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Abstract

Purpose of the present study was to test a conceptual model of relations among achievement goal
orientation, self-efficacy, cognitive processing, and achievement of students working within a partic-
ular collaborative task context. The task involved a collaborative computer-based modeling task. In
order to test the model, group measures of mastery-approach goal orientation, performance-avoid-
ance goal orientation, self-efficacy, and achievement were employed. Students’ cognitive processing
was assessed using an online log-file measure. As predicted, mastery-approach goal orientation had a
significant positive effect on achievement, which was mediated through students’ use of deep pro-
cesses. No significant relationships could be found between performance-avoidance goal orientation
and surface processing and between surface processing and achievement. Results are discussed with
respect to general theoretical implications and lead to suggestions for the design of appropriate
scaffolds.
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1. Introduction

Current models of self-regulated learning integrate motivational and cognitive elements
of learning, showing how achievement goals and learning expectancies influence students’
use of cognitive processes (Covington, 2000; Nicholls, Patashnick, Cheung, Thorkildsen,
& Lauer, 1989; Pintrich, 2003; Schunk, 2005; Schunk & Zimmerman, 2001). The basic
assumption of these models is that the achievement motives and the intentions that guide
students’ academic behavior determine to a great extent the types of cognitive processes
they employ in various learning situations. The learning outcome (i.e., achievement) is
dependent on how deep students process information (Craik & Lockhart, 1972; Entwistle,
1979, 1988).

The majority of studies that have examined the consequences of students’ achieve-
ment goal orientation and self-efficacy on their processing of the learning material, con-
cern the self-reported use of cognitive processes of individual students over a complete
course or curriculum (e.g., Greene & Miller, 1996; Nolen, 1988; Pintrich, 2000). How-
ever, a great deal of learning takes place within collaborative task contexts, in which
students construct knowledge through mutual communication and shared use of repre-
sentations (Pintrich, Conley, & Kempler, 2003). The goal of the present study is to
investigate the relationships among students’ achievement goal orientation, self-efficacy,
cognitive processing, and achievement within a particular collaborative task setting. The
variables will be measured at the level of collaborating students (i.e., dyads) rather than
at the individual level. In addition, instead of using self-report questionnaires which are
traditionally employed within the field of achievement motivation, students’ cognitive
processing will be assessed by means of an online measure, based on inter-student
communication.

1.1. Achievement goal orientation and self-efficacy as predictors of cognitive processing

Many authors in the domain of motivation research have argued that the type and the
level of motivation influences students’ employment of particular cognitive processes in
learning situations (e.g., Atkinson, 1964; Covington, 2000; Nicholls et al., 1989; Pintrich
& Schrauben, 1992; Wolters, 1996). Two motivational factors that are presumed to be
important predictors of students’ cognitive processing are: (a) achievement goal orienta-
tion and (b) self-efficacy.

Broadly defined, achievement goal orientation reflects the reasons and the purposes of
students to engage in achievement tasks. Two distinct types of achievement goal orienta-
tion are traditionally distinguished (e.g., Dweck & Leggett, 1988; Elliot, 1999; Elliott &
Dweck, 1988; Nicholls et al., 1989): mastery goal orientation and performance goal orien-
tation. Mastery goal orientation involves the belief that effort leads to improvement in per-
formance and that competence is malleable. Students who are mastery goal oriented focus
on the development of new skills and knowledge, try to elaborate on the task they are
given and attempt to reach their own learning goals. Performance goal orientation, in
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contrast, involves the belief that competence can be demonstrated by performing better
compared to peers. Students who are performance goal oriented tend to focus on attaining
normative learning goals.

Recent research on achievement goal orientation has questioned the utility and validity
of this two-goal model and proposes instead that besides the mastery-performance distinc-
tion, another dimension to consider is whether achievement goal orientations lead students
to approach or avoid a task (Elliot, 1997, 1999; Elliot & Church, 1997; Harackiewicz, Bar-
ron, Pintrich, Elliot, & Thrash, 2002). The performance goal orientation construct is bifur-
cated into a performance-approach goal orientation and a performance-avoidance goal
orientation. Students who are performance-approach oriented aim to achieve higher levels
compared to their peers and focus on demonstrating high ability, whereas students who
are performance-avoidance oriented are concerned with avoiding failure and with avoid-
ing the demonstration of low ability. Following this logic, mastery goal orientation can
also be separated into approach and avoidance goal orientations. Whereas a mastery-
approach goal orientation involves striving to develop one’s skills and abilities, to advance
one’s learning, to understand the material, or to complete a task, a mastery-avoidance goal
orientation entails focusing on avoiding misunderstandings or not learning the material.

An important issue to consider at this point is that it is ineffective for students to be
striving to master a task, if they are less convinced that they have the necessary ability
and competence to do so. Thus, the influential role of self-efficacy on task performance
must be taken into account. Self-efficacy has been defined as students’ belief regarding
their performance capabilities in a particular domain (Bandura, 1982, 1986).

Achievement goal theorists hypothesize that students who are highly mastery-approach
goal oriented attempt to gain rich insight in the given learning material and will therefore
engage in deep cognitive processing to increase their comprehension (e.g., Dweck, 1985;
Graham & Golan, 1991; Nicholls et al., 1989; Pintrich & DeGroot, 1990). Deep cognitive
processing, as described in the work of Marton and Sélj6 (1976, 1997), Ramsden (1992),
and Entwistle (1988, 2001), involves active learning processes, such as relating ideas, look-
ing for patterns and principles and attempting to integrate new information with prior
knowledge and experience. Surface cognitive processing, in contrast, entails processes
without much reflecting and involves treating the learning material as more or less unre-
lated bits of information. Surface processing does not implicate elaboration of the learning
material and leads to more restricted learning processes. Because mastery-approach goal
oriented students tend to attribute learning success to invested effort and attempt to under-
stand the learning material, they may be more likely to employ and value processes that
stress understanding, even if these processes require more effort then less elaborate pro-
cesses. In addition, self-efficacy theory and other theories on self-perception state that
self-efficacy beliefs are positively related to the use of deep processes (Schunk, 1991).

Numerous studies have demonstrated that mastery-approach goal orientation and self-
efficacy are positive predictors of reported use of deep processes (e.g., Ames & Archer,
1988; Dupeyrat & Mariné, 2005; Garcia, McCann, Turner, & Roska, 1998; McWhaw &
Abrami, 2001; Miller, Greene, Montalvo, Ravindran, & Nichols, 1996; Wolters, 1996).
In addition, some studies found that both self-efficacy and mastery-approach goal orien-
tation are indirectly related to achievement via a direct relationship with the employment
of deep processing strategies (e.g., Elliot, McGregor, & Gable, 1999; Greene & Miller,
1996; Pintrich & DeGroot, 1990). Moreover, Greene and Miller (1996), Greene, Miller,
Crowson, Duke, and Akey (2004), Meece, Blumenfeld, and Hoyle (1988), Vrugt, Oort,
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and Zeeberg (2002) found an additional positive relationship between self-efficacy and
mastery-approach goal orientation. Performance-avoidance oriented students, in contrast,
focus on the avoidance of demonstration of incompetence relative to peers. As a result,
these students resort to the employment of surface cognitive processes, which is linked
to decreases in achievement (e.g., Al-Emadi, 2001; Midgley, Kaplan, & Middleton,
2001; Schraw, Horn, Thorndike-Christ, & Bruning, 1995).

For performance-approach and mastery-avoidance goals, more variable and complex
patterns in terms of deep and surface processing can be expected, when compared to mas-
tery-approach goals and performance-avoidance goals (Elliot, 1997, 1999). Mastery-
approach goal orientation and performance-avoidance goal orientation typically represent
pure approach and pure avoidance motivation, respectively. In contrast, mastery-avoid-
ance goal orientation and performance-approach goal orientation may involve both
approach and avoidance motivational concerns (i.e., respectively, need for achievement
and fear of failure; see Elliot & Church, 1997). When, for instance, performance-approach
goals are the result of a need for achievement (i.e., congruent), the pursuit of these goals
may prompt the use of deep processes. When performance-approach goals are incongruent
with their underlying motivational foundation, the pursuit of these goals represents
approach in order to avoid something aversive. This may lead to surface processing of
the learning material. Like performance-approach goals, predictions for mastery-avoid-
ance goals are somewhat difficult to generate, since the two components of mastery-avoid-
ance goal orientation are likely to evoke a rather divergent set of processes. That is, the
mastery component of this type of goal orientation may facilitate deep processing, whereas
the avoidance component may impel surface processing. It is, thus, difficult to predict the
exact nature of the processes that will be evoked by these two types of achievement goal
orientation, as this is dependent on their motivational foundation.

Although empirical data regarding mastery-avoidance goals are not yet available (see
Pintrich et al., 2003), the association between performance-approach goals and students’
cognitive processing of the learning material has indeed been shown to be contradictory.
Some studies found that performance-approach goals are associated with surface process-
ing (Al-Emadi, 2001; Dupeyrat & Mariné, 2005; Elliot & McGregor, 2001; Greene &
Miller, 1996; Middleton & Midgley, 1997), whereas other studies found a positive associ-
ation between performance-approach goals and deep processing (Meece et al., 1988; Pin-
trich, 2000; Wolters, 1996; Wolters & Yu, 1996). Furthermore, some studies found that
performance-approach goals are positively related to high performance outcomes (Barron
& Harackiewicz, 2001; Elliot & Church, 1997; Harackiewicz, Barron, Elliot, Carter, &
Lehto, 1997). As the goal of our study is to investigate whether the consistent relationships
found in literature reproduce at the level of actually observed processes, performance-
approach goal orientation and mastery-avoidance goal orientation were excluded. The
present study was framed within the context of a computer-based scientific modeling task.

1.2. Computer-based modeling

Computer-based models are executable external representations of the behavior of
complex scientific phenomena, such as ecosystems, water management, and weather (Bliss,
1994; Penner, 2001; Stratford, 1997). The act of modeling is the activity in which models
are constructed, evaluated and revised with the help of a computer-based modeling tool,
such as STELLA (Steed et al., 1994) and Powersim (Byrknes & Myrtveit, 1997). The
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construction of models is particularly well suited to provide the basis for meaningful learn-
ing experiences. First, models offer students with the opportunity to think scientifically
about the behavior of these phenomena, which enables them to understand and experience
the issues associated with the construction of models in science (e.g., Bliss, 1994; Hestenes,
1997; Schwarz & White, 2005). Second, models focus on the continuous relations among
variables that are part of a phenomenon and provide a platform for understanding how
these variables interact. Computer-based modeling tools, thus, enable students to express
and manipulate their mental representation of a phenomenon, which supports the reorga-
nization and refinement of their conceptual understanding (e.g., Jonassen, Strobel, &
Gottdenker, 2005; White & Frederiksen, 1998; Wild, 1996). Finally, since modeling tools
help students to externalize their ideas, they are accessible to criticism and discussion,
which is an important prerequisite for collaborative learning (Hogan & Thomas, 2001).

1.3. The current study

The purpose of the present study is to test a conceptual model of relations among moti-
vation, cognitive processing and achievement of students working within a computer-
based modeling task (see Fig. 1). More specifically, we investigated whether students’
achievement goal orientation and self-efficacy influence their cognitive processing during
modeling, and whether the relation between motivation and achievement is mediated by
students’ processing.

In contrast to most studies in the field of motivation, we did not assess students’ pro-
cessing based on self-report measures, but rather we based our assessments on the process
observations of students’ reasoning during task execution. This is first because, the validity
of self-report on these issues has become under doubt and furthermore because in the pres-
ent context, where it comes to interpreting the detailed processes of students in a collab-
orative setting, more fine-grained measures are needed and the interaction between the
collaborating partners must be taken into account.

As the modeling task required students to work in dyads, students’ cognitive processing
(i.e., deep and surface processing) can be naturally measured using this online measure
that includes inter-student communication through a chat. In addition, achievement can
be operationalized as the quality of model dyads constructed. This also requires measure-
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Fig. 1. Conceptual model indicating the hypothesized relations between students’ motivation (i.e., mastery-
approach goal orientation, performance-avoidance goal orientation, and self-efficacy), cognitive processing (i.e.,
deep and surface processing), and achievement. Signs indicate the direction of the hypothesized relationship.
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ment of all other variables on the dyad-level, in order to test the conceptual model in
Fig. 1. This means that we have to relate individual student characteristics, such as self-
efficacy, to the same characteristics of a dyad.

2. Method
2.1. Participants

Sixty students (i.e., thirty dyads) from eleventh-grade pre-university education, with a
major in science participated in our study. Their science teachers reported that they had
no prior experience and hence no prior knowledge of dynamic modeling. The fact that
they had chosen a major in science meant that they had followed four years of courses
in several science topics, specifically in physics and chemistry, including an introduction
to thermodynamics. This means they had encountered the concepts of heat, heat flow,
and temperature previously in their school career. These concepts are relevant to the task
they performed in the study. They had not previously worked with models of global warm-
ing. Students’ age ranged between 16-18 years. Participants were awarded € 20 for their
participation.

As dyad composition was not a variable in our model, we preferred a heterogeneous
group composition, since in previous studies students with different school grades had
been generally more successful working together than homogeneous groups (e.g., Gijlers
& Jong, 2005; Webb, 1991; Webb, Welner, & Zuniga, 2001). The reason is that higher
achieving students can learn from giving explanations, whereas the lower achieving stu-
dent can learn from these explanations given (Hooper & Hannafin, 1991; Webb & Farivar,
1994). However, the difference in level between students should not be too large. As a mea-
sure for group composition, we used the students’ average school grade in science. The
mean average grade of all students was 7.10 on a scale from 1 to 10, with a standard devi-
ation of 1.03. In order to assure moderately heterogeneous dyads, the group of partici-
pants was divided into two equal groups. One group consisted of the top 25% as well
as the bottom 25% in average grade for science. The other group consisted of the remain-
ing 50%. Dyads were composed by letting students choose a partner from the other group.
This assured a moderate difference between partners in science ability, as well as pairs who
had chosen each other to work with. This procedure meant that half of the dyads were
low-middle dyads in terms of average grade, whereas the other half was middle-high.
Given the low variance in average school grade, as well as the fact that all students were
new to the task, we did not expect any differences from this division.

2.2. Material

Students performed the modeling task within the computer-based learning environment
Co-Lab (Joolingen, Jong, Lazonder, Savelsbergh, & Manlove, 2005). In Co-Lab students
can collaborate online by means of a synchronous chat on inquiry assignments for the sci-
ence courses.

Participants were asked to extend a simple pre-build model that could give an explana-
tion and prediction of the temperature on earth. The task was simplified to some extent,
since the earth in this task was represented by an irradiated black sphere (see Appendix A
for the assignment). Because participants had no prior experience with modeling, a com-
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pletely open modeling task was assumed to be too complex for them to be successful
within the time constraints of the modeling task. Therefore, participants were given a
model skeleton as a starting point. Such a model revision task enables the novice modeler
to concentrate on trying to comprehend and improve a model without having to start from
scratch. Students constructed their models in the model editor tool of Co-Lab (see Fig. 2).

The model editor in Co-Lab uses five model building blocks characteristic for system
dynamics modeling: stocks, rates, auxiliaries, constants, and connectors. Stocks represent
a quantity that can increase or decrease from some starting value. A rate connected to a
stock decides how quickly the quantity in the stock will change. Quantities can be repre-
sented either as constants (i.e., fixed values), or as auxiliaries (i.e., calculated from other
quantities).

Finally, connectors indicate dependencies between individual model elements. To insert
a modeling element, students can drag and drop the icons on the screen they think are rel-
evant for the phenomenon being modeled, creating a qualitative diagram of the phenom-
enon. After creating this diagram, students have to quantify these elements by entering
values and formulas. Once the model is quantified it can be executed. When students
run their model, the model editor automatically generates the differential equations
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Fig. 2. Screenshot of the model editor in Co-Lab. In this particular example, an accurate model diagram is
provided of the black sphere simulation. This model shows that the energy of the earth is influenced by the
incident radiation from the sun (i.e., energy inflow) and the outgoing radiation (i.e., energy outflow). The outflow
is influenced by the temperature of the earth. Finally the temperature is influenced by the energy of the earth and
the heat capacity of the earth.
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required to perform calculations. The results of model runs over time can be displayed as
graphs or tables. In order to test their models, students can compare the output of their
model with data they can obtain from running a simulation of a black sphere (see
Fig. 3 for a screenshot of the simulation). Consequently, students may revise their model
on the basis of the testing outcomes.

2.3. Instruments

2.3.1. Achievement goal orientation

Achievement goal orientation (i.e., mastery-approach goal orientation and perfor-
mance-avoidance goal orientation) was measured on the individual level as well as on
the dyad-level, employing questionnaires. For measuring mastery-approach goal orienta-
tion and performance-avoidance goal orientation of the individual student, items from
corresponding subscales of the Goal-Orientation Questionnaire of Seegers and Boeckaerts
(1993) were adapted. The questionnaire of Seegers and Boeckaerts (1993) was originally
based on the one that Nicholls et al. (1989) describe and which has also been adapted
and used in the studies conducted by Duda and Nicholls (1992), Nolen (1988), and Vrugt
et al. (2002). For the present study, items from the Goal-Orientation Questionnaire were
contextualized by rephrasing them into statements directed at assessing students’ goal
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Fig. 3. Screenshot of the simulation of the temperature of an irradiated black sphere. Results of running the
simulation are provided in a graph or a table.
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orientation regarding physics. The first scale consists of five items formulated to express
mastery-approach goal orientation (e.g., “I like to work hard on a physics task™), and
the second scale involves six items for performance-avoidance orientation (e.g., “I want
to avoid doing poorly in physics class™). Students indicated on a 4-point scale the extent
to which they usually react in the described manner. Response alternatives ranged from
“never” to ‘“‘always”. Principal-components analysis with varimax rotation supported
the presence of two factors, with items loading on its designated factor. The two primary
factors accounted for 71% of the total variance. Coefficient alphas were calculated for the
two subscales that are focus of this study. Alpha was .80 for mastery-approach goal ori-
entation and alpha was .79 for performance-avoidance goal orientation.

To measure mastery-approach goal orientation and performance-avoidance goal orien-
tation on the dyad-level we employed the same questionnaire, with items being rephrased
to fit the group, replacing “I"” with “We”’. Dyads answered this questionnaire together and
were prompted to discuss the question before answering it. They needed to agree on the
answer. Principal-components analysis with varimax rotation showed that the two factor
solution accounted for 69% of the total variance. Coeflicient alphas for mastery-approach
goal orientation and performance-avoidance goal orientation are respectively .69 and .72.

2.3.2. Self-efficacy

As with achievement goal orientation, self-efficacy was also measured within the con-
text of the modeling task on both the individual level and the dyad-level. Self-efficacy
was captured with the translated General Self-Efficacy questionnaire of Schwarzer
(1992). Students were asked to indicate how adequate they estimated their ability with
respect to the modeling task (e.g., “I can solve most problems if I invest the necessary
effort”). The scale consisted of ten statements and students were asked to indicate on a
4-point scale the extent to which they agreed with the statement. Response alternatives
ranged from “Not at all true” to “Exactly true”. Group self-efficacy was measured in a
similar fashion as with the group measures of achievement goal orientation. Internal con-
sistencies were found to be .70 and .68 for the individual self-efficacy questionnaire and the
group self-efficacy questionnaire, respectively.

2.3.3. Cognitive processing

Students’ cognitive processing was measured by analyzing the inter-student chat, taken
from the log files of the students’ sessions, employing the protocol analysis scheme of Sins,
Savelsbergh, and Joolingen (2005). The chat logs were scored employing two categories
that were taken from the scheme of Sins et al. (2005):! (a) students’ reasoning processes
during modeling and (b) type of reference made by students during reasoning (see Appen-
dix B for the coding scheme). Reasoning processes like analyzing or explaining may be
considered to be cognitive processes and mostly involve several turns by both partners
in a dyad (Brickell, Ferry, & Harper, 2002). Therefore, the unit of analysis is the pro-
cess-episode level, an episode being a period of coherent continuous talk on a single issue,
rather than single utterances (cf. Chi, 1997).

! In addition to these two categories, the protocol analysis scheme of Sins et al. (2005) also includes the
category: “‘topic focus of students’ reasoning”. We did not include this code in the present analyses, since
reasoning processes coupled with the type of reference students make during process-episodes provide sufficient
information concerning students’ level of processing.
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Reasoning episodes in which students are elaborating on the modeling task and connect
to knowledge they have available, either gained from the task at hand or as prior knowl-
edge, were designated as deep processing. Episodes in which students employ unelaborated
reasoning processes without referring to available knowledge were labeled as surface pro-
cessing. Only episodes that could be clearly marked as either “deep” or “surface’ process-
ing were counted in this analysis, excluding all others. The following specific codes were
operationalized as indications of deep processing:

— Evaluating and reference to knowledge

— Explaining and reference to knowledge

— Quantifying and reference to knowledge

— Inductive reasoning and reference to model components
— Inductive reasoning and reference to knowledge

— Analyzing and reference to knowledge

The following codes indicated surface processing:

— Evaluating and no reference to knowledge
— Quantifying and no reference to knowledge
— Analyzing and no reference to knowledge

Chat utterances were segmented into episodes and were scored with the help of our cod-
ing scheme. Because protocols differ in length, and because protocol episodes are of differ-
ent length as well, frequencies of each code were converted to proportions of total time for
each dyad, and analyses are based on these proportions. The total proportion of time
dyads spent on deep processing was calculated by summing up the proportions of time
for the six codes indicating deep reasoning processes. The same procedure was performed
for surface processing.

The use of deep versus surface processes was also individually measured using a self-
report questionnaire in order to investigate the correspondence between results from such
questionnaires and the online log-file measure. Items from this questionnaire were based
on the available literature (e.g., Greene & Miller, 1996; Entwistle, 1988; Marton & Siljo,
1997; Nolen, 1988; Pintrich & Garcia, 1991) and based on codes from the protocol analysis
scheme of Sins et al. (2005). Thirteen items were constructed which were specifically tai-
lored for measuring students’ cognitive processing during modeling. The deep processing
subscale consisted of seven statements (e.g., “I used my own knowledge during modeling’’)
and the surface processing subscale consisted of six statements (e.g., “‘I tried to improve
our model by changing values most of the time”). Students were asked to indicate the
extent to which they agreed with the statements on a 5-point scale. Response alternatives
ranged from “Totally agree” to “Totally disagree”. Principal-components analysis with
varimax rotation supported the presence of two factors, with items loading on its desig-
nated factor. The two primary factors accounted for 42% of the total variance. Coefficient
alpha was .46 for surface processing and alpha was .59 for deep processing.

2.3.4. Achievement
Achievement on the modeling task was measured on the dyad-level and was operation-
alized as a model quality score. The models students constructed were judged with the help
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of a model scoring template. The students’ final model was awarded with points for each
variable which name and specification was correct. In addition, students were awarded
with a point for correct links between variables and with a point for correct specifications
for these relations. Finally, for each incorrect relation between quantities a point was sub-
tracted from the total score.

2.4. Procedure

The study consisted of two sessions each of about two and a half hours on two separate
days. In the first session, students were given a plenary introduction to the Co-Lab envi-
ronment and were provided with an individual modeling tutorial. Subsequently, students
were asked to complete the individual self-efficacy questionnaire and the individual
achievement goal-orientation questionnaire. Afterwards, dyads were composed and a
training task was given, in which they were asked to collaboratively extend a pre-build
model involving the inflow and outflow of water from a water tank. Students worked with
a simulation of a water tank and could investigate background information about this task
using the Co-Lab help tool. On the basis of data obtained from this simulation and on the
basis of information gathered, students could extend and revise their model. At last, dyads
were asked to complete the group measures of self-efficacy and achievement goal
orientation.

In the second session, dyads were presented with a modeling task in which they were
asked to extend a given model. Students’ goal was to extend the model so that it could give
an explanation and prediction of the temperature on earth (see Appendix A for the mod-
eling task). Co-Lab provided support for students in order to complete this modeling task:
students could consult background information and could work with a simulation of a
black sphere. Students worked for 2 h on the modeling task. When working within Co-
Lab, members of a dyad each worked on one computer. The Co-Lab environment was
shared between students and students communicated through a chat channel. Finally,
the individual self-report questionnaire of students’ processing was administered and
completed.

3. Results

In order to check whether there were any differences between low—middle and middle—
high dyads in terms of performance, t-tests were performed on all measures with group
composition as independent variable. No significant differences were found, indicating
that we can treat the sample as one group.

3.1. Validity of group measures for mastery-approach goal orientation, performance-
avoidance goal orientation, and self-efficacy

While students worked in dyads on the modeling task, mastery-approach goal orienta-
tion, performance-avoidance goal orientation, and self-efficacy were measured on the
dyad-level. Table 1 shows the means, standard deviations, and ranges for these variables.

Since, to our knowledge, no studies on group measures of these constructs have been
conducted, we attempted to obtain some insight into the validity of these measures. We
averaged for each dyad the total individual scores on the self-efficacy questionnaire, mas-
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Table 1
Means, standard deviations, and minimum and maximum scores for the motivation variables

Mean SD Observed range
Group mastery-approach goal orientation 3.02 43 1.00-4.00
Group performance-avoidance goal orientation 1.41 .36 1.00-4.00
Group self-efficacy 3.07 .29 1.00-4.00

tery-approach goal orientation subscale, and performance-avoidance goal orientation sub-
scale and correlated these figures with the corresponding scores of the dyads on the group
measures. The zero-order correlations for mastery-approach goal orientation (r=.56,
p <.01), performance-avoidance orientation (r =.77, p <.01), and self-efficacy (r = .68,
p <.01) are significant and positive. Also, the averaged individual measure for self-efficacy
per dyad and the group measure for mastery-approach goal orientation are significantly
related (r = .38, p <.095).

3.2. Correspondence between the online log-file measure and the self-report measure of
cognitive processing

The total individual scores on the subscales deep versus surface processing of the self-
report questionnaire were averaged per dyad and correlated with the group scores for deep
versus surface processing obtained from protocol analysis. As expected, results reveal little
or no correspondence between the retrospective self-reporting on the one hand and the
online log-file measure of students’ cognitive processing on the other (r =.18, p = .32
for deep processing and r = .06, p = .74 for surface processing).

Table 2 shows the proportions of time dyads spent on deep versus surface processing,
which were obtained from the protocol analysis. This table shows that a small proportion
of time was spent on either surface processing (M = 12.93%) or on deep processing
(M = 15.84%). Dyads spend the remaining time on talking about modeling actions
(M = 43%), on reading the learning material in Co-Lab (M = 8.58%), on off-task commu-
nication (M = 7.69%), and on other processes that did not fall under our conceptualiza-
tion of deep and surface processing (M = 11.96%).

Table 2

Percentage of time spent on deep and surface processing

Reasoning processes Percentage of total time
Deep processes

Evaluating and reference to knowledge .59

Explaining and reference to knowledge .39

Quantifying and reference to knowledge 4.45

Inductive reasoning and reference to knowledge 5.14

Inductive reasoning and reference to components 3.12

Analyzing and reference to knowledge 2.15

Surface processes

Evaluating and no reference to knowledge 3.99
Quantifying and no reference to knowledge 5.60
Analyzing and no reference to knowledge 3.34
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3.3. Testing the conceptual model

We used the group measures of all variables and the online log-file measure of students’
cognitive processing for testing the conceptual model. Relations between the variables of
our conceptual model (see Fig. 1) were first examined with Pearson product-moment
correlations between variables (see Table 3). The relation between self-efficacy and
mastery-approach goal orientation is significant. In addition, both self-efficacy and mas-
tery-approach goal orientation are significantly correlated with deep processing. The cor-
relation between performance-avoidance goal orientation and surface processing is not
significant. Deep processing is significantly positive related to achievement on the model-
ing task. Also, the correlations between mastery-approach goal orientation and achieve-
ment and between self-efficacy and achievement are significant.

Second, a series of multiple hierarchical regression analyses were performed (cf. Dupey-
rat & Mariné, 2005; Greene & Miller, 1996). Variables were entered into the regression
equation based on their temporal sequencing in the conceptual model. Each variable
was regressed on the variables that had causal paths leading to it. In the first set of regres-
sion analyses, deep processing and surface processing were the dependent variables. The
predictors for each of these equations were self-efficacy, mastery-approach goal orienta-
tion, and performance-avoidance orientation. The second set of analyses investigated
the effects of the motivational variables and students level of cognitive processing on
achievement. The dependent variable, in these analyses, was achievement with the three
motivational variables entered into the regression equation on the first step, and the
two measures for students’ processing entered on the second step. The results of these
analyses are presented in Table 4.

The first set of regression analyses supports the hypothesized positive associations
between mastery-approach goal orientation and self-efficacy on the one hand and deep
processing on the other. None of the motivational variables significantly predicts surface
processing. The second set of regression analyses, with achievement as dependent vari-
able, show that self-efficacy, mastery-approach goal orientation, and deep processing
are significant predictors of achievement. However, the positive influence of mastery-
approach goal orientation on achievement is not significant after controlling for the
mediating influence of deep processing. The resulting path model is presented in
Fig. 4. For surface processing, no such path from performance-avoidance goal orienta-
tion can be found.

Table 3
Correlations among motivation variables, deep and surface processing, and achievement
1 2 3 4 5
1. Group mastery-approach goal —
2. Group performance-avoidance goal .03 —
3. Group self-efficacy 59" —.03 —
4. Deep processing 50" —.10 48" —
5. Surface processing —.09 18 —.16 —.02 —
6. Achievement 38" -.19 35 46" -.29

" p<.05.
" p<.0l.

*
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Table 4

Multiple regression outcomes

Dependent variable Predictor I Ar? p on step Final g

Deep processing Mastery-approach goal orientation 248" 248" 498" 328"
Self-efficacy 354" 106" 288" 288"

Surface processing /

Achievement Mastery-approach goal orientation 144" 144" 380" 130
Deep processing 4177 273" 334" 334"

* p<.05.
" p< .0l

! [ Self-efficacy

§ £.59**

‘ Mastery-approach goal

( Dieep processing 33

orientation

[ Performance avoidance }

Surface processing
goal crientation

Fig. 4. Results of the path analysis. *p <.05, *p < .01.

4. Discussion

In the present study, we tested a conceptual model linking achievement goal orienta-
tion, self-efficacy, cognitive processing, and achievement of dyads working on a
computer-based modeling task. In support of our conceptual model, we found that mas-
tery-approach goal orientation and self-efficacy were both positively related to achieve-
ment and that these relationships were mediated by dyads’ employment of deep
cognitive processes, meaning that in these processes reference was made to knowledge,
prior or acquired during the modeling task. However, in contrast to our predictions,
the path model in Fig. 4 shows that performance-avoidance goal orientation was not sig-
nificantly related to dyads’ employment of surface processes. In addition, no significant
relation was found between surface processing and achievement.

Our conceptual model was based on findings from the available achievement motiva-
tion literature (e.g., Covington, 2000; Dupeyrat & Mariné, 2005; Elliot et al., 1999; Greene
& Miller, 1996; Middleton & Midgley, 1997). Traditionally, studies conducted within this
field of research focus on the self-reported learning of individual students over a whole
course. We tested our conceptual model for students who worked in dyads within a spe-
cific task context. Therefore, group measures of the variables in our model were employed.
In addition, we used an online log-file measure to capture collaborating students’ cognitive
processing.

An indication of the validity of the group measures for mastery-approach goal orienta-
tion, performance-avoidance goal orientation, and self-efficacy was reflected in the finding
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that these measures were significantly positively related to the corresponding scores on the
individual questionnaires, aggregated per dyad. This correlation shows that the measures
on the individual and group levels are similar.

As expected, the group scores on the self-report questionnaire were not significantly
related to the scores obtained from the online log-file measure. If we accept that the
log-file measure is closer to actual observation than the post-hoc self-report, this result
implies that retrospective self-report measures do not indicate students’ factual processing
during a given task. However, this finding should be taken with care, since the self-report
questionnaire was low on reliability. We found that deep processing positively contributed
to achievement, whereas surface processing showed a negative, but non-significant corre-
lation with achievement. This finding may indicate that the online log-file measure is a
valid indication of processing quality.

The results of our study are consistent with previous research within the field of
achievement motivation, showing that self-efficacy and mastery-approach goal orienta-
tion are significantly positively related to students’ use of deep cognitive processes (see
Fig. 4). In addition, the hypothesis that self-efficacy is related to mastery-approach goal
orientation was supported. In the path model of Fig. 4, achievement (i.c., model qual-
ity score) is positively affected by self-efficacy and mastery-approach goal orientation,
but the effects of these variables are indirect, operating through the observed use of
deep processes (i.e., mediation). Unfortunately, we lack detailed data on the origin
of the knowledge students’ employed during these episodes, as we did not administer
a detailed domain knowledge test. With more detailed information about prior domain
knowledge it should be possible to determine whether and to what extent prior knowl-
edge about the domain has an independent contribution to the occurrence of deep rea-
soning processes.

The paths between the variables performance-avoidance orientation and surface pro-
cessing and between surface processing and achievement were not significant. However,
the correlation analysis (see Table 3) showed that for both relationships a trend was visible
in the hypothesized direction. With a larger sample size these coefficients could turn out to
be significant. On the other hand, recent studies also found that the paths between perfor-
mance-avoidance goal orientation and surface processing and between surface processing
and achievement were not significant (e.g., Dupeyrat & Mariné, 2005).

Dupeyrat and Mariné (2005) and Elliot et al. (1999) found a significant negative rela-
tion between performance-avoidance orientation and students’ use of deep processes,
which implies that students high on performance-avoidance report that they employ less
deep processes. However, this finding is not unequivocally replicated as our study, and
the studies of Al-Emadi (2001), Wolters (1996) and Middleton and Midgley (1997) have
shown.

The present study shows that it is important to consider not only cognition as an impor-
tant determinant of collaborative computer-based learning, but also to take into account
the important impact of motivational factors, such as students’ achievement goal orienta-
tion and self-efficacy. In addition, our study shows that the conceptual model is also appli-
cable to particular collaborative tasks using an online log-file measure of students’
cognitive processing.

An educational implication of this study may be that strategies that promote a mastery-
approach goal orientation and advance students’ self-efficacy lead to deep reasoning dur-
ing modeling and ultimately to a higher achievement (cf. Greene & Miller, 1996; Greene
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et al.,, 2004). For instance, a mastery-approach orientation can be encouraged when
knowledge development is emphasized instead of evaluation of learning. In addition,
mastery-approach goal orientation may be stimulated when an assignment provided to
students is made interesting and challenging for them. Finally, although one of the
strongest ways for students to build self-efficacy is to experience success in accomplishing
tasks themselves, external support and encouragement can also be provided. Relating
this to collaborative computer-based modeling tasks, mastery-approach goal orientation,
and self-efficacy may be promoted by presenting students with modeling tasks that inter-
ests them, by avoiding normative comparisons with other students, and by having stu-
dents exchange their model and ideas with other dyads. Moreover, collaborative
learning activities, such as the assignment employed in our study, have also been found
to promote students’ achievement goal motivation. Further research is needed in order
to test these ideas.

Appendix A
A.1. Task Co-Lab blacksphere

There has been a lot of publicity about the earth’s changing climate. Scientists all
around the world are trying to understand what is going on, in order to predict
what will happen next, or maybe more importantly, to give advice on what to
do about it. The earth’s climate is a very complex system, however, and even with
all those scientists working on it, uncertainties remain. In such a situation scientists
usually begin by making all kinds of simplifications. They first try to understand
this simplified system, for instance by making a computer model. Then they use
the computer model of the simplified system to make predictions about the real
earth. Then they compare their predictions to reality, and consider what refinements
are most needed.

In this module, you’ll take a similar approach. We have made a very simplified small
scale version of the earth and the sun: in our laboratory, we have ignored the differences
between oceans, forests and deserts. All that remains of the earth is a black sphere and at
some distance you’ll find a strong light, which takes the function of the sun. Not too sim-
ilar to the world we live in, you’ll say, and you are right. Nevertheless, you can investigate
how the earth’s temperature responds to changes of solar activity, and what the effects will
be if the earth’s surface changes color, for instance because it becomes covered with ice.
Once you have got a computer model to make proper predictions about this simplified sit-
uation, you’ll have discovered the basic model structure that underlies even the most
advanced climate models today.

To summarize, your goal in this module will be to build a model that can predict the
temperature of a black sphere (the barren earth) after being exposed to a source of light
(the sun) for some while. To assist you, we provide you with an initial but still incomplete
model. This model shows that the energy content of the earth is influenced by an energy
inflow (incident radiation from the sun) and an energy outflow (outgoing radiation). Your
goal is to extend this model in such a way in that it will provide a provide a good match
with the data you obtained from the simulation of the black sphere. In order to fulfill this
goal, you’ll need to find out first which factors play a role, and how they depend on each
other.
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Appendix B

B.1. Coding scheme for cognitive processes

Categories

Description

Type of reasoning process
Evaluate

Explain

Quantify

Inductive
reasoning

Analyze

Other processes

Students positively/negatively evaluate an element(s)
in relation to their model. Students make a
(elaborate) value judgment on a modeling element.
Students explain to each other how elements within
their model work or why they were included. An
explanation must be preceded by a clear-cut question
of one of the students.

Students talk about quantifying or specifying a
quantity or relation within their model.

Students elaborate upon/about elements within or
with respect to their model (involves mainly
qualitative reasoning).

Students talk about/interpret modeling elements
without further elaboration. Or identify factors that
may be relevant/included in their model without
further elaboration (i.e., factors are uttered by the
students without further discussion).

Read Students read or paraphrase.

Off task Students talk about subjects unrelated to the
modeling task.

Categories Description

Type of reference

None No reference to model components or knowledge.

Knowledge

Physics knowledge
Mathematics knowledge

Experiential knowledge

Model components
Correspondence model graph and
data

Use of terminology, concepts (i.e., units,
quantities), formula’s common in physics.

Use of terminology, concepts, formula’s common
in mathematics.

Knowledge from everyday experience.

Students refer to (the extent of) correspondence
between model output and experimental data.
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Appendix B (continued)

Categories Description

Data from simulation Experimental data from the simulation (i.e., table/
graph).

Html-documents Information about the blacksphere problem

provided in the html-documents.
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