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Abstract A new quantity called the target reproduction number is defined to measure
control strategies for infectious diseases with multiple host types such as waterborne,
vector-borne and zoonotic diseases. The target reproduction number includes as a spe-
cial case and extends the type reproduction number to allow disease control targeting
contacts between types. Relationships among the basic, type and target reproduction
numbers are established. Examples of infectious disease models from the literature
are given to illustrate the use of the target reproduction number.
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1 Introduction

The basic reproduction number R0 is a well-known threshold quantity in mathematical
epidemiology determining whether an infectious disease dies out after introduction
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1068 Z. Shuai et al.

into a fully susceptible population of hosts (Anderson and May 1991; Diekmann and
Heesterbeek 2000). In a heterogeneous population where the individuals can be sub-
divided into n epidemiologically different infected host types, it is a standard approach
to regard growth or decline of the infected population in terms of a generation process,
letting the n × n next-generation matrix K = (ki j ) represent the transmission and
spread of the infection from one generation to the next (Diekmann and Heesterbeek
2000). The entry ki j of K is defined as the expected number of new cases that an
infected individual of type j causes among the susceptible individuals of type i , in
a fully susceptible population. Then R0 is the spectral radius of K (Diekmann and
Heesterbeek 2000; Diekmann et al. 2010; van den Driessche and Watmough 2002.

If a prevention, intervention or (more generally) control strategy, such as vaccina-
tion, social distancing, treatment, is aimed at all host individuals, regardless of their
epidemiological type, then the value of R0 is also a measure of the strength of the
control needed to prevent outbreaks from occurring in a given population (Anderson
and May 1991; Diekmann and Heesterbeek 2000). If a control strategy is aimed at
particular host types only, such as vector control, culling of wildlife reservoir hosts,
vaccination of domestic animals in a system with wildlife reservoirs, then the so-called
type reproduction number T takes over the role of R0 in that its value has a direct
relation with control effort needed (Roberts and Heesterbeek 2003; Heesterbeek and
Roberts 2007). This quantity measures the strength of control needed when targeting
a subset of the types of host available for a given infectious disease agent. In most
cases, a strategy that reduces the susceptibility for infection of individuals of host
type 1, say, influences all entries of the next-generation matrix that represent poten-
tially infectious contacts between an infected of any type j and a susceptible of type 1.
In other words, this strategy influences all entries of K in its first row. A strategy that
influences infectivity of infected individuals of type 1, influences all entries in the first
column of K , i.e., the entries describing all infections caused by infected individuals
of type 1.

While control targeted at specific types of individuals already covers a wider range
of possible interventions in a heterogeneous host population, compared to those evalu-
ated in terms of the value of R0 only, there are situations where measures are targeted
at still smaller subsets of individuals. Specifically, control can be targeted not at types
per se, but rather at interactions between types. Such measures would not necessar-
ily influence susceptibility or infectivity of individuals of affected types, but could
target contacts between two or more specific types. For example, think of strategies
that decrease the possibilities for transmission of Nipah virus among pigs, while not
influencing contacts among bats and humans; see, for example, Pulliam et al. (2012)
and references therein. Or think of preventing contact with a contaminated environ-
ment for children in cholera outbreaks. Such control strategies are not affecting entire
columns or rows of K , but rather specific entries of K .

For such strategies, the same general idea can be used as for the type reproduc-
tion number, which is based on a transformation of the next-generation matrix K by
projection matrices that regulate the restriction to the types affected by the targeted
control. By extending this idea, individual entries or sets of such entries can be singled
out for control. Here we show how this can be achieved. We call the resulting quantity
the target reproduction number, to distinguish its restriction to specific interactions

123

Author's personal copy



Extending the type reproduction number 1069

between types, rather than all interactions involving a given type of host. The type
reproduction number, in its single and multiple-type form (Roberts and Heesterbeek
2003; Heesterbeek and Roberts 2007), is then naturally a special case of this quantity.
Because the fundamental principle is the same, we retain the basic letter T to denote
both quantities.

We first define the target reproduction number and show that similar relations hold
as for the type reproduction number. We present an interpretation for the target repro-
duction number which is also similar, but add to that by putting this interpretation in
the terminology of weighted graphs, an interpretation that could lead to interesting
new insight. Finally, examples with models from the literature appropriate for cholera,
bluetongue, Nipah virus, bovine tuberculosis in possums, a sexually transmitted infec-
tion with a core group, and diseases spread in a spatially heterogeneous population
are given to illustrate the use of the target reproduction number.

2 Target reproduction number

The definition of the target reproduction number is completely analogous to that
of the type reproduction number in Roberts and Heesterbeek (2003), Heesterbeek
and Roberts (2007), and basically adds more specific projection matrices to sin-
gle out more specific targets for control. Assume that several entries of the n × n
next-generation matrix K are targeted. Let S be the set of all targeted entries,
denoted by S = {(i1, j1), . . . , (im, jm)}. Define two index sets S1 = {i1, . . . , im}
and S2 = { j1, . . . , jm}, representing the first and second indices of targeted entries in
S. Then the target reproduction number TS with respect to the target set S is defined as

TS = ρ(ES1 PS1 K PS2(I − K + PS1 K PS2)
−1 ES1), (2.1)

provided the spectral radius ρ(K −PS1 K PS2) < 1, where I is the n×n identity matrix,
ES1 is an n×n matrix with entry ekk = 1 if k ∈ S1 and ers = 0 for all other entries, and
PS1 , PS2 are n × n projection matrices on set S1, S2, respectively (e.g., for projection
matrix PS1 = (pi j ), pkk = 1 if k ∈ S1 and prs = 0 for all other entries). If ρ(K −
PS1 K PS2) > 1, then TS is not defined since the disease cannot be eradicated by target-
ing only S. Notice that ES1 = PS1 and ES1 PS1 = PS1 , which implies that all indices
of nonzero rows and columns of matrix ES1 PS1 K PS2(I − K + PS1 K PS2)

−1 ES1 are
included in S1. It follows that TS = ρ(PS1 K PS2(I − K + PS1 K PS2)

−1), since ES1 can
be dropped as the rows and columns not in S1 do not contribute to the spectral radius.

When only one entry of K is targeted (i.e., S = {(i, j)}), a more meaningful notation
Ti j is used to denote the target reproduction number TS . It follows that

Ti j = eT
i Pi K Pj (I − K + Pi K Pj )

−1ei , (2.2)

provided the spectral radius ρ(K − Pi K Pj ) < 1. Here ei is the i-th unit vector in
Rn , and Pi , Pj are projection matrices. If all the entries in a certain row of K are
targeted, i.e., S = {(i, 1), (i, 2), . . . , (i, n)}, then S1 = {i} and S2 = {1, 2, . . . , n}.
Thus the target reproduction number TS in (2.1) becomes the type reproduction number
(Roberts and Heesterbeek 2003; Heesterbeek and Roberts 2007)

Ti = eT
i Pi K (I − K + Pi K )−1ei . (2.3)
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1070 Z. Shuai et al.

Similarly, the type reproduction numbers with respect to several targeted rows of K can
also be obtained from (2.1) with an appropriate target set containing all entries in these
rows. In particular, if all entries in K are targeted (i.e., S = {(i, j) | 1 ≤ i, j ≤ n}),
then TS = R0.

The following result establishes the relation between R0 and TS with a general
target set S.

Theorem 2.1 Suppose that K is irreducible and ρ(K − PS1 K PS2) < 1. Then, TS < 1
if and only if R0 < 1; and TS = 1 if and only if R0 = 1.

The target reproduction number can be used to measure the effort required to control
infectious diseases. Biologically, if a proportion more than 1 − 1/TS of the entries in
S can be reduced, then the disease can be eradicated.

Theorem 2.2 Suppose that K is irreducible and ρ(K − PS1 K PS2) < 1. Let Kc be
a controlled next-generation matrix formed by replacing entry ki j in K by ki j/TS
whenever (i, j) ∈ S. Then ρ(Kc) = 1.

The proofs of Theorems 2.1 and 2.2 are provided in the Appendix.

3 Interpretations for target reproduction number

3.1 Interpretation in terms of tree diagram

In order to understand the biological meaning of target reproduction numbers, a 2 × 2

next-generation matrix K =
[

k11 k12
k21 k22

]
is considered. By targeting one entry, it follows

from (2.2) that

T11 = k11(1 − k22)

1 − k22 − k12k21
provided k22 + k12k21 < 1,

T12 = T21 = k12k21

(1 − k11)(1 − k22)
provided k11 < 1, k22 < 1,

and

T22 = k22(1 − k11)

1 − k11 − k12k21
provided k11 + k12k21 < 1.

Notice that T12 = T21, which means that the same effort is required to eradicate the
disease when targeting at the (1, 2) or (2, 1) entry in K . For heterosexually transmitted
infections or vector-host diseases, k11 = k22 = 0, so T12 = k12k21 = R2

0.
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Extending the type reproduction number 1071

Fig. 1 The tree diagram for T11

To give an interpretation of target reproduction numbers, rewrite T11 as follows

T11 = k11
1

1 − k12k21
1−k22

= k11[1 + k12k21(1 + k22 + k2
22 + · · · ) + k2

12k2
21(1 + k22 + k2

22 + · · · )2 + · · · ]
= k11 + k21k12k11 + k21k22k12k11 + k21k2

22k12k11 + (k21k12)
2k11

+ 2k21k22k12k21k12k11 + · · ·

in which each term corresponds to one path of the tree diagram starting with type 1 and
ending with an arc from type 1 to type 1 (no intermediate arc from type 1 to type 1),
see Fig. 1. Here ki j corresponds to the arc from type j to type i ; biologically, it
represents the infection passed from host type j to host type i . Similarly, rewrite T12
as follows

T12 = k12k21
1

(1−k11)(1−k22)

= k12k21(1+k11+k2
11+· · · )(1+k22+k2

22+· · · )
= k21k12+k11k21k12+k21k22k12+k2

11k21k12+k11k21k22k12+k21k2
22k12+· · ·

where each term corresponds to one path of the tree diagram starting with type 1
ending with an arc from type 2 to type 1 (no intermediate arc from type 2 to type 1),
see Fig. 2. In general, the terms in Ti j correspond to paths that start with type i and
end with an arc from type j to type i (no intermediate arc from type j to type i) in the
tree diagram.

For the 2 × 2 next-generation matrix K as above, choose the target set as S =
{(1, 1), (1, 2)}, and thus S1 = {1} and S2 = {1, 2}. By definition, ES1 = PS1 =

[
1 0
0 0

]
,

and PS2 =
[

1 0
0 1

]
. Algebraic calculations using (2.1) give TS = ρ(ES1 PS1 K PS2(I −

K + PS1 K PS2)
−1 ES1) = ρ

([
k11 + k12k21

1−k22
0

0 0

])
= k11 + k12k21

1−k22
provided k22 < 1,
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1072 Z. Shuai et al.

Fig. 2 The tree diagram for T12

Fig. 3 The tree diagram for TS with S = {(1, 1), (1, 2)}

which agrees with the type reproduction number defined in Roberts and Heesterbeek
(2003), Heesterbeek and Roberts (2007). Notice that each term on the right hand side of

TS = k11 + k12k21(1 + k22 + k2
22 + · · · )

corresponds to one path of the tree diagram shown in Fig. 3.
Let U = {(1, 1), (2, 1)}, V = {(1, 1), (2, 2)}, and W = {(1, 2), (2, 1)}. Then

TU = ρ

([
k11

k11k12
1−k22

k21
k12k21
1−k22

])

= k11 + k12k21

1 − k22
= TS

provided k22 < 1; this suggests that there are some relations between TS and TU (see
Theorem 4.2 for more details). Also,

TV = ρ

([ k11
1−k12k21

k11k12
1−k12k21

k21k22
1−k12k21

k22
1−k12k21

])

= k11 + k22 +
√

(k11 − k22)2 + k11k12k21k22

2(1 − k12k21)
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Extending the type reproduction number 1073

provided k12k21 < 1; and

TW = ρ

([
0 k12

1−k22
k21

1−k11
0

])

=
√

k12k21

(1 − k11)(1 − k22)

provided k11 < 1 and k22 < 1. Note that each matrix entry (i, j) can be expanded in
terms of walks from j to i that contain exactly one arc (not repeated) corresponding
to entries in the target set.

3.2 Interpretation in terms of walks in digraph

Although the interpretations of target reproduction numbers in terms of tree diagrams
shown for the case n = 2 hold for general cases as well, an alternative and equivalent
interpretation in terms of walks on digraph can work better for larger dimensions.
Let G be the weighted digraph associated with the n × n next-generation matrix K ;
that is, an arc j → i from vertex j to vertex i in G exists iff ki j > 0 and its weight
is equal to ki j . A (directed) walk i → · · · → j from vertex i to vertex j in G is
a subgraph of G consisting of m + 1 vertices i = i1, i2, . . . , im, im+1 = j and a
sequence of m arcs i = i1 → i2, i2 → i3, . . . , im−1 → im, im → im+1 = j ; the
length of this walk is defined as m and the weight of the walk is equal to the product
ki2,i1 ki3,i2 · · · kim ,im−1 kim+1,im . The walk i → · · · → j is closed if i = j . For our
purpose, the empty graph (consisting of no vertices or arcs) is considered as a trivial
walk from an arbitrary vertex to another arbitrary vertex (these two vertices could be
the same, thus the empty graph is also a closed walk); the length of the trivial walk is
0 and the weight is defined as 1. Let A be a set of arcs in G, then the subgraph G\A is
formed from the digraph G after deleting all arcs in A. We refer the reader to Harary
(1972), West (1996) for detailed discussions on digraphs and walks.

By (2.2), Ti j is equal to the (i, i) entry of matrix Pi K Pj (I −K +Pi K Pj )
−1, and thus

is equal to the product of ki j and the ( j, i) entry of the matrix (I − K + Pi K Pj )
−1 =

I + (K − Pi K Pj ) + (K − Pi K Pj )
2 + · · · , provided that ρ(K − Pi K Pj ) < 1.

Notice that the ( j, i) entry of I + (K − Pi K Pj )+ (K − Pi K Pj )
2 + · · · is the sum of

weights of all walks (of any length) from vertex i to vertex j in digraph G\A, where
A = { j → i} corresponds to the targeted entry (i, j). Therefore, Ti j is the sum of
weights of all closed walks (of any length) in G that contain arc j → i exactly once.
Note that Fig. 1 (Fig. 2) gives all paths corresponding to closed walks in the digraph
that contain arc 1 → 1 (arc 2 → 1, respectively) exactly once.

For a target set S containing more than one element, if S1 = {i} contains only one
element, then the rank of matrix ES1 PS1 K PS2(I − K + PS1 K PS2)

−1 ES1 is equal to
1. For this case, each term in TS can be interpreted as a path of the tree diagram that
starts with type i and ends with an arc from type j to type i if (i, j) ∈ S (with no
intermediate arc from type j to type i nor including other arcs corresponding to entries
in S); see, for example, Fig. 3. Alternatively, TS is the sum of weights of all closed
walks in the weighted digraph G associated with K that contain arc j → i exactly
once if (i, j) ∈ S but no other arcs corresponding to entries in S.
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1074 Z. Shuai et al.

In general, if S1 = {i1, i2, . . . , im} contains m elements, then the matrix
ES1 PS1 K PS2(I − K + PS1 K PS2)

−1 ES1 contains a nonzero m × m block, with all
zeros outside the block. This nonzero block has both row and column indices given
by i1, i2, . . . , im . Thus, the target reproduction number TS is the spectral radius of this
nonzero block, i.e., an m × m matrix, in which the (is, it ) entry is the sum of weights
of all walks from vertex it to vertex is in G that contain exactly one arc (not repeated)
corresponding to entries in S.

4 Relationships among reproduction numbers

In this section we study the relationships among target reproduction numbers, type
reproduction numbers and the basic reproduction number.

A (directed) cycle C is a nontrivial closed walk with all vertices distinct (except the
first and last). A weighted digraph G is said to be weight balanced (e.g., see Li and
Shuai 2010; Kolotilina 1993) if for any given cycle C in G, the weight of C is equal to
the weight of the reverse of C, constructed by reversing the direction of all arcs in C.
If K = K T , then the associated digraph G is weight balanced. If a weighted digraph
contains only cycles of lengths 1 or 2, then it is weight balanced.

Suppose that the weighted digraph G associated with a next-generation matrix K
is weight balanced. Then the weight of any given closed walk in G is the same as the
weight of the reverse of the closed walk. Hence, each term (i.e., the weight of a closed
walk containing arc j → i exactly once) in Ti j corresponds and is equal to one term
in T j i by reversing the direction of all arcs in the closed walk. Therefore, the following
result holds and establishes the relationships between Ti j and T j i .

Theorem 4.1 Suppose that K is irreducible and that the weighted digraph G associ-
ated with K is weight balanced. Then Ti j = T j i , whenever it is well defined.

If the weight balance condition in Theorem 4.1 fails, then in general, Ti j &= T j i
(see Sect. 5.3 for an example).

Let ST = {( j, i) | ∀ (i, j) ∈ S} be the transpose of a target set S. The following
result establishes the relationship between TS and TST , generalizing Theorem 4.1 from
targeting only one entry to a set of entries. The proof is given in the Appendix.

Theorem 4.2 Suppose that K is irreducible and that the weighted digraph G associ-
ated with K is weight balanced. Then TS = TST , whenever it is well defined.

Given two target sets, S and U , we say that the control strategy U is stronger than the
control strategy S if S ⊂ U . The following result (the proof is given in the Appendix)
shows that less effort is required to control diseases when a stronger control strategy
is applied.

Theorem 4.3 Suppose that K is irreducible. Assume that S ⊂ U, and that both TS and
TU are well defined. Then, either 1 < TU < TS, or TS = TU = 1, or TS < TU < 1.

Let " be the target set including all entries of K , that is, " = {(i, j) | i, j =
1, 2, . . . , n}. Then T" = R0. The following result, which is a special case of Theo-
rem 4.3 by setting U = ", establishes the relationships between the basic reproduction
number and target/type reproduction number.
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Extending the type reproduction number 1075

Theorem 4.4 Suppose that K is irreducible and S ⊂ ". Let TS be the target/type
reproduction number with respect to the target set S. Then, either 1 < R0 < TS, or
TS = R0 = 1, or TS < R0 < 1.

Theorem 4.4 provides a complete answer to the relationships among reproduction
numbers, generalizing and extending the earlier result for the case that K has order 2 in
Allen and Lahodny (2012, Section 3.1). The result of Theorem 4.4 also establishes the
relationships between reproduction numbers that were observed numerically in Chow
et al. (2011) for a multigroup disease model with group-targeted vaccination strategies.

One final comment on the relationship between the target and the type reproduc-
tion number is relevant. Calculating the target reproduction number from K might be
rephrased as calculating a type reproduction number for a larger matrix related to K
by expanding the number of types or states-at-infection (Diekmann et al. 2010) that
define K and its dimension. We do not explore this further here.

5 Applications

In this section we consider possible applications of target reproduction numbers in
controlling infectious diseases.

5.1 Waterborne disease

Waterborne diseases such as cholera and salmonellosis can be transmitted directly by
person-to-person contact or indirectly via contaminated water. A waterborne disease
model has recently been proposed in Bani-Yaghoub et al. (2011) that incorporates the
free-living pathogen growing in the water. The next-generation matrix for the model
can be written as follows:

K =





βS0

d
λS0

δ
ξ

d
b
δ



 ,

where β and λ are coefficients for direct and indirect transmissions, respectively, S0
is the number of susceptible individuals without presentation of the infection, d and δ

represent the removal rates of infectious individuals and the pathogen, respectively, ξ

represents the pathogen shedding rate of infectious individuals, and b represents the
growth rate of the pathogen in the environment. Therefore, the (1, 1) entry represents
the direct transmission, the (1, 2) entry represents the indirect transmission, the (2, 1)

entry describes that infectious individuals shed the pathogen into the water, and the
(2, 2) entry represents the pathogen growth in the water. Different disease control
strategies are discussed below.

Vaccination Assume that the public health department decides to vaccinate the
host population. Then the target set is S = {(1, 1), (1, 2)}, and the target reproduction
number with respect to S (i.e., the type reproduction number targeting the host type 1)

from (2.1) is TS = T1 = βS0
d + λξ S0

d(δ−b) provided b < δ.
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1076 Z. Shuai et al.

Human sanitation There are several major control mechanisms recommended
by the WHO. One is hygienic disposal of human faeces, and thus the target set is
S = {(2, 1)}. Another control mechanism is providing an adequate supply of safe
drinking water and good food hygiene/cooking, thus the target set is S = {(1, 2)}.
Using the formula derived in Sect. 3.1, the target reproduction number for each mech-
anism is T12 = T21 = λξ S0

(d−βS0)(δ−b) provided βS0 < d and b < δ.
Isolation Isolation can be used to reduce the direct person-to-person transmission.

The target set is S = {(1, 1)}, and the target reproduction number is T11 = βS0(δ−b)
dδ−bd−λξ S0

provided bd + λξ S0 < dδ.
Pathogen sanitation Suppose that the growth rate of the pathogen in the water

can be reduced by sanitation. Then the target set is S = {(2, 2)} and the corresponding
target reproduction number is T22 = b(d−βS0)

dδ−βδS0−λξ S0
provided βδS0 + λξ S0 < dδ.

5.2 Bluetongue disease

Bluetongue is a viral disease of ruminants such as cattle and sheep and is transmitted
by midges. A bluetongue model has been recently proposed in Gourley et al. (2011)
that includes midges as vectors, and cattle and sheep as hosts. The next-generation
matrix for the ODE bluetongue model (Gourley et al. 2011, Section 4.2) has the form

K =




0 k12 k13

k21 0 0
k31 0 0



 ,

in which k12 and k13 represent the transmission from sheep and cattle to midges,
respectively, while k21 and k31 represent the transmission from midges to sheep and
cattle. If the transmission between sheep and midges can be reduced or cut off by
intervention strategies such as isolation, vaccination or treatment, then the target set

is S = {(1, 2), (2, 1)}. Calculations using (2.1) show that TS =
√

k12k21
1−k13k31

provided
k13k31 < 1. If only one-way transmission can be reduced (i.e., k12 or k21), then the
target reproduction number becomes T12 = T21 = k12k21

1−k13k31
provided k13k31 < 1,

which agrees with the type reproduction number T2 in Gourley et al. (2011). Simi-

larly, T13 = T31 = k13k31
1−k12k21

provided k12k21 < 1, agreeing with T3 in Gourley et al.
(2011). Notice that the weighted digraph associated with K is weight balanced, thus
Ti j = T j i , by Theorem 4.1.

5.3 Waterborne disease in two human groups

Consider that a certain waterborne disease such as cholera spreads among two human
groups (group I and II) who share the same water source. The next-generation matrix
has the following form

K =




k11 k12 k13
k21 k22 k23
k31 k32 0



 ,
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Extending the type reproduction number 1077

where k11, k22 represent the within-group (direct) transmission, k12, k21 represent the
inter-group (direct) transmission, k13, k23 represent the indirect transmission via the
contaminated water, and k31, k32 represent the shedding from infectious individuals
in group I and group II, respectively. Assume that the pathogen cannot survive in the
environment without the presence of infection.

Provision of clean water in one group Suppose that clean water is provided in
group I. The target set is S = {(1, 3)}. Then the target reproduction number is

T13 = k13(k31 + k32k21 − k31k22)

1 − k11 − k22 − k12k21 − k23k32 − k12k23k31 + k11k22 + k11k23k32
,

provided that k11 < 1, k22 < 1 and k11 + k22 + k12k21 + k23k32 + k12k23k31 <

1 + k11k22 + k11k23k32.
Provision of clean water in both groups Clean water is assumed to be provided

in both groups, then the target set is now S = {(1, 3), (2, 3)}. The target reproduction
number with respect to S is

TS = k13(k31 + k32k21 − k31k22) + k23(k32 + k31k12 − k32k11)

1 − k11 − k22 − k12k21 + k11k22
,

provided that k11 < 1, k22 < 1 and k11 + k22 + k12k21 < 1 + k11k22.
Sanitation in one group Suppose that the control mechanisms like hygienic dis-

posal of human faeces are used in group I. The target set is S = {(3, 1)}. Then the
target reproduction number is

T31 = k31(k13 + k12k23 − k13k22)

1 − k11 − k22 − k12k21 − k23k32 − k13k32k21 + k11k22 + k11k23k32
,

provided k11 < 1, k22 < 1 and k11 + k22 + k12k21 + k23k32 + k13k32k21 <

1 + k11k22 + k11k23k32. Notice that T31 = T13 if k12k23k31 = k21k32k13, i.e., the
digraph associated with K is weight balanced.

Sanitation in both groups If hygienic disposal of human faeces is used in both
groups, then the target set becomes S = {(3, 1), (3, 2)}. The target reproduction num-
ber with respect to S is

TS = k31(k13 + k12k23 − k13k22) + k32(k23 + k21k13 − k23k11)

1 − k11 − k22 − k12k21 + k11k22
,

provided k11 < 1, k22 < 1 and k11 + k22 + k12k21 < 1 + k11k22.
Education campaign Disease education and awareness campaigns can help in

preventing and controlling infectious diseases. For example, proper hand-washing
can significantly reduce the direct person-to-person transmission of cholera and
other waterborne diseases (Farmer et al. 2011). In this case, the target set is S =
{(1, 1), (1, 2), (2, 1), (2, 2)}. The target reproduction number with respect to S is

TS = 1
1−k13k31−k23k32

ρ

([
k11+k12k23k31 − k11k23k32 k12+k11k13k32−k13k31k12
k21+k22k23k31 − k23k32k21 k22 + k21k13k32 − k22k13k31

])
,
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provided k13k31 + k23k32 < 1, where ρ denotes the spectral radius.

5.4 Spatially heterogeneous disease model

A multi-group model is proposed in Lloyd and May (1996, Eqs. 6–8) to understand
the effect of spatially heterogeneity on the persistence and dynamics of childhood
diseases. The next-generation matrix for the model in Lloyd and May (1996) with
three groups (i.e., groups I, II and III) has the form

K =




k11 k12 k13
k21 k22 k23
k31 k32 k33



 .

Each diagonal entry represents the within-group transmission while off-diagonal
entries represent the inter-group transmission due to social contacts among groups
such as travel.

Travel restriction in one group If the travel restriction policy is used in group
I, reducing the human travel in and out of group I, then the target set is S =
{(1, 2), (1, 3), (2, 1), (3, 1)}. The target reproduction number with respect to S is

TS =
√

k12k21 + k13k31 + k12k23k31 + k13k32k21 − k22k13k31 − k33k12k21

(1 − k11)(1 − k22 − k33 − k23k32 + k22k33)
,

provided that k11 < 1, k22 < 1, k33 < 1 and k22 + k33 + k23k32 < 1 + k22k33.
Global travel restriction Assume that the travel restriction policy is used in all

groups, then the target set becomes S = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.
The target reproduction number with respect to S has the form

TS = ρ








0 k12

1−k22

k13
1−k33

k21
1−k11

0 k23
1−k33

k31
1−k11

k32
1−k22

0







 ,

provided that k11 < 1, k22 < 1 and k33 < 1.

5.5 Core group disease model

In the studies of sexually transmitted infections, a core group is a group in the popula-
tion with higher sexual activity than other groups. Epidemic models with such a core
group have been recently revisited in Edwards et al. (2010), and the next-generation
matrix for the model with one core group and one non-core group has the following
form

123

Author's personal copy



Extending the type reproduction number 1079

K =





0 k12 0 k14
k21 0 k23 0
0 k32 0 k34

k41 0 k43 0



 .

Here k12 and k21 represent the heterosexual transmission between male and female
within the core group, k34 and k43 represent the transmission within the non-core
group, and other ki j ’s represent the cross infection between the two groups.

Target within core group transmission The target set is S = {(1, 2), (2, 1)}. Then
the target reproduction number is

TS =
ρ

([
k12k23k34k41 k12(1 − k14k41 − k34k43)

k21(1 − k23k32 − k34k43) k14k21k32k43

])

1 − k14k41 − k23k32 − k34k43 + k14k41k23k32
,

provided k14k41 + k34k43 < 1, k23k32 + k34k43 < 1 and k14k41 + k23k32 + k34k43 −
k14k41k23k32 < 1.

Target the core group: male only Let S = {(1, 2), (1, 4)} be the target set. The
corresponding target reproduction number is

TS = k12(k21 + k23k34k41 − k21k34k43) + k14(k41 + k43k32k21 − k41k23k32)

1 − k23k32 − k34k43
,

provided k23k32 + k34k43 < 1. Notice that this agrees with the type reproduction
number defined in (17) in Edwards et al. (2010).

Target the core group: both male and female The target reproduction number
with respect to the target set S = {(1, 2), (1, 4), (2, 1), (2, 3)} is

TS = 1
1 − k34k43

ρ

([
k14k41 k12 + k14k43k32 − k12k34k43

k21 + k23k34k41 − k21k34k43 k23k32

])
,

provided k34k43 < 1, agreeing with (18) in Edwards et al. (2010).

5.6 Infection among multiple populations/species

Consider the example of metapopulation infection dynamics in (Roberts and Heester-
beek 2003, Section 4) describing the spread of bovine tuberculosis in the adult/juvenile
brush-tailed possum population in multiple habitat patches. The next-generation
matrix for the model with two patches is

K =





k11 k12 k13 0
k21 k22 k23 0
k31 0 k33 k34
k41 0 k43 k44



 .
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Host type 1 (the first row of K ) represents juveniles in patch 1, host type 2 represents
adults in patch 1, host type 3 represents juveniles in patch 2, and host type 4 represents
adults in patch 2. Notice that adult possum do not migrate to other patches. Suppose
that disease control strategies are used in patch 1 to reduce the disease spread among
adults in patch 1 (i.e., decrease k22). The target reproduction number with respect to
set {(2, 2)} is

T22 = k22{(1 − k11)[k34k43 − (1 − k33)(1 − k44)] + k13(k31 − k31k44 + k34k41)}/
{(1 − k44)[(1 − k33)(k12k21 + k11 − 1) + k31(k13 + k12k23)]
+ k34k43(1 − k11 − k12k21) + k34k41(k13 + k12k23)},

provided k33 < 1, k44 < 1, k11 + k12k21 + k31(1−k44)(k13+k12k23)+k34k41(k13+k12k23)
1−k33−k44−k34k43+k33k44

< 1
and k33 + k44 + k34k43 < 1 + k33k44.

For Nipah virus (Pulliam et al. 2012), the rows 1–4 of K can represent humans,
pigs, fruit and bats, respectively, with k31 = k33 = k41 = k43 = 0. To eliminate the
virus by targeting the disease transmission among pigs, the above expression for T22
shows that it is necessary to first reduce both k44 and k11 + k12k21 below one.
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6 Appendix

Proof of Theorem 2.1 Observe that I − (K − PS1 K PS2) is a nonsingular M-matrix
since K − PS1 K PS2 is nonnegative with spectral radius less than 1. For definition and
properties of M-matrices, see Berman and Plemmons (1979). It follows that M :=
PS1 K PS2(I − K + PS1 K PS2)

−1 is nonnegative, and (I − M)PS1 K PS2 = M(I − K ).
Since S1 includes all indices of rows where M has nonzero entries, it follows that
ρ(M) = ρ(ES1 M ES1) = TS . Let w be a positive eigenvector of the nonnegative
irreducible matrix K with respect to ρ(K ) = R0. Then

(I − M)PS1 K PS2w = M(I − K )w = (1 − R0)Mw. (6.1)

Notice that all indices of nonzero rows of M are included in S1. Also notice that
PS1 K PS2w is a vector in Rn with positive entries only in each position j ∈ S1. If R0 =
ρ(K ) < 1, then (1 − R0)Mw > 0, thus (6.1) gives M PS1 K PS2w < PS1 K PS2w. By
applying a result of Collatz to the rows whose indices are included in S1 (see, for
example, Horn and Johnson 1985, Corollary 8.1.29), TS = ρ(M) < 1. If TS < 1,
then R0 < 1 from (6.1). Similarly, it can be shown that R0 = 1 iff TS = 1, and
R0 > 1 iff TS > 1. )*
Proof of Theorem 2.2 Since each targeted entry of K appears only in the term
PS1 K PS2 in (2.1), TS depends linearly on the targeted entry. Let T c

S be the target
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reproduction number corresponding to Kc, thus T c
S = TS/TS = 1, which implies

ρ(Kc) = 1, by Theorem 2.1. )*
Proof of Theorem 4.2 Consider the next-generation matrix K T , the transpose of K ,
and let T̂S be the corresponding target reproduction number with respect to the target
S (i.e., K in (2.1) is replaced by K T ). Let K̂c be the controlled next-generation matrix
corresponding to K T and target set S, defined as in Theorem 2.2; that is, the (i, j)
entry k ji in K T is replaced by k ji/T̂S if (i, j) ∈ S. Similarly, let Kĉ be the controlled
next-generation matrix corresponding to K and target set ST ; that is, the ( j, i) entry k ji

in K is replaced by k ji/TST if (i, j) ∈ S. Notice that if TST = T̂S , then K̂c = (Kĉ)
T

and ρ(K̂c) = ρ(Kĉ). Now suppose that TST &= T̂S , then either k ji/T̂S > k ji/TST for
all (i, j) ∈ S, or k ji/T̂S < k ji/TST for all (i, j) ∈ S. By the monotone property of
the spectral radius of nonnegative irreducible matrices (e.g., see Berman and Plem-
mons 1979, p. 27), ρ(Kĉ) &= ρ(K̂c), contradicting ρ(Kĉ) = ρ(K̂c) = 1 required by
Theorem 2.2. Hence, TST = T̂S .

On the other hand, since K is irreducible and the associated weighted digraph G
is weight balanced, there exists a nonsingular n × n diagonal matrix D such that
M = DK D−1 is symmetric; see, for example, Corollary 1 in Kolotilina (1993).
It follows that DK D−1 = M = MT = (DK D−1)T = D−1 K T D, and thus
K T = D2 K (D−1)2. Hence

T̂S = ρ(PS1 K T PS2(I − K T + PS1 K T PS2)
−1)

= ρ(PS1 D2 K (D−1)2 PS2(I − D2 K (D−1)2 + PS1 D2 K (D−1)2 PS2)
−1)

= ρ(D2 PS1 K (D−1)2 PS2 D2(I − K + PS1 K PS2)
−1(D−1)2)

= ρ(D2 PS1 K PS2(I − K + PS1 K PS2)
−1(D2)−1)

= ρ(PS1 K PS2(I − K + PS1 K PS2)
−1)

= TS .

Therefore, TS = TST . )*
Proof of Theorem 4.3 It follows from Theorem 2.1 that TS = TU = 1 if and only if
R0 = 1, and that TS > 1 and TU > 1 if R0 > 1. The relation between TS and TU
for R0 > 1 is proved by contradiction. Suppose that TU > TS . Let KcS and KcU be
the controlled next-generation matrices defined as in Theorem 2.2, that is, the entry
ki j in the next-generation matrix K is replaced by ki j/TS (or ki j/TU ) if (i, j) ∈ S
(or (i, j) ∈ U ). Since TU > TS > 1 and S ⊂ U , it follows that KcS > KcU . Hence,
by the monotone property of the spectral radius of nonnegative irreducible matri-
ces (e.g., see Berman and Plemmons 1979, p. 27), ρ(KcS ) > ρ(KcU ), contradicting
ρ(KcS ) = ρ(KcU ) = 1 required by Theorem 2.2. Therefore, TS > TU > 1 if R0 > 1.
A similar argument can be used to show that TS < TU < 1 if R0 < 1. )*
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