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Abstract

Progress ratios (PRs) derived from historical data in experience curves are used for forecasting development of
many technologies as a means to model endogenous technical change in for instance climate–economy models.
These forecasts are highly sensitive to uncertainties in the progress ratio. As a progress ratio is determined from
fitting data, a coefficient of determination R2 is frequently used to show the quality of the fit and accuracy of PR.
Although this is instructive, we recommend using the error σPR in PR, which can be directly determined from
fitting the data. In this paper we illustrate this approach for three renewable energy technologies, i.e., wind energy,
bio-ethanol, and photovoltaics.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Experience or learning curves are widely used in policy and scenario studies in many fields [1–7] to
account for technology development. These curves illustrate that technical and economic performances of
a technology increase substantially as producers and consumers gain experience with this technology. This
typically is reflected as a substantial reduction in production costs. This phenomenonwas first described by
Wright [8], who reported that unit labor costs in airframe manufacturing declined significantly with
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accumulated worker experience: this cost reduction was of a constant percentage with each doubling of
cumulative output. Plotted on a log–log scale this empirical relationship is displayed as a straight line, and
simple extrapolation allowed for assessment of possible future airplane cost. Wright's discovery nowadays
is termed “learning curve”, as he only measured the effects of learning-by-doing, i.e., he determined the
time required to complete a certain task and used that to determine the reduction in labor. The notion that
this learning-induced cost reduction was the product of experience was introduced in the 1960s by Arrow
[9]. The Boston Consultancy Group some 10 years later extended the learning curve concept in two ways
[1]. First, it was applied to the total cost of a product, thereby including other learning mechanisms such as
research, development and demonstration (RD&D) and economies of scale, and other cost factors (e.g.,
cost of capital, marketing, overhead). In order to distinguish them from simple learning curves they were
labeled “experience curves”. In addition, the concept was applied not only within a single company, but
also to entire industries.

Different approaches have been developed to further conceptualize knowledge and learning [2,10–19].
Among these approaches are, listed in order of increased market penetration of a technology: learning-by-
searching, learning-by-doing, learning-by-using, learning-by-interacting, upsizing, and economies of scale.
Learning-by-searching is the most dominant mechanism in the early phase of technology development, but
often may play an important role at later stages as well. Niche-market development follows learning-by-
doing and is important in learning-by-using. Increased diffusion of the technology leads to learning-by-
interacting. Upsizing, such as in upscaling gas turbines, may lead to reduced unit cost and, finally, mass
production occurs in the last stage. Combinations of these approachesmay occur in each stage of technology
development and may also be time-dependent. Effects of learning and scale effects are often differentiated in
order to simplify the experience concept, however, even then, overlap is present, which complicates analysis
of technology development [20]. The learning approaches described above are used to explain the mech-
anisms behind cost development; an experience curve is a means to quantify this in an aggregated way. Also,
understanding technology development is attempted by disaggregating experience curves, by performing a
bottom–up analysis of cost development of important components of that technology, see, e.g., [19,21].

Forecasting technology development is based on extrapolating a historical trend to the future, thereby
assuming sustained trends [22], as was first done byWright [8]. Long-range forecasts are used in planning
possible future solutions to socio-economic problems of which the climate problem is the most pressing
[7,15,23,24]. In developing scenarios that assist in describing the solutions to various problems, endo-
genous technical change is now featured in most leading climate–economy models, as recently reviewed
by Köhler et al. [24]. In their review with extensive references they compare existing models and also
describe the main limitations: “the lack of uncertainty analysis; the limited diffusion of technology; and the
homogeneous nature of agents in the models including the lack of representation of institutional structures
in the innovation process” [24]. A point of critique Köhler et al. raise is that only limited sensitivity analyses
are applied in comparison to the vast parameter space possible. Awide range of future images is possible as a
result of the large amount of variables in these models; nevertheless multiple scenario analyses are limited.
They further conclude, among others, that “incorporating uncertainty will be a major challenge for the
current generation of climate–economy models” [24].

In many studies experience curves have been constructed on the basis of historical data that span
several decades [25,26]. From these curves a “progress ratio” PR is determined, which is the rela-
tive amount of cost reduction per doubling of cumulative output. The “learning rate” is then defined as
one minus PR. Progress ratios have been found to vary between 0.5 and 1.0 for the semiconductor
industry [22], manufacturing firms [25], and energy technologies [26].
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Given the empirical nature of the experience curve data and related inherent uncertainties, the PR is
likely to vary to some extent [25], when key parameters are changed such as the assumptions about initial
capacity installed, the associated start-off costs, the method of aggregating annual data, correcting for
inflation and varying exchange rates, and changing the learning system boundaries [27]. Already small
changes in PR can lead to strongly deviating results for (long-term) scenarios and energy models using
experience curves tomodel endogenous learning [28–30]. For example, a variation of the progress ratio for
photovoltaics (PV) technology has an enormous influence on the cost of reaching break-even, which is
defined as the cumulative production at which PV is competitive with conventional electricity generating
power plants [31]. Van der Zwaan and Rabl estimate the break-even unit cost to be $1/Wp, which
coresponds to bulk electricity prices of about US$0.04/kWh [31]. For a progress ratio of 0.80 they
calculated that the break-even cumulative productionwould be 148GWp, which is reduced to one-third for
a progress ratio of 0.75, but increased more than six-fold for a progress ratio of 0.85. Note that the present
(2005) cumulative production is about 6 GWp [32]. The cost of reaching break-even can be calculated by
integrating the experience curve, which results in 211, 74, and US$1240 billion for a progress ratio of 0.80,
0.75, and 0.85, respectively [31]. This example clearly illustrates the importance of using “correct” values
of the progress ratio. Of course, it is unclear what the “correct” value is. To date, most studies rather present
ranges in between which PRmay vary, and recommend using these ranges in scenario analyses in climate–
energy models [21,27,33,34]. In order to better justify such ranges we propose to use the error in PR, e.g.,
0.80±0.05. In this paper, we will show how this error can be determined from fitting experience curve data.
Although themargins of error in the PR value were first discussed byAlchian in airframemanufacturing on
the basis of declassified World War II data [35], it is still not a common practice to specify this error in the
PR value.

The determination of PR involves fitting historical data that span one or more decades, and resulting
values for PR are given in two or three digits following the decimal point. Usually, but not always, the
coefficient of determination R2 associated with reported values for PR is given, which indicates cer-
tain accuracy in these values. In a study on the influence of varying R2 on PR error we have found that
progress ratios with associated R2∼0.9 have errors of about 0.01 [36]. Progress ratios with associ-
ated R2b0.8 have appreciable errors of N0.02, therefore, specification of PR values in three digits is not
always correct.

We have discussed above that a small variation of PR can have a large effect on outcomes of scenario
analyses. In order to justify a specific variation of PR the error in PR should be used. This error can be
determined from fitting experience curve data, and it will serve as a justification of the range of PR in
sensitivity studies that scenario developers perform. Therefore, the objective of this paper is to present a
simple method to accurately determine the error in the value of PR. We show that one can easily deduce
this error from the definition of PR: it depends on the error in the slope of the double-log plot. The slope
and its error result from chi-square minimization fitting. To illustrate the usefulness of this method, we
will determine the error in PR for three renewable energy technologies, i.e, wind farms, bio-ethanol, and
photovoltaics. With these examples, we provide the range of PR values that scenario makers should use to
parameterize endogenous technical change in their climate–economy models.

2. Theoretical considerations

In this section the methodology being used in determining the error in PR, denoted as σPR, is presented.
It will be shown that fitting parameters and associated errors are needed to calculate σPR. Therefore, the
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basics of chi-square minimization fitting are presented. As values for PR are reported usually in
conjunction with the coefficient of determination R2 of the fitted data, its definition is also given.

2.1. Experience curve

The empirically found relation between the cost and the cumulative production in a wide range of
products has also been analyzed theoretically [1–4,6,16,22,25,26]. A power function well describes this
relation, although other functions have been proposed as well [2]. Usually, double logarithmic graphs
clearly demonstrate a linear relationship, where the slope is a measure of learning or experience; hence the
term learning or experience curves. Such a curve can be described as:
cx ¼ axm or in logarithmic form log cx ¼ log aþ m log x ð1Þ
in which cx is the costs required to produce the xth unit of production, x the cumulative production up to
and including the xth unit of production, a the costs required to produce the first unit, and m the measure
of the rate of costs reduction as cumulative production increases. The constant parameter m also is
denoted learning or experience parameter, and is used to calculate the progress ratio PR for cumulative
doubling of production:
PR ¼ cx2
cx1

¼ axm2
axm1

¼ 2m for x2 ¼ 2x1ð Þ: ð2Þ
The learning rate LR is then defined as:
LR ¼ 1� PR: ð3Þ

Both progress ratio and learning rate are expressed in ratios or percentages. Values for progress ratios

typically range from 1.0 (100%) to 0.5 (50%), with a mean around 0.8 (80%), Possibly, the value of PR
may be dependent on technology [22,25,26]. Note that in practice cost data are not readily available, and
price is used as a proxy for cost.

The error σPR in the progress ratio can be calculated from error propagation theory as given by
Bevington [37]:
rPR ¼ d 2mð Þ
dm

� �
m

rm ¼ ln 2d 2md rm ¼ ln2d PRd rm: ð4Þ
in which σm is the error in parameter m, resulting from the fitting procedure.

2.2. Fitting

The experience curve as shown in Eq. (1) can be generalized as:
y ¼ f x;a;mð Þ ð5Þ

in which y is the dependent variable, x the independent variable, f() the function describing the
dependency between y and x, and a and m the parameters used in the function f(). Chi-square
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minimization is widely used as a standard way of defining the best fit: it minimizes the sum of the
squares of the vertical differences between the experimental curve and a (non)-linear theoretical curve of
choice. The reduced chi-square χr

2 is defined as [37]:
v2r a;mð Þ ¼ 1
n� p

X
i

wi yi � f xi;a;mð Þ½ �2 ð6Þ
in which n−p is the degrees of freedom, n is the number of data points (xi,yi), p the number of
parameters (in this case 2, i.e., a and m), and wi the weight associated with the ith data point (here taken
as wi=1, i.e., unweighted fit). Minimization of χr

2 is often done by using the Levenberg–Marquardt
method [38,39], which is implemented in many (non)-commercial data analysis software tools, see e.g.
Ref. [40]. Standard errors in parameters can be calculated using co-variance matrices [37], in which the
goodness of the fit is reflected, i.e., small errors correspond in general to a good fit. The error σm of the
parameter m is used in determining the error in PR σPR as defined in Eq. (4).

Another way of determining a best fit involves the use of the coefficient of determination R2 (also
known as goodness-of-fit parameter), which is defined as the ratio of the regression sum of squares to the
total sum of squares [37]:
R2 ¼
P
i

f xi;a;mð Þ � 1
n

P
i
yi

� �2

P
i

yi � 1
n

P
i
yi

� �2 : ð7Þ
The coefficient of determination R2 varies between 0 and 1 and denotes the strength of associa-
tion between y and f(x;a,m). Fitted data with R2 value larger than 0.8 are considered strongly corre-
lated, whereas fitted data with R2b0.25 are weakly correlated [37]. Fitting strongly correlated data also
yields small values for the standard error in σm, and consequently small errors in σPR through Eq. (4).
3. Results and discussion

The methodology described above is used in this section for three renewable energy technology cases,
i.e., wind farms, bio-ethanol, and photovoltaic technology, to demonstrate the usefulness of introducing
an error in the value of the progress ratio. Published data are fitted to determine PR and its error σPR.

3.1. Wind farms

Global experience curves for wind energy farms have been constructed only recently [27]. Before that,
only regional data or data per manufacturer were analyzed to yield progress ratios varying between 0.68
and 1.17. Junginger et al. review this data and further discuss the effects of system boundaries on
experience curve analysis [27]. Fig. 1 shows the global experience curves for wind farms for Spain and the
United Kingdom (UK) over the periods 1990–2001 and 1992–2001, respectively. Reported values for PR
are PR=0.81 (R2 =0.978) for the UK and PR=0.85 (R2 =0.887) for Spain [27]. In addition, for Spain it
was reported that PR=0.82 (R2 =0.875) for the period 1990–1998.



Fig. 1. Wind farm experience curve: turnkey investment costs in Euro (2001) per kWas a function of global cumulative installed
wind power capacity in MW for wind farms in Spain (1992–2001) and the United Kingdom (1990–2001). Original data are from
Junginger et al. [27].
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Our fitting analysis of the wind park experience curve as depicted in Fig. 1 shows that for the UK data
PR equals 0.805±0.010 with R2 =0.978 for the period 1992–2001. Analysis of the Spanish data shows
that PR=0.851±0.016 with R2 =0.889 for the period 1990–2001, whilst PR=0.82±0.02 with
R2 =0.875, or nearly 4% lower for the period 1990–1998. However, the difference is not significant,
due to the respective errors of 2 and 3%. The values themselves are in excellent agreement with the PR as
determined by Junginger et al. [27]; we have determined an error in these values.

3.2. Bio-ethanol

Recently, Goldemberg et al. [41–43] have presented the Brazilian experience with bio-ethanol from
sugarcane as provided by the Brazilian Alcohol Program [44]. The ethanol experience curve apparently
shows a discontinuity in the year 1985, as depicted in Fig. 2. Ethanol prices (in US$ of October 2002)
decrease in the period 1980–1985 with a progress ratio of 0.93, whilst in the period 1985–2002 the price
decrease is very much faster with a progress ratio of 0.71 [42]. Unfortunately, the quality of the fits as
expressed by the coefficient of determination R2 was not reported, whilst data spread is considerable, see
Fig. 2.

Our fitting analysis of the bio-ethanol experience curve as depicted in Fig. 2 shows that in the period
1980–1985 PR equals 0.932±0.011 withR2 =0.887; in the 1985–2002 period we find PR=0.71±0.02 with
R2 =0.885. These values are in excellent correspondence to the values of PR as given by Goldemberg et al.
[42]; however we have determined an error in these values. The data point of the year 1999 is an outlier in
statistical terms and largely influences the fitting result as its value is about half the values of 1998 and 2000.
The cause behind this is the deregulation of the market in 1999 in combination with an extremely productive
harvest season leading to an overcapacity of cane and sugar [45]. If we exclude this data point from the
analysis we find for the period 1985–2002 PR=0.724±0.015 withR2 =0.938. Obviously, the value of PR is



Fig. 2. Ethanol experience curve: ethanol price in US$ (Oct 2002) as a function of cumulative ethanol production in millions of
m3 for Brazil for the period 1980–2002. Original data are from Goldemberg et al. [42].
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somewhat larger and has a lower error as R2 has improved. For comparison, fitting the complete data set
(1980–2002) we find PR=0.832±0.013 with R2 =0.856; see the dashed line in Fig. 2.

3.3. Photovoltaic technology

Progress ratios for PV technology have been used to assess the prospects and diffusion of PV
[5,31,46–49]. Harmon [50] and Parente et al. [51] recently updated PV experience curves on the basis of
price data fromMaycock [52]. Harmon reported a PR of 0.798withR2 =0.9927 [50], whilst Parente showed
that a statistically significant break occurs in 1991: in the period 1981–1990 a PR was determined of 0.798
(R2 =0.977), whilst in the period 1991–2000 a 3% lower PR was determined of 0.774 (R2 =0.978) [51].
Fitting the complete curve (period 1981–2000) yielded PR=0.772 with R2 =0.988. A moving average
analysis with a time window of 10 years has shown [48] that PR is not constant and may vary between 0.84
and 0.7 for 10-year periods starting from 1976 to 1992, with low PR values in themost recent time-windows.
Associated R2-values are between 0.84 and 0.98.

The global PV experience curve used in the present analysis is depicted in Fig. 3, in which the average
selling price of photovoltaic power modules in 2001 US$ as a function of cumulative shipments is shown for
the period 1976–2001 [47,53]. Fitting the complete (1976–2001) curve yields PR=0.794±0.004 with
(R2=0.992). Following the analysis by Parente et al., we have also analyzed the data covering the two periods
1981–1990 and 1991–2000, see Fig. 3.We arrive at PR=0.834±0.016 (R2=0.913) for the period 1981–1990,
and PR=0.704±0.015 (R2=0.975) for 1991–2000, illustrating that PR is not constant.

As Parente et al. reported errors in the fitting parameter m [51], we can use these to determine the error
in PR with Eq. (4). We thus arrive at the values shown in Table 1; for comparison also results of our own
analysis are shown. Clearly, there are considerable differences between the analysis results. One possible
explanation may be the difference in sources of data. We have used data for the period 1976–2001 from



Table 1
Comparison of progress ratios determined from fitting various time periods

1981–1990 1991–2000 1981–2000

Parente et al. PR 0.798±0.010 0.774±0.011 0.772±0.010
R2 0.977 0.978 0.988

Present study PR 0.834±0.016 0.704±0.015 0.816±0.009
R2 0.913 0.975 0.954

The errors in the results from Parente et al. are calculated from their data [51]. The present study uses original data reported by
Strategies Unlimited [47,53].

Fig. 3. PV experience curve: average selling price in US$ (2001) as a function of cumulative PV power module shipments in
MWp for the period 1976–2001. Original data are from Strategies Unlimited [47,53].
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Strategies Unlimited [47,53], whilst Parente et al. have used data fromMaycock [52]. Nemet [54] recently
also reported on the discrepancy in values for PR as a result of using different data sources: he presented
PR=0.74 and 0.83 resulting from Maycock [52] and Strategies Unlimited data [47,53], respectively. The
discrepancy is caused by the fact that the largest differences between these data sources occurs in the years
up to 1985, which has a large effect on fitting results [54]. A study further elucidating the origin of the
differences in the data clearly is required.

The question remains what the “correct value” of the progress ratio is. The determined error in all PR
values is around 0.01, but the difference in all PR values induced from using different data sources is around
0.05. Thus, using the error in PR to justify the range in scenario analyses in climate–energy models in this
case would lead to a range that would be too narrow. Nevertheless, in an attempt to arrive at a value of PRwe
compare the values of PR for the longest periods (1981–2000) in Table 1 with the value for the whole period
(1976–2001) as the errors are smallest for fitting long periods. Note, we thus ignore the apparent accelerated
cost reduction in the period 1991–2000. The value of PR determined from Strategies Unlimited data for the
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period 1976–2001 is between the values for the 1981–2000 periods and has the lowest error. Averaging these
values and errors leads to PR=0.794±0.014.

4. Conclusion

In this paper we have described a methodology to include an error in the value of the progress ratio. This
was motivated by the fact that uncertainty in climate scenarios nowadays is assessed by limited sensitivity
studies only. As the consequences of a small variation of the progress ratio can be enormous in forecasting
scenarios, the inclusion of an error in the progress ratio provides scenario developers with the smallest
necessary range over which sensitivity studies should be done.

We recommend that the determination of progress ratio from experience curves should include
determination of the error as well. For the calculation of the error σPR we have derived a simple equation
that can be used in standard spreadsheet software.

To illustrate the method, three technology examples were given. Analysis of wind farm development in the
UnitedKingdomwas shown to yield 0.805±0.010 for the period 1992–2001; for Spainwe found PR=0.851±
0.016 for the period 1990–2001. Fitting analysis of the bio-ethanol experience curve showed that PR=0.832±
0.013 for the period 1985–2002. The values of PRdetermined by our fittingmethod are in excellent agreement
with the reported values for wind farm and bio-ethanol development, and we have added an error to these
values. The case of PV technology development yielded PR=0.794±0.004 for the period 1976–2001, based
on a dataset fromStrategiesUnlimited [47,53]. Comparisonwith results reported by Parente et al. [51] revealed
a clear difference in PRvalues, which apparently is due to the fact that another dataset, fromMaycock [52],was
used. The difference in PR values is larger than the error σPR that we determined. A “correct” value of PR
is therefore difficult to specify, and a detailed study on the origins of the difference in datasets is needed.

Scenario developers can directly use the PR values and their errors that are reported here for justifica-
tion of the range of PR in sensitivity studies. They should be aware that progress ratios may not be constant,
although historical data provide evidence that assuming constant progress ratios is a valid approach to
include endogenous technological learning in their climate models. Re-evaluating progress ratios when
new data become available is therefore always needed and updating experience curves should be part of
technology development research.

The presented calculation method may be limited by the use of data sets that consist of one data point per
year. These data points are determined by averaging several data points available for a particular year. The
resulting data points are taken as being accurate, i.e., as having no error, whilst determination of the standard
error of themean is easy. In fact, using errors in these data points in fitting the curves, will lead to larger errors
in the progress ratio. Onemay even consider weighted fitting. Therefore, the error in PR as presented here for
the three technology cases should be regarded as the lowest that one can determine.We therefore recommend
that in future studies experience curves should be depicted and fitted using errors also in individual data
points. Scenario developers should choose their range in sensitivity studies using the error in PR as the lowest
bound of their range.
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