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Abstract Bifurcating rivers shape natural landscapes by distributing water and sediments on fluvial plains
and in deltas. Symmetrical bifurcations were often found to be unstable so that one branch downstream
of the bifurcation enlarged while the other dwindled. A unified theory able to predict bifurcation stability
in both gravel bed and sand bed rivers is still lacking. Here we develop a new theory for the stability of
bifurcations for the entire range of gravel bed to sand bed rivers. The theory indicates opposite behavior
of gravel bed and sand bed rivers: we predict that symmetrical bifurcations are inherently stable for
intermediate Shields stresses but are inherently unstable for the low and high Shields stresses found in the
majority of rivers on Earth. In the latter conditions asymmetrical bifurcations are stable. These predictions
are corroborated by observations and have ramifications for many environmental problems in fluviodeltaic
settings.

1. Introduction

Bifurcations are ubiquitous features of fluviodeltaic landscapes. Their presence and morphodynamic evolu-
tion shapes and alters flow and sediment redistribution over entire fluvial plains and deltas [Edmonds and
Slingerland, 2008; Makaske, 2001; Slingerland and Smith, 2004; Kleinhans et al., 2013]. River bifurcations are a
major feature of both gravel bed and sand bed rivers and have been observed to be unstable over timescales
ranging from decades to millennia [Slingerland and Smith, 2004; Kleinhans et al., 2008, 2011]. New bifurcations
continue to form new pathways for water and sediment that may cause avulsion, i.e., entire river displacement
[Makaske, 2001; Slingerland and Smith, 1998; Kleinhans et al., 2010]. Hence, stability and development of bifur-
cations can lead to natural hazards and land loss as well as land gain, which threaten and impact societies and
valuable ecological habitats on fluvial plains and deltas [Syvitski and Saito, 2007]. For all the above reasons,
the stability of bifurcations has been a topic of research interest over the past few decades, and significant
advances have been achieved (see Kleinhans et al. [2013] for a review). The puzzling aspect of river bifurcations
is that rather than evolving toward a configuration where flow and sediment transport are equally divided in
the two branches, they almost inevitably develop asymmetric configurations with differential transport rates,
in both gravel bed and sand bed rivers.

Following the pioneering studies of Slingerland and Smith [1998] and Wang et al. [1995], Bolla Pittaluga et al.
[2003] provided a first systematic study of gravel bed river bifurcations. Using a simple model relating the flow
and the sediment transport in the channels through a nodal relationship upstream of the bifurcation, Bolla
Pittaluga et al. [2003] found that for low values of the Shields parameter typical of gravel bed rivers with
dominant bed load sediment transport, symmetrical bifurcations are unstable and can result in two other con-
figurations with both branches open, apart from the trivial solution with exactly equal flows in both channels.
However, above a threshold value of the Shields stress (about 0.1) in the channel upstream of the bifurca-
tion the model predicts only one possible stable solution which may be symmetrical. Model predictions were
experimentally tested [Bertoldi and Tubino, 2007], and further model developments [e.g., Miori et al., 2006,
2012; Sloff and Mosselman, 2012; Kleinhans et al., 2012, van der Mark and Mosselman, 2013] included addi-
tional factors, for example, channels with erodible banks or secondary currents at the node upstream of the
bifurcation, without fundamentally altering the findings of Bolla Pittaluga et al. [2003].

The stability of bifurcations in sand bed rivers has primarily been investigated with numerical models (e.g.,
Delft3D), and analyses inevitably conclude that sand bed rivers also develop highly asymmetrical bifurcations
[Kleinhans et al., 2008; Edmonds and Slingerland, 2008; Edmonds et al., 2010]. Edmonds and Slingerland [2008]
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specifically attempted to develop equilibrium diagrams for cohesive deltaic bifurcations showing that for
Shields values larger than 0.12 it is possible to obtain asymmetrical solutions. This tendency to asymmetrical
bifurcations is evidenced by the many occurrences of avulsion and the apparent absence of stable symmet-
rical bifurcations [Kleinhans et al., 2013]. Although a prima vista this contradicts the model predictions of
Bolla Pittaluga et al. [2003], the latter does not include suspended sediment transport and so cannot be directly
applied to sand bed rivers.

Thus, the lack of a unified model for bifurcations in gravel bed and sand bed rivers is a major gap in our under-
standing. Here we develop a unifying model for bifurcation stability that explicitly addresses the different
sediment transport mechanisms and sensitive parameters of gravel bed and sand bed rivers. In the following
sections we formulate the problem (section 2), and, after providing an analytical solution to the problem, we
analyze the reason why most gravel bed and sand bed river symmetrical bifurcations are inherently unstable
(sections 3 and 4). We then provide the equilibrium configurations of river bifurcations (section 5). Section 6
summarizes the main conclusions of this contribution. The full derivation is given in the appendix.

2. Model Development

Our analytical model concerns the development of bifurcating river channels after the bifurcation is initiated,
which may occur through various mechanisms [Kleinhans et al., 2013]. Once a bifurcation exists, one of the
two flow paths will enlarge and capture more of the discharge if and only if its transport capacity exceeds the
sediment supply to it. How water discharge and bed material flux are distributed across the channel immedi-
ately upstream of the bifurcation determines the division between left and right branches and the stability.
We idealize bifurcations to a simple geometry (Figure 1), where a wide rectangular channel a bifurcates into
two equiwidth channels b and c. All branches have constant width and bed slope. Constant flow and sedi-
ment discharges are prescribed upstream, whereas a constant value of free surface elevation is imposed at
the downstream end in both channels b and c. In agreement with a large body of numerical and empirical
work [Kleinhans et al., 2012, 2013], we presume that equilibrium river morphology is predictable from a single
constant discharge that is representative for a hydrological regime with low flow and floods over a longer
period. For every channel the steady and uniform flow is described by the Chezy relation. The steady state and
continuity conditions also imply that flow discharge Qi and sediment flux Qsi are constant in each channel i
(b or c) [Bolla Pittaluga et al., 2014].

Bifurcation instability is the result of the nonlinear dependence of dimensionless sediment transport capacity
[Wang et al., 1995] Φ on excess dimensionless Shields number:

𝜙 =
qs√

𝜌s−𝜌
𝜌

gd3
s

= n(D)(𝜗 − 𝜗cr)m, (1)

where qs is the dimensional volumetric sediment flux per unit width, ds is the mean diameter, 𝜌 and 𝜌s are
the density of water and sediment, respectively, g is gravitational acceleration, 𝜗cr is the threshold value for
sediment mobilization, and the coefficients n and m depend on the sediment transport closure relation. The
Shields number 𝜗 is in turn a function of flow velocity, sediment characteristics (density and mean diam-
eter), and the Chezy flow resistance coefficient. Classic sediment transport relations for gravel (bed load)
[Meyer-Peter and Müller, 1948], sand (suspended load) [Engelund and Hansen, 1967], and the entire range
[van Rijn, 1984] can be expressed directly in the form of equation (1) with m = 1.5–2.5.

Five relations are required to solve the water and sediment partitioning at the bifurcation: (1) water discharge
balance Qa = Qb+Qc; (2) and (3) constancy of water level ha = hb = hc; and (4) and (5) sediment mass balance
applied to both cells of the final reach of channel a (see Appendix A). The sediment balance describing the
transverse sediment exchange between the two adjacent cells of the final reach of channel a (see Figure 1a)
provides the additional relation to close the problem mathematically. Transverse sediment transport at this
node depends on the transverse fluid flow and the bed slope Ikeda et al. [1981]:

qsy = qsa

[
V√

U2 + V2
− r√

𝜗a

𝜕𝜂

𝜕y

]
, (2)
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Figure 1. Geometry of a river bifurcation and cartoon of the instability process. (a) Definition sketch of sediment fluxes
at a river bifurcation. The line 𝛼ba indicates the location of transverse sediment transport. The bifurcation is in
equilibrium when the sediment supply to each downstream branch equals the sediment transport capacity in that
branch. (b) Sketch of the effect of the perturbation of channel depth 𝜖Db1 in channel b on the sediment transport
capacity 𝜖Qsb1 (proportional to the r.h.s. of equation (3)) and lateral sediment transport at the bifurcation 𝜖Qsy1
(proportional to the l.h.s. of equation (3)).

where the transverse velocity V is evaluated through the water mass balance applied to each of the two cells
[Bolla Pittaluga et al., 2003]. The transverse bed slope 𝜕𝜂∕𝜕y is calculated from the difference between bed ele-
vations at the inlet of channels b and c which develops as a bifurcation becomes asymmetrical [Bolla Pittaluga
et al., 2003]. Parameter r in equation (2) is uncertain and ranges between 0.3 and 1 [Ikeda et al., 1981].

3. Stability Analysis of Symmetrical Bifurcations

To understand the basic mechanisms underlying bifurcation stability, let us consider an exactly symmetrical
bifurcation with channel width bb = bc = ba∕2 and same downstream channel length Lb = Lc. In this case, a
trivial solution exists where all branches have the same flow depth Da = Db = Dc, and an equal partitioning
of flow and sediment fluxes occurs in the downstream branches: Qb = Qc = Qa∕2 and Qsb = Qsc = Qsa∕2.
This equilibrium configuration is not necessarily stable to any perturbation. Indeed, consider such configu-
ration subject to a small perturbation, here a slight increase of flow depth Db = Db0 + 𝜖Db1 along channel b
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(Figure 1b). The consequence of this perturbation is that the sediment transport capacity in b increases. At
the same time the larger depth in b creates a transverse bed slope just upstream of the bifurcation. This is
directed toward channel b so that the sediment input into channel b also increases. The relative increase of
the two quantities determines whether the bifurcation is stable. If the sediment transport capacity increases
more rapidly than the sediment supplied from upstream, there will be more sediment leaving channel b than
that entering the channel from upstream. This results in a positive feedback between the initial perturbation
and the bed evolution that will lead to continued deepening of channel b. This means that the symmetrical
bifurcation is unstable and should evolve into an asymmetrical bifurcation that is stable. Vice versa, if the sed-
iment transport capacity increases less than sediment feed from the node, the channel will reduce the initial
perturbation of flow depth and will converge again on the stable, symmetrical configuration.

Such qualitative description of the basic mechanism underlying stability shows that a different behavior
between symmetrical bifurcation in sand bed and gravel bed rivers might exist. This has to be ascribed mainly
to two factors: (1) the relation between sediment transport capacity and Shields number becoming highly
nonlinear for both near-threshold Shields numbers (appropriate for gravel bed rivers) and large values of
Shields number (appropriate for sand bed rivers) and (2) the stabilizing effect associated with lateral sediment
transport becoming larger as Shields numbers gets smaller (i.e., in gravel bed rivers). Through perturbation
analysis we derive a unifying analytical expression predicting the threshold condition for the stability of a
symmetric bifurcation appropriate for both sand bed and gravel bed rivers (see Appendix A):(

3
2
+ 2.5

Ca

)
+ 8𝛼r

𝛽a

√
𝜗a

= m
𝜗a

𝜗a − 𝜗cr
+ 1

n
dn
dD

||||𝜖=0
Da. (3)

This relation for the threshold condition is a function of the Shields number of the upstream channel 𝜗a, the
aspect ratio 𝛽a, the dimensionless Chezy coefficient Ca, the exponent m and the coefficient n appearing in
the sediment transport law, the coefficient accounting for the transverse bed slope on sediment transport r,
and the 𝛼 coefficient that accounts for the upstream distance from the bifurcation where the morphological
effect of the bifurcation decays Bolla Pittaluga et al. [2003]. The left-hand side (l.h.s.) of equation (3) is propor-
tional to the perturbation of the transverse sediment flux at the node (𝜖Qsy1) which, in turn, depends upon
the transverse component of flow velocity and the lateral bed slope (see equation (2)). The right-hand side
(r.h.s.) of equation (3) is proportional to the perturbation of the sediment transport capacity in the down-
stream branches (see equation (1)). When both sides of equation (3) are equal, the so-called marginal stability
configuration is attained. Under such circumstance, the initial perturbation (small increase) of flow depth in
the downstream channel neither grows nor decays. The bifurcation is defined as stable when the initial per-
turbation reduces in time. This occurs when the l.h.s. of equation (3) (representing “sediment input”) is larger
than the r.h.s. (representing “carrying capacity”). In this case, indeed, more sediment is supplied to the channel
that was perturbed (deepened) by the initial perturbation. This excess of sediment supply tends to decrease
the flow depth damping down the initial perturbation, and the bifurcation is consequently stable. Vice versa,
the bifurcation is defined as unstable when the initial perturbation grows in time. This occurs when the l.h.s.
(representing sediment input) is smaller than the r.h.s. (representing carrying capacity). In this case more sedi-
ment is leaving from the channel that was deepened by the initial perturbation. This excess of sediment export
from the downstream channel tends to increase the flow depth amplifying the initial perturbation, and the
bifurcation is consequently unstable.

Equation (3) is plotted in Figure 2 considering the values of the coefficients n, m, and 𝜗cr appropriate for
gravel and sand bed rivers. As stated in Appendix A, for gravel bed rivers dominated by bed load transport
the Meyer-Peter and Müller relation applies (n = 8, m = 1.5, and 𝜗cr = 0.047), so that equation (3) reduces
to equation (A22). In the case of sand bed rivers dominated by suspended load transport the Engelund and
Hansen relation applies (n = 0.05C2, m = 2.5, and 𝜗cr = 0), so that equation (3) reduces to equation (A23).
For given values of C and 𝛼r, equations (A22) and (A23) represent a relation between 𝛽 and 𝜗 that is plotted
in Figure 2. Here we show again the opposite behavior of gravel bed and sand bed rivers and the agreement
with the data. Given that both r and 𝛼 are rather uncertain, we bracket likely the values of their product. The
relation is only slightly sensitive to the value used for Chezy. To indicate the relevance of our results, we also
plot histograms for Shields numbers and aspect ratios of natural sand bed and gravel bed rivers from a global
data set [Kleinhans and van den Berg, 2011]. We excluded braided rivers from these data because these have
several parallel channels whereas the analysis pertains to single channels.
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Figure 2. Stability diagram of river bifurcations. Thresholds that separate a regime where bifurcations are stable with a
symmetrical configuration and a regime where symmetrical bifurcations are unstable and asymmetrical bifurcations are
stable. The lines bracket likely values of the product of 𝛼 and r parameters which are both uncertain. Plotted data are
from Figure 3: solid circle, flume (unstable); open circle, flume (stable) [Bertoldi and Tubino, 2007]; cross, Cumberland
Marshes this paper; and plus, Columbia River [Kleinhans et al., 2012]. Histograms show a population of natural river
channels [Kleinhans and van den Berg, 2011] indicating which regimes are likely found in nature. Ca = 13.

4. Physical Explanation

The striking opposite behavior of sand bed and gravel bed rivers can be clarified on the basis of equation (3)
and Figure 1b. The stability of a bifurcation is mainly governed by the difference between the sediment trans-
port capacity in the downstream branches (proportional to the r.h.s. of equation (3)) and the sediment input
provided to the downstream channels from the node (proportional to the l.h.s. of equation (3)). This balance
works out differently in gravel bed and sand bed rivers because of the different dependence of sediment
transport capacity on the Shields number. Let us consider first the case of gravel bed rivers. Assuming a criti-
cal value of 0.047 and a Shields stress 1.4 times the critical value, the r.h.s. of equation (3) turns out to be 16.5.
Considering a width-to-depth ratio 𝛽 = 30, a Chezy coefficient C = 13, and 𝛼r = 1, the r.h.s. of equation (3)
gives 5.25, a value larger than the l.h.s. that is equal to 2.73. This is often the case in gravel bed rivers that
hence show a tendency to unstable bifurcations. Indeed, in order to have r.h.s. equal to l.h.s., we should either
decrease the aspect ratio to 8.8 (extremely narrow channel!) or increase the Shields number to 0.12 (corre-
sponding to 2.6 times the critical value!) by keeping all the other parameters unchanged. Let us now consider
the case of sand bed rivers. Assuming the Engelund and Hansen relation, a width-to-depth ratio 𝛽 = 30, a
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Figure 3. Equilibrium configurations of sand bed and gravel bed river bifurcations. The discharge asymmetry ΔQ is
plotted versus (a and b) the Shields number 𝜗a and (c and d) the channel width-to-depth ratio 𝛽a for the universal van
Rijn sediment transport relation [van Rijn, 1984] (Figures 3a and 3c) and the gravel bed [Meyer-Peter and Müller, 1948]
and sand bed [Engelund and Hansen, 1967] relations (Figures 3b and 3d). Continuous lines indicate stable solutions;
dashed lines indicate regions were the trivial (ΔQ = 0) solution is unstable. Discontinuities in Figure 3a arise from
crossing the threshold to no sediment motion in the subordinate branch. We plot data of bifurcations from the
following data sets: open circle, Bertoldi and Tubino [2007]; cross, Cumberland Marshes (M.G. Kleinhhans, unpublished);
and plus, Columbia River Kleinhans et al. [2012]. We found no data of asymmetrical bifurcations in high mobility sand
bed rivers, but numerous cases of full avulsion are known [Makaske, 2001; Kleinhans et al., 2013]. Parameter values are
𝛼 = 3, and r = 0.5, Ca = 13.

Chezy coefficient C = 13, and 𝛼r = 1, it turns out that the r.h.s. of equation (3)) is independent of the Shields
number and gives 2.88. For a Shields stress ranging from 0.5 to 10, the l.h.s. gives a value ranging from 2.1 to
1.8, again lower than the r.h.s. This shows again that the vast majority of sand bed rivers are characterized by
unstable symmetric bifurcations, i.e., they tend to evolve toward asymmetric configurations. For gravel bed
rivers with a low Shields number close to the threshold for sediment mobility the first term on the r.h.s. of
equation (3) can be extremely large. This means that a small increase of flow depth in one downstream branch
implies a large increase in sediment transport capacity that cannot be balanced by the extra sediment feed at
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the node due to the transverse bed slope effect. However, at higher Shields number further above the thresh-
old for sediment motion the first term on the r.h.s. of (3) tends to m = 1.5. Here the l.h.s. of (3) is larger than
the r.h.s. of (3) so that for higher Shields number the bifurcation is stable. In sand bed rivers with dominant
suspended transport and a Shields number far above the threshold for motion, the r.h.s. of (3) is equal to the
sum of a constant (m = 2.5) and a second term that only weakly depends on flow depth (5∕Ca). This sum will
generally be larger than the l.h.s. of (3) which is smaller for increasingly larger Shields numbers, larger aspect
ratio 𝛽a, or smaller 𝛼r.

Our physical explanation of the stability of river bifurcations is different from that provided by Edmonds and
Slingerland [2008]. Indeed, we explain the inverse behavior of gravel bed and sand bed rivers in terms of
an analytical model that helps to clarify the role of different exponents in the sediment transport relation,
whereas Edmonds and Slingerland [2008], on the basis of a series of numerical simulations performed with
Delft3D, attributed it to differential local water surface slopes at the bifurcation.

5. Equilibrium Configurations

To find equilibrium solutions, the five unknowns Qb, Qc, Qsb, Qsc, and ha must be determined from the
five nodal relations. Here we solve the full nonlinear system of equations (see Appendix A) employing a
Newton-Raphson method. We span a wide range of water and sediment partitioning ratios to check for mul-
tiple equilibrium solutions. Because our main question is about the stability and symmetry of bifurcations, we
report the discharge asymmetry ΔQ defined as the ratio (Qb − Qc)∕Qa.

Results show the opposite behavior of sand bed and gravel bed rivers, which explains the discrepancy
between numerical model results reported until now. We find that both sand bed rivers and gravel bed rivers
have a sediment mobility regime with a single stable, symmetrical solution and a regime with two stable but
asymmetrical configurations (Figure 3). However, the two are opposed for gravel bed and sand bed rivers.
For bifurcations in low-mobility gravel bed rivers three equilibrium solutions exist: the trivial and unstable
symmetrical solution (ΔQ = 0) and two stable but asymmetrical solutions. This means that symmetrical bifur-
cations in gravel bed rivers are unstable [Bolla Pittaluga et al., 2003]. For sand bed rivers, on the other hand,
we find unstable configurations above a threshold Shields number, meaning that most sand bed rivers can-
not have stable symmetrical bifurcations. The exact thresholds for stable bifurcations depend on the chosen
parameters, on the width-to-depth ratio, or aspect ratio of the upstream channel𝛽a, and on the chosen closure
relation for sediment transport. These results are supported by the sparse field and laboratory observations
of (near-) equilibrium bifurcations (Figure 3). However, given the number of uncertainties affecting both the
field data and the theoretical model, the comparison must be considered more from a qualitative rather than
from a quantitative point of view. The fact that for small values of the Shields stress points tend to diverge from
the symmetrical equilibrium configuration is correctly predicted by the theory. Also, such tendency toward
asymmetry, stronger for larger aspect ratio, is correctly predicted by the theoretical model. A similar correct
qualitative behavior is shown for high values of the Shields stress corresponding to the sand region.

To summarize, this analysis shows that the majority of sand bed rivers have asymmetrical bifurcations.
Nevertheless, a relatively low-sediment mobility regime exists with stable symmetrical bifurcations that may
be relevant for low gradient fluvial plains and deltas particularly with low aspect ratios.

6. Conclusions

We developed a framework that predicts the stability of bifurcations in gravel bed and sand bed rivers. This
stability is mostly determined by sediment mobility and channel aspect ratio and is sensitive to the consti-
tutive relation for the bed slope effect that affects the sediment transport partitioning just upstream of the
bifurcation.

The theory predicts that symmetrical bifurcations in natural rivers are unstable for low Shields stresses close
to the threshold for sediment motion as often found in gravel bed rivers and for high Shields stresses in the
range typically found in sand bed rivers. This means that such bifurcations develop toward an asymmetri-
cal equilibrium configuration. On the other hand, for intermediate Shields stresses the theory predicts that
bifurcations can be stable. Such conditions can perhaps be found in very low energy fluvial plains and deltas.

Our results are valid in the absence of destabilizing factors commonly found in natural rivers such as gradient
advantage of a downstream branch or bars or channel curvature upstream of the bifurcation. The theory is
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corroborated by field data on the asymmetry of bifurcations in sand bed rivers, laboratory data for asymmetry
and stability of bifurcations in low Shields stress conditions, and numerical investigations of both gravel bed
and sand bed rivers. However, there is a lack of data for stability of bifurcations in high Shields stress conditions.

Appendix A: Governing Equations, Equilibrium Configurations, and Stability
Let us consider the governing equations for the equilibrium configuration in the river bifurcation. The
requirement of normal flow conditions in downstream channels can be expressed in the form

Qi = biCiDi

√
gDiSi, (A1)

where Si represents the slope of channel i (b or c), bi the channel width, Ci the dimensionless Chezy coefficient,
Di flow depth, and g gravity. Water discharge balance at the bifurcation requires

Qa = Qb + Qc. (A2)

We also assume the constancy of water level (hN = ha = hb = hc) at the bifurcation; hence, the longitudinal
slope of channel i (b or c) can then be expressed in the form

Si =
hN − hL

i

Li
, (A3)

where hL
i is the free surface elevation at distance Li downstream from the bifurcation. Exner equation applied

to both cells of the final reach of channel a reads

qsb − qsa

(
ba

bb+bc

)
𝛼ba

−
qsy

bb
= 0, (A4)

qsc − qsa

(
ba

bb+bc

)
𝛼ba

+
qsy

bc
= 0. (A5)

Equations (A4) and (A5) can be simply manipulated to provide continuity of sediment flux at the bifurcation:

Qsa = Qsb + Qsc (A6)

and the total transverse sediment flux Qsy upstream of the bifurcation:

Qsy = 1
2

[
Qsb − Qsc + Qsa

(
bc − bc

bb + bc

)]
. (A7)

The transverse water discharge Qy at the bifurcation has to satisfy a similar continuity constraint:

Qy = 1
2

[
Qb − Qc + Qa

(
bc − bc

bb + bc

)]
. (A8)

Finally, the transverse sediment exchange between the two adjacent cells of the final reach of channel a (see
Figure 1) is estimated on the basis of a well-established approach employed to describe bed load transport
over an inclined bed [Ikeda et al., 1981]:

qsy = qsa

[
V√

U2 + V2
− r√

𝜗a

𝜕𝜂

𝜕y

]
, (A9)

where the transverse velocity V is evaluated through a mass balance applied to each of the two cells, the
transverse bed slope 𝜕𝜂∕𝜕y is calculated in terms of the difference between bed elevations at the inlet of
channels b and c [Bolla Pittaluga et al., 2003], and the Shields number is calculated as

𝜗 = 𝜌U2

(𝜌s − 𝜌)C2gds
. (A10)
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We then have an algebraic system of nine equations in nine unknowns (Db, Sb, Qb, Dc, Sc, Qc, hN, Qy , and Qsy)
that needs to be solved in order to determine the equilibrium configuration of the network. Let us consider
for the sake of simplicity the simple case where the two downstream branches have the same length (Lb = Lc),
the same width (bb = bc = ba∕2), and the same boundary conditions (hL

b = hL
c). In order to determine the

threshold conditions for the appearance of multiple equilibrium configurations, we employ a perturbative
approach and expand every function f in terms of a small parameter 𝜖 in the form

f = f0 + 𝜖f1 + (𝜖2) . (A11)

For example, flow discharge in channel b can be expressed as Qb = Qb0 + 𝜖Qb1 +(𝜖2). The values attained by
every function f at each order of approximation (namely, f0 and f1) can be obtained by considering a Taylor
expansion in the neighborhood of 𝜖 = 0 in the form

f (𝜖) = f |𝜖=0 +
df
d𝜖

||||𝜖=0
𝜖 + · · · . (A12)

Equating (A11) and (A12), one immediately gets

f0 = f |𝜖=0 , f1 = df
d𝜖

||||𝜖=0
. (A13)

By substituting such expansions (A11) in the normal flow equation (A1), in the sediment transport formula
(equation (1) of the main paper) and in the nodal conditions (A2, A4, A5, and A6), we end up with a series
of algebraic systems that can be solved at each order of approximation. Specifically, at leading order (𝜖0)
the trivial solution characterized by the same flow conditions in the downstream branches is found, namely,
Db0 = Dc0 = Da, Qb0 = Qc0 = Qa∕2, Qy = Qsy = 0, Qsb0 = Qsc0 = Qsa∕2. Proceeding at first order (𝜖), the
expansion of uniform flow in channel b (equation (A1)) will read

Qb1

Qb0
= 3

2

Db1

Db0
+

Cb1

Cb0
+ 1

2

Sb1

Sb0
(A14)

and similarly in channel c with the subscript b replaced by c. Expansion of sediment transport relation in
channel b (equation (1) of the main paper) will read

Qsb1

Qsb0
=

m𝜗b0(
𝜗b0 − 𝜗cr

) (
Db1

Db0
+

Sb1

Sb0

)
+ Db1

1
n

dn
dD

||||𝜖=0
, (A15)

where it is relevant to notice that the derivative term dn
dD

differs depending on the sediment transport formu-
lations considered (n is a constant for Meyer-Peter and Müller (MPM) and a function of C for Engelund and
Hansen (EH)). Expansion of the logarithmic law to evaluate the dimensionless Chezy coefficient C will read

Cb0 = 6 + 2.5 log

(
Db0

2.5ds

)
, Cb1 = 2.5

Db1

Db0
. (A16)

The geometrical constraints (Lb = Lc) and (hL
b = hL

c) will also imply that Sb1 = Sc1. Perturbation of transverse
water flux at the node will read

Qy1 = 1
2

(
Qb1 − Qc1

)
. (A17)

Similarly, the perturbation of the transverse sediment flux at the node will read

Qsy1 = 1
2

(
Qsb1 − Qsc1

)
, (A18)

but also expansion of equation (A9) will read

qsy1

qsa
=

Qy1

𝛼Qa
− r√

𝜗a

(
Dc1 − Db1

)
0.5ba

. (A19)
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Finally, by substituting equations (A14) and (A15) into (A2) and (A6), we get(
Db1 + Dc1

Da

)[
Da

n
dn
dD

||||𝜖=0
−
(

2 + 5
Ca

)
m𝜗b0(

𝜗b0 − 𝜗cr

)] = 0. (A20)

Also, by substituting equations (A14) and (A15) into (A17), (A18), and (A19), we get(
Db1 − Dc1

Da

)[
1
4

(
3
2
+ 2.5

Ca

)
+ 2r𝛼

𝛽a

√
𝜗a

]
=

=
(

Db1 − Dc1

Da

)[
1
4

(
m𝜗b0(

𝜗b0 − 𝜗cr

) +
Da

n
dn
dD

||||𝜖=0

)]
.

(A21)

The l.h.s. of equation (A21) represents the increase of sediment flux provided to the downstream channels
from the node due to a perturbation of flow depth downstream. It is basically the ratio Qsy1∕Qsa expressed
perturbing equation (A9). The r.h.s. of equation (A21) represents the increase in sediment transport capacity
of the downstream branches due to a perturbation of flow depth. We then have a homogeneous system of
equations (A20 and A21) in the two unknowns

(
Db1 + Dc1

)
∕Da and

(
Db1 − Dc1

)
∕Da. The trivial configuration

Db1 = Dc1 = 0 is a solution of the system. By forcing the determinant of the matrix coefficients to vanish,
we can investigate whether multiple solutions exist. Such requirement turns out to provide two equations:
the first equation vanishes only in case the Chezy coefficient attains a nonphysical value, whereas the second
equation is represented by equation (3) of the main paper. Such equation turns out to exactly coincide with
the stability diagram of a river bifurcation derived numerically [Bolla Pittaluga et al., 2003]. As such, it repre-
sents both the threshold condition for the stability of a symmetrical river bifurcation and a condition where
multiple solution exists (see also Figure 3). Finally, for gravel bed rivers dominated by bed load transport, the
Meyer-Peter and Müller relation applies (n = 8, m = 1.5), so that equation (3) of the main paper reduces to

𝛽a

√
𝜗a = 8𝛼r

[
3
2

(
𝜗cr

𝜗a − 𝜗cr

)
− 2.5

Ca

]−1

. (A22)

In the case of sand bed rivers dominated by suspended load transport the Engelund and Hansen relation
applies (n = 0.05C2, m = 2.5, and 𝜗cr = 0), so that equation (3) of the main paper reduces to

𝛽a

√
𝜗a = 8𝛼r

(
1 + 2.5

Ca

)−1

. (A23)

Appendix B: Bifurcations in the Cumberland Marshes
Here we briefly describe the data collected at bifurcations (Table B1) in the Cumberland Marshes,
Saskatchewan River, Canada. The bifurcations used from the Columbia River [Kleinhans et al., 2012] are for the
sake of completeness also provided in the table and were collected with the same methods.

B1. Study Area and Data Collection
The Saskatchewan River derives its name from a Cree Indian word meaning Rapid River, referring to the
braided sections. Several tens of kilometers upstream of Cumberland House, the river transformed into a
highly sinuous meandering stream with cohesive banks. In this area, the river avulsed repeatedly during the
past several thousands of years after the glacial lake Agassiz withdrew. The latest avulsion took place in the
1870s when the Saskatchewan River spilled into a shallow lake with a dense clay floor covered with 0.1–0.2 m
resistive, detrital peat [Smith et al., 1989, 1998]. Since then, the river prograded into the basin to form the
Cumberland Marshes. In the upstream reach, channels formed simultaneously and were partly abandoned.
In the downstream reach, the Mossy delta formed. The present-day Cumberland Lake spills back into the
Saskatchewan River near Cumberland House, some 60 km downstream of the avulsion site.

In 1965 a hydropower dam was installed upstream of the avulsion site, which regulates the flow and traps most
of the suspended wash load sediment and all of the transported bed sediment. The mean annual discharge
released by the dam is about 500 m3/s with most of the discharge during the week days. The guaranteed
minimum discharge is 50 m3/s. In 2005 an extremely large control flood with a peak discharge of about
2700 m3/s flooded most of the area. The diurnal and weekly discharge fluctuations are damped out toward
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Table B1. Study Site Characteristics for the Cumberland Marshes (New Data) and the Columbia River [Kleinhans et al.,
2012], Ordered From Upstream to Downstreama

Site D S W1 W2 W3 R1 R2 R3 A1 A2 A3

Cumberland Marshes

Avulsion (Old Channel) 1000 1.0 × 10−4 380 324 139 4.9 6.1 3.4 1900 2030 480

Steamboat 500 1.0 × 10−4 219 25 147 7.1 0 6.8 1560 0 1000

North Angling 500 1.0 × 10−4 173 30 152 6.2 3.8 6.3 1100 110 950

Smith1 Island 500 1.0 × 10−4 135 113 104 5.9 5.4 2 820 660 220

Delta1 150 0.5 × 10−4 140 164 128 4.6 2.7 1.6 610 450 220

Delta3 150 0.5 × 10−4 124 71 49 2.2 1.3 3.1 270 100 160

Columbia River

Bif 2 653 2.2 × 10−4 87 37.2 30.4 2.55 2.81 2.32 225 112 74

Bif 3 762 2.2 × 10−4 98 48.9 34.4 2.65 2.62 2.11 267 133 76

Bif 1 510 2.2 × 10−4 54.8 31.4 55.9 2.95 1.99 2.45 165 66 141

Bif 4 725 2.2 × 10−4 63.3 53.5 20.5 3.62 3.87 2.14 240 218 48

Bif 5 510 2.2 × 10−4 73.3 64.6 19.4 4.33 4.63 1.24 330 315 25
aD= estimated mean grain size in upstream channel (in μm), S= channel slope (in m/m), W = channel width (in m), R=

hydraulic radius (in m), A = cross-sectional area (in m2), subscript 1 is for the upstream channel, 2 for the left downstream,
and 3 for the right downstream of the bifurcation. All widths and depths are estimated averages from the cross-sectional
and long profiles. Bifurcation names of the Columbia River are the same as in Kleinhans et al. [2012, Figure 2].

the downstream half of the Cumberland Marshes due to the presence of many small parallel channels, lakes,
and floodplains.

Six study sites were selected (Table B1) with varying downstream branch lengths and local upstream channel
planforms. Trifurcations, with three downstream branches, were avoided. Aerial photographs (N. Smith, per-
sonal communication, 2006) were available for most sites around 1945 or 1947, 1953, 1968 or 1977, and 1982
and were completed with the oblique low-altitude photographs taken on 18 July 2006 by M.G.K.

Bathymetric data were collected at cross sections upstream and downstream of most sites in 2006, except
for the 1870s avulsion and steamboat sites which were sampled in 2003 and 2004. The depth was measured
by a hand-held echosounder with an accuracy of 0.1 m, and the height of the banks above the water surface
was visually estimated with the same accuracy. The distance to the banks was measured by a hand-held laser
range finder with an accuracy of 1 m. Measurements were assisted by Norman Smith and Esther Stouthamer.
The 2003 and 2004 cross sections were surveyed to benchmarks of the Watershed Authority.

To identify inlet step heights to further assess discharge asymmetry and inlet step locations to assess the
representativeness of the cross sections, long sections were collected along the midchannel lines for the
downstream channels, extended into the upstream channel, by drifting downstream in the boat. Water depths
were measured every 15 s, while the distance to the bifurcation was measured. The boat velocity in the
upstream branch was very constant at 1.2 m/s and was used to determine the sample point locations in the
downstream branches.

For lack of detailed and accurate water surface elevation measurements during various conditions, the
slope of the channels is largely unknown, so we take the average slope and bankfull water depths. The
Saskatchewan River has a water surface slope of about 8 cm/km, but in the Cumberland Marshes the slope
declines toward a few mm/km in the Mossy Delta. We estimated gradients from elevation maps and surveys
in general agreement with Edmonds and Slingerland [2008]. Below we briefly describe the locations in the
Cumberland Marshes referred to in Table B1, and data are presented with 2006 photographs for context.

B2. 1870s Avulsion Site
The last major nodal avulsion of the Saskatchewan River occurred in the 1870s [Smith et al., 1989, 1998], when
flood water ran through a new chute cutoff out of a sharp meander bend of the Old Channel into the Ances-
tral South Angling Channel, reoccupying this former course of the Saskatchewan River. Two major channels
evolved: the Steamboat channel (see below) to the northeast and the Centre Angling (see below) to the
east, which formed in the elongated floodplain between the North Angling Channel and the Ancestral South
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Figure B1. (a and b) The avulsion site at the Old Channel (right) and New Channel (left) and (c) the avulsion of the
Steamboat channel. Arrows indicate flow direction; asterisk indicates approximate location of cross sections. (d) Widths
and (e) depths at the Steamboat are given as longitudinal profiles. (f and g) Cross-sectional data for both sites were
collected in 2003 and 2004. Note the scour hole just downstream of the bifurcation.

Angling Channel. Steamboats continued to use the Old Channel for about a decade, after which the New
Channel and the Steamboat channels became favored [Smith et al., 1998].

The aerial photographs show that the closure process of the Old Channel has presently stalled in a situation
where the width and depth still are slightly less than one half of the New Channel (Figure B1), and there is a
clear inlet step in the bed. The Old Channel continues to convey some of the flow and sediment attested by
dunes on the bed and emergent pointbars, making it a stable asymmetrical bifurcation.

B3. Steamboat Channel
In 1945 and 1953, the Steamboat was still a wide channel and the Centre Angling was only a quarter of the
width of the Steamboat. In 1977 the Centre Angling had nearly obtained its present-day width, while the
Steamboat channel had silted up considerably. The Steamboat channel was filled in with sand bars for about
two thirds of its length in 1982.

BOLLA PITTALUGA ET AL. GRAVEL BED AND SAND BED RIVER BIFURCATIONS 7532



Geophysical Research Letters 10.1002/2015GL065175

Figure B2. (a) The bifurcation of the Centre Angling and the
North Angling. Note the vortex bar at the entrance of the North
Angling. (b) Cross sections showing alternate bars in the large
channels. (c) Measured widths along the channels. The
difference in width upstream of the bifurcation is caused by
including or excluding the vortex bar. (d) Bed elevation profiles
along the channels showing the pronounced inlet step, the
vortex bar, and the scour downstream of it.

The entrance of the Steamboat channel is
presently nearly closed by a plug bar of fine sand
up the height of the upstream New Channel lev-
ees. The most downstream part (before entering
the Mossy River channels) is still deep, wide, and
now being filled up with mud and organic detri-
tus and has pioneer vegetation on the emergent
side bars. The original channel width is still rec-
ognizable in the aerial photo (Figure B1c). The
Steamboat channel only captures a small por-
tion of the upstream discharge during forma-
tive flow events, making this site a stable, highly
asymmetrical bifurcation.

B4. North and Centre Angling
In 1945 the Centre Angling flowed into the
North Angling, and by 1977 most discharge had
transferred to the Centre Angling (Figure B2).
Meanwhile, it had widened and (nearly) closed
off several of the smaller side branches along
islands (see next section). The width of the North
Angling Channel remained remarkably constant
due to its stable, cohesive banks, and later aerial
photographs show hardly any development of
the Centre Angling.

The entrance of the North Angling displays an
inlet step and a plug bar of about 4 m high,
with a considerable scour hole just downstream
of the entrance (Figure B2d), similar but much
longer than in the Steamboat entrance. As the
entrance is still open, the channel conveys some
discharge, making this a stable, asymmetrical
bifurcation.

B5. Smith Islands
Two islands developed (Figure B3a) as the
Centre Angling built levees and scoured its
channel. In 1945 the channels on both sides of
both islands were both still open, but in 1977 the
right channel of the downstream Smith2 Island
was entirely dry. On the other hand, both chan-
nels around the Smith1 Island remained entirely
open, although the right channel at Smith1
Island is now considerably shallower than the
left channel (Figure B3b). Yet the bed is covered
in large dunes, and there is a deep confluence

scour just downstream of it (Figure B3c and B3e), showing that there is still significant flow through the right
channel during floods. We use this case as a stable asymmetrical bifurcation, although it is not entirely clear
whether the right channel at Smith1 Island could develop similarly as the Smith2 Island.

B6. Mossy Delta Bifurcations
The Mossy River Delta has tens of bifurcations and two well-defined trifurcations. From the aerial photographs
it appears that about two thirds of the bifurcations have bifurcates of similar widths, and the remainder have
one narrow and one wider bifurcate. However, based on visually estimated flow, bed forms, and sand cover
on the bed, it appears that one channel discharges most of the water and sandy sediment. In fact, many
other channels do not even have sand on the bed but show tabular cross sections with plane beds consisting
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Figure B3. (a) The Smith1 Island has water on both sides, whereas the Smith2 Island has the right channel closed off.
(b) The transverse bed slopes clearly indicate meandering flow. (c) Note the vortex bar, the confluence scour, and the
shallowness of the right channel in the additional profile from the downstream end of the right channel into the vortex
bar downstream of the confluence (location indicated in Figure B3a). (d) Variations in channel width along the channel
showing widening just upstream of bifurcations and at confluences. (e) Bed elevation profiles along the channels
showing a negative step just upstream of the confluence scour.

of resistive lake peat as found in soil augers. This would render modeling with sediment transport capacity

(as in Edmonds and Slingerland [2008]) invalid. We therefore only selected the first bifurcation, which is fully

alluviated, and the third bifurcation on the left side of the delta, which is at least partly alluviated (Figure B4).

According to the aerial photographs and as verified in site visits, the delta bifurcations formed following a

well-known pattern: a V-shaped midchannel bar of silty sediment covered in vegetation forms where the

upstream channel debouches into the lake. While prograding, two new channels form at the sides of the

V-shaped bar. In 1947 the first bifurcation had fully formed as well as some asymmetrical bifurcations. In 1953

fourth bifurcations were forming, and in 1968 and 1982 the delta had again extended considerably. Until 1968

the main discharge seems to have flowed left, left, left, and left, but in 1982 a rather straight channel directly

into the Cumberland Lake without further bifurcations had formed (left, right, and left), which remains the
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Figure B4. Bifurcations in the Mossy delta. Data were collected at the first and third bifurcations. The third had (d) an
upstream midchannel bar with most of the flow on the left side, which crossed over to the right channel at the
bifurcation through a narrow deep channel visible in the left long section. The trifurcations are on the left and right of
the photographed area.

main channel until today. In 2006 the delta had not extended much farther than in 1982. This is perhaps an
effect of the sediment trapping at the dam, preventing further progradation of the levees. We use both cases
as stable, asymmetrical bifurcations.
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