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INTRODUCTION
Southern Ocean surface and global deep-wa-

ter temperatures rose by ~11 °C and 7 °C, respec-
tively, between the late Paleocene, ca. 58 Ma, 
and the early Eocene Climatic Optimum, 52–
50 Ma (Zachos et al., 2008; Bijl et al., 2009, 
2013; Hollis et al., 2012). Superimposed on this 
long-term warming, several transient warming 
events or hyperthermals occurred, including the 
Paleocene–Eocene Thermal Maximum (PETM; 
ca. 56 Ma) and Eocene Thermal Maximum 2 
(ETM2; ca. 54 Ma). These hyperthermals were 
associated with rapid and massive injections of 
13C-depleted carbon into the ocean-atmosphere 
system, based on pronounced negative carbon 
isotope excursions (CIEs) in sedimentary com-
ponents (e.g., Dickens et al., 1995; Lourens et 
al., 2005).

Early Eocene global climate was ~15 °C 
warmer than at present based on data and mod-
els, with particularly warm polar regions and 
reduced meridional temperature gradients (e.g., 
Bijl et al., 2009; Huber and Caballero, 2011). 
Notably, the gradient changed during the early 
Paleogene as mid- and high-latitude regions 
cooled, and the limited information from the 
tropics shows only minor temperature change 
(Pearson et al., 2007; Bijl et al., 2009). Because 
of poor spatial coverage, however, the con-
straints on this gradient are limited. Critically, 
there is no record of long-term late Paleocene 
through early Eocene sea-surface temperature 
(SST) evolution for the Northern Hemisphere 
other than the Arctic Ocean (Integrated Ocean 
Drilling Program, IODP Expedition 302; Arctic 
Coring Expedition, ACEX; Sluijs et al., 2006, 
2008, 2009).

Both the long-term warming and the hyper-
thermals were marked by poleward migrations 
of biota, notably recorded in the tropical and 
subtropical dinoflagellate cyst (dinocyst) genus 
Apectodinium (Crouch et al., 2001). However, 
there are few quantitative temperature con-
straints on plankton biogeography. Here we 
present organic geochemical and dinoflagellate 
cyst data from the southern part of the West Si-
berian Sea (Fig. 1) to document regional long-
term temperature evolution in relation to plank-
ton biogeography.

MATERIALS
Upper Paleocene sandstones in Well 10 near 

Omsk, southwestern Siberia, Russia (53°30′

06.37″N, 73°31′35.57″E; paleolatitude ~58°N) 
are unconformably deposited on the Maastrich-
tian Gan’kino Formation 260.2 m below surface 
(mbs; Fig. 2). The Paleocene sandstones fine up-
ward into mudstones and gaize, a sediment type 
rich in amorphous silica, indicating a gradual 
deepening of the basin. A glauconite-rich sand-
stone from 237.7 to 237 mbs separates the lower 
and upper part of the Lulinvor Formation. It un-
derlies a sapropelitic bed, which may be correla-
tive to similar lithological units in the northern 
Peri-Tethys shown to correspond to the maximum 
flooding surface of the PETM (Gavrilov et al., 
2003; Radionova et al., 2003; Fig. 1). The upper 
part of the Lulinvor Formation consists mainly 
of siliceous silt and sandstones. The similarity of 
early Paleogene dinocyst assemblages in the epi-
continental West Siberian Sea with those in the 
North Sea Basin (Heilmann-Clausen, 1985), At-
lantic Ocean (Sluijs and Brinkhuis, 2009), and Te-
thys indicates that the West Siberian Sea was well 
connected to the global ocean (Iakovleva, 2011).

METHODS
We integrate existing dinocyst biostratigra-

phy (Iakovleva and Heilmann-Clausen, 2010; 
Iakovleva and Aleksandrova, 2013) and mag-
netic polarity reversals (Akhmet’ev et al., 2010) 
with new stable carbon isotope stratigraphy to 
optimize the age model in Well 10. We apply 
the organic molecular TEX

86 (tetraether index 
of tetraethers consisting of 86 carbon atoms) 
temperature proxy (Schouten et al., 2002) to re-
construct temperature and use dinocyst assem-
blages as paleoenvironmental indicators.

We measured total organic carbon (TOC) and 
d13CTOC on ~10 mg of homogenized and decal-
cified sample using a CNS (carbon-nitrogen-
sulfur) analyzer (Fisons) coupled to an isotope 
ratio mass spectrometer (Finnigan MAT Delta 
Plus). For TEX86 analysis, ~10 g of sediment 
was extracted by a Dionex accelerated solvent 
extractor. Extracts were separated into polar and 
apolar fractions over an Al2O3 column. The apo-
lar fractions of the sapropelitic bed and adjacent 
samples were scanned for isorenieratane by gas 
chromatography and gas chromatography mass 
spectrometry. Isoprenoid glycerol dibiphytanyl 
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Figure 1. Paleogeographic map (55 Ma) show-
ing site locations: Arctic Coring Expedition 
(ACEX) (Sluijs et al., 2006, 2008, 2009), West 
Siberian Sea (Well 10) (this study), Waipara, 
New Zealand (Hollis et al., 2012), Integrated 
Ocean Drilling Program (IODP) Site 1172 
(Bijl et al., 2009, 2013; Sluijs et al., 2011), and 
Tanzania Drilling Project (TDP) (Pearson et 
al., 2007). Green shaded area represents the 
approximate extent of sapropel deposition 
during the Paleocene–Eocene Thermal Maxi-
mum (PETM) in epicontinental Eurasia (Ra-
dionova et al., 2003).
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glycerol tetraethers (GDGTs) and branched 
GDGTs in the polar fractions were measured on 
an Agilent 1100 high performance liquid chro-
matography mass spectrometer. We calculated 
SSTs using the most recent high-temperature (H) 
calibration, TEX86

H, which yields a calibration er-
ror of 2.5 °C (Kim et al., 2010; see the GSA Data 
Repository1 for detailed methods and discussion 
concerning TEX86 calibrations and caveats).

Palynological processing included treatment 
with HCl (10%) for carbonate removal. Clay 
particles were dispersed with tetrasodium py-
rophosphate (Na4P2O7∙10H2O, 10%) and de-
canted. Residues were centrifuged with heavy 
liquid (K2CdI4) and boiled with HF (10%) to re-
move heavy particles and silicates, respectively. 
We applied no exote spiking or sieving. At least 
200 dinocysts were counted per sample where 
possible. Samples yielding <100 dinocysts were 
excluded from quantitative analyses.

RESULTS AND DISCUSSION

Stratigraphy
We apply the dinocyst zonation scheme for 

western Siberia (Iakovleva and Heilmann-Clau-
sen, 2010; Iakovleva and Aleksandrova, 2013) to 
correlate recorded first (e.g., Alisocysta margar-
ita, Deflandrea denticulata, Charlesdowniea co-
lumna) and last occurrences (e.g., A. margarita, 
Apectodinium augustum, Wilsonidium pechori-
cum), and the magnetic reversals of Iakovleva 
et al. (2012) to the Geomagnetic Polarity Time 
Scale (see the Data Repository) (Fig. 2). This in-
dicates that the section spans the interval from 
ca. 60 Ma to 52 Ma. The combined occurrence 
of the dinocyst Apectodinium augustum and the 
3.1‰ negative CIE from -27.6‰ to -30.7‰ 
indicates that the sapropelitic bed from 237 to 
236.4 mbs represents the PETM (Fig. 2; e.g., 
Crouch et al., 2001, Schmitz et al., 2004). BIT 
(branched/isoprenoid tetraether) index values 
of ~0.05 indicate low terrestrial contributions to 
TOC (Hopmans et al., 2004) throughout this in-
terval, excluding a major effect of varying organ-
ic matter sources on the recorded d13CTOC shift. 

The 70-cm-thick glauconite-rich unit separates 
the top of Chron 25n and the PETM and marks 
a ~1 m.y. hiatus or condensed interval associated 
with the unconformity between the lower and 
upper parts of the Lulinvor Formation.

Several first occurrences of Wetzelielliodeae, 
Wetzeliella astra-lobisca, W. lunaris, W. meckel-
feldensis, and Dracodinium simile at ~228.8 mbs 
suggest an age close to that of ETM2. However, 
the absence of a CIE suggests a hiatus or insuf-
ficient sampling resolution. At 188.2 mbs, an 
erosional surface marks the boundary between 
the upper Lulinvor Formation and middle Eocene 
Russkaya Polyana beds (Akhmet’ev et al., 2010).

Anoxia During the PETM
We recorded the presence of isorenieratane 

and its derivatives within the PETM (Fig. 2). 
This provides evidence for the presence of pho-
tosynthetic green sulfur bacteria, which implies 
photic zone euxinia (e.g., Sinninghe Damsté et 
al., 1995). Concurrent high TOCwt% suggests 
that anoxia developed in the entire water col-
umn. However, given the partially benthic life 
cycle stage of cyst-forming dinoflagellates that 
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Figure 2. A: Lithologi-
cal column of Well 10 
and stratigraphic mark-
ers. Standard Wentworth 
grain-size classes are 
used. B: Stable carbon 
isotope (d13CTOC) and to-
tal organic carbon (TOC); 
circles indicate samples 
tested for isorenieratane 
(red—present, blue—ab-
sent). Depth is in meters 
below surface (mbs). 
FM—formation; M.—mid-
dle. West Siberian dino-
flagellate cyst zonation 
follows Iakovleva and 
Aleksandrova (2013). Ge-
nus name abbreviations: 
A.—Apectodinium, Dr.—
Draco  dinium ,  Cord.—
C o r d o  s p h a e r i  d i u m , 
W.—Wetzeliella, Wil.—
Wilsonidium. Dinozone 
abbreviations: Ama—Al-
isocysta margarita, Aau—
Apectodinium augustum, 
Doe—Deflandrea oebis-
feldensis, Was—Wetze-
liella astra, Wme—Wet-
zeliella meckelfeldensis, 
Dsi—Dracodinium simile, 
Dva—Dracodinium vari-
elongitudum, Ch.coleo—
C h a r l e s  d o w n i e a 
coleo thrypta, Ch.colum—
Charlesdowniea columna, 
O r o — O c h e t o  d i n i u m 
romanum, Cbu— Costa-
cysta bucina. 

1GSA Data Repository item 2014277, detailed age-
model and TEX86 information, is available online at 
www.geosociety.org/pubs/ft2014.htm, or on request 
from editing@geosociety.org or Documents Secre-
tary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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requires oxygen, anoxia likely developed inter-
mittently or seasonally.

Temperature Evolution
Regardless of the applied calibration (see 

the Data Repository), the TEX86 temperature 
record at Well 10 closely resembles global 
deep-water temperature trends inferred from 
the benthic oxygen isotope stack (Zachos et 
al., 2008) and temperature evolution in the 
southwest high (Bijl et al., 2009, 2013) and 
mid-latitudes (Hollis et al., 2012) of the Pacific 
Ocean for the late Paleocene and early Eocene 
(ca. 60–52 Ma; Fig. 3A; Fig. DR2 in the Data 
Repository). Based on latest Paleocene and 
earliest Eocene temperatures (~21 °C), SSTs 
rose by ~7 °C during the PETM (Fig. 3A), 
consistent with several other mid-latitude sites, 
but somewhat greater than the global aver-
age (Dunkley Jones et al., 2013). TEX86

H (ap-
plied to all records for optimal comparison) 
shows ~10 °C of long-term warming in both 
the Northern and Southern Hemispheres. Ris-
ing atmospheric CO2 concentrations may have 

caused this warming; however, the only avail-
able tropical temperature record suggests sta-
ble temperatures throughout the early Eocene, 
thus challenging this hypothesis (Pearson et 
al., 2007).

Contrasting with general assumptions in the 
literature and Southern Hemisphere records 
(Bijl et al., 2009; Hollis et al., 2012), the Arctic 
Ocean and West Siberian Sea show stable tem-
peratures or slight cooling between the PETM 
and ETM2. This is also apparent in various 
benthic oxygen isotope records (e.g., Zachos 
et al., 2008) and seems to mark a prolonged 
(0.8–0.9 m.y.) period of comparatively warm 
temperatures in the Northern Hemisphere SST 
records following the PETM. Northern Hemi-
sphere–Southern Hemisphere temperature gra-
dients were reestablished at ca. 54.3 Ma, and 
match the previously observed hemispheric 
asymmetry, as noted by Bijl et al. (2009).

It is remarkable that temperatures in the West 
Siberian Sea were nearly identical, in both 
trend and absolute values, to those in the Arctic 
Ocean during the earliest Eocene (55.5–54 Ma; 

Fig. 3A), thus implying the absence of a gradi-
ent from 58°N to 85°N. Seasonal and depth bi-
ases in the TEX86 proxy, as well as the impact 
of genetic differences between archaeal popula-
tions, are poorly understood and likely impor-
tant in higher latitudes and stratified basins, re-
spectively. However, if TEX86 truthfully reflects 
mean annual SST, this implies that mechanisms 
must have acted that amplified warming in the 
Arctic Ocean (Sluijs et al., 2006) or cooled the 
West Siberian Sea.

SST Limitation of Apectodinium and other 
Wetzelielloideae

The oldest record of Apectodinium is close 
to the Danian-Selandian boundary in the Te-
thys Ocean (Guasti et al., 2005), and it has long 
been hypothesized to be a thermophilic genus 
(e.g., Bujak and Brinkhuis, 1998) that required 
a minimum temperature to thrive (Sluijs and 
Brinkhuis, 2009). If so, Apectodinium and its 
entire subfamily Wetzelielloideae would not 
be present below this SST threshold in Well 
10 (Fig. 3). To test this hypothesis, we inves-
tigate the relation between SST and the Wet-
zelielloideae in Well 10 and the ACEX record 
(Sluijs et al., 2006, 2009; Fig. 4), the sites with 
the lowest TEX86-derived SSTs for the studied 
time interval and therefore suitable to quantify 
a lower tolerance limit. We expect this relation 
to exhibit major scatter; alongside SST, salinity 
and nutrients were likely important for Apecto-
dinium and Wetzelielloideae (Sluijs et al., 2006; 
Sluijs and Brinkhuis, 2009). Low-salinity–tol-
erant dinocysts (e.g., Senegalinium) were only 
minor components in West Siberian Sea assem-
blages during the PETM (see the Data Reposi-
tory) and co-occur with Wetzelielloideae in the 
early Eocene, suggesting that low salinity was 
unlikely to be limiting. Moreover, we find that 
the correlation of Wetzelielloideae to SSTs is 
significant (p = 2.7 × 10-6), whereas the correla-
tion to the BIT is not (p = 0.015), which implies 
that temperature is here more important than 
terrestrial nutrient and freshwater input. There-
fore, we can estimate the lower tolerance limit 
of Wetzelielloideae, including Apectodinium as 
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Figure 3. A: TEX86
H (see text) reconstructed temperatures. Geological time scale 2012 

(Gradstein et al., 2012) (age in Ma). Ice-free temperatures represent 5-point moving 
average of the Zachos et al. (2008) benthic oxygen isotope stack. Gray bands mark 
positions of Paleocene–Eocene Thermal Maximum (ca. 55.5 Ma) and Eocene Thermal 
Maximum 2 (ca. 54 Ma; not recorded in Well 10, WSS [West Siberian Sea]). Closed 
stars (Tanzania) indicate TEX86
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temperatures (Pearson et al., 2007). The TEX86

H calibration error is 2.5 °C. B: Relative 
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Figure 4. Relative concentrations of Apecto-
dinium in Well 10 (light blue) and Arctic Cor-
ing Expedition (ACEX) (orange) and other 
Wetzelielloideae (Well 10—dark blue) plotted 
against reconstructed temperature. WSS—
West Siberian Sea.
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~20 ± 2.5 °C (Fig. 4), suggesting that this tem-
perature was a minimum prerequisite for their 
proliferation in the Paleocene and early Eocene.

CONCLUSIONS
Upper Paleocene and lower Eocene sedi-

ments from the West Siberian Sea reveal 9 °C 
of long-term warming from 58 to 52 Ma and 
7 °C of warming during the PETM, based on 
TEX86

H . Absolute recorded temperatures are 
nearly identical to those recorded in the Arctic 
Ocean. Slight cooling occurred in the interval 
between the PETM and ETM2, consistent with 
Arctic surface and deep ocean trends. During the 
PETM, euxinia developed in the photic zone. We 
quantify the threshold minimum temperature for 
the proliferation of Paleocene and early Eocene 
Wetzelielloideae, an extinct dinocyst subfamily 
that also includes Apectodinium, at 20 °C.
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