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Abstract

The use of biomass as feedstock for energy is often associated with increased claims on land, competition with
food production and impacts on other ecosystem services. Studies on sustainability aspects of bioenergy produc-
tion often indicate biodiversity as a key concern. This article presents a first comprehensive review of published
impacts of bioenergy crop production on biodiversity, evaluates the drivers and pressures of biodiversity change
and summarizes current trends and impacts. The review provides insight into the types of biodiversity indica-
tors applied under a range of conditions and the mitigating measures proposed to minimize negative impacts or
realize biodiversity benefits. The 53 selected publications give diverse results that are explained by the various
spatial scales, production systems and regions, time horizons, methodologies and biodiversity indicators used.
Reported impacts depend on initial land use and are mostly negative, especially in tropical regions. The impacts
of second generation bioenergy crops tend to be less negative than first generation ones, and are in some cases
positive (at the field level), in particular in temperate regions. Land-use change appears as the key driver of bio-
diversity change, whereas the associated habitat loss, alterations in species richness and abundance are the main
impacts addressed. Such changes are often paired with the (initiation of a) process of biological homogenization.
The article confirms that concerns about the expansion of bioenergy crop production not only relate to the direct
effects on biodiversity by replacing natural vegetation, but increasingly to indirect effects as well. These effects
have, however, shown to be difficult to quantify. At the same time, the land sparing vs. land sharing debate
receives growing attention, whereas little evidence exists in bioenergy literature on the impacts of large-scale
application of these strategies on (agro)biodiversity. Following the findings of the review, the article finally pro-
vides recommendations for future research.
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refers to the impacts of large scale biofuel feedstock
cultivation on biodiversity (Dornburg et al., 2010; Chum
et al., 2011; Wicke et al., 2012). The article follows the

Introduction

The use of biomass for energy can replace fossil fuels,

and contribute to greenhouse gas mitigation, security of
energy supply and rural development. Currently,
renewable energy sources contribute 13% to the total
primary energy supply, of which almost 80% (50 EJ) is
supplied by biomass. Estimates indicate that the global
deployment of energy from biomass is expected to
increase to 100 — 300 EJ by 2050, a two to sixfold
increase compared with current figures. In these esti-
mates, a growing proportion of second generation bio-
fuels is projected (Chum et al., 2011). The production of
bioenergy crops can result, however, in increased claims
on land, competition with food production and impacts
on other ecosystem services. One of the key sustainability
concerns related to the growing demand for bioenergy
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formal definition of biodiversity of the Convention on
Biological Diversity (CBD) stating that “biological diver-
sity means the variability among living organisms from
all sources including, inter alia, terrestrial, marine and
other aquatic ecosystems and the ecological complexes
of which they are part; this includes diversity within
species, between species and of ecosystems.” Biodiver-
sity is fundamental to ecosystem functioning and con-
tributes directly (through provisioning, regulating and
cultural ecosystem services) and indirectly (through
supporting ecosystem services) to human well-being
(CBD, 2010).

Biofuel feedstock cultivation may affect biodiversity
through a variety of driving forces including land-use
change, overexploitation, pollution, invasive species and
climate change (MEA, 2005; Dornburg ef al., 2010). Bio-
diversity gains and losses can both occur as a result of
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bioenergy crop production depending on, for example,
the spatial scale, type of production system, geographi-
cal region or time horizon considered. Besides, the
effects of biomass production may be either direct (i.e.,
natural or non-natural habitats being converted into
energy crops) or indirect (i.e., natural vegetation being
converted into land-use types that are displaced by
energy crop production elsewhere) (Smeets et al., 2008;
Wicke et al., 2012).

Several national and international studies have been
published that evaluate or study the sustainability of
bioenergy crop production (e.g., van Dam et al., 2008;
Smeets ef al., 2008; Dornburg et al., 2010; Beringer et al.,
2011; Chum et al., 2011; Walter et al., 2011; Wicke et al.,
2012). Publications on the biodiversity effects of bioener-
gy crop production give diverse results and show that
currently no widely accepted methodology is available
to quantify these effects (van Dam et al., 2008; Smeets
et al., 2008; Dornburg et al., 2010). Some reviews typi-
cally focus on biodiversity impacts in a particular region
and for specific crop(s) (e.g., Fitzherbert et al., 2008;
Dauber et al., 2010; Hartman et al., 2011). To date, a
comprehensive review including different geographical
regions and crops has not been published. Such a
review is, however, considered important to (1) inform
decision makers about the biodiversity effects from bio-
energy crop production as published in scientific litera-
ture, (2) report to sustainability initiatives and
certification processes on these effects and provide
guidelines for monitoring and (3) develop a research
agenda based on identified gaps in knowledge.

This article aims to cover these issues and presents a
review of scientific publications on the impacts of biofu-
el feedstock cultivation on biodiversity. The article eval-
uates the drivers of biodiversity change associated with
bioenergy crop production and summarizes current
trends and impacts. In addition, the article provides
insight into the types of biodiversity indicators used
and the conditions under which these indicators are
applied. The review also presents an overview of pro-
posed mitigating measures to minimize negative
impacts or realize biodiversity benefits. Following the
findings of the review, the article finally provides rec-
ommendations for future research in this field of bioen-
ergy science.

Methodology

The literature on biodiversity impacts of bioenergy crop
production is subject to a wide range of definitions and
methodologies that are difficult to compare. To struc-
ture the findings systematically, the review uses the
DPSIR framework (Smeets & Weterings, 1999). This
allows for a clear description of the relationships

between increasing demands for bioenergy, expansion
of bioenergy cropland, impacts on biodiversity and
(proposed) mitigating measures. Following the DPSIR
framework, social and economic developments (Driving
Forces, D) exert Pressures (P) on the environment and,
as a consequence, the State (S) of the environment
changes. This leads to Impacts (I) on ecosystems which
may elicit a societal Response (R) that feeds back on
Driving Forces, State or Impacts via various mitigation
or adaptation actions (Smeets & Weterings, 1999; Maxim
et al., 2009). The framework has been widely used for
systematic reviews of environmental impact assess-
ments and scientific literature (see Maxim ef al., 2009;
Haberl et al., 2009; Spangenberg et al., 2009 for some
recent examples in the field of biodiversity).

The Web of Science and Science Direct databases
were queried for studies published in literature between
2007 and May 2012. An internet search was also
performed using the meta-search engine Google scholar.
The search terms included combinations of biomass,
bioenergy, biodiversity, impacts, effects, benefits and
the major biofuel feedstocks (oil-, sugar-, starch- and
lignocellulosic crops following Chum et al., 2011). Only
impact studies with quantified impacts were selected to
allow for evaluation of the types of indicators used and
related changes. This implies that the more descriptive
or qualitative studies were excluded from the review.
To be able to assess changes in biodiversity, studies
should include at least one (potential) biofuel crop with
a ‘reference’ or initial habitat, consisting of a natural
(e.g., primary forest), low-intensity (e.g., pasture) land-
use or traditional (food) crop; or a comparison of at
least two (potential) biofuel crops. In addition, meta-
analyses and published reviews of biodiversity impacts
of certain crops (in specific regions) resulting from the
search were evaluated. The overall results of these stud-
ies were included and their references were scanned for
additional publications fitting the above criteria.

Part of the divergence in methodologies and indica-
tors used in literature is caused by the fact that there is
no single indicator that captures the full complexity of
biodiversity. This complicates aggregation and compari-
son and hampers quantitative analysis. Therefore biodi-
versity impacts are categorized into negative (-),
positive (+) and neutral or both negative and positive
impacts (+/-).

The spectrum of biodiversity impact studies in
bioenergy literature

The 53 selected publications with quantified biodiver-
sity effects of bioenergy crop production give diverse
results (see Table 1 for a full overview). Figure 1 shows
the spectrum of studies including the number publications
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Region:
Temperate 32

Tropical 17
Both 4

First
generation
crops:*

QOil palm 10
Corn 7
Soy 5

Scale:
Field 34
Regional 12
Continental 5
Global 2

53 selected
studies

Methodologies
Field surveys 35

Scenario-based
Assessments 8

Reviews 5
Meta-analyses 5

Second
generation

crops:*
Miscanthus 8

SRC 8
Switchgrass 7
Eucalytpus 5

Fig. 1 The spectrum of biodiversity impact studies in bioenergy literature. *More studies focus on second generation crops than first
generation crops (26 vs. 17 respectively), whereas 10 studies analyze both. Other feedstocks addressed include oilseed rape, sugarbeet,

sunflower, wheat, prairie, reed canary grass and other grasses.

per spatial scale, geographical region, type of crop and
methodologies applied.

Drivers and pressures

In the past 50 years, the most important direct driver of
biodiversity change in terrestrial ecosystems has been
land use and land cover change (MEA, 2005; CBD, 2010;
WWEF, 2012). Not surprisingly, almost all research on
biodiversity impacts of bioenergy crop production
focuses on land-use change. The associated habitat loss
and fragmentation are the major pressures on biodiver-
sity. Various studies show that concerns about the
expansion of biomass production not only relate to the
direct effects from converting natural or non-natural
habitats into bioenergy crop plantations, but also to the
indirect land-use change effects of biofuel feedstock cul-
tivation (e.g., Kessler et al., 2007, Eggers et al., 2009;
Hellmann & Verburg, 2010). Indirect land-use changes
(LUC) can occur when a) direct displacement of
pasture or cropland results in livestock or crops being
produced elsewhere to continue to meet demand and b)
the diversion of crops to other uses triggers higher crop
prices, which results in more land being taken into

© 2013 Blackwell Publishing Ltd, GCB Bioenergy, 6, 183-209

agricultural production elsewhere (Wicke et al., 2012).
Although literature estimating iLUC-induced GHG
emissions is growing (e.g., Dornburg et al., 2010; Chum
et al., 2011; Wicke et al., 2012), quantification of the indi-
rect effects of biomass production on biodiversity is
difficult and has been attempted by few of the selected
studies. For example, Hellmann & Verburg (2010) indi-
cate on a European level that the area of semi natural
vegetation, forest and High Nature Value (HNV) farm-
land converted directly is small in all scenarios variants
related to the biofuel directive. The indirect effects of
the directive on European land use and biodiversity are,
however, much larger. The area of semi natural vegeta-
tion is found to be 3-8% smaller in scenarios with the
directive as compared with scenarios without the direc-
tive. This is due to replacement of these areas by grass-
land or arable land compensating for the cultivation of
bioenergy crops in other areas. Kessler et al. (2007)
calculated the ‘multiplier effect’ in various tropical coun-
tries from commodity development until 2005, which
means the additional land-use change as a collateral
effect outside the actual cropping areas. They expressed
this effect in terms of decrease in Natural Capital Index
(an indicator for changes in original species composition).
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The highest multiplier effects occur for soy production
in Brazil (87% decrease in NCI caused by soy produc-
tion) and for palm oil in Indonesia (35% decrease in
NCI caused by palm oil production). Figure 2 shows
the mechanisms involved in the multiplier effect for
the case of Brazil. Although such results are paired
with large uncertainties, they give an indication of
iLUC expressed in terms of an established biodiversity
indicator.

Two studies address the introduction of perennial
bioenergy crops as a driver of change in biodiversity
due to invasive traits (Hartman et al., 2011; Barney ef al.,
2012). The crops are being cultivated from non-native
taxa to have few resident pests, to tolerate poor growing
conditions and to produce competitive bioenergy crops
(Barney & Ditomaso, 2008). The invasive potential of
most bioenergy crops and the susceptibility to the inva-
sion of certain habitat types to bioenergy crop species
are, however, largely unknown (Barney et al., 2012).
Only one field-based assessment by Barney et al. (2012)
aimed at analyzing habitat susceptibility and resistance
to invasion by perennial grasses in potential receiving
environments.

An important driver that is not addressed as such by
the selected studies is the intensification of production
systems. Intensification is one of the focal points in the

bioenergy sector to reduce the competition between
food, feed and fuels, and therefore iLUC (Dornburg
et al., 2010; Wicke et al., 2012). The amount of bioenergy
that can be produced without expanding the total agri-
cultural land-use area depends on the rate of intensifica-
tion of the agricultural sector and the suitability of the
land that becomes available for energy crop production
(van der Hilst ef al., Forthcoming). Growing attention
goes therefore to production of dedicated bioenergy
crops on so-called surplus land (two different origins of
surplus land are distinguished by Dauber et al. (2012):
(1) land currently not in use for the production of food,
animal feed, fibre or other renewable resources due to
poor soil fertility or abiotic stress and (2) land currently
no longer needed for food and feed production because
of intensification and rationalization of production,
resulting in yield increases and thus a reduced require-
ment for land), whereas the production of food is con-
tinued on established agricultural land (Dauber et al.,
2012). This might reduce pressure on sensitive habitats.
However, current estimates of availability and suitabil-
ity of surplus land for development of energy crop
production or use of existing biomass potentials are
uncertain.

Although the consequences of such developments on
biodiversity are only discussed to a limited extent in the

Cattle ranches

occupy forest

Better market
access

Infrastructure
opens up more

forest

FPolicies promoting
development

Sugarcane
occupies soy or

pasture

lands Extensive farming

Deforestation

frontier

Farmer sells or
rents land

Soy occupies

pasture

Farmer sells or
rents land

Fig. 2 An example of the multiplier effect as analyzed by Kessler et al. (2007). The Figure is based on Verweij et al. (2009) and sche-
matically shows the complex interactions between agriculture expansion and cattle ranching in the agricultural frontier region
between the Amazon and Cerrado biomes in Brazil. Historically, the dominant pattern of forest conversion begun with small-scale

exploration for timber or subsistence agriculture, followed by consolidation into large scale cattle ranching operations or abandon-
ment to secondary forest (Morton et al., 2006). The expansion of large-scale mechanized agriculture (mainly soy and increasingly sug-
arcane) has introduced a new pathway for loss of natural vegetation, generating debate on the contribution of (bioenergy) cropland

expansion to deforestation dynamics (Verweij et al., 2009; Sparovek et al., 2012).
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selected studies, intensification of agricultural production
receives considerable attention in biodiversity science
(outside bioenergy literature). Besides, the current land
sparing vs. land sharing debate is growing as well
(e.g., Fischer et al., 2008; Phalan et al., 2011; Anderson-
Teixeira et al., 2012; Tscharntke et al., 2012). Land sparing
is the segregation of land for nature and for production
and land sharing (or wildlife-friendly farming) is the
integration of both objectives on the same land
(Tscharntke et al., 2012).

Although intensification of agricultural production
systems and the use of surplus land might alleviate
pressure on natural ecosystems, it can increase pressure
on (agro)biodiversity through a growing share of high-
yielding monocultures in the landscape and pollution
resulting from increased use of fertilizers and pesticides
(Sala et al.,, 2009). This article follows Jackson et al.
(2007) stating that “Agrobiodiversity refers broadly to
the biota, e.g., soil microbes and fauna, weeds, herbi-
vores, carnivores, etc., colonizing the agroecosystem
and surviving according to the local management and
environment.” Contrary, positive changes can be
expected when an intensive land use is replaced by a
less intensive one. Introduction of perennial habitats
into intensive agricultural systems, also through, for
example, agroforestry systems such as alley cropping of
SRC trees, might lead to biodiversity benefits such as
gains in habitat and higher connectivity (e.g., Porter
et al., 2009; Dauber et al., 2010, Holzmeuller & Jose,
2012).

Results in this debate are still contradictory. Authors
increasingly argue, however, that so far the land sparing
approach has failed to take into account the multiple
ecosystem services provided by extensively managed
agricultural landscapes (Porter et al., 2009; Tscharntke
et al., 2012). This shows that in the field of bioenergy,
major scientific challenges remain regarding agricultural
intensification, suitability of (surplus) land and the asso-
ciated pressures on biodiversity.

A long-term driver that has not been assessed by the
selected studies includes climate change effects from
bioenergy use. In the long term, bioenergy crop produc-
tion is expected to contribute to a reduction in GHG
emissions and it could therefore lead to a reduction in
the effects of climate change on biodiversity (Brink
et al., 2007; CBD, 2010; Dornburg et al., 2010). The bal-
ance of climate change effects was analyzed by CBD
(2010) in a global scenario study in which the target of
mitigating climate change by limiting CO2eq concentra-
tion to 450 ppm is met by using mainly woody biomass
for large scale bioenergy production. In this scenario,
the ‘positive’ effect is that biodiversity, as indicated by
the MSA, would decrease by 10% between 2000 and
2050, compared with 11% in the baseline scenario.

© 2013 Blackwell Publishing Ltd, GCB Bioenergy, 6, 183-209

Drivers and pressures summarized

Figure 3 presents an overview of the relationships
between drivers and pressures of biodiversity changes
discussed above. Habitat loss and fragmentation are
presented here as pressures on biodiversity resulting
from land-use change (also following the formal defini-
tion of the Millennium Ecosystem Assessment (MEA)
(MEA, 2005)). Most studies use habitat loss (and in a
few cases fragmentation), however, as an indicator for
biodiversity impacts. Reported results on habitat loss
and fragmentation are therefore further discussed in the
impacts section below.

Impacts

In this section, categorized impacts are summarized and
for the main indicators, trends and key examples per
indicator are described. Reported impacts are mostly
negative (26 studies) but particularly depend on spatial
scale, geographical region, type of bioenergy crop and
initial land use.

Different impacts per spatial scale and geographical region

Figure 4 shows the biodiversity impacts on different
spatial scales. On each scale, the majority of the impacts
are negative. Positive impacts are only reported at the
field scale. It is, however, difficult to draw general con-
clusions here, as the number of studies is strongly
biased towards the field scale. This might indicate that
benefits at the larger geographical scales are more diffi-
cult to obtain, but more research at these scales is
required to underpin such conclusions. This could
particularly be the case for second generation crops in
temperate regions, where the acreage of those crops
is still too small to identify coarse scale impacts on
biodiversity.

As shown in Fig. 5, the expansion of bioenergy crops
in the tropics raises most concerns with 88% of studies
reporting negative impacts, especially for first genera-
tion crops (mainly oil palm and soy).

The importance of initial land use

The majority of negative impacts refer to the conversion
of natural vegetation to first generation crops, in partic-
ular in the tropics. Koh & Wilcove (2008) report, for
example, that between 1995 and 2005, 55-59% of oil
palm expansion in Malaysia and at least 56% in Indone-
sia occurred at the expense of primary forest. As indi-
cated by Gasparatos ef al. (2011), reviews on the
biodiversity impacts from oil palm expansion have
shown that oil palm plantations contain much fewer
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Fig. 3 Relationships between drivers and pressures of biodiversity change resulting from bioenergy crop production. Negative influ-
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Fig. 4 Biodiversity impacts on different spatial scales. One
national study is included under region in the figure. Regional
scale is defined here as a region within a country.

species than primary forests (e.g., Fitzherbert et al,
2008; Danielsen et al., 2009). Besides, the subsequent
communities were dominated by a few generalist spe-
cies of low-conservation value (Danielsen et al., 2009).
The studies suggest that biodiversity loss in oil palm
plantations occurs because plantations are structurally
less complex than primary forests, have a shorter life
span and are major landscape fragmentation factors
(Fitzherbert et al., 2008; Gasparatos et al., 2011).

The evidence of negative impacts not only refers to
the conversion of primary or secondary forests but also

B MNegative impacts
® Neutral/both

Positive impacts

Number of publications (n)

6 4
3 -
0 .
Tropical Temperate Both
Region

Fig. 5 Biodiversity impacts per production region.

to the conversion of other natural ecosystems including
grasslands, wetlands or other areas of high biodiversity
value. However, when abandoned cropland, degraded
or marginal lands are converted, biodiversity benefits
are reported in both tropical and temperate regions,
especially in relation to second generation crops. Caution
is, however, needed when making general assumptions
about the (potential) biodiversity benefits of using these
broadly defined land uses (Felton ef al., 2010; Dauber
et al., 2012). A clear distinction between degraded,
marginal or low-intensity pasture or grassland is often
lacking, whereas at the same time such areas might hold

© 2013 Blackwell Publishing Ltd, GCB Bioenergy, 6, 183-209



BIODIVERSITY IMPACTS OF BIOENERGY CROP PRODUCTION 199

important biodiversity values. Various studies have
shown that conversion of such lands into plantations of
perennial crops may therefore also result in negative
impacts on biodiversity (e.g., Felton et al., 2010; Fletcher
et al., 2010; Hsu et al., 2010; van der Hilst et al., 2012).

Different crops have different impacts

The impacts of second generation crops tend to be less
negative than first generation ones, and are in several
cases positive (at the field scale). About 87% of the stud-
ies on first generation crops report negative impacts, vs.
27% for second generation crops. Positive effects are
shown in 32% of these studies, and are especially true
for grasses and SRC crops in Europe. The reported
impacts per bioenergy crop are presented in Fig. 6.

A total of 20 studies report both positive and negative
(or neutral) impacts, the majority for second generation
crops. In some cases (five), combined analyses of first
and second generation crops showed negative impacts
on the first, and positive effects on the latter. Perennial
crops have the potential to provide habitat or shelter for
specific species (such as migratory birds) and improve
connectivity or support restoration of degraded or
marginal land, resulting in biodiversity benefits (Dauber
et al., 2010; Meehan et al., 2010; Robertson et al., 2011a).
These studies are, however, cautious in presenting posi-
tive results on second generation crops and indicate that
biodiversity benefits depend on (1) different species
responses within and between taxonomic groups, (2)
different spatial scales at which studies are conducted,
and (3) management, age, size and heterogeneity of
plantations. This also relates to the increased vulnerabil-
ity of an area to new invasive species when landscape

heterogeneity is reduced (Hartman et al., 2011). Similar
conclusions are drawn by other reviews on forest plan-
tations (e.g., Brockerhoff et al., 2008; Schulz et al., 2009).
An additional notion here is that except for one sce-
nario-based assessment in Argentina (van Dam et al,,
2009), none of the studies evaluate the (potential)
impacts from second generation feedstock cultivation in
tropical regions.

The large share of studies focused on second genera-
tion crops in temperate regions and oil palm in Indone-
sia and Malaysia, shows important gaps in knowledge
particularly in tropical regions. Although a significant
proportion of first-generation biofuel feedstocks are pro-
duced in the tropics and the demand for these crops are
likely to continue at least in the next decade, quantified
results are largely biased towards oil palm in South East
Asia (Lee et al., 2011). Continued production of bioener-
gy crops in the tropics is expected to (further) threaten
the high concentrations of globally endemic species in
these areas, which are located within the world’s key
biodiversity hotspots such as the Brazilian Cerrado
(Myers et al., 2000; Klink & Machado, 2005; Koh & Gha-
zoul, 2008; Sano et al., 2010). These regions are still rela-
tively unexplored in bioenergy science, whereas
uncertainties are likely to be larger (due to, for example,
higher levels of endemism as well as lack of data).

Evidence of quantified impacts using different biodiversity
indicators

No single indicator covers the totality of the various
impacts on biodiversity; consequently the evidence of
quantified biodiversity impacts in this review is based
on different biodiversity indicators. The main indicators

Com

Oil palm
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Other 15t gen.
Eucalyptus

Miscanthus

Bioenergy crop

SRC
Switchgrass
Other 2nd gen.

Ist& 2nd gen,

B Negative impacts
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[ 8 10 d

Number of publications (n)

Fig. 6 Biodiversity impacts per bioenergy crop.
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used in the selected studies are (1) change or loss of
habitat, ecosystems or other types of valuable nature
areas, (2) High Nature Value areas (HNV), (3) Mean
Species Abundance (MSA) and (4) indices for species
abundance, richness and distribution. Definitions of
these indicators are presented in Appendix S1. Table 2
explains the main trends per biodiversity indicator, and
indicates key example studies. The results are shown
following the quantified effects of land-use change,
being the focus of the majority of the studies.

Conditions under which biodiversity indicators are applied

Table 3 summarizes the conditions under which the
main biodiversity indicators are applied in the selected
publications including spatial scale, biodiversity level,
time horizon and data requirements.

The extent of habitat, ecosystems or other types of
valuable nature areas is a widely used indicator for
biodiversity on each spatial scale, especially in areas
outside agricultural lands. Data are readily available (often
from satellite images) and can be applied in both empir-
ical and scenario-based assessments. Data are frequently
on a coarse scale and would therefore require field veri-
fication to improve the accuracy of mapping exercises.
Assessments of the impacts on individual species or
species groups are difficult solemnly using this type of
indicator. Indicators that can be applied to include
changes within or between species (groups) at larger
spatial scales are the HNV and MSA. The HNV indica-
tor is currently only available for Europe and would
require large amounts of data in other regions. This
makes it difficult to apply this indicator in (scenario-
based) assessments outside Europe. Besides, there are
still important challenges in using the HNV indicator in
Europe especially due to differences and limitations in
data and methodologies (Peppiette, 2011).

The MSA is a less precise, but relatively easily appli-
cable indicator that can provide an indication of (poten-
tial) changes in the relative abundance of species, also
in future scenarios. It is, however, difficult to apply the
indicator at smaller spatial scales because of the low
level of detail and considerable uncertainties related to
the cause—effect relationships, the drivers considered
and underlying data determining the MSA values.
Assessments of species distribution can provide more
species-specific information at larger spatial scales and
can be applied together with indices for species richness
and abundance in impact assessments at smaller spatial
scales. These indicators allow for analysis of changes in
individual species or species groups in both natural
areas and agricultural landscapes and provide more
accurate information at the species level. The use of
these indicators is, however, data intensive and often
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requires long-term field surveys. Besides, they are diffi-
cult to apply in scenario-based assessments as changes
in these indicators are hard to project.

Fragmentation indices can add an extra dimension to
the above indicators and can provide insight into the
effects of fragment size and landscape connectivity on
biodiversity, especially if such indices can be related to
species-specific indicators at smaller spatial scales. Frag-
mentation indices can be relatively easily calculated
from land use and land cover data. An analysis of the
relationship between fragmentation and species-specific
indicators requires, however, more data intensive
research. Few selected studies have directly referred to
or assessed the integrated effects of fragmentation. Frag-
mentation effects are defined by Fahrig (2003) and
include (1) reduction in habitat amount, (2) increase in
the number of habitat patches, (3) decrease in sizes of
habitat patches and (4) increase in isolation of patches.
Added to this can be so-called edge effects, where the
area of land at the edge of the habitat patch is altered
and less suitable for certain species (MEA, 2005; Verweij
et al., 2009). Species that are specialized to particular
habitats and those with poor dispersal ability suffer
from fragmentation more than generalist species with
good dispersal ability. This may affect the extinction
risk of the more vulnerable species. Habitat loss and
such changes in species composition are addressed by
the selected studies, but most authors do not distinguish
between habitat loss and habitat fragmentation or con-
sider fragmentation related habitat variables at the field
scale, not at the landscape scale [as was also concluded
by Fahrig (2003)]. Only one study showed that oil palm
is a major contributor to forest fragmentation using a
fragmentation index (Abdullah & Nakagoshi, 2007).

Changes in the conservation status of species are also
scarcely included in bioenergy literature. At smaller
spatial scales, changes in the conservation status are dif-
ficult to assess, but at larger spatial scales an increased
number of for example vulnerable or (critically) endan-
gered species can provide an important proxy for
changes in the state of biodiversity.

Insights from several reviews of biodiversity indica-
tors show that the selected publications exclude several
indicators that are often used in biodiversity research
(e.g., Reid et al., 1993; Brink, 2000; Dornburg et al., 2008;
Butchart ef al., 2010; Vackar et al., 2012). These indica-
tors include, for example, the extent of protected areas,
Red List Index and Living Planet Index (LPI). An expla-
nation of these indicators is included in Appendix S1.

Responses

This review shows that bioenergy crop production leads
to various tradeoffs on biodiversity. Reconciling biofuel

© 2013 Blackwell Publishing Ltd, GCB Bioenergy, 6, 183-209

expansion with biodiversity conservation is therefore
not easy (Dornburg et al., 2010; Lee et al., 2011). To miti-
gate the negative impacts of biofuel feedstock cultiva-
tion on biodiversity and to promote biodiversity
benefits, various measures are proposed and discussed
in literature. These mitigating measures are not focused
on the bioenergy sector alone, but should be seen in the
context of other associated land uses. As also indicated
by Wicke et al. (2012), mitigating the impacts of bioener-
gy crop production, either directly or indirectly,
depends on controlling the extent of land-use changes
related to biofuel feedstock expansion, including, for
example, forestry, agriculture and livestock sectors.
Here, these measures are shortly discussed based on the
selected publications, and complemented with addi-
tional key references.

Better management practices

The implementation of better management practices can
contribute to the enhancement of (agro)biodiversity at
the field scale as well as landscape heterogeneity. Such
practices have been proposed by many and include crop
rotations or multiple cropping systems, use of native
species and local varieties, enhancement of understory
vegetation, no till farming, minimal irrigation and
responsible use of pesticides and fertilizers (e.g., Hen-
nenberg et al., 2010; Najera, 2010; Lee et al., 2011; Wiens
et al., 2011; Calvino-Cancela et al., 2012; Wicke et al.,
2012). Increased structural diversity and maintenance or
creation of landscape elements within plantations can
contribute to landscape heterogeneity. Such elements
can contribute to connectivity and reduce fragmentation
effects and include, for example, stepping stones of nat-
ural habitats, buffer zones around vulnerable areas, pro-
tection of riparian areas, slopes and other fragile areas
(Fletcher et al., 2010; Hennenberg et al., 2010; Hartman
et al., 2011). Improvement of structural diversity might
also contribute to limiting the risk of invasion by peren-
nial grasses. Finally, various studies propose a precau-
tionary approach when introducing potentially invasive
biofuel feedstocks through pre-introduction screening
or risk assessments (e.g., Barney & Ditomaso, 2008; Gor-
don et al., 2011).

Use of marginal, degraded or abandoned agricultural land

As discussed before, the use of marginal, degraded or
abandoned is often promoted as an option to minimize
competition with food crops and reduce the need for
conversion of natural ecosystems (e.g., Fitzherbert ef al.,
2008; van Dam et al., 2009; Hartman ef al., 2011). Feed-
stock cultivation on such lands may also provide addi-
tional environmental benefits such as erosion control
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and soil carbon sequestration (Hartman et al., 2011;
Wicke et al., 2012). Key uncertainties exist, however, in
relation to the definition and identification of such
lands, potential yields and their biodiversity and socio-
economic values (Dauber et al., 2012; Wicke et al., 2012;
see previous sections). Dauber ef al. (2012) provide a
recent scientific background in support of a reassess-
ment of land available for bioenergy production by clar-
ifying the terminology, identifying constraints and
options for efficient bioenergy-use of surplus land.

Land-use planning and landscape design

Conservation gains from avoiding or reducing defores-
tation of natural or high biodiversity value areas, can
only be achieved in combination with land-use planning
and landscape design (Fitzherbert et al., 2008). As indi-
cated by Wicke et al.(2012), appropriate zoning of land
use and land cover is necessary to minimize negative
impacts from land-use changes associated to bioenergy
cropland expansion. Various authors indicate the
importance of maintaining or enhancing heterogeneity
in the landscape (e.g., Hsu et al., 2010; Azhar et al., 2011;
Hartman et al., 2011; Baum et al., 2012). This can be per-
formed through the retention and restoration of natural
forest or other areas of natural vegetation outside plan-
tations (Azhar et al., 2011). Agroforestry or silvopastoral
production systems may also act as corridors to connect
surrounding fragments, but also to mitigate further
encroachment into these areas and reduce edge effects
(Lee et al., 2011; Holzmeuller & Jose, 2012; Wicke et al.,
2012). Others point towards combined food and energy
(CFE) agro-ecosystems that can provide significantly
increased ecosystem services compared with conven-
tional agriculture and require less fossil-based inputs
(Porter ef al., 2009). Besides, biofuel crops have the
potential to stimulate landscape heterogeneity them-
selves by introducing perennial energy crops into land-
scapes dominated by annual crops (Wiens et al., 2011).
Care should, however, be taken here considering the
land-use type that is being replaced (see previous sec-
tions and e.g., Dauber et al., 2012).

Policy and requlatory measures

As the most serious impacts on biodiversity result from
the conversion of natural vegetation to bioenergy crop
plantations, major gains in conserving biodiversity can
be achieved by implementing measures aimed at the
conservation or exclusion of natural habitats, ecosys-
tems or other areas with high-nature values. These can
include not only primary forests but also, for example,
valuable secondary forests, natural grasslands and
peat lands (e.g., Koh & Wilcove, 2008). Such policy and

regulatory measures include the establishment of new
protected areas, improvement of protected area net-
works through, for example, buffer zones and ecological
corridors as well as the enhancement of regulation and
enforcement to limit deforestation. At the same time,
these measures might be most challenging, especially in
tropical countries where law enforcement is often weak.
Besides, the identification of areas with high-nature val-
ues still faces methodological challenges (see Appendix
S1).

(Voluntary) certification initiatives

Over the years, a wide range of certification initiatives
has started aimed at the development of sustainability
standards for bioenergy production and trade. The crea-
tion of multi stakeholder initiatives such as the Round-
table of Sustainable Biofuels, the Roundtable of
Responsible Soy, Bonsucro and the Roundtable of Sus-
tainable Palm Oil have engaged stakeholders through-
out the entire supply chain to work towards the
production and trade of bioenergy feedstocks following
sets of economic, social and environmental criteria (Lee
et al., 2011). Research on the effects of certification on
biodiversity is still limited, which makes it difficult to
draw conclusions on this issue. Besides, various studies
indicate that current initiatives still fail to capture iLUC
(e.g., van Dam et al., 2010; Hennenberg et al., 2010; Lee
et al., 2011). Most bioenergy sustainability criteria deal
with biodiversity by proposing process indicators, for
example, by referring to national regulations and by
excluding protected areas and land identified as HCVA
from bioenergy production. However, none of the cur-
rent systems is built on a coherent and proven set of
methodologies that allows for trustworthy verification
of criteria and indicators (van Dam et al., 2008). Follow-
ing the above challenges, various authors argue that
certification systems should be complemented by sci-
ence-based methodologies and additional mitigating
measures at multiple spatial scales (e.g., van Dam et al.,
2010; Hennenberg et al., 2010).

Mitigating measures not addressed in the selected studies

The selected studies address to a limited extent the
importance of good governance in establishing an
enabling environment for the implementation of miti-
gating measures. Policy frameworks at national and
international levels (such as the EU Renewable Energy
Directive) can contribute to stimulating sustainable
bioenergy supply chains, although it is important that
policies in various sectors (including e.g., agriculture,
environment and rural development) are aligned. Other
(financial) incentives to alleviate the pressure from
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bioenergy crop production on natural ecosystems that
have hardly been addressed include the creation of
innovative financing mechanisms such as Payments for
Environmental Services. To be effective, however,
financing schemes must provide an economically (and
socially) attractive alternative production system and
fulfil several key requirements to prevent negative con-
sequences such as leakage in other areas (Wunder et al.,
2008). Finally, partnerships between multiple stakehold-
ers could fill the gap in these and other mitigating mea-
sures where there is a lack of regulations, law
enforcement or land-use planning policy by govern-
ments for example (Visseren-Hamakers & Glasbergen,
2007; Fitzherbert et al., 2008; Lee et al., 2011).

Conclusions and recommendations for future
research

This article comprehensively and systematically
reviewed publications on the biodiversity impacts of
bioenergy crop production. The article evaluated the
drivers and pressures of biodiversity change and sum-
marized current trends and impacts. The review pro-
vided insight into the types of biodiversity indicators
applied under a range of conditions and the mitigating
measures proposed to minimize negative impacts or
realize biodiversity benefits. The selection of publica-
tions is not considered exhaustive. The selection of 53
studies resulted from the applied search method,
whereas other combinations of search terms and/or
search engines might have resulted in additional stud-
ies. Nonetheless, this article presented a state-of-the-art
review of biodiversity impacts in literature on bioenergy
crop production, identifying important knowledge gaps
in this field of science.

The selected publications gave diverse results that
were difficult to compare. Clear definitions on drivers,
pressures and impacts on biodiversity, and even of bio-
diversity itself, are often lacking in current literature.
The use of the DPSIR framework enabled, however, a
structured analysis of the wide ranging publications.
The differences were explained by the various spatial
scales, production systems and regions, time horizons,
methodologies and biodiversity indicators used. Most
studies focus on the field level. Reported impacts
depend on initial land use and are mostly negative, in
particular in tropical regions. The impacts of second
generation bioenergy crops tend to be less negative than
first generation ones, and are in some cases positive (at
the field level), in particular in temperate regions. Land-
use change appears as the key driver of biodiversity
change, whereas the associated habitat loss, alterations
in species richness and abundance are the main impacts
addressed. Such changes are often paired with the
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(initiation of a) process of biological homogenization.
The article confirms that concerns about the expansion
of bioenergy crop production not only relate to direct
land-use change effects on biodiversity by replacing nat-
ural vegetation, but increasingly to the indirect effects
as well. These effects have, however, shown to be diffi-
cult to quantify. At the same time, the land sparing vs.
land sharing debate receives growing attention whereas
little evidence exists in bioenergy literature on the
impacts of large-scale application of these strategies on
(agro) biodiversity. Finally, several mitigating measures
were identified in bioenergy literature to minimize neg-
ative impacts or enhance biodiversity benefits. These
measures included better management practices, the
use of degraded lands, land-use planning and land-
scape design, policy and regulatory measures as well as
other initiatives promoting a more sustainable bioener-
gy sector.

This review showed important gaps in knowledge on
bioenergy crop production, which are translated here
into recommendations for future research. These recom-
mendations are considered essential for the guidance
and development of mitigating measures and include
the following;:

e Diversification of study regions and target crops to
other ‘conversion hotspots’ in biodiversity rich trop-
ical ecosystems including, for example, the Cerrado,
Atlantic Forest and Chaco in South America, as well
as wetlands and other vulnerable arid and semi-arid
ecosystems in sub-Saharan Africa.

e Integration of multiple spatial scales to avoid the cur-
rent bias towards the field scale and expand the
knowledge at larger spatial scales. This requires the
use of coarser indicators that can be applied at such
spatial scales including, for example, the extent of
ecosystems and the MSA, but also indicators that
are currently not represented in bioenergy literature
such as the Red List Index (RLI). On these coarser
spatial scales, this requires modelling approaches on
biodiversity responses that are based on accurate
projections of future distributions of energy crops.
Such projections are, however, challenged by, for
example, the time lags of biodiversity responses and
low current acreage providing limited baseline
information, particularly in case of second genera-
tion crops.

e The complexity of biodiversity requires a combina-
tion of complementary indicators on different biodiver-
sity levels. Combinations of various indices are
recommended to cover a broader range of the
status, trends and changes in biodiversity and
the ecosystem services provided by biodiversity
(this follows the recommendations of the CBD
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(CBD, 2010)). For example, the use of habitat, eco-
systems or other types of valuable nature areas
neglects biodiversity outside these areas. The MSA
indicator can then provide complementary informa-
tion in scenario-based assessments at larger spatial
scales. To include more species-specific data, the use
of species distribution data can complement the
MSA especially on larger spatial scales. To further
overcome the limitations of the MSA at smaller spa-
tial scales, indices for species richness and abun-
dance can be applied in impact assessments of
changes in biodiversity in both natural areas and
agricultural landscapes. The most suitable set of
applicable indicators depends, however, on the pur-
pose of the study and data and time availability.

Improved insights into changes in species distribution
resulting from bioenergy crop production as cur-
rently little is known regarding such changes. This
can support land-use planning initiatives by identi-
fying, for example, priority areas for conservation
that are important in maintaining species’ distribu-
tional ranges and capacity.

Broadening of taxonomic groups to better evaluate dif-
ferences in responses to bioenergy crop expansion
between taxonomic groups. Selecting indicator spe-
cies (groups) for biodiversity is a challenge, as the
findings about the usefulness of certain species
groups as indicators are contradictory (Lindenmayer
et al., 2000; Dauber et al., 2010). Therefore a broader
perspective on how different taxonomic groups are
affected can improve the understanding of biodiver-
sity impacts at the species level.

Assessments of changes in species extinction risk in
response to bioenergy crop expansion can further
guide conservation actions and can be an important
tool in selecting indicator species for impacts assess-
ments. Depending on the spatial scale, this can
include assessments using the RLI or evaluations of
changes in the conservation status of particular spe-
cies.

Quantification of pollution effects on biodiversity from
the use of fertilizers, pesticides and discharge of
waste, especially in aquatic ecosystems. Impact
assessments are concentrated on terrestrial ecosys-
tems, partly due to a lack of data on biodiversity in
aquatic ecosystems. Increasing concerns have risen
on these ecosystems; however, also in the context of
bioenergy crop production (where upstream and
downstream impacts are often not taken into
account).

Relating climate change effects from biomass production
to biodiversity. One of the main arguments for
biomass production for bioenergy is its potential

contribution to the reduction in GHG emissions.
Global and regional studies indicate possible nega-
tive impacts of climate change on biodiversity;
therefore insights into the long-term climate change
effects from biomass production on biodiversity
could assist in minimizing these negative climate
change impacts.

Studies on the effects of mitigating measures on biodiver-
sity to improve or further guide such measures.

This should include specific attention to a better
understanding of the effects of intensification of produc-
tion systems on (agro)biodiversity. When mitigating
measures with respect to biodiversity are primarily
focused at the conservation of natural areas (as is
the basis of most sustainability initiatives), such
measures should be complemented with manage-
ment practices to improve production efficiency and
reduce the need for expansion elsewhere. Large
uncertainties remain, however, regarding the effects
of these ‘land sparing’ options, especially with
regards to availability and suitability of land.
Assessments of this type of strategy should not only
include landscape level effects of intensification on
habitat extent, landscape connectivity and fragmen-
tation, but also species-specific indicators such as
richness and abundance at the field scale.

On the other hand, ‘land sharing” options via alterna-
tive cropping systems such as agroforestry should become
research priority. Positive biodiversity impacts from
biodiversity friendly cropping systems are pre-
sented in literature, but also here large uncertainties
remain. A stronger scientific basis in this debate
would allow for better (regional) solutions to estab-
lish more sustainable bioenergy production systems
with optimized production (Dauber et al., 2012).

Apart from quantifying impacts from different pro-
duction systems, detailed assessment and definition of
the potential of marginal and degraded land are needed.
This calls for a thorough analysis of the state of bio-
diversity in such areas using more precise and spe-
cies-specific  indicators for species richness,
abundance and distribution to capture the full value
of these areas and identify under which conditions
these areas can be optimally used for bioenergy crop
production.

Long-term studies are, however, needed to realize
most of the above recommendations. Field-based
data are often collected within a relatively short
time frame covering several years or a decade at the
most. Scenario-based assessments project larger time
frame of several decades, but have to be based on a
wide range of general assumptions. Accurate biodi-
versity impact assessments require long-term
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studies to understand the multiple drivers of biodi-
versity change and their associated impacts.
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