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Opinion
Plants can develop an enhanced defensive capacity in
response to infection by arbuscular mycorrhizal fungi
(AMF). This ‘mycorrhiza-induced resistance’ (MIR) pro-
vides systemic protection against a wide range of attack-
ers and shares characteristics with systemic acquired
resistance (SAR) after pathogen infection and induced
systemic resistance (ISR) following root colonisation by
non-pathogenic rhizobacteria. It is commonly assumed
that fungal stimulation of the plant immune system is
solely responsible for MIR. In this opinion article, we
present a novel model of MIR that integrates different
aspects of the induced resistance phenomenon. We
propose that MIR is a cumulative effect of direct plant
responses to mycorrhizal infection and indirect immune
responses to ISR-eliciting rhizobacteria in the mycorrhi-
zosphere.

Mycorrhiza-induced resistance (MIR)
Mycorrhizal symbiosis is a mutualism between plants and
mycorrhizal fungi during which photosynthetic products
are exchanged for soil-derived mineral nutrients [1]. The
true age of this relationship and the extent of host–mycor-
rhiza coevolution has been revealed by fossil evidence and
phylogenetic analyses [2,3], dating the emergence of this
symbiosis to 450 million years ago. It has been estimated
that 80% of plant species retain these ancient arbuscular
mycorrhizal associations [1], illustrating the importance of
this mutualism to both partners.

Research on plant–mycorrhiza interactions has mostly
focussed on the physiology of nutrient-for-carbon exchange
and plant signal-transduction pathways controlling the
interaction. Comparatively little is known about the mech-
anisms conferring non-nutritional benefits by mycorrhiza,
such as suppression of soil-borne diseases and enhancing
plant resistance to pests and diseases [4]. Plants routinely
signal to conspecific organisms in the rhizosphere by re-
leasing primary and secondary metabolites from their
roots. Some of these metabolites recruit beneficial
microbes, including AMF. Furthermore, AMF infection
is known to stimulate biological activity in the rhizosphere,
a phenomenon commonly referred to as the ‘mycorrhizo-
sphere effect’ [5] (Box 1). This effect includes the attraction
and selection of specific bacterial strains, such as plant
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growth-promoting rhizobacteria (PGPR) that possess the
capacity to enhance plant growth and suppress pests and
diseases. Some of these mycorrhizosphere-inhabiting bac-
teria can act as ‘mycorrhiza-helper bacteria’ and promote
the efficiency of mycorrhizal symbiosis [6] (Box 1). As a
consequence of these interactions, it has been suggested
that the benefits of AMF on whole-plant physiology are at
least partially determined by biological activities in the
mycorrhizosphere [6–8].

AMF can suppress plant pests and diseases through
induction of systemic resistance [9–11]. Nutrient supply
experiments have revealed that MIR cannot be attributed
to improved nutritional status [12]. The induced resistance
shares characteristics with both pathogen-induced SAR
and rhizobacterial ISR; MIR has been associated with
SAR-like priming of salicylic acid (SA)-dependent genes,
but more often coincides with priming of jasmonic acid
(JA)-dependent defences and cell wall defences (Table 1).
Accordingly, MIR confers protection against a wide range
of attackers, including biotrophic pathogens, necrotrophic
pathogens, nematodes, and herbivorous arthropods (Table
1). It has been proposed that MIR is the result of active
suppression of components in the SA-dependent defence
pathway, causing systemic priming of JA-dependent
defences [10]. However, the exact contribution of jasmo-
nates in MIR remains unclear [13] and the long-distance
signals controlling MIR remain to be resolved. Most
instances of MIR have been reported for non-sterile sys-
tems. It is thus possible that MIR is not solely determined
by the fungus, but that bacteria in the mycorrhizosphere
have a complementary contribution to the full MIR re-
sponse. Here, we present a four-phase spatiotemporal
model explaining MIR as a cumulative outcome of direct
plant–AMF interactions and responses to ISR-eliciting
bacteria in the mycorrhizosphere (Figure 1).

Phase I: root exudation of mycorrhiza-recruiting
chemicals
Plant roots exude a diverse array of biologically active
compounds [14]. Estimates suggest plants can exude up
to 40% of their photosynthates from roots, representing a
rich source of energy for soil microbes [15]. Root exudates
typically contain sugars, amino acids, carboxylic acids,
phenolics, and other secondary metabolites, which all have
the capacity to influence the occurrence, physiology, and
behaviour of soil organisms. For the interaction between
plants and AMF, strigolactones have been identified as
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Box 1. The mycorrhizosphere effect

A relatively small volume of soil around plant roots is under the direct

influence of root exudates, termed the ‘rhizosphere’. This zone is

characterised by increased levels of microbial activity. However, 80%

of all plant species form symbiotic relationships with AMF [1].

Consequently, the volume of soil influenced by plant-derived carbon

via AMF can be extended to encompass the ‘mycorrhizosphere’. AMF

have a selective influence on microbial communities in the mycor-

rhizosphere. The enhanced microbial activity surrounding mycor-

rhizal roots compared with non-mycorrhizal roots is called the

‘mycorrhizosphere effect’ [5]. Having resolved that extramatrical

hyphae from AMF have access to resources from a vast volume of

soil, it was discovered that some mycorrhizosphere-inhabiting

bacteria, called ‘mycorrhiza helper bacteria’ (MHB), can stimulate

mycorrhizal symbioses [6]. The concept of mutualism between AMF

and soil bacteria is not new. In 1962, Mosse first proposed the idea

that AMF and bacteria interact directly in the soil, showing that

mycorrhizal roots can enhance the survival of P. fluorescens bacteria

[74]. Since then, multiple studies have demonstrated that MHB can

promote mycorrhizal infection and symbiosis through stimulation of

mycelial extension and reducing the impact of adverse environmental

conditions [6]. Whether increased AMF growth and survival by MHB

are due to production of growth factors, detoxification of soil

allelochemicals, or antagonism of competitors and/or parasites

remains unresolved [6]. With the development of metagenomics

technologies and DNA-sequencing methods, the true extent of

quantitative and qualitative changes in the microbial community

due to AMF is beginning to emerge. The chemical basis driving

mycorrhizosphere development is less well resolved, although there

are indications that carbon exudation by AMF in the form of the

glycoprotein glomalin plays a role [75]. This is an attractive

hypothesis, given that up to 5% of active soil organic carbon pools

comprise glomalin, which is recalcitrant in the soil and thus

represents a ‘slow-release’ carbon substrate [75]. The consequences

of the mycorrhizosphere effect, including recruitment of PGPRs, may

not only boost nutrient mobilisation by AMF but could also provide

non-nutritional benefits, such as disease suppression via antibiosis

and/or competitive exclusion. Crucially, increased densities of

selected rhizobacteria in the mycorrhizosphere have the potential to

suppress pests and diseases in systemic plant tissues through

priming of inducible defences.
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important AMF-recruiting signals (Box 2). This class of
terpenoid lactones, long known as germination signals for
parasitic plants, stimulates hyphal branching in AMF,
thereby helping the fungus to localise host roots and so
facilitate infection [5,6]. Involvement of root signals in the
attraction of both pathogenic and mutualistic soil organ-
isms is not rare. For instance, root-borne isoflavones se-
creted by soybean can attract the endosymbiotic N-fixing
bacterium Bradyrhizobium japonicum [16], but can simul-
taneously attract the pathogenic oomycete Phytophthora
sojae [17]. Similarly, benzoxazinoid metabolites in root
exudates of maize (Zea mays) can attract both beneficial
Pseudomonas putida bacteria [18] and western corn root-
worm [19]. From an evolutionary perspective, common
attraction of mutualistic and parasitic organisms is unsur-
prising given the strong selection pressure on parasites
to adopt the same plant signals as beneficial mutualists
(Box 2).

Phase II: the plant immune system responding to AMF
infection
The initial stages of root colonisation by AMF are accompa-
nied by transient induction of selected plant defences, fol-
lowed by localised suppression at later stages of the
interaction [20]. It is plausible that initial induction of plant
immunity is based on host recognition of microbe-associated
molecular patterns (MAMPs) from the AMF. Recognition of
MAMPs by pattern-recognition receptors elicits a series of
signalling cascades resulting in enhanced production of the
plant defence hormone SA and expression of MAMP-trig-
gered immunity [21]. For instance, infection by Funnelifor-
mis mosseae (syn. Glomus mosseae) induces transient
accumulation of SA in pea [22], whereas this response
was more pronounced and permanent in symbiosis-resis-
tant P2 pea genotypes. Hence, the initial SA response is
suppressed during successive stages of AMF infection. Lo-
calised MAMP recognition and SA production can lead to
production of long-distance SAR signals and cause systemic
priming of SA-dependent defences [23–25]. Because most
SAR studies have been conducted with AMF-incompatible
Arabidopsis, it is difficult to draw direct comparisons
540
between SAR and MIR. However, like SAR, MIR has been
associated with systemic priming of SA-dependent defences
and protection against (hemi)biotrophic pathogens (Table
1). Furthermore, the primed defence state of SAR is long
lasting [26,27] and can act additively on other forms of
systemic disease resistance [28]. We therefore propose that
SAR-related signals during the early stages of plant–AMF
interactions contribute to MIR (Figure 1).

Phase III: immune suppression by AMF and recruitment
of mycorrhizosphere bacteria
The transient nature of MAMP-triggered immune
responses during the early stages of mycorrhization
suggest that AMF employ strategies similar to those of
pathogenic fungi, which secrete specific effector molecules
to suppress plant immunity and establish a successful
infection [29]. A comparative transcriptome study in rice
revealed striking similarities between responses to AMF
and pathogenic fungi [30]. Additional evidence for active
immune suppression by AMF came from the discovery that
the calcium/calmodulin kinase DMI3, a central regulator
in the symbiotic pathway, represses early-acting defence
genes [31]. Kloppholz et al. [32] were the first to identify an
effector protein (SP7) from Rhizophagus irregularis (syn.
Glomus intraradices). This secreted protein is expressed
during the initial stages of contact between the mycor-
rhizal fungus and roots and is translocated to the plant
nucleus, where it inhibits the transcription factor ERF19 to
suppress plant defence and promote infection by biotrophic
fungi like R. irregularis [32]. AMF induce species-specific
changes in defence hormones in their hosts [13,33]. Some of
these hormonal changes can restrict AMF colonisation,
whereas others function to promote biotrophic AMF infec-
tion. For instance, AMF promote production of the plant
hormone abscisic acid (ABA) [34]. Experiments with the
ABA-deficient tomato (Solanum lycopersicum) mutant
sitiens have revealed that arbuscular development and
functionality in tomato are dependent on ABA [35]. Be-
cause ABA can suppress SA-dependent defences against
biotrophic pathogens [36,37], it is plausible that AMF
stimulate ABA production in the roots to promote their



Table 1. Defence mechanisms associated with ISR by AMF

Proposed mode of action of

systemic resistance

Resistance-inducing

AMF strain

Host plant Disease or pest Refs

Priming of JA- and SA-inducible defence

genes

R. irregularisa

G. versiforme

F. mosseaeb

Grapevine (Vitis vinifera)

Grapevine, tobacco

(Nicotiana tabacum)

Maize

Xiphinema index

Meloidogyne incognita

Rhizoctonia solani

[76]

[77]

[50]

SA-independent resistance F. mosseaeb Barley Gaeumannomyces graminis [78]

Priming of SA-inducible PR genes Glomus sp. MUCL 41833 Potato Phytophthora infestans [66]

AMF-specific modulation of

herbivore-induced leaf chemicals

Gigaspora margarita

Acaulospora longula

Lotus japonicus Tetranychus urticae [79]

Priming of cell wall defence F. mosseae

Glomus and Gigaspora sp.

Tomato

Common bean

(Phaseolus vulgaris)

Phytophthora parasitica

R. solani

[80–82]

[83]

Priming of defence-related protein production F. mosseae Tomato P. parasitica [80–82]

Priming of defence-related enzymatic activity Glomus and Gigaspora sp. Common bean R. solani [83]

Enhanced production of phenolic compounds Glomus and Gigaspora sp.

Glomus versiforme

Common bean

Tomato

R. solani

Ralstonia solanacearum

[83]

[84]

Enhanced expression of stress-related genes R. irregularis Medicago truncatula Xanthomonas campestris [85]

Enhanced production of benzoxazinoids F. mosseaeb Maize R. solani [50]

asyn. G. intraradices.

bsyn. G. mosseae.
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own infection. The role of ABA in disease resistance is
complex and depends on the stage and nature of the
interaction. Although ABA typically suppresses relatively
late-acting defence mechanisms during plant–pathogen
interactions (e.g., SA-dependent mechanisms), it can pro-
mote defence mechanisms that act relatively early in the
interaction, such as MAMP-induced stomatal closure, in-
duction of reactive oxygen species, and cell wall reinforce-
ments [36]. The mobility of ABA through both xylem and
phloem makes this hormone an attractive candidate to act
as a complementary long-distance MIR signal to the shoot,
where it could contribute to priming of cell wall defences
(Figure 1). Indeed, application of ABA to maize roots
induces above-ground resistance to the (hemi)necrotrophic
fungi Setosphaeria turcicia and Colletotrichum gramini-
cola [38,39] and ABA treatment of rice enhances resistance
against the necrotrophic fungus Cochliobolus miyabeanus
[40]. However, shoot profiling of plant hormones in melon
did not reveal consistent changes in ABA levels after root
infection by either G. intraradices or G. mosseae [41],
suggesting that a potential role for ABA as a systemic
MIR signal may be transient.

Mycorrhization increases transport of photosynthates to
the roots, influencing sugar-dependent signaling pathways
Box 2. Strigolactones: multipurpose rhizosphere signals

The strigolactones are a group of plant sesquiterpenes that are

exuded from roots [86]. They serve as signals to induce hyphal

branching of mycorrhizal fungi, leading to enhanced root colonisa-

tion by AMF [87,88]. However, 40 years ago, the same strigolac-

tones were first identified as germination stimulants of parasitic

plants from the Orobanchaceae family and the obligate root

hemiparasitic plant Striga hermonthica (giant witchweed) [89],

the first of these, strigol, being isolated from non-host cotton

(Gossypium hirsutum) [89]. These observations generated a

conundrum: why would plant roots produce signals to promote

parasitic plant infection? Despite this unresolved issue, research

continued to focus on understanding the biosynthesis of strigo-

lactones and the diversity of Orobanchaceae species, for which

they are able to induce germination. Consequently, until recently
[42]. This, in combination with modulation of defence me-
tabolism and improved phosphate uptake, leads to quanti-
tative and qualitative changes in the composition of root
exudates. For instance, AMF-mediated uptake of phospho-
rus suppresses strigolactone exudation [43], whereas other
studies have reported quantitative and qualitative changes
in primary metabolites from root exudates [44]. Some of
these changes can have negative and positive impacts on
other rhizosphere microbes [45–47]. Apart from plant-me-
diated changes in root exudate chemistry, metabolic activity
by the fungus itself can also alter the chemical composition
of mycorrhizal root exudates. Pulse–chase labeling experi-
ments with 13CO2 revealed that plant-assimilated carbon is
transferred within hours to the fungus and can be traced
back in specific mycorrhizosphere bacteria a few days later
[47]. Exactly which AMF-induced changes in mycorrhizal
root exudate chemistry shape the bacterial composition of
the (mycor)rhizosphere remains difficult to predict on the
basis of correlative studies and in vitro chemotaxis assays,
but it is likely that a combination of primary and secondary
metabolites is involved. In non-mycorrhizal Arabidopsis,
mutation in the malate transporter gene ALMT1 affects
recruitment of ISR-eliciting Bacillus subtilis FB17 after
treatment of the leaves with MAMPs [48], indicating that
little was known about their additional beneficial role in the

rhizosphere, despite the fact that non-hosts for parasitic Oroban-

chaceae produce strigolactones profusely. The breakthrough came

from the observation that the synthetic strigolactone GR24 induces

hyphal branching in in vitro cultures of the AMF Gigaspora

margarita [87] and Gigaspora rosea [88]. Strigolactone-induced

hyphal branching is thought to increase the probability of cellular

contact between plant and fungus and, consequently, enhance root

colonisation by AMF. The discovery of strigolactones as plant

stimulants of mycorrhization demonstrates that parasitic plants

have ‘hijacked’ an important host–symbiont signalling mechanism

that predates their evolution by at least 200–300 million years [2,3].

To date, it remains unclear whether there are additional signals

involved in the recruitment of AMF to plant roots.
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Phase

(I)

(II)

(III)

(IV)

Signals Outcome

• Recruitment of
 mycorrhizal fungi

• Local expression of MAMP-
 triggered immunity

• Systemic priming of SA-
 dependent defenses

• Local immune suppression

• Systemic priming of cell
 wall defenses

• Recruitment/selec�on of
 mycorrhizosphere bacteria

• Establishment of the
 mycorrhizosphere

• Systemic priming of JA- and
 ethylene-dependent
 defenses

• Systemic  ISR signal(s)

• Change in chemical
 composi�on of exudates

• Induc�on and systemic
 transporta�on of ABA

• Fungal effectors

• Fungal MAMPs

• Transient produc�on of
 systemic SAR signal(s)

• Strigolactones  in root
 exudates

• ISR-elici�ng signals  (bacterial
 MAMPs and cell density-
 dependent metabolites)

TRENDS in Plant Science 

Figure 1. Spatiotemporal model of mycorrhiza-induced resistance (MIR). Phase I: Root exudation of strigolactones (blue arrows) induces hyphal branching in arbuscular

mycorrhizal fungi (AMF) and stimulates infection. Phase II: AMF initiate infection of the root cortex. Microbe-associated molecular patterns (MAMPs) from the fungus are

recognised by the plant innate immune system. This leads to transient expression of MAMP-triggered immunity (red cells) and generation of long-distance signals in the

vascular tissues (red arrow), which induce long-lasting priming of salicylic acid (SA)-dependent defences and systemic acquired resistance (SAR). Phase III: AMF employ

specific effector molecules and stimulate production of abscisic acid (ABA) to suppress MAMP-triggered immunity locally. ABA can be transported through the xylem to the

shoot (brown arrow), where it can prime cell wall defences. Formation of intracellular arbuscules increases sugar import from the shoot and delivers phosphorous and

other nutrients from the soil, thereby altering root metabolism and exudates. Moreover, metabolically active hyphae can alter the chemical composition of root exudates.

The combined impact of plant immune modulation, enhanced sugar allocation, increased nutrient uptake, and fungal modification of root exudates leads to changes in root

exudation chemistry (green arrows) and recruitment/selection of specific mycorrhizosphere bacteria. Phase IV: Establishment of the mycorrhizosphere is associated with

dense colonisation by selected bacteria that metabolise mycorrhizal root exudates and deliver ISR-eliciting signals at the root surface and/or fungal hyphae (purple arrows).

After perception of these signals by the host plant, long-distance signals (blue arrow) are generated that prime jasmonate- and ethylene-dependent plant defences and

cause induced systemic resistance (ISR).
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a single primary metabolite can be critical for recruitment of
a specific rhizobacterial strain. There is also evidence for
bacterial attraction by more complex secondary metabolites.
Recently, it was found that mutation of the benzoxazinoid
biosynthesis pathway in maize reduces attraction of ISR-
eliciting P. putida KT2440 [18,49]. Interestingly, two addi-
tional studies have reported that infection of maize by the
AMF F. mosseae or R. irregularis boosts production of root
benzoxazinoids [50,51]. It is therefore tempting to speculate
that AMF-induced exudation of a blend of benzoxazinoids
contributes to cereal mycorrhizosphere development.

Phase IV: establishment of the mycorrhizosphere and
induction of systemic resistance by mycorrhizosphere
bacteria
Most MIR studies have quantified the level of resistance
when the plant–AMF symbiosis and the mycorrhizosphere
are fully established [9]. It is therefore possible that MIR
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involves an ISR component elicited by bacteria in the
mycorrhizosphere (Figure 1). Like AMF, rhizobacteria
possess MAMPs, which can trigger MAMP-induced im-
mune responses [52]. Well-known examples of defence-
eliciting MAMPs from bacteria are rhamnolipids, the elon-
gation factor Tu, flagellin, and cell-wall lipopolysacchar-
ides [53]. The spatially confined structure of the
mycorrhizosphere allows rhizobacterial strains to reach
exceptionally high cell densities [5]. Under these condi-
tions, bacterial gene expression can be controlled by small
diffusible signal molecules from members of the population
themselves. This autoinduction process, known as quorum
sensing (QS), allows bacteria to adjust community gene
expression in accordance with their environment [54].
Many rhizosphere-colonizing bacteria, including Pseudo-
monas and Burkholderia strains, employ QS to control
gene expression [55]. Some QS autoinducer molecules, like
N-3-oxo-tetradecanoyl-L-homoserine lactone, can elicit
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resistance in Arabidopsis to Pseudomonas syringae and
Golovinomyces orontii and in barley (Hordeum vulgare) to
Blumeria graminis f. sp. hordei [56]. In addition to direct
effects by autoinducer molecules, cell density-controlled
processes in bacteria can also contribute to disease sup-
pression. The PhzI/PhzR QS system in Pseudomonas chlor-
oraphis mediates synthesis of the heterocyclic fungicide
phenazine [57], whereas 2,4-diacetylphloroglucinol (2,4-
DAPG) produced by Pseudomonas fluorescens has autoin-
ducer activity that can be counteracted by metabolites from
other soil microbes [58]. Interestingly, both phenazine and
2,4-DAPG have been associated with ISR; expression of P.
chlororaphis-mediated ISR in tobacco against necrotrophic
Erwinia carotovora requires production of phenazine [59],
whereas production of 2,4-DAPG by P. fluorescens is criti-
cal for JA-dependent ISR in Arabidopsis [60]. Considering
that some bacterial strains reach sufficiently high cell
densities in the mycorrhizosphere for autoinduction pro-
cesses, it is plausible that cell density-dependent bacterial
metabolites, like phenazine and 2,4-DAPG, contribute to
MIR (Figure 1). Delivery of these ISR-eliciting determi-
nants can be directly on the root surface, but can also be
facilitated by efficient transportation into the root cortex
through mycorrhizal hyphae [61]. Hence, the potential for
mycorrhizosphere bacteria to elicit ISR is not only deter-
mined by their presence, but also depends on their meta-
bolic activity in relation to chemical signals from
mycorrhizal root exudates, their cell density, and the
presence of competing microbes.

The nature of the systemic signals controlling rhizobac-
terial ISR is unknown. As for pathogen-induced SAR [62],
ISR may be controlled by a combination of long-distance
signals. Both ISR and MIR have frequently been associated
with systemic priming of JA- and ethylene-inducible
defences [9,63,64]. Jasmonates also accumulate during
mycorrhizal symbiosis [13,33]. It is thus possible that
jasmonates function as complementary long-distance sig-
nals of MIR, which may be the result of systemic signalling
processes similar to autoregulation of nodulation during
rhizobia–legume interactions [65]. Although the exact con-
tribution of jasmonates to MIR has yet to be demonstrated,
we propose that priming of JA-dependent defences during
MIR is partially determined by ISR-eliciting rhizobacteria
in the mycorrhizosphere (Figure 1).

Concluding remarks and future research
The concept that MIR is partially determined by resistance-
inducing bacteria in the mycorrhizosphere creates a novel
impetus to explore the complexity of biotic interactions and
chemical signals surrounding mycorrhizal roots. The relative
contribution of AMF and mycorrhizosphere-inhabiting bac-
teria to MIR requires experimental validation. To our knowl-
edge, only one study has demonstrated MIR under strictly
axenic conditions [66]. The induced resistance in this study
was associated with augmented induction of two SA-induc-
ible PR genes following infection by Phytophthora infestans.
Conversely, no clear transcriptional priming was evident for
JA- and ethylene-dependent genes in this study [66], sug-
gesting that axenic conditions prevent JA-dependent MIR.
Whether priming of JA-dependent defences is strictly
dependent on mycorrhizosphere-inhabiting bacteria would
require complementation experiments with bacteria under
axenic conditions. It is, however, possible that some ISR-
eliciting mycorrhizosphere PGPR are not culturable and
thrive only in close proximity to AMF hyphae [67]. It is even
possible that endobacteria inside the AMF hyphae contrib-
ute to MIR [68]. A global inventory of microbial diversity
through 16S RNA gene sequence analysis, coupled to tem-
poral profiling of metabolites in mycorrhizal root exudates
would be an alternative strategy to decipher the contribution
of mycorrhizosphere bacteria in MIR. Involvement of candi-
date plant metabolites as regulators of resistance-inducing
activities by mycorrhizosphere bacteria can be verified by
genetic manipulation of the corresponding biosynthetic path-
ways in the host plant.

Further research is also required to elucidate the nature
of systemic MIR signals. To determine whether selected
plant hormones, such as ABA or jasmonates, act as long-
distance signals in MIR would require grafting experi-
ments with hormone-deficient plants. Unfortunately, in-
terpretation of such experiments can be challenging,
considering that hormone-deficient or -insensitive plant
genotypes often develop stress phenotypes that can affect
mycorrhizal symbiosis and complicate the interpretation of
delicate plant-pathogen assays. In addition to plant hor-
mones, small RNA molecules (sRNAs) are attractive can-
didates for long-distance defence signals. These 20–25-
nucleotide RNAs can act as phloem-mobile long-distance
signals [69,70]. Moreover, small interfering (si)RNAs can
induce transcriptional gene silencing through RNA-direct-
ed DNA methylation (RdDM) [71], a pathway that was
recently implicated in transgenerational priming of JA-
and SA-dependent plant defence after exposure to herbiv-
ory and bacterial speck disease, respectively [72,73]. Glob-
al analysis of AMF-induced sRNAs and systemic changes
in DNA methylation is needed to provide evidence for a
possible contribution of sRNAs in the long-distance regu-
lation of MIR. Finally, more comparative studies on the
signalling mechanisms regulating MIR and ISR will be
necessary to reveal the exact contribution of rhizobacteria
to MIR.
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