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a b s t r a c t

Public acceptance is crucial for successful implementation of energy technologies in society. However,
studies that use the concept do so in diverse and often inconsistent ways. They also often limit
themselves to specific technologies and do not account for the effects of labeling, time, and the
heterogeneity of the general public, which may lead to a biased and incomplete understanding of public
acceptance. This study first conceptualizes three forms of public acceptance: socio-political acceptance,
market acceptance and community acceptance. It then relates the concept of socio-political acceptance
to preference formation. Next, it uses two discrete choice experiments that were conducted in 2010 and
2012 to investigate these concerns. Our results show that public preferences for energy technologies are
temporally stable, even in the face of exogenous shocks such as the Fukushima incident. Using mixed
logit models, we further show that labeling has a profound influence on stated preferences. When
technology labels are revealed, respondents favor renewable and natural gas technologies. When labels
remain unobserved, nuclear energy and biomass take prominence. However, latent class models show
that there are distinct classes of respondents, tied to specific socio-demographic characteristics that
differ greatly in their sensitivity to labeling and in the temporal stability of their preferences. It follows
that changes in public acceptance are not population-wide, but remain limited to specific sub-groups.
We discuss the theoretical and policy implications of our findings and conclude that future studies and
policy initiatives may overlook important insights if they disregard the effects of labels, time, and
heterogeneity.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Public acceptance is crucial for successful implementation of
technologies in society. Energy technologies currently encounter
significant public opposition in several countries. The German govern-
ment, for example, shut down all national nuclear facilities after the
2011 Fukushima incident incited widespread public opposition. High
public acceptance eases the implementation of technologies in society,
but when acceptance is low, it hinders – or even halts – their imple-
mentation. Attaining renewable energy targets while accounting for
public preferences is a substantial challenge to policy makers. The
current Dutch policy framework for renewable energy, for example, is
based on an agreement between a range of national and local
stakeholders, such as ENGOs, unions and companies [1]. Increasing
understanding of the determinants of public acceptance and prefer-
ence can aid policy makers in making more informed decisions for
renewable energy policies.

The public acceptance of energy technologies has received limited
scientific attention, despite its influence on innovation success [2].
Most studies on the topic are limited to specific technologies, such as
carbon capture and storage (CCS) [3,4], wind energy [5–7], biomass
energy [8,9], solar energy [10,11], or nuclear energy [12,13]. However,
future energy systems will likely consist of multiple energy technol-
ogies. A focus on one technology is also too narrow for a real unde-
rstanding of public acceptance, because it leads to a bias resulting
from myopic decision-making [14]. For reliable measurement of the
public acceptance of a technology it is therefore important to compare
it with available alternatives, as was done empirically by Bergmann
et al. [12,14], Zoellner et al. [16], and in meta-studies that combine the
results of public acceptance studies [17].

Several additional caveats remain unexplored when it comes to
systematically understanding the public acceptance of energy techn-
ologies.

First, there is a lot of ambiguity surrounding public acceptance [18]
due to its multidimensional nature [2]. To fully understand the role of
public acceptance in energy innovation processes, studies need to
specify clearly which aspect of public acceptance they are studying
and why this aspect in particular is relevant to the issue at hand.

Second, research shows that individuals not only base their
choice on a technology’s observed attributes, but also infer other
attributes from a label. Labels such as product names, technology
names or brand names function as heuristic cues [19,20]. The label
can invoke thoughts and feelings that do not necessarily match the
observed attributes of a technology. For example, nuclear energy
often invokes feelings of dread, which greatly influences its
acceptance by the public [21,22].

Third, preferences for alternatives are often unstable over time
[14,23]. Thoughts and feelings associated with a label can change
under the influence of new information. For example, the incidents at
Chernobyl and Fukushima may strengthen the negative associations
of with the label “nuclear energy.”

Fourth, by only presenting the average valuations of different
alternatives, many public acceptance studies implicitly ignore the fact
that the general public is heterogeneous—the opinions of individuals
can vary substantially [24,25]. Understanding this heterogeneity facil-
itates segmented communication approaches. This can improve the
acceptance of technologies among subclasses and, thereby, reduce
controversy.

In this paper, we first review existing literature on public accep-
tance of (energy) technologies, preference formation and preference
diffusion. Next, we expand upon the state-of-the-art by demonstrat-
ing how labeling and time affect acceptance of energy technologies
among different classes of the public. We do this by analyzing two
latent class choice models, using data from two discrete choice
experiments conducted in 2010 and 2012.

2. Review

2.1. Conceptualizing public acceptance

It is often unclear what the concept of public acceptance entails,
since it has a dual meaning. It variably refers to an attitude towards a
technology or to a form of behavior that supports or resists the
implementation of a technology. However, psychological models [26]
point out that attitudes do not always incite the associated behavior.
Negative attitudes, for example, do not always lead to protests. As
such, there are different indicators of public acceptance that are not
necessarily consistent [18].

We base our conceptualization of public acceptance on the roles
that individuals can play in the different stages of an innovation
process. Two different role types, citizens and consumers, shape the
public acceptance of a new technology [27,28]. Citizens are usually
only indirectly involved in the development and diffusion of novel
technologies. They shape the innovation process by voicing their
opinions or by displaying actions that support or resist a technology,
both before and after market introduction. Consumers effectively play
two direct roles; as adopters and as users [29]. Although consumers
often combine these roles, this is not always the case. Consumers can,
for example, donate or share a purchased good. Moreover, it should be
noted that consumers can also be organizations. Following Van
Rijnsoever and Oppewal [30], we take the view that adopters and
users are relevant at different stages in the innovation process.
Adopters play a role in the acceptance process once opportunities
for direct interaction with the technology become available, such as
test facilities, prototypes, or products and services that can be
purchased. Users are those who use the technology or experience its
consequences.

Based on these roles, we arrive at the three interdependent
dimensions of public acceptance by Wustenhagen et al. [2]: socio-
political acceptance, community acceptance, and market acceptance.

� Socio-political acceptance refers to the role of citizens. It is
primarily manifested through general support for a technology
or for policies that support its development. This component of
acceptance is often gauged through opinion polls that represent
the aggregated attitudes of citizens [31,32]. Socio-political accep-
tance further comprises the acceptance by key stakeholders and
policy makers, who can employ various strategies to influence
socio-political acceptance (see [33] for an overview). Prominent
strategies are the voicing of opinions by societal groups or
stakeholders in the media, seeking the help of political parties,
or engaging in direct dialogue with developers. Socio-political
acceptance can foster market and community acceptance by
legitimizing policies for social site characterization [34]
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(community acceptance) or feed-in tariffs [35] (market accep-
tance), for example.

� Market acceptance refers to role of consumers as adopter. It is
revealed primarily through the adoption process of technology.
An adopter can be an individual, but can also be a firm or any
other type of agent that is able to adopt the technology. Goods
or services that attract sufficient market demand are most
likely to be retained and to ‘diffuse’ through the population
[36,37], while others are discarded1.

� Community acceptance refers to the role of consumers as
voluntary or involuntary users of technology. It plays an
important role in those cases where the adoption of an
innovation affects large groups of agents such as, for example,
the siting decisions for renewable energy installations. Local
stakeholders, such as residents, local authorities and employees
can object to projects even when sufficient socio-political or
market acceptance have been secured. These situations are
often attributed to the ‘not in my backyard’ (NIMBY) syndrome,
although the underlying mechanism of this syndrome are
poorly understood [6,38,39].

In this paper we focus on socio-political acceptance as an
aggregate of the individual attitudes of citizens.

2.2. Relevance of public acceptance

The influence socio-political acceptance on policy and the
strength of its interdependencies with other dimensions of accep-
tance depend on factors such as the topic salience, characteristics
of the decision maker, media appearance, the lobby power of other
stakeholders, and possible upcoming elections [40,41]. Influence
can manifest itself through changes in funding, regulations, or
expected market demand. The importance of socio-political accep-
tance in innovation processes is expected to increase in the future
for three reasons.

First, technological progress has greatly decreased the barriers
to obtaining reliable information about public preferences. Tech-
nologies such as the Internet allow for fast and direct measure-
ment of public opinion through large-scale surveys [42]. New
media allow for instant dissemination of findings. In this manner
public opinion serves as feedback to policy makers and political
parties. Politicians use it as a tool in political debates and react to
shifts in public opinion by changing their ideological positions
[43]. Second, science is held increasingly accountable for its
societal benefits [44–47]. Whenever innovations for renewable
energy technologies require significant public funding, the opinion
of the general public has to be taken into account in order to
legitimize the innovation [32,48]. Lastly, community initiatives for
renewable energy [34,49–51], have increased the agency of citi-
zens in co-creating knowledge, innovation and technology. As a
result, the voice of citizens in the development of renewable
energy projects is increasing. For these reasons it is important to
better understand the formation of public preferences.

2.3. Public acceptance and preference formation

In our conceptualization, acceptance implies that citizens pre-
fer one state (e.g. the existing situation), over another (e.g. one in
which a new energy technology has been implemented). It is
important to understand how citizens form preferences on the
basis of the information that they receive. Citizens rarely have

well-defined preferences for objects that they are not familiar or
experienced with. Instead, they often ‘construct’ their preferences
instantaneously and will “selectively use information that is part
of the immediate task description, as well as information that is
drawn selectively from memory, to construct a response on the
spot” [11], p. 245. Constructed preferences can be based on highly
selective use of information, avoidance of tradeoffs and involve
limited reflection.

In psychology, dual processing [52,53] models indicate that
particular types of situations are more conducive to such limited,
peripheral or heuristic processing. In these situations, rather than
systematically processing all of the information that is available to
them, agents rely on heuristics to simplify decision making, such
as the expertise or likability of the source of the information [54]
or the feelings (affect) generated by the information [22]. The
preferences that they form in this way are unstable and more
likely to change over time [52,53]. Heuristic cues, such as brands
or labels [54], provide easy access to heuristics and distract from
other information. Attaching labels to a description of an energy
technology can therefore trigger feelings and thoughts that do not
correspond with the description that is provided [19,20].

Preferences for technologies are likely to vary between agents
[24,25,55]. However, relatively homogeneous segments of agents
can often be identified based on observed or unobserved char-
acteristics [56,57]. The support of particular key segments can be
crucial for the success of renewable energy innovations, such as
the key role of early adopters [30,37] in generating market
acceptance. Accounting for heterogeneity in public acceptance
studies, allows the identification of such key segments.

2.4. Modeling preferences through choice processes

Preferences for renewable energy technologies are revealed when
a trade-off or choice between several alternatives is made. Choice
processes can be described using a variety of economic and psycho-
logical models, varying from neoclassical rational choice models to
mental models that are based on inductive search heuristics [58]. No
single model is most appropriate in all circumstances; this depends on
the purpose of its use. For our purposes, Random Utility Theory (RUT)
[59–61] is especially informative. RUT is able to fit most of these
theories in a realistic choice context.

Choice models commonly assume that agents derive utility from
the attributes of alternatives in a given choice situation (e.g. a choice
task). In each task agents choose the alternative with the highest
utility. RUT shares this assumption, but accounts for the heterogeneity
of individual agents and the context of the choice. In RUT, utility (U) is
a latent construct that consists of a deterministic component (V), and
an error component (ε). The utility of alternative j of agent i is given
by [61,62]:

Uij ¼ Vijþ εij

The value of Vij is determined by a set of observed attributes that
are associated with alternative j or with agent i. Each attribute is
weighted by a coefficient βij. The error component εij is determined by
factors such as unobserved attributes or agent characteristics, mea-
surement error, functional misspecification and bounded rationality.
Finally, it captures the aforementioned heterogeneity among citizens
based on their choice behavior [57]. Overall, εij gives the choice model
its probabilistic properties

Scholars typically prefer to base their studies on revealed prefer-
ences, which are deduced from economic agents’ observed actions.
This approach is appropriate for market and community acceptance,
but cannot be used to measure socio-political acceptance, because
revealed preference data is unavailable before market introduction. An
alternative is to use data agents’ self-reported preferences. These are
referred to as stated preferences and can be measured using ordinal

1 A wider understanding of market acceptance also includes professional inves-
tors, and consumers or communities as investors [93]. However, we did not include
this here, because this relates to how new technological varieties are created [94],
not to public acceptance.
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ratings, ranking, or contingent valuation. These techniques are not
without disadvantages. Studies have shown that agents typically
struggle to express their preferences accurately when tradeoffs are
complex and where respondents have only limited personal experi-
ence with the alternatives [63,64].

A more reliable technique is the Discrete Choice Experiment
[20,65,66]. In a DCE, respondents are provided with a series of choice
tasks, usually in the form of a questionnaire. Each task contains two or
more alternatives between which respondents are asked to choose.
Alternatives differ on a fixed number of attributes. It is common
practice to include multiple questionnaires with systematically vary-
ing attribute levels and choice tasks in the experimental design. This
can drastically increase the quantity and quality of data obtained
through the questionnaire.

DCEs have a number of advantages over conventional preference
measurement techniques. First, they force respondents to make
tradeoffs between alternatives, which allows for the estimation of a
full ranking of alternatives. This is often problematic for rating tasks
[63] Second, attribute levels are part of a controlled experimental
design. This prevents common method bias [67] and increases
internal validity [68]. Third, the researcher can control the number
of attributes and the information available to respondents in such a
manner that choice tasks represent realistic ‘what if’ situations [69].
This is an improvement over traditional methods to measure prefer-
ences, where these factors cannot be controlled.

A number of DCEs have been conducted to measure preferences
for energy technologies [70–77], focusing on adoption behavior and
market acceptance. For socio-political acceptance the number of DCEs
has increased rapidly in last few years see [12,70–72]. These studies
focus on the consumer’s willingness to pay for alternative energy
sources. However, no studies have yet demonstrated how labeling and
time affect acceptance of energy technologies among different classes
of the public.

3. Methods and data

3.1. Research design

We measured the public preferences for renewable energy tech-
nologies with two identical discrete choice experiments (DCEs). Each
DCE consisted of six binary choice tasks with six varying technological
attributes in each task. Each choice task contained two technologies
from which respondents were asked to pick their preferred option.
Only the most prominent technologies that are of the energy portfolio
in the Netherlands were included, namely (1) PV solar energy,
(2) onshore wind energy, (3) offshore wind energy, (4) biomass
energy, (5) nuclear energy, (6) energy from coal, (7) energy from coal
with CCS, (8) energy from natural gas, and (9) energy from natural gas
with CCS.

The first technological attribute included in each choice task was
the name of the technology. Half of the respondents received choice

tasks with names of the technology in the heading (the labeled
condition); the other half received choice tasks with “option 1” and
“option 2” in the heading (the unlabeled condition). The remainder of
the choice experiment was the same for both conditions. Each choice
task contained five additional technological attributes. These attri-
butes were based on the five latent factors identified by Van
Rijnsoever and Farla [32] from a wide range of technology character-
istics and using a sample of 450 respondents in the Netherlands. Each
attribute was described and explained to the respondents before the
DCE. These attributes were:

� Long-term problems2: this attribute represents concerns about
the catastrophic consequences that a technology might have. It
contains all the aspects that Slovic [21] identifies as part of the
risk perceptions of nuclear energy (e.g. unknown or dread
risks). These perceptions are also applicable to the conse-
quences of climate change. The attribute has three levels:
“relatively low,” “medium,” and “relatively high.”

� Security of supply: this attribute reflects the reliability of energy
supply to a country. It mainly pertains to energy security and
macro-economic issues. It includes concerns raised in the public
debate about increasing energy dependence on politically instable
countries [78,79]. The attribute has three levels: “relatively low,”
“medium,” and “relatively high.”

Table 1
Attribute levels of the energy alternatives.

Long term problems
(3 levels)

Security of supply
(3 levels)

Private costs and
discomfort (2 levels)

Spatial impact
(3 levels)

Price per kW h
(continuous scale)

Photovoltaic solar energy Relatively low Relatively low Relatively high Relatively low 7€ 0.20
Offshore wind energy Relatively low Medium Relatively low Medium 7€ 0.07
Onshore wind energy Relatively low Medium Relatively low Relatively high 7€ 0.045
Energy from biomass Medium Relatively high Relatively low Relatively low 7€ 0.08
Energy from coal Relatively high Relatively high Relatively low Relatively low 7€ 0.035
Energy from coal with CCS Medium Relatively high Relatively low Relatively low 7€ 0.06
Nuclear energy Medium Relatively high Relatively low Relatively low 7€ 0.04
Energy from natural gas Relatively high Medium Relatively low Relatively low 7€ 0.045
Energy from natural gas with CCS Medium Medium Relatively low Relatively low 7€ 0.06

1. Which of the following two options do you prefer to form an 
important part of the future Dutch energy system?  

Attribute Option 1 Option 2 

Long term problems  Relatively low 
Relatively high 

Security of supply Relatively low 
Relatively high 

Amount of effort  Relatively high Relatively low 

Spatial impact  Relatively low Relatively high 

Price (€ per kWh) ± € 0.20 ± € 0.035 

Which of these two do 

you prefer? 
O O 

Fig. 1. An example choice task.

2 Van Rijnsoever and Farla [32] called this attribute “risk of catastrophes.” We
choose the term “long-term problems,” because it better reflects the content of the
underlying attribute, sounds more neutral, and better accommodates the three
levels attached to it.
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� Private costs and discomfort: this attribute reflects how much
perceived effort consumers have to put in to gain access to
energy from a specific technology. This is mainly an issue with
obtaining energy from micro-generation technologies, which
substantial effort on the part of consumers (e.g. searching for
information about subsidies). This can be a barrier to successful
implementation [80]. The attribute has two levels: “relatively
low” and “relatively high.”

� Spatial impact: this attribute reflects the impact that a technol-
ogy has on landscapes and the local environment. An example
of a technology that has high spatial impact is onshore wind
energy [6]. The attribute has three levels: “relatively low,”
“medium,” and “relatively high.”

� Price per kW h: this attribute reflects the economic competitive-
ness of an alternative and is an important attribute in the public
debate on all technologies. The attribute is expressed in € per kW h.

The values of the levels for each technology were based on a
review of scientific and policy documents and verified by academic
experts in the field of energy research. The levels of the attributes
were fixed for each technology, these are presented in Table 1. A
sample task is presented in Fig. 1.

All possible combinations of the nine energy technologies were
included in the DCE, which amounted to 72 different choice tasks.
Using factorial blocking, the tasks were divided into 12 sets of 6 tasks.
Together the sets of choice tasks formed an orthogonal experimental
design (i.e. there was no correlation between attributes in the design).
Since there was a labeled and an unlabeled condition, 24 versions of
the questionnaire were distributed.

3.2. Data collection and measurement

The data were collected in the Dutch province of Utrecht. Utrecht is
a province in the center of the Netherlands and has 1.2 million
inhabitants. It contains two large cities and numerous towns and
villages of varying sizes. The first survey was conducted in March 2010
and the second in January 2012. In the intervening period the nuclear
incident at Fukushima took place, constituting a potential source of
change in public acceptance between the two measurements. In 2010,
university students3 personally delivered 1500 questionnaires to
households throughout the province of Utrecht. A few days after

delivery, they collected the completed questionnaires. Quota by sex,
age, and municipality of the respondents were used to obtain a
representative sample. A total of 916 households were successfully
surveyed in this manner. The mean age was 43.65 years and 51.3% of
the respondents were female. Better-educated respondents were
slightly overrepresented.

In January 2012, 10 months after the Fukushima incident, the same
procedure was repeated in the same region with a new sample of
respondents. A total of 1800 questionnaires were distributed, of which
1,448 were completed. The mean agewas 45.87 years and 47.6% of the
respondents were female. Better-educated respondents were again
slightly overrepresented.

Using a new sample minimized the influence of the 2010 experi-
mental treatment on the preferences in 2012. The downside is that it
was not possible to measure change in preferences for individual
respondents.

In addition to preferences for energy technologies, the question-
naire also measured a number of respondent characteristics: age,
gender, education level, income, prior knowledge about energy
technologies, and attitude towards the environment. Previous litera-
ture showed that these variables influence preferences for energy
technologies attributes [32].

Prior knowledge about energy technologies was measured with an
adapted version of the scale devised by Flynn and Goldsmith [81].
Environmental awareness was measured with the revised New
Environmental Paradigm scale [82]. For both scales the Cronbach’s
Alpha was larger than the minimum threshold of 0.7. Item scores
were summed to obtain a composite measure4. Table 2 gives the
measurement and descriptive statistics for these two variables. There
were no significant differences between the labeled and unlabeled
condition for any respondent characteristics. Because of the large
sample size, there were minor significant differences in respondent
characteristics over time, the largest eta-square being 0.005.

4. Analysis and results

4.1. The influence of labeling and time on public acceptance

The experiment included four experimental conditions; a labeled
and an unlabeled condition in both 2010 and 2012. This allowed us to

Table 2
The indicators for prior knowledge about energy technologies and environmental attitude *: items are reverse scored.

Indicator Latent construct

I know quite a lot about various energy technologies Prior knowledge: alpha¼0.85, mean¼14.41, S.D.¼3.82
I do not feel very knowledgeable about various energy technologies*

Among my circle of friends, I’m one of the “experts” on various energy technologies
Compared to most other people, I know less about various energy technologies*

When it comes to energy technologies, I really don’t know a lot.*

The earth is like a ship with very limited room and resources Environmental awareness: alpha¼0.74, mean¼49.65 S.D.¼6.56
Humans are severely abusing the environment*

If things continue on their present course, we will soon experience a major ecological catastrophe
Humans will eventually learn enough about how nature works to be able to control it*

Human ingenuity will insure that we do NOT make the earth unlivable*

Humans were meant to rule over the rest of nature*

The balance of nature is strong enough to cope with the impacts of modern industrial nations*

The so-called “ecological crisis” facing humankind has been greatly exaggerated*

When humans interfere with nature it often produces disastrous consequences
The balance of nature is very delicate and easily upset
Plants and animals have as much right as humans to exist

3 All students were trained prior to delivering the questionnaires. They received
instructions about how to approach respondents, how to administer the ques-
tionnaires, and about scientific fraud.

4 It should be noted that the environmental awareness scale has multiple
dimensions. We explored if this yielded different and better models. However, this
was not the case. Therefore we decided to treat environmental awareness as a one-
dimensional construct.
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determine if there is an effect of labeling and time on preferences for
energy technologies.

Using the Latent Gold program we first estimated a mixed logit
model. The dependent variable was a binary variable that indicated
whether or not a technology was chosen. The model contained a
nominal nine-level predictor that represented the technologies. Inter-
action effects between this predictor and a “labeling” variable (labeled
or unlabeled condition) and “year” variable (2010 or 2012 condition)
were added to the model. This produced four different technology
rankings, one for each experimental condition. We added two control
variables to the models; choice task number (1–6) and position in the
choice task (left or right).

Prior to constructing the final rankings we explored whether
scale classes existed among respondents. Respondents exhibit
different degrees of consistency when making their choices, which
can lead to a bias in model estimates [83,84]. Scale classes correct
for this by clustering respondents who display a similar degree of
consistency, based on the variance in their responses [85]. Each
respondent receives a correction based on his or her scale class.
We explored models with one to four scale classes. As is customary
in latent class analysis see [86,87], the optimal number of scale
classes was determined by selecting the model with the lowest
Bayesian Information Criterion (BIC) see [88], which turned out to
be a two-scale class model. We used the McFadden pseudo R-
square [62] as indicator of model performance.

Table 3 presents the results of the model. The McFadden R2 is
0.33, which is acceptable. The estimators in the unlabeled condi-
tion of 2010 correspond to the utility that respondents assigned to
the unlabeled technologies in 2010. Statistically significant differ-
ences indicate that the utility is different from zero. The estimators
in the other columns represent the difference in utility compared
with the unlabeled condition in 2010. The total utility of each
technology is displayed in Table 3, along with its rank.

To determine if rankings were similar between conditions, we
calculated the Spearman’s ρ for each pair of rankings. Finally, Wald χ2

indicates whether a variable contributes significantly to the prediction
of public preferences for energy technologies.

The model shows that there are significant differences between
the labeled and the unlabeled conditions, but that there are no
significant differences between the conditions over time. Prefer-
ences remained relatively stable, despite the Fukushima incident.

The labeled condition is quite different from the unlabeled condi-
tion. The utilities of nuclear energy and energy from coal are signi-

ficantly lower in the labeled condition, whereas the utilities of solar
energy, wind energy and energy from natural gas with CCS are
significantly higher. These differences are likely caused by the
thoughts and associations generated by the labels of these technol-
ogies. This means that the labels are likely to have invoked heuristic
processing, while the attributes of the unlabeled condition are more
likely to have led to elaborate processing.

Although the impact of time is rather limited, preferences in the
labeled condition are slightly more dynamic than in the unlabeled
condition. Nuclear energy drops from the fifth to seventh place in the
ranking, but this change is not statistically significant. This means
there is no overall population effect of the incident at Fukushima on
the preferences for nuclear energy.

4.2. Exploring heterogeneity using latent class analysis

We extended the mixed logit model to a latent class model to
explore heterogeneity among the respondents see [57]. The classes
are based on respondent characteristics and on the extent to which
respondents made similar choices. We explored latent classes using
two approaches.

� First, we estimated a “restricted” latent class model that identifies
separate classes within the labeled and unlabeled conditions. This
gives insight into whether different classes exist within each
condition and whether the composition of these classes differs
between conditions.

� Second, we estimated a “free” latent class model in which we
removed the restriction that classes can only be identified within
experimental conditions. Unlike the restricted model, the free
model shows the importance of labeling with regard to the
preferences for different latent classes.

Because preferences in the mixed logit model hardly changed over
time, we do not present latent-class models that identify separate
classes within the measurement year conditions. Again, the BIC was
used to determine the optimal number of classes.

4.3. Results of the restricted model

Tables 4a and 4b shows the results of the restricted model. Table 4a
shows for each class the estimates for the different technologies and
Table 4b shows how the classes differ by respondent characteristics.

Table 3
Mixed logit model. Task number, task position and scale class estimators are omitted.

Variable DCE 2010: unlabeled Rank DCE 2010: labeled Rank DCE 2012: unlabeled Rank DCE 2012: labeled Rank

Estimator Sig. Tech.
utility

Estimator Sig. Tech.
utility

Estimator Sig. Tech.
utility

Estimator Sig. Tech.
utility

Photovoltaic solar energy �0.42 nnn �0.42 8 0.44 nnn 0.02 4 �0.02 �0.44 9 0.00 0.01 5
Offshore wind energy �0.02 �0.02 4 0.38 nnn 0.35 1 0.02 �0.01 5 �0.02 0.35 1
Onshore wind energy �0.21 nn �0.21 7 0.19 n �0.03 6 0.00 �0.21 7 0.08 0.05 4
Energy from biomass 0.06 0.06 3 0.15 0.22 2 0.01 0.08 3 0.02 0.25 2
Energy from coal �0.18 nn �0.18 6 �0.23 n �0.41 9 �0.01 �0.19 6 0.06 �0.36 9
Energy from coal with
CCS

0.32 nnn 0.32 2 �0.36 nnn �0.04 7 �0.01 0.31 2 �0.02 �0.07 6

Nuclear energy 0.92 nnn 0.92 1 �0.91 nnn 0.00 5 �0.04 0.88 1 �0.07 �0.10 7
Energy from natural gas �0.43 nnn �0.43 9 0.15 �0.28 8 0.01 �0.42 8 0.06 �0.21 8
Energy from natural gas
with CCS

�0.04 �0.04 5 0.19 nn 0.16 3 0.04 0.00 4 �0.12 nn 0.07 3

Wald χ2 35.72 nnn 43.44 nnn 1.76 11.26
McFadden R2 0.33
BIC 16,182.90

n po0.05.
nn po0.01.
nnn po0.001.
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Table 4a
Restricted latent class model with respondents a priori assigned to classes based on the experimental condition: technology by experimental group. Task number, task
position and scale class estimators are omitted.

Class Variable DCE 2010 DCE 2012

Estimator Sig. Utility Rank Estimator Sig. Utility Rank

1 Photovoltaic solar energy 1.39 1.39 7 �0.34 1.05 7
N¼276 Offshore wind energy 2.48 n 2.48 1 �0.70 1.78 1
11.7% Onshore wind energy 2.40 n 2.40 2 �0.66 1.74 2
Unlabeled Energy from biomass 1.62 1.62 6 �0.42 1.20 5

Energy from coal �4.45 �4.45 8 0.96 �3.50 8
Energy from coal with CCS 2.24 n 2.24 4 �0.68 1.56 4
Nuclear energy 2.34 n 2.34 3 �0.65 1.69 3
Energy from natural gas �9.67 �9.67 9 2.98 �6.69 9
Energy from natural gas with CCS 1.65 1.65 5 �0.48 1.17 6
N per group 116 160

2 Photovoltaic solar energy �1.11 n �1.11 8 �0.04 �1.14 9
N¼559 Offshore wind energy �0.09 �0.09 6 0.10 0.01 5
23.6% Onshore wind energy �1.26 nn �1.26 9 0.16 �1.09 7
Unlabeled Energy from biomass 0.18 0.18 4 0.01 0.19 3

Energy from coal 0.87 0.87 3 �0.94 n �0.07 6
Energy from coal with CCS 1.03 1.03 2 �0.01 1.03 2
Nuclear energy 1.40 1.40 1 0.70 2.10 1
Energy from natural gas �1.06 n �1.06 7 �0.05 �1.11 8
Energy from natural gas with CCS 0.03 0.03 5 0.06 0.09 4
N per group 212 347

3 Photovoltaic solar energy 0.63 0.63 1 �1.01 n �0.37 9
N¼363 Offshore wind energy �0.11 �0.11 6 0.07 �0.04 8
15.4% Onshore wind energy 0.03 0.03 3 0.01 0.03 4
Unlabeled Energy from biomass �0.17 �0.17 8 0.16 n �0.02 6

Energy from coal �0.21 �0.21 9 0.29 nn 0.08 3
Energy from coal with CCS �0.09 �0.09 4 0.17 n 0.08 2
Nuclear energy 0.18 0.18 2 0.11 0.29 1
Energy from natural gas �0.11 �0.11 5 0.10 �0.01 5
Energy from natural gas with CCS �0.14 �0.14 7 0.11 �0.03 7
N per group 138 225

4 Photovoltaic solar energy �0.53 �0.53 6 0.88 n 0.35 4
N¼343 Offshore wind energy 2.36 n 2.36 1 �0.44 1.92 1
14.5% Onshore wind energy �0.38 �0.38 4 0.89 nn 0.51 2
Labeled Energy from biomass �0.48 �0.48 5 0.97 nn 0.49 3

Energy from coal �1.34 �1.34 7 0.10 �1.25 7
Energy from coal with CCS 1.68 nnn 1.68 3 �1.37 nnn 0.31 6
Nuclear energy �1.55 n �1.55 9 0.20 �1.35 9
Energy from natural gas �1.46 n �1.46 8 0.14 �1.31 8
Energy from natural gas with CCS 1.70 nnn 1.70 2 �1.37 nnn 0.33 5
N per group 127 216

5 Photovoltaic solar energy �0.05 �0.05 6 �0.03 �0.08 8
N¼477 Offshore wind energy 0.04 0.04 4 0.03 0.06 3
20.2% Onshore wind energy �0.07 �0.07 8 0.01 �0.06 6
Labeled Energy from biomass 0.15 nn 0.15 1 �0.05 n 0.10 1

Energy from coal �0.07 �0.07 7 0.00 �0.07 7
Energy from coal with CCS 0.08 0.08 3 �0.03 0.05 4
Nuclear energy 0.10 0.10 2 �0.01 0.10 2
Energy from natural gas �0.18 nn �0.18 9 0.05 �0.12 9
Energy from natural gas with CCS �0.01 �0.01 5 0.03 0.02 5
N per group 184 293

6 Photovoltaic solar energy 0.97 0.97 7 �0.17 0.80 6
N¼346 Offshore wind energy 1.17 1.17 3 �0.22 0.96 1
14.6% Onshore wind energy 1.15 1.15 4 �0.26 0.89 4
Labeled Energy from biomass 1.10 1.10 5 �0.19 0.91 2

Energy from coal �7.04 �7.04 9 2.46 �4.58 9
Energy from coal with CCS �3.17 n �3.17 8 1.77 n �1.40 8
Nuclear energy 3.65 nnn 3.65 1 �2.91 nnn 0.74 7
Energy from natural gas 0.97 0.97 6 �0.17 0.80 5
Energy from natural gas with CCS 1.19 n 1.19 2 �0.30 0.89 3
N per group 139 207

Wald χ2 139.96 nnn 147.72 nnn

Wald χ2(¼) 133.73 nnn 142.62 nnn

McFadden R2 0.56
BIC 19,143.07

n po0.05.
nn po0.01.
nnn po0.001.
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The BIC showed that a six-class model with three classes in the
unlabeled condition and three classes in the labeled condition best
captures respondent heterogeneity. The Wald statistics revealed sig-
nificant differences between the classes. There was no significant
influence of the year variable on clustering (χ2¼2.24, df¼5, p¼0.82).
The overall McFadden R2 was 0.56, which is very good. Note that few
technology estimators appear to be significant. These significance
levels indicate that there are few differences in utility across condi-
tions. This does not imply, however, that there are no differences
between classes or between the utilities within a condition.

The six classes identified have the following differences in
preferences:

� Class 1 – low-cost sustainability – (unlabeled, 11.7% of respon-
dents): the members of this class prefer wind energy, nuclear
energy, and energy from coal or natural gas with CCS. This
implies that they seek to reduce long-term problems, such as
the effects of climate change, against the lowest possible costs.

The ranking of technologies is very stable over time (ρ¼0.98).
The members of this class are more aware of the environment,
are more likely to be female, and are better educated.

� Class 2 – low-cost energy – (unlabeled, 23.6% of respondents): the
preferences of this class resemble the mixed logit model
closely and the rankings are highly correlated (ρ2010¼0.82;
ρ2012¼0.97). Nuclear energy is the preferred alternative, fol-
lowed by energy from coal with or without CCS. Members of this
class prefer technologies that lead to a cheap and reliable supply
of electricity. The preferences of this class are also quite stable
over time (ρ¼0.85). Members of this class are less knowledge-
able about energy technologies than members of other classes.

� Class 3 – indifferent – (unlabeled, 15.4% of respondents): a notable
feature of this class is that the differences in utility of alter-
natives are relatively small and that only a few estimators are
significant. This implies that its members are indifferent about
energy technologies. This is supported by the fact that there is
no evident pattern in the attributes of technologies that they
prefer. Although the absolute changes in estimators over time
are small, they result in a relatively large change in the
rankings. The 2012 ranking is uncorrelated with that of 2010
(ρ¼0.05), which indicates that convictions are not strong in
this class. Members of this class are more likely to be male, less
educated, and care less about the environment.

� Class 4 – sustainability – (labeled, 14.5% of respondents): mem-
bers of this class prefer renewable energy technologies or fossil
fuel technologies with CCS. Preferences change slightly over
time. In 2012, fossil fuel technologies with CCS were preferred
less, whereas onshore wind energy, biomass energy, and solar
energy were preferred more. The rankings are still strongly
correlated (ρ¼0.83). The members of this class are more aware
of the environment, more likely to be female, and more
knowledgeable about energy technologies.

� Class 5 – indifferent – (labeled, 20.2% of respondents): members of
this class seem to be indifferent to energy technologies as the
differences in utility are small and not significant. In contrast to
the other indifferent class (3), there is little change in rankings
over time (ρ¼0.92), and no evident effect of external events on
preferences. This may be related to their indifference. Members
of this class are more likely to be male, younger, less educated,
and score lower on environmental awareness.

� Class 6 – swing away from nuclear energy – (labeled, 14.6% of
respondents): the most notable feature of this class is that
preferences for specific technologies change substantially over
time (ρ¼0.57). Nuclear energy drops from first place in the
ranking to seventh place. This change is likely due to the
incident at Fukushima, which implies that this class is more
responsive to external events. Members of this class are older
than average.

Overall, preferences in the labeled condition changed more over
time than preferences in the unlabeled condition. The latent class
analysis shows that within the unlabeled condition two classes have
stable – but different – preferences and that one particular class of
respondents is indifferent to the alternatives. The change in prefer-
ences of this class can only be explained by a change in valuation of
attributes. In the labeled condition the preferences are also relatively
stable in two classes, but again quite different. In class 4, nuclear
energy is ranked lowest in both years, whereas in class 5 it ranks
second in both years. However, in class 6 respondents changed their
preferences, possibly in relation to the Fukushima incident. This
suggests that a shift in public acceptance is not a population-wide
move but that only a limited number of people change their pref-
erences after such an incident.

A second interesting observation is that in both conditions a class
exists which is relatively indifferent towards the topic (class 3 and 5).

Table 4b
Restricted latent class model with respondents a priori assigned to classes based on
the experimental condition: Respondent characteristics. Task number, task position
and scale class estimators are omitted.

Variable Class Estimator Sig.

Intercept 1 �5.13 nnn

Wald χ2: 112.44nnn 2 0.35
3 5.22 nnn

4 �4.33 nnn

5 4.80 nnn

6 �0.90

Gender 1 0.43 nn

Wald χ2: 20.37nn 2 �0.09
3 �0.40 nn

4 0.36 n

5 �0.33 nn

6 0.03

Age 1 �0.01
Wald χ2: 33.15nnn 2 0.00

3 0.00
4 0.00
5 �0.01 nn

6 0.03 nnn

Education level 1 0.22 nnn

Wald χ2: 30.69nnn 2 0.00
3 �0.18 nnn

4 0.04
5 �0.12 nnn

6 0.05

Prior knowledge 1 0.04
Wald χ2: 13.11n 2 �0.03 n

3 0.00
4 0.05 n

5 �0.02
6 �0.02

Environmental awareness 1 0.05 nnn

2 0.01

Wald χ2: 72.17nnn 3 �0.07 nnn

4 0.06 nnn

5 �0.05 nnn

6 �0.01

Income 1 0.04
Wald χ2: 6.49 2 0.04

3 �0.10
4 0.00
5 �0.05
6 0.08

n po0.05.
nn po0.01.
nnn po0.001.
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Both classes share similar socio-demographic characteristics: they are
male, less educated, and less aware of the environment.

4.4. Results of the free model

Tables 5a and 5b presents the results of the free model, Table 5a the
estimators of the alternatives, and Table 5b the respondent character-
istics. The BIC indicates that a three-class model gives the best solution.
The overall McFadden R-square is 0.55, which indicates a good fit.
Labeling is a significant predictor of class membership (χ2¼9.76,
df¼2, p¼0.01), whereas year is not (χ2¼2.14, df¼2, p¼0.34).

� Class 1 – swing towards sustainability – (38.5% of respondents):
members of this class prefer nuclear energy, energy from coal
with CCS, and biomass energy in the unlabeled condition, sim-
ilar to the mixed logit model. The ranking changes little over

time, as evidenced by the strong correlation between the
rankings of both measurement years (ρ¼0.90). The ranking
in the 2010 labeled condition is very similar and correlates
strongly with the rankings in both unlabeled conditions (ρ2010¼
0.92; ρ2012¼0.82). The ranking in the labeled condition, however,
changed considerably over time (ρ¼0.37). In the 2012 labeled
condition, biomass energy remains the most preferred option, but
the top three now also contain offshore wind energy and solar
energy. Overall, this means that the valuation of observed attri-
butes by members of this class does not change over time, but that
their valuation of inferred attributes does change. This resulted in a
shift of preferences towards renewable energy. Notable about
members of this class is that they are significantly older than the
other classes and have a higher income.

� Class 2 – indifferent – (37.8% of respondents): members of class
2 are less pronounced in their preferences than members of

Table 5a
Free latent class model with no class restrictions. Technology by experimental group. Task number, task position and scale class estimators are omitted.

Class Variable DCE 2010: unlabelled Rank DCE 2010: labelled Rank DCE 2012: unlabelled Rank DCE 2012: labelled Rank

Estimator Sig. Tech.
utility

Estimator Sig. Tech.
utility

Estimator Sig. Tech.
utility

Estimator Sig. Tech.
utility

1 Photovoltaic solar
energy

�2.96 �2.96 8 2.40 �0.56 7 0.51 �2.45 9 �0.01 �0.07 3

N¼909 Offshore wind energy �2.39 �2.39 6 1.96 �0.44 5 1.12 �1.27 5 �0.59 0.09 2
Onshore wind energy �3.10 n �3.10 9 1.83 �1.27 9 0.78 �2.31 7 0.08 �0.40 7
Energy from biomass 2.19 2.19 3 0.82 3.01 1 �1.10 1.09 3 �0.12 1.78 1
Energy from coal �1.30 �1.30 4 1.18 �0.12 4 �0.19 �1.49 6 �0.24 �0.55 9
Energy from coal with
CCS

4.78 4.78 2 �4.50 0.28 3 �1.76 3.02 2 1.22 �0.25 6

Nuclear energy 7.69 7.69 1 �6.87 0.82 2 �0.80 6.89 1 �0.11 �0.10 5
Energy from natural
gas

�2.87 �2.87 7 1.64 �1.23 8 0.48 �2.39 8 0.33 �0.42 8

Energy from natural
gas with CCS

�2.05 �2.05 5 1.55 �0.50 6 0.97 �1.08 4 �0.56 �0.09 4

N per group 191 158 306 254
2 Photovoltaic solar

energy
0.54 0.54 1 �0.58 �0.05 6 �0.87 nn �0.33 9 0.80 n �0.12 8

N¼893 Offshore wind energy �0.07 �0.07 6 0.25 n 0.18 2 0.02 �0.05 7 �0.02 0.17 1
Onshore wind energy 0.02 0.02 3 0.32 nn 0.34 1 �0.02 0.00 4 �0.19 nn 0.12 2
Energy from biomass �0.31 nnn �0.31 9 0.13 �0.19 7 0.22 nnn �0.09 8 �0.08 �0.05 6
Energy from coal �0.05 �0.05 4 �0.16 �0.21 9 0.19 n 0.14 2 �0.16 �0.18 9
Energy from coal with
CCS

�0.07 �0.07 7 �0.12 �0.19 8 0.17 nn 0.09 3 �0.05 �0.08 7

Nuclear energy 0.13 0.13 2 �0.17 �0.04 5 0.16 0.29 1 �0.06 0.06 4
Energy from natural
gas

�0.07 �0.07 5 0.19 n 0.12 3 0.05 �0.01 5 �0.19 nn �0.01 5

Energy from natural
gas with CCS

�0.11 �0.11 8 0.15 0.04 4 0.08 �0.03 6 �0.04 0.08 3

N per group 163 172 262 296
3 Photovoltaic solar

energy
1.59 1.59 7 �2.14 �0.54 6 �0.51 1.08 7 1.37 0.32 4

N¼562 Offshore wind energy 2.92 n 2.92 1 0.43 3.35 1 �1.00 1.93 1 0.06 2.42 1
Onshore wind energy 2.73 n 2.73 2 �2.10 0.63 4 �0.93 1.80 2 1.31 1.02 3
Energy from biomass 1.94 1.94 6 �1.36 0.59 5 �0.66 1.28 5 1.11 1.04 2
Energy from coal �5.38 �5.38 8 3.05 �2.33 8 1.69 �3.69 8 �1.12 �1.76 8
Energy from coal with
CCS

2.47 n 2.47 4 �1.15 1.31 3 �0.89 1.58 4 �0.18 0.25 6

Nuclear energy 2.65 n 2.65 3 �5.12 nn �2.47 9 �0.90 1.75 3 1.51 �1.86 9
Energy from natural
gas

�10.93 �10.93 9 8.82 �2.10 7 3.96 �6.97 9 �3.58 �1.73 7

Energy from natural
gas with CCS

2.00 2.00 5 �0.45 1.55 2 �0.75 1.24 6 �0.49 0.31 5

N per group 112 120 164 166
Wald 44.79 nn 52.03 nnn 54.76 nnn 50.42 nn

Wald χ2(¼) 36.55 nn 41.42 nnn 47.69 nnn 44.28 nnn

McFadden R2 0.55
BIC 15,764.76

n po0.05.
nn po0.01.
nnn po0.001.
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other classes. This is evidenced by the smaller estimators and
by the lack of consistency in the attributes of the unlabeled
technologies they preferred in 2010 (solar energy, nuclear
energy and onshore wind energy). The unlabeled preference
ranking was completely overturned in 2012 (ρ¼0.23), which
implies that the members of this class changed their valuation
of technology attributes over time. However, there is little
change in preferences for labeled technologies between 2010
and 2012 (ρ2010¼0.88). This suggests that unobserved attri-
butes have not changed significantly and that any events bet-
ween 2010 and 2012 have had little influence on preferences.
Further, it is evident from the lack of correspondence between
labeled and unlabeled technologies (ρ2010¼0.13; ρ2012¼�0.07)
that technology labeling dominates the observed attributes in
the choice process of this class. Table 5b shows that members
of this class are more likely to be male, less educated, and less
knowledgeable about energy technologies, have lower envir-
onmental attitudes, and have a lower income.

� Class 3 – low-cost sustainability – (23.8% of the respondents): the
rankings of the unlabeled condition in 2010 and 2012 are
virtually identical (ρ¼0.98), which means that there was little
change over time in the valuation of technology attributes. The
members of this class prefer wind energy and nuclear energy
when the technologies are unlabeled. Energy from coal and
natural gas is least preferred. This finding can be explained by a
preference for reducing long-term consequences against the
lowest price. In the labeled 2010 condition, members’ prefer-
ences shift to offshore wind energy, followed by energy from
coal or gas in combination with CCS. This is largely because
nuclear energy is negatively valued in the labeled condition. In
the labeled 2012 condition, fossil fuel technologies had lower
utilities, while non-fossil fuel technologies had increased uti-
lities. In both years there was only a moderate correlation
between labeled and unlabeled rankings (ρ2010¼0.53; ρ2012¼
0.47). The effect of labeling differed somewhat between 2010
and 2012, as evidenced by a moderate correlation between the
preference rankings (ρ¼0.73). Overall, labeling played an
important part in the choices of this class, but not as much as
in class 2. Members of this class are more likely to be female,
better educated, more knowledgeable about energy technolo-
gies, and have a higher environmental attitude.

From this latent class analysis we can conclude that labeling plays
an important role in all three classes, but that there are differences in
what their effect is. In class 1, respondents only seem to take the label
into account in 2012, but not in 2010. Class 2 seems to pay most
attention to the labels in both years, which suggests that they rely
heavily on heuristic cues. Class 3 respondents base their choice on a
combination of attributes and the labels in both years, which suggests
that they experience a more elaborate decision-making process [89].
A second notable finding is that in all classes labeling causes a swing
towards renewable energy technologies. This could also be observed
in the mixed logit model model, but this model shows that this trend
does not differ per class. A final interesting observation is that there is
again a class (class 2) that is more or less indifferent to the topic, with
similar characteristics to those of the indifferent classes in the
restricted model.

4.5. Model comparison

The results of the restricted model and the free model appear
similar, but the latter allowed us to assess the effect of labeling. To find
out if both models indeed made similar classes, we explored the
overlap between the solutions of the two latent class analyses. We did

Table 5b
Free latent class model with no class restrictions. Respondent characteristics. Task
number, task position and scale class estimators are omitted.

Class Estimator Sig.

Intercept 1.00 �0.43
Wald χ2: 123.8011nnn 2.00 5.41 nnn

3.00 �4.98 nnn

Gender 1.00 �0.15
Wald χ2: 25.5559nnn 2.00 �0.36 nnn

3.00 0.51 nnn

Age 1.00 0.01 nn

Wald χ2: 7.3627n 2.00 0.00
3.00 �0.01

Educ 1.00 �0.02
Wald χ2: 22.2769nnn 2.00 �0.13 nnn

3.00 0.14 nnn

Prior knowledge 1.00 �0.01
Wald χ2: 13.2474nn 2.00 �0.04

3.00 0.04
Environmental awareness 1.00 0.01
Wald χ2: 80.9228nnn 2.00 �0.06 nn

3.00 0.05 nnn

Income 1.00 0.06 n

Wald χ2: 9.554nn 2.00 �0.09 nnn

3.00 0.03

n po0.05.
nn po0.01.
nnn po0.001.

Table 6
Results of the multinomial regression model, including cross tabulation of class memberships.

Free model

Class 1 Class 2 Class 3

Estimator Sig. N Estimator Sig. N Estimator Sig. N

Intercept Ref �1.07 nnn �2.26 nnn

Restricted model Unlabeled class 1 Ref 9 0.66 nnn 6 5.62 nnn 261
Unlabeled class 2 Ref 479 �0.88 68 �1.43 nnn 12
Unlabeled class 3 Ref 9 4.73 nnn 351 1.16 nnn 3
Labeled class 4 Ref 68 �0.44 nnn 15 3.60 nnn 260
Labeled class 5 Ref 105 2.33 371 �2.40 1
Labeled class 6 Ref 239 Ref 82 Ref 25

McFadden R2 0.55
N 2364
χ2 2789.7nnn

nnn po0.001.
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this by conducting a multinomial regression in which membership of
the free three-class model was predicted by membership of the
restricted six-class model (see Table 6).

The model is highly significant and performed well with a
McFadden R2 of 0.55. Both latent class models are strongly related.
The unlabeled classes of the restricted model almost have a one-to-
one relationship with the classes of the free model. The outcome for
the labeled classes is more complex. The majority of members in the
restricted classes are also members of a specific free class, but there
are larger overlaps with the other free classes.

Despite the strong overlap between the models, our results
demonstrate that the latent classes in the free model were largely
determined by the unlabeled condition. This might be because
respondents in the unlabeled classes were less dynamic overall in
their preferences over time (except for the indifferent class, but
the change in estimators is really small), which made it easier for
the model to identify latent classes.

5. Limitations

This study suffers from a number of limitations. First, the samples
of both DCEs are independent. Although this prevents instrumenta-
tion effects, this also makes it impossible to observe individual level
changes. These changes could have given insight into why the
preference for technologies changed over time. Although the Fukush-
ima incident is a likely cause, the present research design does not
exclude rival explanations. However, it is hard to study preference
dynamics in the longer term under controlled conditions to exclude
possible rival explanations. Researchers may have to resort to long-
itudinal field data, possibly augmented with qualitative interviews.

A second limitation is that we surveyed only one geographical
region, which means that our results cannot be generalized to the
entire Dutch population. Our samples were nevertheless quite repre-
sentative for the province of Utrecht and give valuable indications
about how preferences might have changed in other provinces.

A final potential limitation relates to the list of attributes that
were included in the choice experiments. These were formulated
in such a way that they were applicable to all technologies. The
downside is that the attributes may have been too abstract for
some respondents. This was partly compensated by the technol-
ogy names in the label, which left room for inferring additional
technology-specific attributes. Future research could consider
adding such attributes to the choice task.

6. Conclusions and implications

Our discussion of public acceptance shows that the concept is used
in diverse and often inconsistent ways. By breaking the concept down
into its constituent components, we show that the concept can relate
to different types of agents and stages of the innovation process in
different studies. Our conceptualization expands upon that of Wüs-
tenhagen et al. [2], by including the different roles that agents can take
in different stages of the innovation process as well as how this shapes
preference formation.

Our empirical investigation focuses on citizens’ socio-political
acceptance of energy technologies and further improves our con-
ceptualization of public acceptance by investigating the roles that
labels, time, and heterogeneity can play in the formation of
preferences. Our results demonstrate that labeling has a profound
impact on the stated preferences for energy technologies. In the
unlabeled condition of the mixed logit model, nuclear energy,
energy from coal with CCS, and biomass energy are most preferred.
In the labeled condition offshore wind energy, biomass energy, and
energy from gas with CCS score highest. This indicates that labels

have a strong influence on the public acceptance of energy technol-
ogies and that they elicit stronger preferences for renewable energy
technologies. Furthermore, until now it was unclear how time
influences the average stated preferences for energy technologies.
Our results demonstrate that, in the case of energy technologies, the
average preferences remained relatively stable.

This picture becomes more refined when public heterogeneity
is taken into account. Here, our restricted model shows that, in the
unlabeled condition, there is a specific class that changed its
preferences for technologies attributes, whereas in the labeled
condition there is a class that changed its preferences about
nuclear energy. Thus, in both conditions there is a class that
changed preferences, but the reasons were different. In addition,
the free model shows that in all classes labeling played a role, but
that the extent of influence on preferences differs between classes.
This indicates that changes in public acceptance are not popula-
tion-wide, but are limited to specific sub-groups.

A third insight is that both latent class analyses revealed differ-
ences between classes in terms of how strong their preferences were.
Some classes revealed a much larger difference between estimators
than others. Indifferent respondents are typically male, less educated,
less aware of the environment, and have a lower income.

A final insight is that we can characterize preferences for technol-
ogies by respondent characteristics. These results are in line with
findings by earlier studies [15,32,75,90,91]. Women who are better
educated and have a high environmental awareness are most in favor
of renewable energy technologies (solar energy, both types of wind
energy, and biomass energy). Most support for nuclear energy can be
found among men who are less educated and have a low environ-
mental awareness (restricted classes 3 and 5), but these groups are
also the most indifferent. In almost all classes, support for fossil fuels
(coal and natural gas) is low and declines over time. Energy from coal
with CCS is more appreciated in the unlabeled condition, whereas
energy from gas with CCS is more appreciated in the labeled
condition. Both technologies typically end up near the center of the
preference rankings.

Overall, we conclude that studies on the public acceptance of
energy technologies need to be clear about the type of acceptance
they measure as well as the roles played by the involved agents.
Next, they should account for the effects of labels, time, and
heterogeneity. Otherwise, insights that could be useful from a
theoretical and policy perspective may be overlooked.

6.1. Theoretical implications

Preferences for energy technologies can be constructed in situations
where technology names are observable as well as in situations where
they remain hidden. When consumers choose between different
electricity providers and the packages they offer, the names of the
energy technologies may remain unobserved. In this situation, con-
sumers are forced to construct preferences on the basis of attributes
such as price and whether or not the source is sustainable. When, on
the other hand, public acceptance needs to be acquired during the
planning phase of energy projects, such as the construction of power
plants, technology names receive a great deal of exposure—as is
typically the case in policy decisions. In the light of the results of this
study, preferences constructed in these different settings can be
expected to differ. Researchers attempting to measure preferences
should consider whether or not to mention technology names in the
light of the context of the preference construction process they wish
to model.

Second, our results show that it may be worthwhile to study the
causes of changes in preferences in future research. A distinction
needs to bemade between valuing attributes and valuing technologies
as a whole. Attribute valuation can change as part of societal trends,
such as stronger awareness about the environment. Technology
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valuation is sensitive to these trends, but also to specific incidents
relating to the technologies. Future research needs to determine how
these two aspects of public acceptance change over time, since they
appear to change at a different rate and for different reasons.

A third challenge for future research is how to deal with respond-
ents who seem quite indifferent about the topic in comparison with
those who have strong preferences. This raises an ethical question:
how should their preferences be accounted for in the public debate?
Our research shows that not taking into account the opinion of
indifferent people favors renewable energy technologies. However,
we do not know if this indifference is caused by insufficient knowl-
edge about the topic, by low involvement, or by some other cause
[92]. Future research could focus on establishing the causes of this
indifference and identify potential remedies.

6.2. Policy implications

Our results indicate that policy-makers should account for the
effect of labeling on the public acceptance of energy technologies. The
public debate is more than a technocratic discussion about actual
attributes and their consequences. It also involves the attributes that
people infer from a technology and emotions that are attached to a
name. Such factors should be taken seriously if public acceptance is to
be obtained.

Second, although incidents relating to a specific technology might
influence public acceptance in the short term, our results suggest that
the influence of such incidents over the longer term is modest. For
policy-makers, this implies that there is no direct need to adjust
energy policies as a result of such incidents.

Third, policy-makers and energy companies should not only
consider the average valuation of a technology, but should also take
public heterogeneity into account in their decision-making process
and communication strategy. This is especially advisable when
technologies are particularly controversial. For example, our results
show that the valuation of solar energy differs between classes in the
2012 labeled condition, which means that the technology is quite
controversial. A similar result was found for onshore wind energy.

In this context, policy-makers should also consider how to involve
classes that are currently indifferent to the topic. Taking into account
the preferences of this class strengthens the democratic character of
the public debate. Our results identify this class clearly by its
characteristics.

We advise energy companies to pay specific attention to the
preferences of citizens and users of energy technologies when devel-
oping strategies for technology development and deployment. If a
technology is to be successful, market acceptance is not sufficient;
socio-political acceptance and community acceptance are also neces-
sary. Citizen do not always prefer low-cost technologies, but take other
considerations into account. Adapting company strategies to citizen
preferences can help to avoid the problems that may result from a lack
of socio-political or community acceptance, such as declining public
funding, large scale protests or a discontinuation of test facilities.

Finally, on the basis of this research the most accepted alternative
would be offshore wind energy, although people who live near the
coast might not share this view. The results demonstrate convincingly
that fossil fuel technologies such as energy from coal or natural gas
can count on little support as part of the future energy portfolio.
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