemorrhagic transformation in acute ischemic stroke.

The techniques described in this study are applicable to other purposes as well, like 
tumor assessment using CTP or possibly using DCE-MR or PET, even though the SNR and 
kinetics might differ. For example, in a study performed by Oosterbroek et al. (2015) we 
found that model-based NLR analysis with a fixed transit time was preferable for delineation 
and characterization of laryngeal carcinoma imaged with CTP.107
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4
Prediction of Hemorrhagic Transformation

Based on: Bennink E, Horsch AD, Dankbaar JW, Velthuis BK, Viergever MA, Jong HWAM de. CT 
perfusion analysis by nonlinear regression for predicting hemorrhagic transformation in ischemic 
stroke. Medical Physics. 2015;42:4610-4618.
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ABSTRACT

Intravenous thrombolysis can improve clinical outcome in acute ischemic stroke patients, 
but increases the risk of hemorrhagic transformation (HT). Blood-brain barrier damage, 
which can be quantified by the vascular permeability, is a potential predictor for HT. This 
study aimed to assess whether this prediction can be improved by measuring permeability 
using the novel fast model-based method as described in the previous chapter, instead of 
using Patlak analysis.

20 patients with HT on follow-up imaging and 40 patients without HT were selected. 
The permeability transfer constant Ktrans was measured in three ways; using standard Patlak 
analysis, Patlak analysis with a fixed offset, and the simplified model-based non-linear 
regression (NLR) method. In addition, the permeability-surface area product (PS), cerebral 
blood volume, cerebral blood flow, and mean transit time were measured. Mann-Whitney 
U tests and receiver operating characteristic (ROC) analyses were performed to assess the 
discriminative power of each of the relative (ipsilateral versus contralateral) parameters.

The relative Ktrans (rKtrans) values, measured with the model-based method, were 
significantly higher in the patients who developed HT as compared with those who did 
not. The rKtrans measured with standard Patlak analysis was not significantly different. The 
relative PS (rPS), measured with NLR, had the highest discriminative power (p = 0.002). ROC 
analysis of rPS showed an area under the curve (AUC) of 0.75 and a sensitivity of 0.75 at a 
specificity of 0.75. The AUCs of the Patlak rKtrans, the Patlak rKtrans with fixed offset and the 
NLR rKtrans were 0.58, 0.66, and 0.67, respectively.

CT perfusion analysis may aid in predicting HT, but standard Patlak analysis did not 
provide estimates for rKtrans that were significantly higher in the HT group. rPS, measured in 
the infarct core with NLR, had superior discriminative power compared with Ktrans measured 
with either Patlak analysis with a fixed offset or NLR, and conventional perfusion parameters.
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4.1 INTRODUCTION

Intravenous thrombolysis (IVT) can improve clinical outcome in acute ischemic stroke 
patients, but may increase the risk of developing symptomatic hemorrhagic transformation 
(HT) 2 to 5 times.4,15,48,89,138 Blood-brain barrier (BBB) damage, which can be quantified by 
measuring vascular permeability, may be a predictor for HT in stroke.18,33,88 CT perfusion 
(CTP) imaging could therefore potentially provide the means to predict the risk of developing 
HT with IVT treatment.

The previous chapter explained and compared methods for estimation of vascular 
permeability using CTP imaging. The Patlak analysis method is straightforward and fast, but 
its linearized regression has some inherent weaknesses compared to non-linear regression 
(NLR). Most important, only the steady-state samples (after the first-pass bolus) can be 
taken into account. In contrast, model-based analysis using NLR allows the analysis of entire 
enhancement curves, providing an integral method for measuring permeability along with 
the cerebral blood volume (CBV), flow (CBF), and mean transit time (MTT).

In the study described in the previous chapter it was found that the 95% confidence 
interval (CI) for the permeability transfer constant Ktrans as estimated with standard Patlak 
analysis was three times larger compared to NLR analysis. Fixing the CBV in Patlak analysis 
to a value estimated with a gamma variate fit showed an improved 95% CI, but still inferior 
to NLR. Because NLR allows estimating the permeability transfer constant Ktrans with a 
theoretically higher reliability, it is hypothesized that this method will also give estimates 
with a higher discriminative power than Patlak analysis.

The purpose of this study was to determine if the predictive value of permeability and 
perfusion parameters for HT development, measured using extended CTP imaging, can be 
improved by using the NLR method instead of Patlak analysis.

4.2 METHODS

4.2.1 Study Design
We selected the first 20 consecutive cases with HT on follow-up NCCT and 40 controls 
without HT on follow-up NCCT from the DUST study, of which the inclusion criteria and 
CTP acquisition protocol are described in Section 1.4. The consecutive series of patients 
was selected matching the following additional inclusion criteria: 0.625 to 1.25  mm thin 
slice reconstructed, extended (meaning 210 s duration) CTP acquisition on admission, and 
follow-up non-contrast CT imaging at three days or in case of clinical deterioration. HT was 
defined as the presence of any ECASS HT subtype.15 All patients in the control group received 
IVT within a 4.5 hour window from time to onset. Inasmuch as infarct location was not a 
selection criterion, these locations were randomly distributed to their natural prevalence.
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4.2.2 Preprocessing
Because moderate and severe head movement is common in CTP imaging of acute ischemic 
stroke patients, the time series of 0.625 to 1.25 mm thick slices were registered in 3D using a 
rigid registration algorithm (Elastix).39,67 After registration adjacent axial slices were averaged 
to obtain 8 to 13 contiguous slabs of 5 mm per volume, which is common practice for clinical 
evaluation, mainly to limit the noise and processing time.

The registered 3D volumes were visually inspected for artifacts; these are mostly streak 
artifacts caused by motion during acquisition. Poor acquisitions were removed from the 
data.

Next, a temporal Gaussian filter with a SD of 4 s, followed by a 3D bilateral filter (TIPS) 
with a spatial SD (sd) of 4  mm and a profile-similarity SD (sξ) of 50 HU2 were applied 
to further reduce the noise.91 These settings correspond to what was used in the study 
described in the previous chapter, and result in perfusion maps with a visually well-balanced 
resolution and noise level.

A gamma variate curve was fitted to the arterial input function (AIF) to estimate its area 
under the curve (AUC), time-to-peak (TTP), the arterial bolus arrival time (BAT), and the 
onset of the steady state (See Fig. 3.6b in the previous chapter). The average arterial BAT, i.e. 
the time between the start of the scan and the first appearance of contrast enhancement in 
the cerebral arteries, of the 60 scans was 6.9 s.

4.2.3 Estimating Permeability and Perfusion Parameters
Ischemia due to stroke may alter BBB integrity, allowing the diffusion of blood and contrast 
molecules into the extravascular space. This is explained in more detail in Section 1.3.2. 
Unknown at the time of measurement, this leakage may either be in the permeability-limited 
domain or in the flow-limited domain. In the first case the outflow to the extravascular 
space as measured by Ktrans will not increase when the flow increases, whereas in the latter 
case it will increase linearly with the flow. In either case, a patient with BBB damage is likely 
to show increased Ktrans values.

Ktrans was measured in three ways. First, using standard linear Patlak analysis,109,110 second, 
using Patlak analysis with an offset that is fixed to a blood volume that was estimated by 
an independent method as described by Schneider et al. (2011),128 and third, using the 
simplified NLR method as described in Chapter 3.14 Only the NLR method is capable of 
estimating CBF, and therefore of calculating the permeability-surface area (PS) by inverting 
the Renkin-Crone equation:31,117
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The study described in Chapter 3 showed that model-based NLR analysis resulted in 
unbiased estimates of Ktrans under low-noise conditions. Under realistic noise conditions, 
both the NLR and Patlak methods showed a small positive bias for small Ktrans values (see 
Fig. 3.8a). It was furthermore found that the Ktrans values measured by the simplified 
method were not affected by MTT, and that more complex models did not provide more 
reliable estimations of Ktrans in stroke patients. NLR confidence intervals were 3× smaller 
than standard Patlak analysis and more than 1.5× smaller than Patlak analysis with fixed 
offset. 

4.2.4 Postprocessing 
The contrast-free acquisitions (before the bolus arrival time) were averaged to obtain a 
NCCT image. Only the voxels that had a CT value >17 HU or <55 HU on this NCCT were 
classified as brain tissue and included in the analysis. Voxels with a blood volume 
>9 ml/100g were classified as vessels and excluded from the analysis. A correction factor 
(1 − Htlarge)/(1 – Htsmall) was applied to correct the tracer concentration for the difference 
between in hematocrit (see Eq. in Section 1.3.1).71 The values used for Htlarge and Htsmall 
are respectively 0.45 and 0.25.116 

4.2.5 Statistical Analysis 
All parameters were estimated in each of the voxels that were classified as brain tissue on 
the NCCT. Infarct cores were defined as all brain tissue voxels on the ipsi-lateral side 
having a CBV less than 2 ml/100g, as suggested by Wintermark et al. (2006).147 The 
measured parameters were averaged in the infarct core as well as in the brain tissue in 
both entire hemispheres. Next, relative values averages were obtained in two ways. First, 
by dividing the average in the infarct core by the average in the entire contra-lateral 
hemisphere. Second, by dividing the average in the entire ipsi-lateral hemisphere by the 
average in the entire contra-lateral hemisphere. A symmetry plane was manually aligned 
to the midsagittal plane in order to separate the hemispheres. 
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The study described in Chapter 3 showed that model-based NLR analysis resulted in unbiased 
estimates of Ktrans under low-noise conditions. Under realistic noise conditions, both the NLR 
and Patlak methods showed a small positive bias for small Ktrans values (see Fig. 3.8a). It 
was furthermore found that the Ktrans values measured by the simplified method were not 
affected by MTT, and that more complex models did not provide more reliable estimations 
of Ktrans in stroke patients. NLR confidence intervals were 3× smaller than standard Patlak 
analysis and more than 1.5× smaller than Patlak analysis with fixed offset.

4.2.4 Postprocessing
The contrast-free acquisitions (before the bolus arrival time) were averaged to obtain a NCCT 
image. Only the voxels that had a CT value >17 HU or <55 HU on this NCCT were classified 
as brain tissue and included in the analysis. Voxels with a blood volume >9 ml/100g were 
classified as vessels and excluded from the analysis. A correction factor (1 − Htlarge)/(1 – Htsmall) 
was applied to correct the tracer concentration for the difference between in hematocrit 
(see Eq. 1.1 in Section 1.3.1).71 The values used for Htlarge and Htsmall are respectively 0.45 and 
0.25.116

4.2.5 Statistical Analysis
All parameters were estimated in each of the voxels that were classified as brain tissue on 
the NCCT. Infarct cores were defined as all brain tissue voxels on the ipsi-lateral side having 
a CBV less than 2  ml/100g, as suggested by Wintermark et al. (2006).147 The measured 
parameters were averaged in the infarct core as well as in the brain tissue in both entire 
hemispheres. Next, relative values averages were obtained in two ways. First, by dividing the 
average in the infarct core by the average in the entire contra-lateral hemisphere. Second, 
by dividing the average in the entire ipsi-lateral hemisphere by the average in the entire 
contra-lateral hemisphere. A symmetry plane was manually aligned to the midsagittal plane 
in order to separate the hemispheres.

Pearson correlation coefficients and linear fits were calculated to quantify the relation 
between the three different measurements for Ktrans. Wilcoxon signed rank tests were applied 
to check if the relative parameters (rKtrans, rPS, rCBV, rCBF, and rMTT) were significantly 
different between the hemispheres. To identify the parameters that were significantly 
different between the HT- and control group, a Mann-Whitney U test was applied. Results 
were considered significant for p  <  0.05. Receiver operating characteristic (ROC) curves 
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were used to assess the discriminating power of those parameters that were found to be 
significantly different.

4.3 RESULTS

Demographic and clinical data of the selected patients are summarized in Table 4.1. There 
was no significant differences in age, sex, prior stroke, baseline NIHSS score, time to arrival, 
or time to imaging between the HT and control group. The medians of the infarct core and 
penumbra sizes (total area of the cross-sections at both ASPECTS levels)112 were higher in 
the HT group, but not significantly different.

Table 4.1. Baseline clinical and imaging characteristics. HT, hemorrhagic transformation; IAT, intra-
arterial thrombolysis; IVT, intravenous thrombolysis; MT, mechanical thrombectomy.

All patients
N = 60

Control group
N = 40 (67 %)

HT group
N = 20 (33 %)

p-value

Clinical parameters
Age, mean (SD) 69 (13) 67 (13) 73 (12) 0.07
Female sex, N (%) 24 (40) 18 (45) 6 (30) 0.27
Prior stroke, N (%) 10 (17) 6 (15) 4 (20) 0.63
Baseline NIHSS, mean (SD) 11 (6) 11 (5) 12 (7) 0.40
Time to arrival, minutes, 
median (IQR)

65 (47, 121) 73 (37, 120) 62 (50, 133) 0.94

CT perfusion imaging
Size infarct core*, mm2, median 
(IQR)

458 (75, 1695) 290 (58, 1204) 1161 (179, 3002) 0.12

Size penumbra area*, mm2, 
median (IQR)

1938 (627, 3819) 1938 (713, 2895) 2835 (316, 5119) 0.38

Time to imaging, minutes, 
median (IQR)

98 (69, 145) 98 (66-145) 96 (72, 153) 0.65

Treatment
IVT, N (%) 55 (92) 40 (100) 15 (75) 0.001
IAT or MT, N (%) 4 (7) 3 (8) 1 (5) 0.73
Time to treatment†, minutes, 
median (IQR)

113 (80, 165) 115 (78, 165) 110 (87, 167) 0.94

* Total area of the infarct core and penumbra cross-sections at both ASPECTS levels.112

† For 54 patients (5 did not receive IVT, and missing value in 1 HT patient).

Visual inspection revealed that some of the patients (20%) showed ring-shaped scanner 
artifacts in their permeability maps (Ktrans and PS), with the worst case shown in the bottom 
row in Fig. 4.1. These distortions were just slightly visible on the filtered CTP data and on the 
other perfusion maps (CBV, CBF, and MTT) generated by the NLR method.
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Filtered CTP slice NLR CBV Patlak Ktrans

Patlak Ktrans

(CBV fixed) NLR Ktrans NLR PS

0 to 80 HU 0 to 8 ml/100g 0 to 3 ml/100g/min

Fig. 4.1: Permeability maps. A filtered CT perfusion slice (acquisitions at the time-to-peak of the 
arterial input function), the NLR blood volume (CBV) map, the three Ktrans maps, and the NLR 
permeability-surface area (PS) map of two patients in the HT group. The CBV maps both show 
a clearly visible infarct core in the middle cerebral artery territory in the left hemisphere. The 
standard Patlak maps (third column) appear noisier than the CBV fixed and NLR Ktrans maps. The 
Ktrans and PS maps in the top row show elevated permeability in the entire ipsi-lateral hemisphere 
and a permeability ‘hot spot’ medial to the infarct core (indicated by the arrows). The maps in the 
bottom row are affected by ring-shaped scanner artifacts (worst case shown).

The hemisphere-averages of all estimated parameters, except for the CBV, were found to be 
significantly different between the ipsi-lateral and contra-lateral sides (p < 0.05) in both the 
HT group and the control group.

Table 4.2, Fig. 4.2, and Fig. 4.3 show the relative parameters and their p-values. All 
three methods addressed in this study, i.e. Patlak, Patlak with fixed offset, and NLR, provide 
estimates for the permeability transfer constant Ktrans. However, only the Patlak method 
with fixed offset and the NLR method gave estimates for relative Ktrans (rKtrans) that were 
significantly higher in the patients who developed HT (p = 0.04 and p = 0.03 for the infarct 
cores). The values for Patlak Ktrans with fixed offset showed a strong correlation with the 
NLR Ktrans values, which is emphasized by the Ktrans maps in Fig. 4.1. The Pearson coefficient 
between the average Ktrans values observed in the infarct core between these methods was 
0.99, and the slope of a linear fit through the origin was 1.02. The standard Patlak Ktrans 
showed a weaker correlation with NLR Ktrans, with a Pearson coefficient of 0.83 and a slope 
of 2.05.
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Table 4.2: Relative permeability and perfusion parameters. The median (interquartile range) and 
p-value (Mann-Whitney U test) of each relative perfusion parameter (p < 0.05) in the infarct cores 
(CBV < 2 ml/100g) and in the whole ipsi-lateral hemispheres.

Infarct core relative to 
whole contralateral hemisphere

Whole ipsilateral hemisphere relative 
to whole contralateral hemisphere

Parameter HT 
(N=20)

Control 
(N=40)

p-value HT 
(N=20)

Control 
(N=40)

p-value 

Patlak rK trans 0.95 (0.19) 0.93 (0.12) 0.30 1.03 (0.25) 1.04 (0.14) 0.83
Patlak rK trans 
(fixed offset)

0.91 (0.30) 0.78 (0.13) 0.04* 1.22 (0.33) 1.03 (0.12) 0.11

NLR rK trans 1.02 (0.42) 0.76 (0.17) 0.03* 1.28 (0.46) 1.07 (0.18) 0.04*

NLR rPS 1.70 (1.06) 0.89 (0.35) 0.002* 1.66 (0.86) 1.11 (0.77) 0.005*

NLR rCBV 0.45 (0.20) 0.55 (0.11) 0.10 0.99 (0.13) 1.00 (0.07) 0.26
NLR rCBF 0.47 (0.23) 0.58 (0.21) 0.04* 0.78 (0.25) 0.90 (0.14) 0.05*

NLR rMTT 1.51 (0.69) 1.09 (0.42) 0.09 1.72 (0.90) 1.25 (0.37) 0.03*

* Significant, i.e. p < 0.05.
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Fig. 4.2: Relative permeability and perfusion values in the infarct core. The distributions of the 
average relative permeability- and perfusion-parameters in the infarct cores. The green boxes 
represent the control group and the orange boxes the HT group. The parameters marked (*) are 
significantly different between both groups (p < 0.05).
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Fig. 4.3: Relative permeability and perfusion values in the whole hemisphere. The distributions 
of the average relative permeability- and perfusion-parameters in the whole ipsi-lateral 
hemispheres. The green boxes represent the control group and the orange boxes the HT group. 
The parameters marked (*) are significantly different between both groups (p < 0.05).

The relative permeability-surface area product (rPS) had the highest discriminative power. 
This parameter had both the lowest p-value in the Mann-Whitney U test (p = 0.002 for the 
infarct cores) and the highest area under its ROC curve (0.75, 95% CI: 0.62 to 0.89, Table 4.3 
and Fig. 4.4). The rPS had a sensitivity of 0.75 at a specificity of 0.75 (threshold at rPS = 1.12), 
and a sensitivity of 0.50 at a specificity of 0.88 (threshold at rPS = 1.70).
The parameters, except for rMTT, had slightly better discriminative power when measured 
in the infarct core than when measured in the whole ipsi-lateral hemisphere.



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

Chapter 4

82

Table 4.3: Discriminative power of the permeability- and perfusion-parameters. The area under the 
curve (AUC) with 95% CI and p-value (asymptotic significance; p < 0.05) of the receiver operating 
characteristic (ROC) curves of all parameters. The curves for the parameters with significant 
discriminating value are shown in Fig. 4.4.

Infarct core vs whole contralateral 
hemisphere

Whole ipsilateral hemisphere vs 
whole contralateral hemisphere

Parameter AUC (95% CI) p-value AUC (95% CI) p-value
Patlak rK trans 0.58 (0.43, 0.74) 0.29 0.52 (0.35, 0.69) 0.83
Patlak rK trans 
(fixed offset)

0.66 (0.51, 0.81) 0.04* 0.63 (0.46, 0.80) 0.11

NLR rK trans 0.67 (0.52, 0.82) 0.03* 0.67 (0.51, 0.82) 0.04*

NLR rPS 0.75 (0.62, 0.89) 0.001* 0.73 (0.58, 0.88) 0.005*

NLR CBV 0.63 (0.47, 0.80) 0.10 0.59 (0.43, 0.75) 0.26
NLR rCBF 0.67 (0.52, 0.81) 0.04* 0.66 (0.50, 0.82) 0.05*

NLR rMTT 0.64 (0.48, 0.80) 0.09 0.68 (0.52, 0.83) 0.03*

* Significant, i.e. p < 0.05.
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Fig. 4.4: Receiver operating characteristic (ROC) curves. ROC curves of the parameters that were 
found to be significantly different between the HT group and the control group (Table 4.2). The 
areas under the curves are given in Table 4.3.

In addition, the relative CBF (rCBF) was significantly lower in the HT group (p = 0.04 for the 
infarct cores). The relative MTT (rMTT) was significantly higher in the HT group, but only 
when measured in the entire hemisphere (p = 0.03). No significant differences in relative 
CBV (rCBV) between the groups were observed.
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For none of the observed parameters significant differences were found between the 
subgroup of patients that developed HT and received IVT and the subgroup that developed 
HT but did not receive IVT. The rKtrans and rPS parameters were on average lower in the 
subgroup that did not receive IVT treatment.

4.4 DISCUSSION

Non-linear regression enables simultaneous measurement of permeability along with CBV, 
CBF, and MTT. Whereas the frequently used Patlak method only takes the steady-state 
samples (after the first-pass bolus) into account, NLR allows the analysis of the entire TACs. 
In Chapter 3 it was shown that this feature resulted in smaller 95% CIs for the permeability 
estimates. This study emphasizes the use of NLR over Patlak analysis, because it also provides 
better predictors for developing HT.

The parameter rKtrans estimated with fixed-offset Patlak analysis showed improved 
discriminating power compared with standard Patlak analysis. This corresponds to the 
finding in Chapter 3 that fixing the CBV halved the width of the 95% CI. This improvement 
can be explained by the fact that when the CBV is fixed to a value estimated by gamma-
variate curve fitting, the information in the entire TAC is used instead of the steady state 
only. The finding that the average absolute Patlak Ktrans estimates were twice as high as the 
values measured with NLR and Patlak with fixed offset was also in line with the previous 
study, and can be explained by the fact that noise gives a positive bias to Ktrans estimates.

The discriminating power of the best predictor, rPS measured using NLR, although 
significant, is still on the low side with an area under the ROC curve of 0.75 (95% CI: 0.62 to 
0.89) when measured in the infarct core. Furthermore, the 95% CIs on the AUCs are rather 
large due to the small population size. However, since multiple parameters showed significant 
discriminating power, multivariate analysis may result in a larger AUC. The additional value 
in predicting HT, compared to all perfusion parameters as well as clinical and demographic 
data, needs to be assessed by multivariate analysis in a larger stroke cohort.

The average infarct core size, as measured on admission CTP, was larger in the HT group, 
although not significantly. One may expect that the chance of developing HT increases with 
infarct size. However, this study showed that the average permeability values, measured in 
the infarct core, are better predictors for HT than the infarct core size.

A limitation of the study is that not all patients that developed HT received IVT treatment. 
We did not require IVT treatment for the patients in the HT group because those patients 
who showed HT on the follow-up scan without receiving treatment, would most probably 
also have developed HT if they did receive IVT treatment. In case IVT would be required for 
both groups, this would reduce the number of patients in the HT group. Since IVT is thought 
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to increase the probability of developing HT, the five patients that did not receive IVT 
treatment in the HT group might have had higher permeability values and therefore might 
have increased the discrimination between the HT group and the non-HT group. However, 
this did not occur because for none of the observed parameters a significant difference 
between these subgroups was found, and the permeability values were on average even 
lower in the subgroup that did not receive IVT treatment.

Another limitation is that around 20% of the permeability maps showed ring-shaped 
scanner artifacts. These artifacts are positioned in the isocenter of the gantry and are the 
result of sub-optimal detector calibration.11 Due to small differences in calibration, the 
CT-values in the images may have a variable offset and gain depending on the distance to 
the isocenter. This effect is especially dominant at low tube currents as used in CTP. When 
the acquired volumes in a CTP scan are each rotated or translated to correct for patient 
motion, the displacement of these rings will introduce noise in the CT-values in the temporal 
dimension, to which the permeability maps are sensitive.

Furthermore, the data could be improved by enhancing the detector calibration and the 
use of a more sophisticated, iterative reconstruction technique. These improvements could 
increase the signal to noise ratio and reduce artifacts without increasing the radiation dose 
or reducing the resolution. 

In contrast to many other studies that investigated BBB permeability in stroke,5,9,51,65,66,82 
the baseline NIHSS scores in between the HT- and control group were not significantly 
different in this population. This could be explained by the shorter median time from stroke 
onset to treatment (111 min versus 120 to 311 min for other studies).5,33,34,54,55,128 The fact 
that the clinical parameters between the groups in this study were similar endorses the 
presented results.

4.5 CONCLUSIONS

Concluding, the NLR method provides estimates for permeability parameters that are 
promising for predicting HT. The predictor rPS, measured in the infarct core, showed the 
highest discriminative power, while rKtrans, rCBF, and rMTT measured with NLR were also 
significantly stronger in the HT group than in the control group. This finding confirms the 
hypothesis that including the information in all data points of the TACs is an important 
advantage of NLR over linearized regression. HT prediction using NLR might become a 
valuable addition to the existing CT stroke protocol in patients with acute ischemic stroke.
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Influence of Thin Slice CTP Reconstruction

Based on: Bennink E, Oosterbroek J, Horsch AD, Dankbaar JW, Velthuis BK, Viergever MA, Jong HWAM de. 
Influence of thin slice reconstruction on CT brain perfusion analysis. PLOS ONE. 2015;10(9):e0137766.
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ABSTRACT

Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice 
(≥5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing 
time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from 
partial volume effects, and thus yield more accurate quantitative results with increased 
resolution. Therefore it may be more sensitive in the detection of small lesions. Before thin 
slice protocols are to be introduced clinically, it needs to be ensured that this does not affect 
overall CTP constancy. We studied the influence of thin slice reconstruction on average 
perfusion values by comparing it with standard thick slice reconstruction.

From 50 patient studies, absolute and relative hemisphere averaged estimates of 
cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and 
permeability-surface area product (PS) were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice 
reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial 
input function (AIF), and motion correction on the perfusion values was investigated.

Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less 
partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm 
than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to 
reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of 
slice thickness on relative values was very small.

This study shows that thin slice reconstruction for CTP with unaltered acquisition 
protocol gives relative perfusion values without clinically relevant bias. It does however 
affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume 
effects in large arteries and veins lead to overestimation of these values. The effects of 
reconstruction slice thickness should be taken into account when absolute perfusion values 
are used for clinical decision making.
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5.1 INTRODUCTION

Modern multi-detector row CT scanners typically have a focal spot size of about 1  mm, 
an in-plane voxel size of about 0.5 mm × 0.5 mm, and a minimal slice thickness between 
0.5 and 1 mm. In clinical practice, however, the CTP brain scans are acquired in thin slices 
but reconstructed into thicker slices of approximately 5 or 10 mm to suppress noise and 
to reduce the amount of data and processing time. For this reason thick slice data are 
generally used to classify infarct core and penumbra. To our knowledge, all studies that 
have presented absolute, relative, or multi-variate thresholds on the perfusion parameters 
for the classification of these areas used a slice thickness of 5  mm or more, resulting in 
anisotropic voxel dimensions.20,21,28,63,64,68,99,100,127,147,150

Because of ongoing developments in computer performance, it may now be feasible 
to exploit thin slice CTP brain data with smaller, less anisotropic voxels, which could have 
substantial benefits in clinical stroke assessment.

First, a slice thickness of 1.8 mm and smaller permits the selection of a partial volume 
free arterial input function (AIF) in the middle cerebral artery, thus avoiding the necessity 
for selecting a venous output function (VOF) to correct for partial volume effects (PVE).118 It 
is hypothesized that a significant proportion of the variability found between observers and 
between analysis platforms in absolute quantification of perfusion values40,42,64 may be due 
to the selection of partial volume affected arteries and veins.

Second, because the voxels in thin slice scans are near isotropic, it can be considered a 
true 3D volume instead of a series of 2D slices. This enables true 3D motion correction as 
well as sagittal, coronal, and oblique reformatting of perfusion maps.

Third, it has been suggested that the detectability of lacunar strokes may improve with 
increased spatial resolution.146 This type of infarct, generally considered smaller than 15 to 
20 mm, accounts for 25% of all ischemic strokes.121

Since modern scanners, computers, and filtering techniques make CTP analysis with high 
axial resolution feasible, the clinical application of thin slice reconstruction is expected to 
increase in the near future. Whereas it is known that PVE due to thick slice reconstruction 
results in overestimation of CBV and CBF,125 the extent of using full axial resolution on 
perfusion values and outcomes is as yet unclear.

Accordingly, the aim of this study was to assess the consequences of changing the slice 
thickness of CTP reconstruction on the perfusion parameters measured with CTP brain 
analysis.
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5.2 METHODS

High-resolution CTP scans from 50 acute stroke patients, with an acquired axial resolution 
of 0.8  mm, were used to create data with slice thicknesses of 2.4, 4.8, and 9.6  mm. An 
example of a raw sagittal CTP slice at these four thicknesses is shown in Fig. 5.1. To test how 
the observed perfusion parameters relate to the slice thickness, and how AIF resolution 
and motion correction affect these measurements, four different processing schemes were 
applied (Table 5.1). This resulted in 16 sets of perfusion parameter maps of which 14 are 
unique; the 0.8 mm resolution variations on scheme 2, 3, and 4 are the same because all 
schemes have a 0.8 mm AIF and thin-slice motion correction at the highest resolution.

0 to 80 HU

0.8 mm 2.4 mm

4.8 mm 9.6 mm

Fig. 5.1: Raw CT perfusion scan at different slice thicknesses. An example of a raw, sagittal 
reformatted CT perfusion slice at axial slice thicknesses of 0.8, 2.4, 4.8, and 9.6 mm.

Because the thin slice reconstructions will only be clinically acceptable if radiation dose and 
image noise levels do not increase, the noise level was equalized over all reconstructions by 
using a bilateral filter with slice thickness specific parameters 137.
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Table 5.1. Slice thicknesses and filter types. In scheme 1 to 3 motion correction is performed on thin 
slices, after which thick slices are generated. In scheme 4 motion correction is performed on thick 
slices.

Scheme no. Motion correction
thickness (mm)

Filtering and analysis 
slice thickness (mm)

Filter type AIF and VOF slice 
thickness (mm)

1

0.8 0.8 Gaussian 0.8
0.8 2.4 Gaussian 2.4
0.8 4.8 Gaussian 4.8
0.8 9.6 Gaussian 9.6

2

0.8 0.8 Bilateral 0.8
0.8 2.4 Bilateral 2.4
0.8 4.8 Bilateral 4.8
0.8 9.6 Bilateral 9.6

3

0.8 0.8 Bilateral 0.8
0.8 2.4 Bilateral 0.8
0.8 4.8 Bilateral 0.8
0.8 9.6 Bilateral 0.8

4

0.8 0.8 Bilateral 0.8
2.4 2.4 Bilateral 2.4
4.8 4.8 Bilateral 4.8
9.6 9.6 Bilateral 9.6

5.2.1 Study Design
CTP scans of 50 consecutive acute ischemic stroke patients were included retrospectively 
from a single center (University Medical Center Utrecht) participating in the Dutch acute 
stroke study (DUST). The inclusion criteria and the CTP acquisition protocol are described in 
Section 1.4.

All included scans were acquired on a Philips Brilliance iCT scanner (Philips Healthcare, 
Best, the Netherlands) at 80 kVp and 150 mAs. These scans had an axial coverage of 65 
mm at most and a field-of-view of approximately 200 mm × 200 mm. All scans had a total 
acquisition time of 210 s and were reconstructed into thin slices (0.8 mm), resulting in 65 to 
81 reconstructed slices per 3D volume.

Since infarct size and location were not selection criteria, these were randomly 
distributed to their natural prevalence.

5.2.2 Preprocessing
Automated rigid 3D motion correction was done using the open source registration toolbox 
Elastix.67 The skull served as a reference for registering all acquired volumes to the first.
One major disadvantage of thin slice data is the increased noise level due to the increased 
number of voxels in the image volume. The variance of the noise will be roughly doubled 
when the slice thickness is halved, until it reaches the size of the point spread function of 
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the scanner. In order to reduce the noise to an acceptable level for analysis, a filter kernel 
with a large enough volume is required for averaging. Although a large standard isotropic 
Gaussian filter can perform this task, it would introduce PVE that would nullify the resolution 
gained by the thinner slices. An anisotropic bilateral filter, however, is able to adapt its shape 
to its neighborhood and therefore average the same number of voxels with reduced PVE, 
whenever the neighborhood allows it (see Section 2.2.5).137 In order to compare the effects 
of bilateral filtering to isotropic Gaussian filtering, both filters were applied (Table 5.1).

The objective of this study was to compare perfusion parameters at different slice 
thicknesses but at equal noise level and dose. To this end, both the isotropic Gaussian 
and the anisotropic bilateral filter were adjusted for each thickness such that the SD of 
the noise in the filtered images, SDout, was reduced to a constant level of approximately 
0.75 Hounsfield units (HU). For the isotropic Gaussian kernel g(ξ,x) (see Eq. 2.5 in Section 
2.2.5) this was achieved by using a sd of 2.5  mm for all slice thicknesses. A fixed sd of 
3.0 mm was used for the bilateral kernel b(ξ,x) (see Eq. 2.5 in Section 2.2.5); keeping sd fixed 
means that sr had to be scaled along with the slice thickness. The scaling factor sr = 3.34SDin 
resulted in SDout values of approximately 0.75. SDin and SDout were estimated by taking the 
median SD on the values in the attenuation curves within the brain tissue before the arterial 
bolus arrival time. The mean bolus arrival time of the data was 10.7 s (SD = 3.0 s). The filter 
settings and measured SDin and SDout values are listed in Table 5.2.

Table 5.2. Filter settings. The standard deviations sd and sr of the filter kernels, and the median noise 
levels of the unfiltered and filtered data, SDin and SDout, at each slice thickness. The number between 
brackets is the width of the interquartile range (IQR).

Unfiltered Isotropic Gaussian filter Anisotropic bilateral filter
Thickness
(mm)

SDin (HU)
median (IQR)

sd (mm) SDout (HU)
median (IQR)

sd (mm) sr (HU2) SDout (HU)
median (IQR)

0.8 14.9 (2.95) 2.5 0.76 (0.16) 3.0 50.0 0.74 (0.16)
2.4 11.1 (1.94) 2.5 0.75 (0.15) 3.0 37.3 0.75 (0.17)
4.8 8.4 (1.37) 2.5 0.77 (0.15) 3.0 28.1 0.76 (0.18)
9.6 6.1 (0.99) 2.5 0.70 (0.15) 3.0 20.5 0.74 (0.18)

5.2.3 Perfusion Analysis
AIFs were selected semi-automatically by searching within a manually defined circular 
region of interest (ROI) with a 2 cm radius for the voxel with the highest area under the curve 
(AUC), in keeping with the clinical standard procedure. The ROI was drawn on a 9.6 mm slice 
of the bilaterally filtered data, and the same ROI was applied to the 0.8, 2.4, 4.8 mm slices. 
Whenever possible an internal carotid artery was chosen to provide the AIF. If this location 
happened to be outside the imaged volume, a middle cerebral artery was chosen.
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Because the axial resolution can be rather coarse with respect to the diameter of the 
arteries providing the AIF, the AUC of the AIF might be underestimated owing to partial 
volume effects. Because this leads to an overestimation of CBV, CBF, and PS, correction for 
partial volume is often necessary, at least in thick slice reconstructions.6,118 The correction 
was provided by always selecting a VOF in the superior sagittal sinus or transverse sinus near 
the torcular herophili, using the same method and at the same slice thickness as the AIF, as 
described above.

A fast model-based non-linear regression (NLR) method was used to calculate the 
perfusion maps. In Chapters 3 and 4 it was shown that this NLR method not only provides 
the standard perfusion parameters CBV, CBF, and MTT, but also an estimate for PS, while 
the method is in addition insensitive to tracer delay and can be computed fast enough for 
application in an acute clinical setting. 

The acquisitions before bolus arrival were averaged to obtain a non-contrast CT image. 
This non-contrast image provides the offsets for the tissue attenuation curves and it is used 
to segment the brain tissue. Only the voxels that had a non-contrast CT value >17 HU and 
<55  HU were classified as brain tissue and included in the analysis. Voxels with a blood 
volume >9 ml/100g were classified as vessels and excluded from the analysis. A correction 
factor was applied to correct the tracer concentration for the difference between the 
hematocrit in large vessels (AIF) and small vessels (capillaries).71,116

Symmetry lines were drawn manually to separate the hemispheres. The mean values 
of the perfusion parameters (CBV, CBF, MTT, and PS) were calculated in each hemisphere. 
Relative values for CBV (rCBV), CBF (rCBF), and PS (rPS) were calculated by dividing the 
ipsilateral means by the contralateral means, because these values are affected by scaling 
of the AIF. The relative MTT was not calculated as ratio, but rather as the difference in MTT 
(dMTT) by subtracting the contralateral mean from the ipsilateral mean, because the MTT 
itself is derived from the difference in width between the AIF and the tissue curves. Unlike 
CBV, CBF, and PS, the MTT parameter is not affected by scaling of the attenuation curves.

5.2.4 Statistical Analysis
Although the noise levels of the perfusion maps were expected to be independent of the slice 
thickness because the noise in the filtered perfusion scans was equalized, an additional test 
was done to verify this hypothesis. The noise levels in the perfusion maps were estimated 
by dividing the 512 × 512 pixel slices into a 16 × 16 matrices of square ROIs wherein the 
SDs of the tissue voxels were calculated. ROIs containing less than 75% tissue voxels were 
excluded. The noise level was considered equal to the lowest SD found. Relative noise levels 
were calculated by dividing the SD by the mean perfusion value. 

Statistics on the means of all absolute and relative perfusion parameters of the patient 
group, as well as on the AUCs of the AIF and VOF, were presented in box plots. Repeated 
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measures ANOVA tests were applied to the perfusion measurements to test whether the 
mean values were significantly different for the various slice thicknesses (p < 0.05), and to 
calculate the SD of the parameters due to the slice thicknesses, sB. The parameter sB

2 is the 
‘between-group variance’ as measured in an ANOVA test. It is the variance on a parameter 
due to the difference between slice thicknesses, disregarding the variation due to the 
difference between patients.

5.3 RESULTS

5.3.1 AIF and VOF
An impression of the mean AIFs and VOFs is given in Fig. 5.2. The median AUC of the VOFs, 
the AIF/VOF AUC ratio, and the width of the AIF as measured by gamma-variate curve fitting 
of the first-pass bolus are listed in Table 5.3. Conservation of matter requires that the AUCs 
of the AIF and VOF are equal in absence of partial volume effects. At a slice thickness of 0.8 
and 2.4 mm the bilaterally filtered scans showed an approximately 100% AIF/VOF ratio that 
decreased to 69% at a slice thickness of 9.6 mm. For the isotropic Gaussian filtered scans 
the ratios were much lower, but the differences were less conspicuous with a median ratio 
of 57% at 0.8 mm thickness and 47% at 9.6 mm. Thick slice motion correction also yielded 
smaller AUCs and lower AIF/VOF ratios. 

The width of the AIF increased with slice thickness. The full width at half maximum 
(FWHM) was on average 0.5 s higher at a slice thickness of 9.6 mm as compared to 0.8 mm.
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Fig. 5.2: Arterial input functions and venous output functions. The mean arterial input function 
(AIF, left) and venous output function (VOF, right) at different slice thicknesses. Scheme 2 (see 
Table 5.1) was used for processing these data. Before averaging all AIFs and all VOFs were aligned 
to their time-to-peak. The areas under the curves are listed in Table 5.3.



R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

Influence of Thin Slice CTP Reconstruction

93

5

Table 5.3: Properties of the AIF and VOF curves. The median area under the curve of the venous 
output function (VOF), the ratio between the arterial input function (AIF) and VOF, and the full width 
at half maximum (FWHM) in case of isotropic Gaussian filtering (scheme 1), bilateral filtering (scheme 
2), and bilateral filtering with thick slice motion correction (scheme 4). The number between brackets 
is the width of the interquartile range (IQR).

Thickness 
(mm)

AUC of VOF 
(HU s)

AIF/VOF AUC 
ratio (%)

FWHM of AIF 
(s)

Isotropic Gaussian filter 0.8 1627 (888) 57 (44) 10.3 (2.3)
2.4 1576 (788) 54 (27) 10.2 (2.2)
4.8 1492 (768) 53 (37) 10.4 (2.5)
9.6 1394 (772) 47 (32) 10.6 (2.5)

Bilateral filter 0.8 2200 (1059) 101 (23) 9.4 (2.1)
2.4 2129 (1086) 100 (19) 9.7 (2.1)
4.8 2102 (1031) 91 (21) 10.0 (2.2)
9.6 1902 (730) 69 (22) 9.9 (2.2)

Thick slice motion correction 0.8 2200 (1059) 101 (23) 9.4 (2.1)
2.4 2120 (996) 96 (21) 9.4 (2.0)
4.8 2068 (845) 86 (24) 9.7 (1.8)
9.6 1893 (900) 68 (19) 10.2 (2.0)

5.3.2 Perfusion Maps
Examples of the bilaterally filtered data and the resulting perfusion maps are shown in Fig. 
5.3. Both the CBV and the CBF map showed consistently higher values on thicker slices 
(bottom versus thinner slices on top row). No visible differences in noise level were noticed 
in either the filtered CTP scans or the perfusion maps. CBV had a median relative noise SD 
of 7.8 % (IQR: 6.7 to 8.9 %) for all 700 analyzed scans (50 patients × 14 unique schemes), 
CBF of 12.0 % (IQR: 9.3 to 14.8%), MTT of 7.8 % (IQR: 5.6 to 10.7 %), and PS of 5.6 % (IQR: 
2.8 to 10.0 %).
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Fig. 5.3: Thin and thick slice perfusion maps. An example of axial and sagittal reformatted non-
contrast CT (NCCT) slices and perfusion maps with an axial slice thickness of 0.8 mm (top row) and 
4.8 mm (bottom row). Scheme 2 (bilateral filtering, see Table 5.1) was used for processing these 
data. The slice positions are indicated by a dashed line in the NCCT images. The cerebral blood 
volume (CBV) map shows a right posterior infarct core (low blood volume), whereas the cerebral 
blood flow (CBF) and mean transit time (MTT) maps clearly show the surrounding penumbra 
(low blood flow and elevated transit time). An elevated permeability-surface area product (PS) 
suggests increased vascular permeability. The 4.8 mm axial slices show slightly elevated CBF and 
CBV values, and decreased MTT values. The 4.8 mm sagittal slices have a pixelated appearance 
due to the anisotropic voxels. The raw sagittal slices are shown in Fig. 5.1.

5.3.3	 Absolute Measurements
The distributions of the perfusion values (mean of the tissue voxels in both hemispheres) 
are shown in the box plots in Fig. 5.4 to Fig. 5.7. Table 5.4 lists the mean values of the 
absolute perfusion parameters, the standard deviations due to slice thickness, and p-values 
of the effect of slice thickness on the parameters.
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Table 5.4. Mean and variation in absolute perfusion parameters. The means, standard deviations (sB), 
and p-values of the parameters, compared between slice thicknesses (repeated measures ANOVA). 
The parameters are subsequently cerebral blood volume (CBV, in ml/100g), cerebral blood flow (CBF, 
in ml/100g/min), mean transit time (MTT, in s), and permeability-surface area (PS, in ml/100g/min). 
The sB is the standard deviation on a parameter due to the difference between slice thicknesses, 
disregarding the variation due to the difference between patients. A parameter with a p-value <0.05 
was considered significantly affected by the slice thicknesses. p-values <0.01 are shown as 0.

Scheme 1 Scheme 2 Scheme 3 Scheme 4
Side µ sB p µ sB p µ sB p µ sB p

CBV
Ipsilateral 4.2 2.3 0 3.0 2.3 0 2.8 0.72 0 3.1 2.5 0
Contralateral 4.2 2.4 0 3.0 2.2 0 2.8 0.66 0 3.1 2.5 0

CBF
Ipsilateral 74 62 0 45 53 0 39 7.9 0 46 56 0
Contralateral 92 75 0 57 68 0 49 11 0 58 73 0

MTT
Ipsilateral 5.4 1.1 0 6.2 2.0 0 6.4 0.17 0 6.2 1.9 0
Contralateral 3.5 1.2 0 4.1 1.9 0 4.3 0.11 0 4.1 1.8 0

PS
Ipsilateral 0.28 0.23 0.37 0.24 0.34 0.21 0.32 0.05 0.12 0.36 0.49 0.09
Contralateral 0.21 0.23 0.32 0.18 0.31 0.11 0.25 0.04 0.19 0.27 0.39 0.07

Absolute CBV and CBF values were higher with isotropic Gaussian filtering than with bilateral 
filtering (Fig. 5.4 and Fig. 5.5), whereas MTT values were a little lower (Fig. 5.6).

In all schemes, the absolute values of CBV, CBF, and MTT differed significantly between 
slice thicknesses (p << 0.05). Fig. 5.4 and Fig. 5.5 show positive trends for CBV and CBF with 
increasing slice thickness, and a slight negative trend in MTT. The variances due to slice 
thickness were much smaller in scheme 3 than in the other schemes. Absolute CBF and CBV 
were 22% and 14% lower on 0.8 mm as compared to 4.8 mm slices in scheme 4, but these 
differences were reduced to just 3% and 4% in scheme 3.

Although the box plot for absolute PS seems to show a trend in scheme 4 (Fig. 5.7), the 
absolute PS values did not significantly differ as a function of slice thickness in any case. 
Absolute PS values were 46% lower on 0.8 mm than on 4.8 mm slices in scheme 4, but these 
differences were reduced to just 3% in scheme 3.

5.3.4 Relative Measurements
Table 5.5 lists the mean values of the relative perfusion parameters, the standard deviations 
due to slice thickness, and p-values of the effect of slice thickness on the parameters. 
Differences between schemes, but also differences within schemes due to slice thickness 
were much smaller than for the absolute values.

Although sB values were small, rCBV was significantly affected by the slice thickness in 
scheme 3 (p < 0.05). dMTT was also significantly different in scheme 1, 2, and 4, just as rPS 
in scheme 1, 2, and 3. In all these cases increasing slice thickness gave a small but significant 
positive bias to rCBV, dMTT, as well as to rPS. Because the interpatient variability is much 
larger than these biases, they cannot be observed in the box plots.
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Stroke patients with an early infarct usually have a small infarct core, thus a small CBV 
defect on CTP imaging. For this reason the mean rCBV values were close to 100%. The 
volume of the surrounding penumbra, showing reduced CBF without reduced CBV, is usually 
much larger; mean CBF values were 20% lower, mean MTT values were 1.5 s higher, and 
mean PS values were 46% higher in the ipsi-lateral hemisphere.

Table 5.5. Mean and variation in relative perfusion parameters. The means (µ), standard deviations 
(sB), and p-values of the parameters, compared between slice thicknesses (repeated measures ANOVA). 
The parameters are subsequently relative cerebral blood volume (rCBV, in %), relative cerebral blood 
flow (rCBF, in %), difference in mean transit time (dMTT, in s), and relative permeability-surface 
area (rPS, in %). The sB is the standard deviation on a parameter due to the difference between slice 
thicknesses, disregarding the variation due to the difference between patients. A parameter with a 
p-value <0.05 was considered significantly affected by the slice thicknesses. p-values <0.01 are shown 
as 0.

Scheme 1 Scheme 2 Scheme 3 Scheme 4
µ sB p µ sB p µ sB p µ sB p

rCBV 99 2.1 0.15 100 1.3 0.21 100 2.3 0 100 0.59 0.90
rCBF 81 2.3 0.33 80 1.1 0.70 80 1.0 0.17 80 0.84 0.89
dMTT 1.6 0.22 0 1.5 0.20 0 1.5 0.005 0.98 1.5 0.20 0
rPS 149 72 0 144 42 0.01 143 28 0.02 146 79 0.06

5.4 DISCUSSION

The results of this study show how the use of thin slice CTP data for stroke diagnosis at equal 
noise level and radiation dose may be feasible without affecting relative perfusion values. It 
might however require revision of current clinical thresholds on absolute perfusion values. 
Partial volume effects (PVE) in the AIF plays a key role. Because even large veins are affected 
by PVE, scaling of the AIF to match the AUC of the VOF does not fully solve this issue. If the 
same PVE-free (thin slice) AIF is used for analysis of all slice thicknesses, slice thickness is of 
minor influence on the absolute perfusion values.

It was found that the PVE in the AIF and VOF may explain most, if not all findings in this 
study. PVE not only decreases the AUC of the AIF and VOF, but also increases the width of 
the AIF. For this reason PVE influences all perfusion parameters, including the MTT. PVE 
in tissue TACs only marginally influences the perfusion values, since the effect of partial 
volume on relatively large, homogeneous tissue regions is smaller than the PVE in vessels.

Both slice thickness and filtering methods influence the amount of PVE. Axel already 
described that CTP analysis would require venous attenuation curves to correct for partial 
volume in the AIF.6 As expected, this study also showed that the AUC of the AIF reduces with 
increasing slice thickness. In line with a previous study by our group,118 it can be concluded 
that a slice thickness of approximately 2 mm is required to measure a PVE free AIF in the 
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internal carotid artery (roughly 3.5 to 5 mm in diameter)75,98 or in the middle cerebral artery 
(2.5 to 4 mm in diameter). Even the VOF, which is measured in much larger veins and used 
to rescale the AIF, is affected. Although bilateral filtering greatly reduces PVE as compared to 
isotropic Gaussian filtering (Table 5.3), the AUC of the VOF is on average as much as 13.5% 
lower at a slice thickness of 9.6 mm than at 0.8 mm.

Absolute CBV and CBF values were found to be higher with isotropic Gaussian filtering 
than with bilateral filtering. Because each AIF was scaled to match the AUC of the VOF, this 
is most likely caused by the difference in AUCs of the VOFs between both filters. The MTT 
values were also found to be a little lower with Gaussian filtering, which is probably caused 
by widening of the AIF due to PVE.

The effect of slice thickness on the PVE in the VOF and therefore on the perfusion values 
is most pronounced when the CBV and CBF values in scheme 3 are compared with the 
values in other schemes. Because of the use of the PVE-free (thin slice) AIFs and VOFs on 
all slice thicknesses, the values in scheme 3 are similar between slice thicknesses, whereas 
the other schemes clearly showed a positive trend for these parameters. This trend is in line 
with what was found by Van der Schaaf et al. (2006).125

A small negative trend was observed for the absolute MTT. Just like the use of the 
isotropic Gaussian filter resulted in lower MTT values, an increase in slice thickness also 
decreased MTT. Since the MTT values in scheme 3 did not show this trend, the trend is most 
likely caused by widening of the AIF due to PVE, as shown in Table 5.3.

Although the median PS was not found to be affected by slice thickness, a positive 
trend was observed in scheme 4 (Fig. 5.7). It is very likely that this trend is not caused by 
PVE, but rather by the noise introduced by motion artifacts. Noise gives a positive bias to 
permeability values (Ktrans and PS), resulting in an apparent positive trend (see Fig. 3.8a in 
Chapter 3). PS values are probably more sensitive to motion artifacts than other perfusion 
parameters because they are influenced by the volumes acquired in the delayed phase 
(after the first pass bolus). In a longer time frame the chance of motion induced errors 
increases. When motion correction was performed on thin slices, as in schemes 1, 2, and 3, 
the trend disappeared.

In contrast to the finding that absolute quantification is mostly hindered by PVE in large 
arteries and veins, it was found that relative perfusion values were nearly unbiased. Scaling 
errors of CBV and CBF due to PVE in the AIF and VOF had no clinically relevant effect on 
their ipsi-lateral versus contra-lateral ratios, i.e. rCBV and rCBF. Similarly, MTT values in both 
hemispheres were equally biased due to widening of the AIF, causing the dMTT to be nearly 
unbiased. The cause of these small, but statistically significant biases is unknown. It should 
however be noted that the observation of a statistically significant bias does not necessarily 
imply a relevant effect, but it may merely indicate a precise measurement with some small 
systematic drift.
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The data showed that the spread in absolute values between patients is quite large, 
especially for the CBF, MTT, and PS parameters. Although there might be significant 
interpatient variability, these parameters are also fundamentally more difficult to estimate 
than CBV. Whereas CBV is estimated by comparing AUCs, estimating CBF and MTT requires 
high-frequency information which is to a very limited extent available in the relatively smooth 
and wide AIF. The PS parameter is a very weak component of the tissue curves, requiring 
high quality curves, free of motion, over a long scan duration. When it is not possible to use 
a high-resolution, PVE-free AIF, then the use of relative perfusion values is advisable.

Chapter 6 investigates the effect of using thin slice CTP reconstruction on the detection 
of small volume strokes. Further study is required to find how other assumed advantages 
of using thin slice data, for example improved inter-observer and intra-observer variability, 
work out in clinical practice.

5.5 CONCLUSIONS

Performing thin slice CTP analysis at equal noise level and radiation dose might be feasible 
without affecting relative perfusion values. Due to PVE in large arteries and veins, it does 
however affect absolute perfusion values, of which CBF and CBV are most sensitive. Bilateral 
filtering enables the analysis of thin slice data, which may be used to more accurately locate 
and delineate the infarct core and penumbra and estimate blood-brain barrier permeability 
in CT perfusion imaging of acute ischemic stroke. Using thin slice data enables a PVE-free AIF 
selection for perfusion analysis, which gave the least variance in both absolute and relative 
perfusion values between slice thicknesses. In addition, motion artifacts can be reduced 
most effectively by 3D motion correction on thin slice data. Since the current thresholds on 
absolute values are generally established using AIFs and VOFs measured in scans with a slice 
thickness of 5 to 10 mm, they cannot be applied to thin slice data and may therefore need 
to be revised. 
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6
Thin Slice CTP Reconstruction for 

Small Lesion Detection

Based on: Bennink E, Stemerdink T, Horsch AD, Velthuis BK, Schaaf IC van der, Jong HWAM de, Dankbaar 
JW. Thin slice CT-perfusion improves small volume stroke detection. Accepted for poster presentation: 
European Congress of Radiology. 2016.
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ABSTRACT

CT perfusion (CTP) imaging helps to detect ischemia in patients with suspected ischemic 
stroke, but the detection of small lesions is challenging. We compared the performance of 
thin slice (0.8 mm) and thick slice (5 mm) CTP parameter maps for the detection of small 
ischemic lesions.

Data was extracted from a prospectively collected database (Dutch Acute Stroke Study). 
Additional inclusion criteria were: an infarct <20 mm on follow-up non-contrast CT within 
the CTP imaged volume, no occlusion on admission CTA, and available thick and thin slice 
admission CTP. For each case two controls were selected without an infarct on follow-up. 
Parameter maps of time to peak, mean transit time, blood flow and blood volume were 
calculated for both thick slice and thin slice CTP using a model-based analysis method. 
The parameter maps were randomized and evaluated for the presence of a focal perfusion 
deficit, blinded for follow-up non-contrast CT which served as reference standard. The 
performance was compared using McNemar’s test.

41 cases and 82 controls were identified. There was no difference in median age (65 
versus 67 years), median time to imaging (103 versus 107 minutes), or number of rt-PA 
treated patients (56% versus 54%). The median admission NIHSS was significantly lower in 
the control group (5 versus 3; p = 0.024). The sensitivity of thin slice CTP was significantly 
higher than thick slice (0.66 versus 0.44; p = 0.01). There was no difference in specificity 
(0.88 versus 0.90; p = 0.69). 

Thin slice CTP improves the detection of small ischemic lesions in patients with suspected 
acute ischemic stroke without a visible occlusion on CTA.
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6.1 INTRODUCTION

Lacunar or small volume strokes contribute up to 15 to 25% of all strokes.8,70 The radiological 
definition for these infarctions varies widely among researchers, but is mostly defined as a 
lesion of up to 15 to 20 mm in diameter. Small volume infarctions are usually situated in 
the deep gray matter (basal ganglia and thalamus), deep white matter (internal capsule, 
corona radiate or brainstem), or subcortical white matter.113,141 Single penetrating artery 
occlusion based on small vessel disease is considered the main cause.104 Thrombolytic 
therapy has been found to improve functional outcome across all stroke subtypes.89,108 
However, since thrombolytic therapy can cause serious side-effects such as intracranial 
hemorrhage, it is important that acute ischemic stroke can be accurately diagnosed. Using 
non-contrast CT (NCCT) only, approximately 50% of the lacunar infarcts will be missed 
within 48 hours after onset.92,133 Adding CT-perfusion (CTP) to clinical and NCCT findings 
has been found to improve diagnostic accuracy for detection of stroke overall.29,56,87 CTP is 
found to be twice as sensitive for stroke detection in the first hours after symptom onset 
compared to NCCT.21,87,105 In a multimodal CT imaging, especially the specificity for stroke 
detection increases because of CTP.120 Moreover, CTP has been found to improve detection 
of posterior circulation infarctions.53,84 However, the sensitivity of CTP for small volume 
infarctions remains limited.37,50,52,87,90 A recent meta-analysis shows that about two-thirds 
of false negative CTP results are caused by small volume infarctions.17 The remaining false 
negatives are mostly due to limited CT coverage (Fig. 1.8). In addition a recent study showed 
that a combined NCCT, CT-angiography (CTA), and CTP protocol has a sensitivity of only 42% 
for lacunar strokes.35 This confined sensitivity for small volume infarctions may be caused 
by limited spatial resolution.17,50 High resolution, thin slice CTP with advanced filtering, as 
studied in the previous chapter, may therefore lead to an increased sensitivity of CTP for 
small volume infarctions. 

The purpose of this study was to investigate the diagnostic value of 0.8 mm thin slice 
CTP reconstructions compared to 5 mm thick slice reconstructions in the detection of small 
volume ischemic lesions in adults suspected for ischemic stroke.

6.2 METHODS

6.2.1 Patient Selection
All patients were selected from the Dutch acute stroke study (DUST) database. The inclusion 
criteria and the CTP acquisition protocol are described in Section 1.4. Additional inclusion 
criteria for the current study were; available follow-up NCCT with an infarct <20 mm in 
diameter within the CTP imaged volume, no occlusion on admission CTA, and available thick 
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and thin slice admission CTP data. For each case two controls were selected matching the 
same inclusion criteria but without an infarct on follow-up NCCT.

6.2.2 Imaging Protocol
On admission NCCT, CTP, and CTA of the vessels of the head and neck were performed. A 
follow-up NCCT was performed if possible at day 3 after symptom onset and earlier in case 
of clinical deterioration. Admission and follow-up NCCT were performed at 120 kVp, 300 to 
375 mAs, and the scans were reconstructed to a slice thickness of 5 mm. The CTP acquisition 
protocol is described in Section 1.4.2 in the Introduction; the 6 extended acquisitions were 
not used in this study. The CTA was acquired from aortic arch to the cranial vertex with 50 to 
70 ml contrast followed by 40 ml of saline, both with a flow of 6 ml/s. The scan delay after 
intravenous injection was calculated from time to peak arterial enhancement on CTP, or 
by trigger-based Hounsfield threshold measurement of contrast enhancement in the aortic 
arch.

6.2.3 Preprocessing
Automated rigid 3D motion correction was done using the open source registration toolbox 
Elastix.67 The skull served as a reference for registering all acquired volumes to the first.

A standard 3D bilateral filter with spatial standard deviation of 3 mm and a similarity 
standard deviation of 20 HU2 for thick slice scans and 50 HU2 for thin slice scans was used 
to reduce the noise with minimal loss of resolution (see Section 2.2.5).137 Similarity was 
defined as the squared difference between the mean of two time-attenuation curves.

6.2.4 Perfusion Analysis
Presence of occlusion on admission CTA and presence of a new infarct on follow-up NCCT 
imaging was evaluated by one of three observers (BKV, ICvdS, JWD). All observers had more 
than 4 years of experience in stroke imaging evaluation.

The filtered CTP scans were analyzed using the model-based NLR method as described 
in Section 2.2.2 of Chapter 2.14 Next to the cerebral blood volume (CBV), cerebral blood 
flow (CBF), and mean transit time (MTT) maps, a time-to-peak (TTP) map was calculated. 
The TTP is the time difference between the first pass bolus peaks of the artery and tissue 
(Fig. 1.9). In this study it is estimated as TTP ≈ td + MTT/2, where td is the delay in contrast 
arrival as measured with NLR. The TTP is of importance in visual assessment of CTP maps, 
since it merges the information in MTT and td into a more robust parameter. The relatively 
low signal-to-noise ratio and, notably, the large width of the AIF are limiting factors to 
the availability of high-frequency information in the attenuation curves. As a result, these 
factors limit the precision of MTT and delay measurements. An underestimated MTT results 
in an overestimated delay and vice versa.
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Thick slice and thin slice CTP data were evaluated separately. Patients were randomized 
for both evaluations. Presence of ischemia was evaluated by one observer (JWD), blinded 
for the reference standard and patient details. Presence of a perfusion deficit on admission 
was defined as a focal defect on any of the 4 perfusion maps. For each perfusion deficit the 
anatomic location was noted.

6.2.5 Statistical Analysis
The presence of a new infarct on follow-up NCCT was used as the reference standard. 
Sensitivity and specificity and corresponding 95% confidence interval (CI) for the detection 
of small infarcts were calculated separately for thick slice and thin slice CTP. Subsequently, 
sensitivity and specificity were compared using McNemar’s χ2 test for paired nominal data. 
Significance was predefined at p < 0.05.

6.3 RESULTS

Of the 1223 patients in the DUST database with diagnosed ischemic stroke, 41 patients 
matched the inclusion criteria (Fig. 6.1). For every case, two controls were selected resulting 
in a total of 123 patients. Patient characteristics are summarized in Table 6.1.

All stroke patients in DUST database
N = 1223

Infarct < 20 mm  on follow-up NCCT and 
inside CTP imaged volume

N = 145

No occlusion on admission CTA
N = 110

Available thin and thick slice admission CTP 
N = 41

Fig. 6.1: Flowchart depicting the number of cases included in the study. The additional inclusion 
criteria allowed 41 out of the 1223 ischemic stroke patients in the Dutch acute stroke study (DUST) 
to be included in the study. NCCT, non-contrast CT; CTA, CT angiography; CTP, CT perfusion.
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Table 6.1: Patient characteristics.

All patients
N = 123

New stroke
N = 41

No new stroke
N = 82

p-value

Clinical parameters
Age (years), median (IQR) 66 (54, 76) 65 (50, 74) 67 (56, 77) 0.17
Female sex, n (%) 49 (40) 16 (39) 33 (40) 1.00
Admission NIHSS, median (IQR) 4 (2, 7) 5 (3, 8) 3 (2, 5) 0.024*
Time to imaging (min), median (IQR) 106 (78, 197) 103 (79, 213) 107 (77, 181) 0.35

Treatment
IVT, IAT or MT, n (%) 67 (54) 23 (56) 44 (54) 0.85
Follow-up
mRs > 2 after three months, n (%) 25 (20) 8 (20) 17 (21) 1.00

Pearson’s χ2 test was used to compare categorical variables and Mann-Whitney U test for continuous 
variables. *p  <  0.05. CTA, CT angiography; CTP, CT perfusion; IAT, intra-arterial thrombolysis; IQR, 
interquartile range; IVT, intravenous thrombolysis; mRs, modified Rankin scale; MT, mechanical 
thrombectomy; NCCT, non-contrast CT; NIHSS, National Institutes of Health Stroke Scale.

Fig. 6.2 and Fig. 6.3 show examples of thin slice and thick slice perfusion maps. Fig. 6.4 
shows the admission and 3-day follow-up NCCT from the same patient. The outcomes of 
infarct detection on thick slice and thin slice CTP are given in Table 6.2. All 18 thick slice true 
positives and 27 thin slice true positives were scored on the correct location. Sensitivities 
and specificities with corresponding confidence intervals for the detection of new infarctions 
are listed in Table 6.3. The sensitivity was significantly higher with thin slice assessment 
compared to thick slice assessment, 0.66 versus 0.44 respectively. Specificity was slightly 
higher but not statistically different with thick slice assessment compared to thin slice 
assessment, 0.90 versus 0.88 respectively.

CBV CBF MTT TTP

Fig. 6.2: Thin slice perfusion maps of a deep small volume stroke. Axial (top row) and coronal 
(bottom row) cross sections at the level of a deep small volume stroke (circle) near the thalamus. 
Fig. 6.4 shows the infarct on 3-day follow-up non-contrast CT.
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CBV CBF MTT TTP

Fig. 6.3: Thick slice perfusion maps of a deep small volume stroke. Axial (top row) and coronal 
(bottom row) cross sections at the level of a deep small volume stroke (circle) near the thalamus. 
Although the slice positions and window/level settings are equal to those of Fig. 6.2, the contrast 
between the lesion and background is much lower. Fig. 6.4 shows the infarct on 3-day follow-up 
non-contrast CT.

a. b.

Fig. 6.4: Admission (a) and 3-day follow-up (b) non-contrast CT of a deep small volume stroke. 
Axial cross section (5 mm slice thickness) at the level of a deep small volume stroke (hypodense 
area in circle) near the thalamus. These images show the same patient as in Fig. 6.2 and Fig. 6.3.

Table 6.2: Performance of infarct detection.

New stroke No new stroke Total

Deficit detected Thick slice CTP
Thin slice CTP

18 (44%)
27 (66%)

8 (10%)
10 (12%)

26 (21%)
37 (30%)

No deficit detected Thick slice CTP
Thin slice CTP

23 (56%)
14 (34%)

74 (90%)
72 (88%)

97 (79%)
86 (70%)

Total  41 (100%) 82 (100%) 123 (100%)
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Table 6.3: Association measurements.

Sensitivity (95% CI) Specificity (95% CI)
Thick slice CTP 0.44 (0.29, 0.59) 0.90 (0.83, 0.96)
Thin slice CTP 0.66 (0.51, 0.78) 0.88 (0.78, 0.94)
p-value 0.01* 0.69

McNemar’s χ2 test for paired nominal data was used to compare sensitivity and specificity. *p < 0.05.

6.4 DISCUSSION

Reliable and early detection of small volume infarctions is important to improve treatment 
decision making.131 The aim of this study was therefore to investigate the diagnostic value 
of thin slice CTP assessment compared to thick slice CTP evaluation in de detection of small 
volume infarctions. To our knowledge, this is the first study to investigate the additional 
diagnostic value of thin slice CTP assessment. This study found a 1.5× higher sensitivity for 
the detection of small volume strokes with the use of thin slice CTP, as compared to thick 
slice CTP. The specificity was not significantly different. Relatively low diagnostic detection 
rates were found for both thick slice and thin slice assessment. This is in accordance with 
other articles that studied the diagnostic properties of CTP in the detection of lacunar 
strokes and other types of small volume strokes.37,50

Although 15 to 25% of all strokes should be small volume strokes, just 12% of the stroke 
patients in the DUST study had an infarct size <20 mm (Fig. 6.1). One possible explanation is 
that some minor strokes were not included in DUST because of the stroke severity inclusion 
criterion; a National Institutes of Health Stroke Scale (NIHSS) score ≥2, or 1 if an indication 
for rt-PA therapy is present. Other possible explanations of this bias are that patients with 
minor stroke symptoms and/or quick recovery did not always undergo follow-up NCCT and 
some infarcts on follow-up NCCT may not have been detected, which are likely to be small 
volume strokes.

In this study patients were excluded if the ischemic area was outside the volume imaged 
in the admission CTP scan. This way we investigated the sole diagnostic properties on the 
detection of small volume infarction, without these false negatives influencing our results. 
This means the false negative results in our study were either caused by limited spatial 
resolution, as in the example in Fig. 6.3, or by the presence of image noise obscuring the 
perfusion deficit. In thick slice assessment limited spatial resolution can cause difficulties in 
infarct detection, because small volume infarcts can be missed due to partial volume effects. 
The problem of noise obscuring small volume strokes is most prominent in the cortical 
regions, where perfusion is rather heterogeneous. More noise reduction can be achieved 
by increasing filter strength, but then small volume infarctions could be filtered out as well.
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False positives were either caused by image noise (in both thick slice and thin slice data), 
or caused by transient ischemia. In transient ischemia, reperfusion may occur spontaneously 
or as a result of thrombolytic treatment. The number of false positives was slightly higher 
when using thin slice CTP data, causing a lower specificity. Just as small infarcts can be 
missed due to partial volume effects on thick slice CTP, small false positive defects on thin-
slice CTP could also become less visible on thick slice CTP. Transient ischemia will cause false 
positives in both thick slice and thin slice CTP data and is therefore less likely to explain the 
difference in false positives.

Despite the previously mentioned difficulties in CTP assessment, a strength of this study 
is the randomization and blinding for both clinical and imaging parameters. In a case-control 
study of a condition with low incidence (12%), this is the best way to assess the acquired 
data. A limitation of this study is the relatively small number of cases, which is caused by 
the lack of thin slice CTP data in the majority of patients with small volume infarction. 
Standardization of thin slice CTP acquisition in stroke patients could enable the acquisition 
of more dependable results.

Diffusion-weighted MR imaging (DWI) is still considered the gold standard for detection 
of small vessel infarctions.60,115 Several studies showed that CTP cannot yet predict small 
ischemic lesions as well as MRI.52,57 However, MRI has certain disadvantages as well, as MRI 
is not always available in emergency situations and contraindications for MRI are substantial 
drawbacks in acute care.30

6.5 CONCLUSIONS

Thin slice CTP improves the detection of small ischemic lesions in patients with suspected 
acute ischemic stroke without a visible occlusion on CTA. Although DWI still performs better 
in detecting small lesions, improvements in CTP reconstruction and filtering might enhance 
the performance of CTP.
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7.1 SUMMARY

Timely thrombolytic therapy can improve clinical outcome in acute ischemic stroke patients. 
However, the risk/benefit ratio of the therapy not only depends on time, but also on the size 
and location of the infarcted and salvageable tissue regions, and on the risk of developing 
hemorrhagic transformation (HT). Although CT perfusion (CTP) imaging enables rapid 
diagnosis and prognosis of ischemic stroke, current CTP analysis methods have several 
shortcomings. The research presented in this thesis aims to develop quantitative analysis 
methods that could increase the effectiveness of CTP imaging in selecting patients for 
thrombolytic therapy.

In CTP imaging, a series of scans is acquired that tracks a contrast bolus passage through 
the tissue over time. By means of tracer kinetic analysis, a number of informative perfusion 
maps can be extracted. These maps generally include cerebral blood volume (CBV), cerebral 
blood flow (CBF), mean transit time (MTT), and time-to-peak (TTP). Extending the duration 
of CTP imaging may allow measuring vascular permeability. Since permeability due to blood-
brain-barrier damage is a potential predictor for HT, CTP imaging may not only be used for 
quantifying perfusion, but also for estimating the risk on developing HT.

This thesis presents a fast model-based analysis method that has important advantages 
over the current state-of-the-art method, block-circulant singular value decomposition 
(bSVD), notably improved robustness to local tracer delay, fewer tuning parameters, and 
extensibility to permeability estimation. In Chapter 2 this method is compared with bSVD 
and with a commercial SVD-based method for CT perfusion analysis. The three methods 
were evaluated by means of a digital perfusion phantom and with the aid of 50 clinical 
CT perfusion scans. All methods showed high correlation with the ground truth in the 
phantom. In the clinical scans, the perfusion maps of the model-based method showed 
higher correlation with bSVD than the maps from the commercial method. Furthermore, 
it was shown that the model-based estimates are more robust to noise and truncation 
than both the bSVD and commercial method. These findings suggest that the model-based 
method could be a viable alternative to current methods.

Permeability is commonly estimated by means of Patlak analysis, which applies linearized 
regression to CT perfusion data. Applying more elaborate kinetic models by means of 
non-linear regression (NLR) may improve precision, but this is more time-consuming and 
therefore less appropriate in an acute stroke setting. The study described in Chapter 3 
compared our fast, simplified model-based method to variations on Patlak analysis and 
other NLR methods. Confidence intervals for the permeability estimates were evaluated 
using simulated CT time-attenuation curves and clinical data from 20 patients. The NLR 
methods yielded significantly more reliable estimates than Patlak analysis, but took up to 
12× longer to calculate. The simplified model-based method was approximately 4× faster 
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than other NLR methods, while maintaining the same confidence intervals. It was concluded 
that the simplified model-based method is a new, reliable way to estimate permeability in 
stroke, fast enough for clinical application in an acute setting.

Chapter 4 aimed to assess whether the prediction of HT can be improved by measuring 
vascular permeability using the novel fast model-based method instead of using Patlak 
analysis. 20 patients with HT on follow-up imaging and 40 patients without HT were selected. 
By means of Mann-Whitney U tests and receiver operating characteristic (ROC) analyses, 
the discriminative power of different perfusion and permeability parameters was assessed. 
Permeability values measured with the model-based method were found significantly 
higher in the patients who developed HT as compared with those who did not, whereas the 
values measured with standard Patlak analysis were not. The relative permeability-surface 
area product (rPS), measured with the model-based method, had the highest discriminative 
power. ROC analysis of rPS showed an area under the curve (AUC) of 0.75.

In Chapter 5 the influence of slice thickness on CT perfusion analysis is investigated. 
Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (≥5 
mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, 
and noise level. Thin slice reconstruction may suffer less from partial volume effects, and 
thus yield more accurate quantitative results with increased resolution. In addition they may 
allow for detection of smaller lesions. Before clinical application, the impact of thin slices on 
CTP analysis should be investigated. Average estimates of CBV, CBF, MTT, and permeability-
surface area product (PS) were compared between 4 slice thicknesses (0.8 to 9.6 mm) in 50 
patient studies. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than 
with 4.8 mm slices. It was found that partial volume effects in large vessels lead to these 
biases; if the AIF and motion correction were based on thin slices prior to reconstruction of 
thicker slices, these differences reduced to 3%, 4% and 3%. However, current thresholds, 
which are mostly based on absolute values on 5 to 10 mm slices, need to be revised for thin 
slice use before clinical application is possible. The effect of slice thickness on relative values 
(i.e. ipsi-lateral versus contra-lateral) was very small. The findings suggest that thin slice 
reconstruction for CTP is feasible, but the effects of reconstruction slice thickness should 
be taken into account when absolute perfusion values are used for clinical decision making.

Thin slice reconstruction may aid in the detection of small lesions in CTP imaging. Chapter 
6 compared the performance of thin slice (0.8 mm) and thick slice (5 mm) parameter maps 
for the detection of small ischemic lesions. The maps from 41 cases and 82 controls without 
an infarct on follow-up non-contrast CT were randomized and evaluated for the presence 
of a focal perfusion deficit. The sensitivity of thin slice CTP was found significantly higher 
than thick slice (0.66 versus 0.44; p = 0.01), while there was no difference in specificity 
(0.88 versus 0.90; p = 0.69). Although diffusion-weighted MR imaging is still considered the 
gold standard for the detection of small ischemic lesions in acute ischemic stroke, it can be 
concluded that thin slice reconstruction improves the detection with CTP.
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7.2 GENERAL DISCUSSION

CT brain perfusion analysis has been found to improve diagnosis and treatment planning in 
acute ischemic stroke.19,26,47 Its current diagnostic value above non-contrast CT and CTA is, 
however, not overwhelming. And the most significant advantages of CT over MR imaging in 
acute stroke are the availability of CT scanners in emergency departments, contraindications 
for MR and costs, rather than diagnostic image quality. This is, however, not the end of 
the matter. CTP analysis has the potential to be more quantitative and therefore more 
reliable, but this is troubled by several factors, which are mostly due to a low signal-to-
noise ratio (SNR). The challenge is to achieve good quality results at an acceptable radiation 
dose. The research presented in this thesis shows that, besides the developments in CT 
acquisition and reconstruction, considerable benefits can achieved in the analysis of CT 
brain perfusion scans. Because of the ever ongoing increase in computer performance, 
more advanced analysis methods can now be used to exploit this imaging technique to 
its full potential, even in a time-critical clinical setting. At the same time other studies 
showed that dynamic CT acquisition might have more applications in stroke, such as timing-
invariant 4D-CTA, measurement of vascular hemodynamics, or contrast enhanced thrombus 
characterization.74,106

The studies presented found that the theoretical advantages of using a model-based 
method for CT brain perfusion analysis pay off in practice. Least-squares fitting of a 
perfusion model does not require regularization, which keeps it simple in use but robust 
to noise and quantitative in nature. It allows of extrapolation, and is therefore robust to 
truncation of attenuation curves (as shown in Section 2.3.3). It was found that model-based 
analysis performs equally to state-of-the art delay-insensitive SVD-based methods in terms 
of Pearson correlation to a digital phantom (Section 2.3.1), but provides better matching 
physiological values in clinical data (Section 2.4.4). Further clinical study is required to 
investigate its effectiveness in selecting patients for rt-PA treatment.

The flexible perfusion model can also be extended to allow measuring permeability, 
as shown in Chapter 3. It was found that the use of this unified model, describing both 
perfusion and permeability, is more reliable than measuring permeability through linearized 
regression by means of a standard Patlak plot. A unified model allows including all samples 
of the attenuation curve for estimating permeability, whereas the currently used Patlak 
analysis excludes the first pass bolus since it requires steady arterial tracer concentration. As 
a result, standard Patlak analysis was not able to predict hemorrhagic transformation (HT) 
in stroke, whereas model-based analysis was able to discriminate between HT and non-HT 
groups, as shown in Chapter 4. The relative permeability-surface area product was found 
to have the highest predictive value of all permeability and perfusion parameters (Section 
4.3). Although this is a significant improvement over Patlak analysis, the diagnostic value 
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of HT prediction is still quite low. A larger number of acquisitions and longer duration of 
the extended scan could simply improve this diagnostic value, but the improvement would 
probably not counterbalance the additional patient burden due to increased duration and 
radiation exposure. Model-based analysis, however, allows of using more complex, non-
uniform acquisition protocols that could more efficiently distribute the radiation exposure 
and information density throughout the acquired frames. This concept, which deserves 
further investigation, is discussed in Section 7.2.2. The inclusion of multiple perfusion 
parameters as well as clinical and demographic data in a multivariate analysis might also 
improve HT prediction, but investigating this requires a larger stroke cohort.

It was found that the perfusion model does not need to be complex in order to provide 
good results. A physiologically accurate shape might give perfusion values with a higher 
accuracy, but it will probably only have a minor effect on the precision. A simple box-shaped 
impulse response function (IRF) allows omitting convolution, significantly increasing the 
computational performance (Sections 3.2.3 and 3.2.7). A fast method gives the opportunity 
to assess thin-slice CTP scans in an acute clinical setting, utilizing the CT hardware to its full 
extent. Though thin slices show far higher noise levels than thick slices, bilateral filtering 
enables reducing the noise to equal levels while maintaining the advantage of thin slices, 
providing more detail and less partial volume effects (Section 2.2.5). If the arterial input 
function (AIF) is not affected by partial volume, then slice thickness is of minor influence 
on absolute perfusion values (Chapter 5). However, since current thresholds on absolute 
values were established using thick-slice AIFs and VOFs, these might need revision before 
application to thin-slice scans. Thin slice CTP analysis was shown to be feasible, and it was 
found that the sensitivity for detecting small volume strokes (<20 mm) was 1.5× higher when 
using 0.8 mm slice thickness instead of 5 mm, the current clinical standard (Chapter 6).

It is also noteworthy that the techniques described in this thesis are potentially applicable 
to other functional imaging techniques, pathologies, and organs as well. One could think of 
tumor assessment using DCE-MR or PET, even though the SNR and perfusion kinetics might 
differ. The model-based NLR methods for permeability analysis have been successfully 
applied to CT perfusion imaging of laryngeal carcinoma (Fig. 7.1).107 Since cancerous tissue 
can be highly permeable, the perfusion models allowing reversible leakage (Eq. 3.7 and Eq. 
3.10) were found to be preferable for tumor delineation and characterization.
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Fig. 7.1: Model-based CT perfusion analysis in laryngeal carcinoma. From left to right, the images 
in the top row show an axial non-contrast CT at the level of the larynx, and parameter maps of 
respectively the delay, blood volume, and permeability (Ktrans). The bottom-left image shows a 
probability map highlighting pixels that are likely to be tumor; the probability was calculated 
based on the three parameter maps above. The bottom-right image shows a stained histological 
section with the manually delineated tumor (black line). Oosterbroek et al. (2015) found that 
model-based NLR analysis with a fixed transit time was preferable for tumor delineation and 
characterization.107

7.2.1 Limitations
A prominent limitation of this research is the lack of verifiable ground truth of the clinical 
perfusion maps. A digital perfusion phantom does provide a ground truth, but the true shape 
of a physiological impulse response function (IRF) is unknown. It is unlikely, however, that 
there will be a wide variety in shape in physiological IRFs, apart from scaling of height and 
width due to blood volume and velocity. Since the presented model-based NLR method was 
robust to noise and truncation, and showed superior R2 values and correlation coefficients 
for each IRF shape in the digital phantom (Table 2.1), a yet unknown scaling factor would be 
sufficient to provide true quantitative perfusion values.

Despite the fact that the NLR method improves upon Patlak analysis, the power for 
predicting hemorrhagic transformation from CT perfusion imaging is still very small. There 
is however room for improvement. Permeability estimates could be improved by increasing 
the SNR and extending scan duration, but also by improving the detector calibration. It 
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was found that the permeability maps of approximately 20% of the clinical CTP scans were 
affected by ring-shaped artifacts caused by poor detector calibration in combination with 
head movement. Enhanced or more frequent calibration could have prevented this issue. A 
fourth generation scanner design, having a fixed 360° detector ring instead of a rotating 60° 
detector array, might also reduce this issue.27

Although iterative tomographic reconstruction methods have been available for 
some years, most of the CTP scans in the DUST study were reconstructed using filtered 
backprojection. This can be considered a limitation of the study. Currently available model-
based iterative reconstruction methods significantly increase SNR as compared to filtered 
backprojection, allowing up to 80% dose reduction with similar or even superior image 
qualtiy.144,145 Since low SNR is a major issue in CTP analysis, it is to expect that iterative 
reconstruction would have improved the quality of the perfusion maps significantly.

7.2.2 Future Perspectives in Functional CT Imaging
Mainly because of the superior cost-effectiveness of CT versus MR scanning in acute stroke, 
there is no movement towards replacing functional CT by functional MR imaging.139 Even if 
MR imaging would become cheaper and more widely accessible in emergency departments, 
contraindications will prohibit MR imaging in acute cases. These contraindications are 
frequently unknown in an acute setting, but present in 10% of stroke patients.7 CT imaging 
will therefore most probably remain the method of choice in acute stroke imaging in the 
near future.

Main trends in CT hardware development are increase in acquisition speed and axial 
coverage. Full brain coverage (≥12 cm) prevents missing infarcts that lie outside the imaged 
field-of-view (Fig. 1.8). Full brain coverage also enables extraction of clinically relevant NCCT 
and 4D-CTA from CTP. An even larger coverage (≥30 cm) would allow simultaneous 4D-CTA 
imaging of both head and neck.74 This could reduce acquisition time, as well as radiation and 
contrast agent dose, as compared to separate acquisition of NCCT, CTA, and CTP.

Advances in computational speed as well as in CTP filtering and analysis allow analysis of 
large-coverage, thin slice perfusion scans in the acute stroke setting. The 5 to 10-fold increase 
in data may however require the radiologists to be assisted by advanced computer-aided 
diagnosis (CAD). Like in other (imaging) fields, CAD techniques that integrate and simplify 
data from multiple sources and along multiple dimensions, go along with the increase in 
data. The output of CAD in stroke could look like the summary maps as shown in Fig. 1.7d.

The bilateral filters used in this research share information between acquisitions, which 
greatly improves upon separate filtering of the acquisitions. Similarly, information between 
acquisitions could in theory be shared in earlier step in the chain of CTP analysis; i.e. in an 
iterative reconstruction algorithm tailored to CTP reconstruction. Such an approach would 
essentially treat the CTP data as a whole, instead of a collection of separately acquired 
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volumes. Sharing this information could be done without prior knowledge of a perfusion 
model, as in the bilateral filters, but also by incorporating the model. Analogous to the 
system-, noise-, and prior-models used in model based iterative reconstruction (MBIR), 
incorporating prior knowledge about tissue perfusion could further enhance the SNR and 
reduce artifacts.

Because of performance improvements in CT hardware, spectral CT also regained focus 
recently. Dual energy imaging was already under investigation in the late 1970s and 1980s, 
but development stalled due to hardware limitations. This CT imaging technique allows 
decomposition of a mixture into two materials, and may therefore be used to estimate e.g. 
the iodine concentration in a voxel.62 It reduces beam hardening artefacts, and it enhances 
the contrast between gray and white matter, which in its turn might improve bilateral filtering 
and reduce radiation dose. It may further reduce radiation dose in CTP as it theoretically 
allows extraction of enhancement curves without the need for estimating a baseline CT 
value.

A more recent improvement upon dual-energy CT is single-photon counting CT. Whereas 
current energy integrating detectors (EIDs) measure the sum of signals from X-ray photons, 
but photon counting detectors (PCDs) are able to distinguish individual photons. Recent 
PCDs with energy discrimination capabilities are able to count the number of X-ray photons 
falling in two to eight energy windows.135 Novel CT hardware like this could further improve 
SNR and spatial resolution, reduce artifacts, and give better discrimination between tissue 
types.

Radiation dose can be reduced by using novel hardware and software as discussed 
above. But, at an even more fundamental level, the X-ray radiation could be distributed 
more efficiently in time and in space; i.e. dosage could be increased at certain locations and 
at certain time points that contribute the most to the result, and lowered in other cases. 
Recent CT scanners allow dose reduction through automatic tube current modulation. 
This technique equalizes quantum noise between projections by increasing tube current 
at radiodense projections and decreasing current at radiolucent projections. Similarly, 
acquisition frequency and/or tube current could be increased in acquisitions where the 
information density in the TACs is the highest; i.e. during onset, peak, and decline of 
the bolus passage, but also during the frames before bolus arrival that are essential for 
estimating the offset (Fig. 7.2). Some of the latest CT scanners allow programming such 
a non-uniform acquisition protocol (Fig. 7.3), which is also advised by the AAPM.1 The 
proposed model-based methods are suited for such protocols, because they intrinsically 
enable efficient analysis of irregular sampled TACs as well as alternating tube current by 
weighing the regression.
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Fig. 7.2: Sensitivity of the perfusion parameters to each of the acquisitions in a CTP series. 
Figure a shows the enhancement curve of the tissue used to calculate the sensitivity. This curve 
was derived from the AIF in Fig. 1.9 by using an artificial impulse response function. The bar charts 
b to e show the relative sensitivity of the cerebral blood volume (CBV), cerebral blood flow (CBF), 
mean transit time (MTT), and permeability (Ktrans) to Gaussian noise on each of the time points of 
the attenuation curve. The sensitivity of a parameter at an acquisition time-point was measured 
as its standard deviation in 5000 noise realizations. The sensitivity to the extended acquisitions 
(beyond 50 s) are represented by dark blue bars.
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Fig. 7.3: CTP scan protocol with varying tube current and acquisition interval. This is the scan 
protocol for the Aquilion ONE (Toshiba Medical Systems, Otawara, Japan) as advised by the AAPM. 
Each green bar represents a volume scan. The tube current is increased for the arterial portion 
of the scan to provide improved image quality for the perfusion maps. Reprint from AAPM CTP 
protocol guide.1

The technological improvements in CTP software and imaging technology can be exploited 
in different ways to be in benefit of the patients. On the one hand, improved, but more 
expensive technology can be used to achieve better image quality, larger coverage, and 
higher resolution in centers that can afford such equipment. On the other hand, the 
improvements may lead to the development of more flexible, low cost CTP solutions that 
are capable of delivering acceptable image quality at a fraction of the price. Such solutions, 
inspired on e.g. the CereTom small bore CT scanner (Samsung NeuroLogica Corporation, 
Boston, USA; Fig. 7.1) or the Verity flat-panel cone beam CT (Planmed Oy, Helsinki, Finland), 
could aid in making acute stroke imaging available in much more emergency departments, 
raising the level of acute stroke care for a much wider public.

Fig. 7.4: A small-bore CT scanner inside a mobile stroke unit. The University of Texas Health 
Science Center takes the CT scanner to the patient by equipping an ambulance with a CereTom 
(Samsung NeuroLogica Corporation, Boston, USA).
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7.3 CONCLUSION

The proposed model-based method for CT brain perfusion analysis improves on the 
current commercial and academic state-of-the-art methods. By its simplicity and flexibility, 
it provides CBF, CBV, and MTT estimates superior to bSVD, and permeability estimates 
superior to Patlak analysis. Analysis by NLR using a simple, box-shaped IRF was found to be 
fast enough for use in a time-critical clinical setting. Even model-based quantitative analysis 
of thin slice CTP scans is feasible, improving the sensitivity in detection of small volume 
strokes, although this requires revision of currently used thresholds on absolute CBV, CBV, or 
MTT values for infarct and penumbra delineation. The advances in CTP analysis will in time 
provide more accurate and more in-depth clinical assessment possibilities for patients with 
acute ischemic stroke.
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Patiënten met een acuut herseninfarct zijn gebaat bij een snelle behandeling. Hoe eerder 
stolsel-oplossende medicatie wordt toegediend, hoe groter de kans op goed herstel. In enkele 
gevallen kan deze behandeling echter als bijwerking een hersenbloeding veroorzaken. Als 
de behandeling te lang wordt uitgesteld, wordt de kans op goed herstel kleiner dan de kans 
op het veroorzaken van een bloeding. De verhouding tussen deze kansen hangt echter niet 
alleen af van de tijd, maar ook van de locatie en de omvang van de infarctkern en van het 
omringende aangedane weefsel. Bij het vaststellen hiervan speelt medische beeldvorming 
een belangrijke rol.

Bij het stellen van een diagnose bij patiënten met aanwijzingen voor een beroerte gaat 
de voorkeur voor de beeldvormende techniek meestal uit naar CT. Deze techniek is namelijk 
praktisch in gebruik en in de meeste ziekenhuizen is er een CT scanner beschikbaar voor 
acute situaties. Nadat een hersenbloeding is uitgesloten, die juist verergerd zal worden 
door het toedienen van stolsel-oplossende medicatie, kan met een aansluitende perfusie 
CT-scan (CTP) het infarct in beeld worden gebracht. CTP kan dus helpen bij het selecteren 
van patiënten voor behandeling. De huidige methoden voor het analyseren van deze 
perfusiescans hebben echter vele tekortkomingen en halen zeker niet het onderste uit de 
kan. Het onderzoek in dit proefschrift is gericht op het ontwikkelen van nieuwe kwantitatieve 
analysemethoden voor CTP. Deze methoden zouden de effectiviteit van CTP in het selecteren 
van patiënten kunnen verbeteren.

Tijdens een CTP-scan wordt er gedurende 50 seconden, met intervallen van 2 seconden, 
herhaaldelijk een 3D afbeelding van de hersenen gemaakt. Doordat er aan het begin een 
bolus met contrastmiddel wordt geïnjecteerd, lichten de bloedvaten en het hersenweefsel 
gedurende de scan als het ware op, om daarna weer uit te doven (Fig. 9.1). Door het ‘oplichten 
en uitdoven’ te analyseren is het mogelijk om van deze scan kwantitatieve afbeeldingen 
te maken van bijvoorbeeld het bloedvolume, het debiet en de doorstroomtijd in het 
hersenweefsel (Fig. 9.2). Door nog langer dan 50 seconden te scannen is het zelfs mogelijk 
om een meting te doen aan het ‘lekken’ van bloed uit de kleinste bloedvaatjes. Deze meting 
zou kunnen helpen om het risico op een bloeding, als bijwerking van de behandeling, beter 
in te schatten. Doordat de stralingsbelasting voor de patiënt niet te hoog mag zijn, hebben 
de scans relatief veel ruis, wat de analyse bemoeilijkt.
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Fig. 9.1: Een aantal afbeeldingen uit een perfusie CT scan. Dit zijn bovenaanzichten van een 
5 mm dikke plak halverwege de hersenen. Achtereenvolgens lichten de grote slagaderen op (2e 
afbeelding), gevolgd door de kleine bloedvaten en het weefsel (3e afbeelding) en de aderen (4e 
afbeelding).

In dit proefschrift wordt een CTP-analyse methode gepresenteerd die de perfusie van het 
hersenweefsel (het ‘oplichten en uitdoven’ in de scan) beschrijft aan de hand van een 
simpel doch doeltreffend wiskundig model. De bovengenoemde perfusiewaarden, zoals 
het bloedvolume, zijn parameters in dit model. In hoofdstuk 2 werd met behulp van een 
computersimulatie en klinische scans gedemonstreerd dat het gebruik van deze methode 
betere resultaten oplevert dan de huidige academische en commerciële methoden. Deze 
academische en commerciële methoden maken geen gebruik van een perfusiemodel.

De ‘lek’ uit de kleine bloedvaatjes wordt doorgaans gemeten met een simpele methode 
die geen rekening houdt met het debiet en de doorstroomtijd in het hersenweefsel. Het 
gebruik van een complex wiskundig perfusiemodel, dat al deze parameters wél beschrijft, 
zou de nauwkeurigheid van de meting kunnen verbeteren. Een dergelijke methode is echter 
nogal tijdrovend en daarom niet geschikt voor gebruik in acute situaties. In hoofdstuk 3 
werd een versimpeld model geïntroduceerd dat op een makkelijkere en dus snellere 
manier toegepast kan worden. Aan de hand van computersimulaties en klinische scans 
werd bewezen dat het gebruik van dit model inderdaad nauwkeuriger is en bovendien snel 
genoeg voor klinische toepassing.

In hoofdstuk 4 is het versimpelde model uit hoofdstuk 3 gebruikt om, aan de hand van 
de ‘lek’, een uitspraak te doen over de kans op het krijgen van een bloeding na behandeling. 
Hiervoor zijn de metingen aan 20 CTP scans van patiënten die na de behandeling een 
bloeding kregen, vergeleken met 40 CTP scans van patiënten die geen bloeding kregen. Het 
bleek dat een lek-parameter uit het nieuwe, versimpelde model het grootste verschil liet 
zien tussen beide groepen. Desondanks is de voorspellende waarde van deze parameter 
helaas nog aan de lage kant.

3D CTP scans bestaan uit stapeling van 2D plakken. In hoofdstuk 5 is er gekeken naar 
de invloed van de plakdikte en daarmee ook het aantal plakken. Ondanks dat moderne CT 
scanners plakken kunnen maken van minder dan 1 mm dikte, wordt er in de huidige klinische 
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werkwijze een plakdikte van 5 of zelfs 10  mm gebruikt. Dikkere plakken zorgen namelijk 
voor minder data en tevens een lager ruisniveau. Door gebruik te maken van slimme filters 
en betere perfusie-analyse methoden, kan echter hetzelfde ruisniveau worden bereikt op 
dunnere plakken (Fig. 9.2). Dit geeft scherpere afbeeldingen en betere resultaten. Hierdoor is 
het wellicht mogelijk om kleinere infarcten waar te nemen. De studie in hoofdstuk 5 liet zien 
dat deze werkwijze goed mogelijk is, maar dat het wel een verschuiving in de meetresultaten 
veroorzaakt. Deze verschuiving zorgt weliswaar voor resultaten die realistischer zijn, maar 
om ze te kunnen gebruiken is het noodzakelijk om de huidige klinische drempelwaarden op 
deze parameters te herzien.

Gefilterde CTP scan Bloedvolume
(CBV)

Debiet
(CBF)

Doorstroomtijd
(MTT)

Lek
(PS)

Fig. 9.2: Kwantitatieve afbeeldingen van enkele parameters uit het perfusiemodel. De meest linker 
afbeeldingen laten een gefilterde perfusiescan met een plakdikte van 0.8 mm zien (bovenaanzicht 
en zijaanzicht). De overige afbeeldingen geven de parameters uit het perfusiemodel weer. Deze 
parameters zijn berekend voor elke pixel in de scan. Zwart en blauw zijn lage waarden, groen en 
rood zijn hoge waarden. De hersenschors, de buitenste laag van de hersenen, verbruikt meer 
energie en heeft daarom een hoger bloedvolume en debiet. Het infarct is duidelijk te herkennen 
aan de verhoogde doorstroomtijd (het rode gebied) en het daarmee lage debiet. De kern van het 
infarct laat tevens een verlaagd bloedvolume zien.

Dat het gebruik van de werkwijze met dunne plakken leidt tot een verbetering van de 
detectie van kleine infarcten, werd bewezen in hoofdstuk 6. In dit onderzoek zijn, in 
willekeurige volgorde, 41 CTP scans van patiënten met een zeer klein infarct en 82 controle-
scans bekeken. Zowel met 0.8 mm als met 4.8 mm plakdikte. Op de 0.8 mm scans bleek de 
radioloog 66% van de infarcten te hebben gevonden, tegenover slechts 44% op de 4.8 mm 
scans. Het percentage terecht negatieve bevindingen lag in beide gevallen rond de 90%.

Er bestaat twijfel of CTP in zijn huidige vorm wel voldoende toegevoegde waarde heeft 
bij het behandelen van een acuut herseninfarct. Samengevat kan er uit dit werk echter 
geconcludeerd worden dat deze beeldvormende techniek de potentie heeft om nauwkeuriger 
en kwantitatiever te worden dan dat hij nu is. De uitdaging zit in het verkrijgen van goede 
resultaten met een minimale stralingsbelasting voor de patiënt. Door de toename in kennis 
én in computerkracht is het mogelijk om geavanceerde, modelgebaseerde analysemethoden 
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te gebruiken die wél het onderste uit de kan weten te halen. Al deze verbeteringen zullen in 
de loop van de tijd bijdragen aan een betere behandeling van herseninfarcten.
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Flink wat mensen hebben, ieder op eigen wijze, hun steentje bijgedragen aan dit proefschrift. 
Hierbij wil ik een aantal van hen bedanken.

Om te beginnen wil ik mijn co-promotoren, dr. ir. Hugo de Jong en dr. Birgitta Velthuis, en 
mijn promotor, prof. dr. ir. Max Viergever, bedanken. Hugo, jouw openheid en je betrokken 
en doelgerichte begeleiding van mijn onderzoek heb ik erg gewaardeerd. Ik vond het prettig 
dat je, ondanks je drukke agenda, altijd bereikbaar was voor een goed, informeel gesprek. 
Birgitta, zonder jouw bijdrage hadden er enkel computersimulaties in dit proefschrift 
gestaan. Bedankt voor je begeleiding en advies op radiologisch gebied. Max, ik vond je 
betrokkenheid en de nauwgezetheid van je reviews fascinerend, zeker gezien het grote 
aantal promoties dit jaar.

De leden van de beoordelingscommissie, prof. dr. G.J. Biessels, prof. dr. J. Hendrikse, 
prof. dr. B.W. Raaymakers, prof. dr. W.M. Prokop en prof. dr. E.T. van Bavel, wil ik bedanken 
voor hun bereidheid tot het beoordelen van dit proefschrift.

Beste dr. Jan Willem Dankbaar, bedankt voor al je advies en invulling op radiologisch 
gebied. Jij, en ook Alexander, hebben me daarnaast ontzettend geholpen door het scoren 
van alle scans. Het zou mooi zijn als we de komende jaren samen nog wat meer onderzoeken 
kunnen opzetten. Pieter, ook met jou heb ik fijn samen kunnen werken.

De nog niet genoemde betrokkenen bij het AIRSPACE project, dr. Henk Marquering, dr. 
Wiro Niessen, dr. Mariëlle Philippens, dr. Julien Milles, dr. ir. Jurgen de Hart, Alan, Jaap, Emilie, 
Fahmi, Renan, Luca en de mensen van STW, wil ik bedanken voor de prettige samenwerking 
en verbreding van ons onderzoek. Het is mooi om te zien hoe nieuw ontwikkelde methoden 
hun weg vinden naar ander onderzoek of naar de praktijk.

Dr. Kohsuke Kudo, your contributions to the second chapter were very much appreciated. 
Thank you, not only for your help with the digital perfusion phantom, but also for your many 
valuable contributions to brain perfusion imaging research in general.

Andere namen die ook zeker niet mogen ontbreken zijn die van mijn kamergenoten. 
Dat zijn, in chronologische volgorde, Mattijs, Alan, Casper, Jaap, Robert, Sandra, Remco en 
Wilco. Bedankt voor de altijd uitstekende sfeer en alle goddelijke kopjes espresso. Alan, nu 
zal je zo onderhand toch wel een goed woordje Nederlands moeten spreken; bedankt voor 
het prettige en ontspannen samenwerken in de eerste jaren van mijn onderzoek. Casper, 
het doet me een plezier dat ik jou, naast het klimmen, de komende jaren nog regelmatig als 
klifio zal tegenkomen in ons UMC. Jaap, jouw enthousiasme voor fancy algoritmen, brute 
computers en ongebruikelijke woorden is jouw kracht; laat dat enthousiasme zijn werk 
doen.

De heren klinisch fysici, Arnold Schilham, Bart Vermolen, Rob van Rooij en Bastiaan van 
Nierop, wil ik bedanken voor alle gezellige lunches, koffie, ijs, kattenfilmpjes en gesprekken 
van hoog niveau aan de koffietafel. Ook gaat mijn dank uit naar alle laboranten die onze 
koffie dikwijls aanvulden met een heerlijk stuk taart.
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Hans, Gitta en alle oud-collega’s van SVI wil ik bedanken voor de leuke afwisseling in 
de eerste jaren van mijn promotie. Tijdens mijn maandelijkse tweedaagse uitstapje naar 
Hilversum voelde het vaak alsof ik nooit weg was geweest. De sfeer was dan als vanouds en 
vaak werkte het ook inspirerend om even met een ander onderwerp bezig te zijn.

Ook wil ik graag mijn familie en vrienden bedanken. In het bijzonder Joris, Marcel en 
Wouter. Niet alleen voor onze prachtige studietijd in Eindhoven, maar ook omdat jullie, Joris 
en Marcel, als paranimf willen optreden. Ook kan ik wel kan zeggen dat jullie, Marcel en 
Wouter, mij geïnspireerd hebben om toch nog aan een promotieonderzoek te beginnen.
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