
Graphs with Branchwidth at most Three�y

Hans L. Bodlaender Dimitrios M. Thilikosz

Department of Computer Science, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

E-mail: fhansb,sedthilkg@cs.ruu.nl

Abstract

In this paper we investigate both the structure of graphs with branchwidth at most three, as

well as algorithms to recognise such graphs. We show that a graph has branchwidth at most

three, if and only if it has treewidth at most three and does not contain the three-dimensional

binary cube graph as a minor. A set of four graphs is shown to be the obstruction set of

graphs with branchwidth at most three. We give a safe and complete set of reduction rules for

the graphs with branchwidth at most three. Using this set, a linear time algorithm is given

that checks if a given graph has branchwidth at most three, and, if so, outputs a minimum

width branch decomposition.

Keywords: graph algorithms, branchwidth, obstruction set, graph minor, reduction rule.

1 Introduction

This paper considers the study of the graphs with branchwidth at most three. The notion of

branchwidth has a close relationship to the more well-known notion of treewidth, a notion that

has come to play a large role in many recent investigations in algorithmic graph theory. (See

Section 2 for de�nitions of treewidth and branchwidth.) One reason for the interest in this

notion is that many graph problems can be solved by linear time algorithms, when the inputs

are restricted to graphs with some uniform upper bound on their treewidth. Most of these

algorithms �rst try to �nd a tree decomposition of small width, and then utilise the advantages

of the tree structure of the decomposition.

�This paper is the full version of part of the paper titled \Constructive Linear Time Algorithms for Branch-

width" which appeared in the proceedings of ICALP'97 (see [7]).
yThis research was partially supported by ESPRIT Long Term Research Project 20244 (project ALCOM IT:

Algorithms and Complexity in Information Technology).
zThe second author was supported by the Training and Mobility of Researchers (TMR) Program, (EU contract

no ERBFMBICT950198).

1

The branchwidth of a graph di�ers from its treewidth by at most a multiplicative constant

factor (see Theorem 1.) As branchwidth is also re
ecting some optimal tree structure arrange-

ment, it is possible to have algorithmic applications analogous to those of treewidth. Hence,

instead of using tree decompositions, one also can use branch decompositions as starting point

for the linear time algorithms for problems restricted to graphs with bounded treewidth (and

hence also bounded branchwidth.) In fact, in some cases, it appears that branchwidth is more

convenient to use, and seems to give better constant factors in the implementation of the algo-

rithms; for instance, Cook used branch decompositions as an important ingredient in a practical

approximation algorithm for the Travelling Salesman Problem [9], and remarked that branch-

width was the more natural notion (instead of treewidth) to use for that problem [8]: where

tree decompositions primarily are concerned with vertices, branch decompositions deal more

with edges (in a loose sense.) We also mention that the branchwidth of planar graphs can be

computed in polynomial time (see [18]). As both treewidth and branchwidth are NP-complete

parameters (see [1, 18]), it appears an interesting task to �nd algorithms solving the following

problems (k is assumed to be a �xed constant).

�d
k(B) (�

d
k(T)): Check if an input graph has branchwidth (treewidth) at most k.

�c
k(B) (�

c
k(T)): Given a graph with branchwidth (treewidth) at most k, output a minimum

width branch (tree) decomposition.

According to the results of Robertson and Seymour, for any minor closed class of graphs

there exists a �nite set of graphs, its obstruction set, such that a graph G belongs in the class

i� no element of the obstruction set is a minor of G. It is also known that for, any k, the class

of graphs where treewidth (or branchwidth) is bounded by a �xed k is minor closed (see also

Theorem 1). An immediate consequence of this fact (using results from Robertson and Seymour

and the algorithm from [5]) is the existence of a linear time algorithm solving �d
k(B) or �

d
k(T).

Unfortunately, in this way, we only get a non-constructive proof of the existence of such an

algorithm, but in order to construct the algorithm, we must know the corresponding obstruction

set. Additionally, we would like to have an algorithm that non only decides on branchwidth, but

also constructs the corresponding branch decomposition.

Much research has been done towards the construction of linear time algorithms solving

�d
k(T) and �c

k(T). In [5], a linear (on the size of the input) time algorithm for treewidth was

constructed. As this algorithm appears to be heavily exponential on k (and thus impractical,

at least without considerably optimisations in the implementation), practical \tailor-made" al-

gorithms have been presented for small values of k: (treewidth 1 and 2 [12, 20], treewidth 3

[3, 10, 12], treewidth 4 [16].) Also, the obstruction sets for treewidth 1, 2, and 3 are known

[4, 17, 20]. Recently, a linear time algorithm solving �d
k(B) and �c

k(B) was given in [7]. Unfor-

tunately, the algorithms in [7] appear (similarly to the case of treewidth) to be non-practical.

In this paper, we provide special \tailor made" results for the case where k � 3. More

speci�cally, for the class of graphs with branchwidth � 3, we identify the obstruction set and

2

we give a set of safe and complete reduction rules enabling the construction of a practical linear

time algorithm that checks if a graph has branchwidth � 3 and, if so, outputs a minimum width

branch decomposition. The obstruction set consists of the four graphs K5;M6;M8; Q3 depicted

in Figure 2 and the proof of its correctness is based on a structural lemma asserting that the

graphs of branchwidth� 3 are exactly the graphs that with treewidth� 3 that do not contain

the three-dimensional binary cube graph (i.e. graph Q3 of Figure 2) as a minor.

The paper is organised as follows. In Section 2, the basic de�nition and preliminary results

are presented. In Section 3, we give the main routine of our algorithm along with several graph

theoretic results concerning the obstruction set of the class of graphs with branchwidth� 3. In

Section 4, we identify a complete and safe set of reduction rules leading to the construction of a

practical linear time algorithm solving �d
3(B) and �c

3(B).

2 De�nitions and Preliminary Results

We consider undirected graphs without parallel edges or self-loops. (It is easy to extend the

results to graphs with parallel edges and/or self-loops.) Given a graph G = (V;E) we denote its

vertex set V and edge set E with V (G) and E(G) respectively. A triangle t = fv1; v2; v3g of G

is a triple of V (G) such that ffv1; v2g; fv2; v3g; fv1; v3gg � E(G). For any vertex v 2 V (G), we

de�ne as NG(v) the set of vertices in V (G) adjacent with v. Given a set S � V (G) we denote

as G[S] the graph induced by S. We also denote as Kr the complete graph with r vertices.

Finally, we will assume that all the graphs we deal with are connected, as this does not harm

the generality of our results. (The branchwidth of a graph equals the maximum branchwidth of

its connected components.)

Given two graphs G;H , we say that H is a minor of G (denoted by H � G) if H can

be obtained by a series of the following operations: vertex deletions, edge deletions, and edge

contractions (a contraction of an edge fu; vg in G is the operation that replaces u and v by a

new vertex whose neighbours are the vertices that where adjacent to u and/or v). Let G be

a class of graphs. We say that G is closed under taking of minors when all the minors of any

graph in G belong also in G. Given a graph class G that is closed under taking of minors, we

de�ne the obstruction set of G as the set set of minor minimal graphs that do not belong in G.

Robertson and Seymour proved (see e.g. [14]) that any class of graphs G contains a �nite set of

minor minimal elements. According to this result, any graph class that is closed under taking of

minors has a �nite obstruction set.

It follows that if G is closed under taking of minors, then, for any graph H , G 2 G i� there

is no graph in the obstruction set of G such that H � G.

We give now the formal de�nitions of treewidth and branchwidth.

A tree decomposition of a graph G is a pair (fXi j i 2 Ig; T = (I; F)), where fXi j i 2 Ig is

a collection of subsets of V and T is a tree, such that

3

�

S
i2I

Xi = V (G),

�

for each edge fv; wg 2 E(G), there is an i 2 I such that v; w 2 Xi, and

�

for each v 2 V the set of nodes fi j v 2 Xig forms a subtree of T.

The width of a tree decomposition (fXi j i 2 Ig; T = (I; F)) equals maxi2IfjXij � 1g. The

treewidth of a graph G is the minimum width over all tree decompositions of G.

A branch decomposition of a graph G is a pair (T; �), where T is a tree with vertices of degree

1 or 3 and � is a bijection from the set of leaves of T to E(G). The order of an edge e in T is

the number of vertices v 2 V (G) such that there are leaves t1; t2 in T in di�erent components of

T (V (T); E(T)� e) with �(t1) and �(t2) both incident with v (we also say: v belongs to e.)

The width of (T; �) is the maximum order over all edges of T , and the branchwidth of G is the

minimum width over all branch decompositions of G (in case where jE(G)j � 1, then we de�ne

the branchwidth to be 0; if jE(G)j= 0, then G has no branch decomposition; if jE(G)j= 1, then

G has a branch decomposition consisting of a tree with one vertex { the width of this branch

decomposition is considered to be 0).

Instead, we can use di�erent types of functions � . If � is a surjective function that maps

every leaf of T to an edge e 2 E(G), then we have an ampli�ed branch decomposition: for each

edge e 2 E(G) there exists at least one leave v of T with �(v) = e.

In what follows we denote as Bk (Tk) the obstruction set of the graphs with branchwidth

(treewidth) at most k.

Theorem 1 ([15]) The following statements hold.

a. The class of graphs with bounded branchwidth is closed under taking of minors.

b. branchwidth(G) � treewidth(G) + 1 � b32branchwidth(G)c.

c. The graphs with branchwidth at most 0 (at most 1) are all graphs where each connected

component contains at most one edge (vertex of degree at least 2).

d. B2 = fK4g.

Lemma 1 There exists an algorithm that given a branch decomposition (T; �) of a graph G

with width at most 3, outputs a branch decomposition of any subgraph G0 of G with width at

most 3 in O(jV (G)j) time. Moreover, there exists an algorithm that given an ampli�ed branch

decomposition (T; �) of a graph G with width at most 3, outputs a branch decomposition of G

with width at most 3, in O(jV (T)j) time.

Proof. In order to prove the �rst statement of the lemma we set Er = E(G0) and for the second

statement we setEr = [e2E(G)fveg where ve is some vertex in Ve and Ve = fv 2 V (T) : �(v) = eg.

For both statements of the lemma we set V � = fv 2 V (T) : 9e 2 Er such that �(e) = vg.

Let T 0 be the tree obtained from T as follows: (i) remove leaves that do not belong in V � until

4

no such leaves occur any more (ii) contract edges consisting of a vertex of degree 2 and a vertex

in V � until no such edges occur any more. Finally, we de�ne � 0 as the restriction of � on V �. It

is now easy to see that, for both of the statements of the lemma, (T 0; � 0) is the required branch

decomposition and can be computed in linear time. 2

A reduction R is a triple (H;S; f), where H is a graph S � V (G); S 6= ; and f : V (H)! !+1

is a labelling of vertices in H by ordinals (�nite ones and !), such that 8v 2 S : f(v) = 0. We

say that a reduction R = (H;S; f) occurs in G if H is a subgraph of G and for any v 2 V (H)

the degree of v in G[V (G)� V (H)[fvg] is at most f(v).

The result of applying R on G is the graph arising from G if we remove the vertices in S and

connect as a clique in G all vertices in V (H)� S.

Given a graph class G, we say that a set R of reductions is safe if, for any R 2 R and for any

G such that R occurs in G, the result of applying R on G is a graph in G if and only if G 2 G.

R is called complete for G, if for every non-empty graph G 2 G, there is a reduction in R

occurring in G.

Clearly, if a set R of reduction rules is safe and complete for a graph class G, then, for

any graph G, holds that G 2 R if and only if there exists a sequence of reduction rules in R

that, when successively applied, can reduce G to the empty graph. These reductions are in

fact a special case of a more general form of reductions as studied amongst others in [2] where

subgraphs can be rewritten to graphs, di�erent from a clique.

(t:i) (t:ii) (t:iii)null

graph

3
(t:iv) (t:v)(t:iv0) (t:vi)

Figure 1: The reduction rules for the class of graphs with treewidth � 3.

We denote as Rt�3 the set of reduction rules ft:i; t:ii; t:iii; t:iv; t:v; t:vig, shown in Figure 1. For

any R = (H;S; f) 2 Rt�3, S is represented by the white cycles and the values of f are shown

only when they are not ! and correspond to vertices not in S.

Theorem 2 ([3, 10, 13]) Rt�3 is a safe and complete set of reduction rules for the class of

graphs with treewidth � 3. Also, if we replace rule t:iv in Rt�3 with t:iv0 the resulting set of

rules is also safe and complete for the class of graphs with treewidth � 3.

We de�ne below the notions of k-tree, minimal separator and minimal triangulation.

We call a graph G chordal when it does not contain any induced cycle of length � 4.

5

We call a vertex v 2 V (G) simplicial if G[NG(v)] is a clique.

An ordering (v1; : : : ; vjV (G)j) of the vertices in V (G) is a k-perfect elimination ordering if for

each i; 1 � i � jV (G)j vi is a simplicial vertex of degree � k in Gi = G[fvi; : : : ; vjV (G)jg]. We call

(G = G1; G2; : : : ; GjV (G)j) the graph sequence of the k-perfect elimination ordering.

Let k be an integer. A k-tree is a graph which is recursively de�ned as follows. A clique with

k + 1 vertices is a k-tree. Given a k-tree G with n vertices, a k-tree with n + 1 vertices can be

constructed by making a new vertex adjacent to the vertices of a k-clique in G. A graph is a

partial k-tree if either it has at most k vertices or it is a subgraph of a k-tree G with the same

vertex set as G. k-Trees are chordal graphs with maximum clique size k + 1.

It can be easily proved that a graph has treewidth � k i� it is a partial k-tree (see e.g. [19]).

Also, if G is a partial k-tree, then jE(G)j = kjV (G)j. Finally, a k-perfect elimination ordering

of a k-tree can be found in O(kn) time.

A set S � V (G) is an s-t-separator in G (s, t 2 V), if s and t belong to di�erent connected

components of G[V �S]. S is a minimal s-t-separator, if it does not contain another s-t-separator

as a proper subgraph. S is a minimal separator, if there exist vertices s, t 2 V for which S is a

minimal s-t-separator. We call a graphG0 a triangulation ofG if G0 is chordal and V (G0) = V (G).

We call a triangulation of G with a minimum number of edges a minimal triangulation.

Theorem 3 ([6]) Let G0 be a minimal triangulation of a graph G. Then any minimal separator

in G0 is also a minimal separator in G.

K5 M6 M8 M10 Q3

Figure 2: The graphs K5;M6;M8;M10, and Q3

Graphs K5;M6;M8; and M10 are shown in Figure 2.

Theorem 4 ([4, 17]) T3 = fK5;M6;M8;M10g.

Lemma 2 The following three statements hold.

a. There are no graphs in B3 with treewidth at most 2.

b. Q3 2 B3 and treewidth(Q3) = 3.

c. The set fK5;M6;M8g contains all the graphs of B3 that have treewidth at least 4.

6

Proof. a. From Theorem 1.1, we have that there are no graphs with treewidth at most 2 and

branchwidth at least 4.

b. One can easily verify that treewidth(Q3) = branchwidth(Q3) � 1 = 3. Also, any graph

obtained by Q3 after an vertex/edge deletion or edge contraction has a branch decomposition of

width at most 3.

c. We will �rst prove that fK5;M6;M8g � B3. From Theorem 4, S = fK5;M6;M8g � T3

and thus 8G 2 S : treewidth(G) = 4. From Theorem 1.b, we obtain that branchwidth(G) �

d23(treewidth(G) + 1)e and thus 8G 2 S : branchwidth(G) � 4. It is now enough to check, by

inspection, that if we apply to any element of S a vertex/edge deletion or edge contraction the

resulting graph has a branch decomposition of width � 3.

Suppose now that there exists a graph G in B3 � fK5;M6;M8g that has treewidth � 4. If

this is the case, G would contain one of the graphs in T3 as a minor and thus one of the graphs

in fK5;M6;M8; Q3g � B3 which is a contradiction (observe that Q3 �M10 and Q3 2 B3). 2

Let G be a graph and S � V (G); jSj = 4. We call S = fv1; v2; v3; v4g a cross if the sets

Si = S � fvig; 1 � i � 4 are all minimal separators of G. We also de�ne as att(G; Si) the set

of all the vertices of the connected components of G[V (G)� Si] that do not contain the single

vertex in S � Si. If a graph does not contain any cross then we call it crossless.

Lemma 3 Let G be a crossless graph of treewidth at most 3 and G0 be a minimal triangulation

of G. Then, G0 is a crossless chordal graph with maximum clique size at most 4.

Proof. It is known that if G0 is a minimal triangulation of a partial k-tree, then G0 has maximum

clique size at most k+1 (see e.g. Chapter 2 of [11]). What remains to prove is that G0 is crossless.

Suppose that G0 contain a cross S. Then all the triples of S are minimal separators and, because

of Theorem 3, they are also minimum separators of G. We now have a contradiction as G is

crossless. 2

We now introduce the notion of the clique tree of a 3-tree. (We mention that it is possible

to extent the de�nition below { as well as the algorithm following it { for any integer k 6= 3.)

Let G be a 3-tree G. A tree TG is a clique tree of G if

(i) each vertex in V (TG) is a 4-clique in G and

(ii) if two vertices v = fv1; v2; v3; v4g;u = fu1; u2; u3; u4g 2 V (TG) are connected by an edge

fv;ug in TG then jv\uj = 3, i.e., they have exactly 3 vertices in common (notice that each such

triple of vertices is a minimal separator of G).

Given an edge e = fv;ug 2 E(TG), we de�ne the separation set of e as sep(e) = v\u. Notice

that any clique tree of a 3-tree G contains jV (G)j � 3 vertices. From now on we will denote the

vertices and the edges of a clique tree using bold characters like v;u; e.

We now give an algorithm constructing a clique tree of a 3-tree in linear time.

7

Algorithm 4CT

input: A 3-tree G.

output: A clique tree TG of G.

1: Find a 3-perfect elimination ordering (v1; v2; : : : ; vn) of G (n = jV (G)j);

2: let an�3 = fvn�3; vn�2; vn�1; vng;

3: for i = 1 to n� 4 do

4: let sim(vi) = NG[V (G)�fv1;:::;vi�1g](vi);

5: for i = n� 3 to n do

6: let sim(vi) = an�3 � fvig;

7: let V (TG) = fan�3g; E(TG) = ;;

8: for i := n� 4 downto 1 do

9: begin

10: set C =
S
v2sim(vi) sim(v);

11: �nd the unique vi0 2 C such that ai0 = sim(vi) [fvi0g is a 4-clique;

12: let ai = sim(vi) [fvig;

13: let V (TG) = V (TG)[faig; E(TG) = E(TG) [ffai0 ; aigg;

14: end

15: end

Lemma 4 Let (v1; : : : ; vn) be a perfect elimination ordering of a 3-tree G and (G1; : : : ; Gn)

the corresponding graph sequence. Let also sim(vi); i = 1; : : : ; n be as de�ned in lines 3{6 of

algorithm 4CT . Then, for any Gi, there exists exactly one vertex vi0 2 C = [v2sim(vi)sim(v) such

that G[fvi0g [sim(vi)] is a 4-clique.

Proof. Let fvj ; vj0 ; vj00g = NGi
(vi) = sim(vi). W.l.o.g. we assume that j < j0; j < j00. Clearly,

fvj0 ; vj00g 2 NGj
(vj) = sim(vj) � C = [v2sim(vi)sim(v). Let also fvi0g = NGj

(vj) � fvj0 ; vj00g.

Notice that fvi0 ; vj; vj0 ; vj00g is a 4-clique in G. Suppose also that there exists an other vertex

u 2 C; u 6= vi0 such that G[fug [sim(vi)] is a 4-clique. Clearly, u 2 V (Gj) and u must be

adjacent, in Gj , with all the vertices in fvj ; vj0; vj00g and hence with vj , which is a contradiction

as u 62 sim(vj) = NGj
(vj) = fvj0 ; vj00 ; vi0g. 2

Lemma 5 Given a 3-tree G, algorithm 4CT constructs the clique tree of G in O(jV (G)j) time.

Proof. From Lemma 4, lines 10 and 11 can be executed in constant time. Therefore, the overall

complexity of 4CT is O(jV (G)j). Observing how vertices and edges are added in TG in steps 12

and 13, during each execution of loop 9{14, we can easily see that TG is a clique tree of G. 2

We omit the proof of the following lemma as it is very simple and does not o�er any further

evidence to the objectives of this paper. We just mention that the algorithm involved is based

on a traversal of the graph using a 3-elimination ordering of G.

8

Lemma 6 Let G be a chordal graph with maximum clique of size at most 4. One can construct

an algorithm that in O(jV (G)j) time computes all the triconnected components of G.

Lemma 7 One can construct an algorithm that, given a crossless chordal graph G with maxi-

mum clique size at most 4, outputs, in O(jV (G)j) time, a crossless 3-tree G0 such that G is a

subgraph of G0 where V (G0) = V (G).

Proof. We will examine the non-trivial case where the maximum clique size of G is 4 (the case

where the maximum clique size of G is at most 3 is reduced to the non trivial case if we �rst

add edges in G so that we obtain a 2-tree G0 containing G as a subgraph and then add in G0 all

the edges that connect some of its simplicial vertices with the rest of its vertices).

It is easy to see that, using a perfect elimination ordering, we can compute in linear time,

two functions fH ; gH such that for any 3-tree H , fH takes as input a triangle t of H and outputs

a boolean value indicating whether t it is a minimal separator or not and gH takes as input a

vertex or an edge of H and outputs a 4-clique containing it. Using the algorithm of Lemma 6,

we compute, in linear time, all the triconnected components of G. We also compute for each

triconnected component Gi that is a (crossless) 3-tree the corresponding functions fGi
and gGi

(as the maximum clique size of G is 4, there must be at least one triconnected component of G

that is a crossless 3-tree). Suppose now that

(a) Gi and Gj are two triconnected components of G such that 1 � jV (Gi)\V (Gj)j � 2 and

(b) one of Gi,Gj , say Gi, is a crossless 3-tree.

It is enough to show that, in constant time, we (i) can add edges in G[V (Gi) [V (Gj)] so

that the resulting graph Gij is a crossless 3-tree and (ii) compute the functions fGij
and gGij

using fGi
; fGj

and gGi
; gGj

. Using (a) and (b) we distinguish the following cases:

Case (i): V (Gi) \ V (Gj) = fa; bg and Gi and Gj are both crossless 3-trees. Let fGi
(fa; bg) =

fa; b; c; dg and fGj
(fa; bg) = fa; b; e; fg. If gGi

(fa; b; cg) = 0 then set v = d, otherwise set v = c.

Also, if gGj
(fa; b; eg) = 0 then set u = f , otherwise set u = e. Now, construct Gij adding fv; ug

in G[V (Gi)[V (Gj)]. One can now easily verify that Gij is a crossless 3-tree. The new functions

fGi
; gGj

are de�ned below.

fGij
(e) =

8>><
>>:

fa; b; u; vg if e = fv; ug

fGi
(e) if e 2 E(Gi)

fGj
(e) if e 2 E(Gj)

gGij
(t) =

8>><
>>:

0 if fv; ug � t

gGi
(t) if t � V (Gi)

gGj
(t) if t � V (Gj)

Case (ii): V (Gi)\V (Gj) = fa; bg and Gj is a triangle t = fa; b; eg. Let fGi
(fa; bg) = fa; b; c; dg.

If gGi
(fa; b; cg) = 0 then set v = d, otherwise set v = c. Now, construct Gij adding fv; eg in

G[V (Gi) [V (Gj)]. One can now easy verify that Gij is a crossless 3-tree. The new functions

fGi
; gGj

are de�ned as in case (i).

Case (iii): V (Gi) \ V (Gj) = fag. Choose v; u such that fa; vg 2 V (Gi) and fa; ug 2 V (Gj). If

we add fv; ug in G[V (Gi)[V (Gj)], we obtain a biconnected graph containing the following tree

9

triconnected components: Gi; Gj and the the graph induced by the triangle fv; u; ag. In this

way case (iii) is reduced to cases (i) and (ii). 2

3 Obstructions for graphs with branchwidth at most 3

In this section we will identify the set B3 and �nd a complete and safe set of reduction rules

for the class of graphs with branchwidth at most 3. Our results lead to the construction of a

linear time algorithm testing whether a graph has branchwidth at most 3 and, if so, computes a

branch decomposition of minimum width.

The following lemma de�nes the notion of the labelled clique tree of a crossless 3-tree.

Lemma 8 Let TG be a clique tree of a crossless 3-tree G. Let also, for any v 2 V (TG) : Ev =

fe 2 E(TG) : v is incident to eg. Then, for each v 2 V (TG) : jfsep(e) : e 2 Evgj � 3.

Moreover, it is possible in O(n) time to compute a labelling function l : jE(TG)j ! f1; 2; 3g such

that 8v 2 V (TG) : 8e1; e2 2 Ev : (sep(e1) = sep(e2) i� l(e1) = l(e2)), i.e. edges in Ev with the

same separation set have the same label.

Proof. In order to prove that 8v 2 V (TG) : jfsep(e) j e 2 Evgj � 3, it is enough to observe

that for any 4-clique in a crossless 3-tree at most 3 of its triples are minimal separators. It is

now possible, for any vertex vertex v in TG, to compute in O(jNTG(v)j) time, a partition of Ev

into at most 3 sets, each containing edges with the same separation set (we call such a partition

separating partition of v). We can now label the edges of TG as follows. We �rst label arbitrary

an edge incident to a leaf of TG. Suppose now that we have labelled all the edges incident to

vertices in some set V 0 � V (TG). As TG is connected, there must exists at least one vertex

v 2 V (G) � V 0 such that one of its incident edges has already been labelled. Now using the

separating partition of v, we can label its edges such that edges belonging in the same set of

the partition have the same label. It is now easy to observe that the required labelling can be

computed in O(jV (GT)j) time. 2

We call a clique tree that is labelled as in Lemma 8 3-labelled and we denote it as (TG; l).

Given a labelled clique tree (TG; l), we de�ne the span degree of a vertex v to be equal to

jfl(e) : e 2 Evgj. We also call a leaf u of TG that is adjacent to a vertex v simple if jfe 2 Ev :

l(e) = l(fu;vg)gj= 1.

Lemma 9 Let (TG; l) be a labelled clique tree containing at least one edge. Then, one of the

following holds:

(i) There exists at least one non-simple leave.

(ii) There exists a simple leaf u in TG adjacent to a vertex v of span-degree � 2.

(iii) There exist two simple leaves u1 and u2 in TG adjacent to a vertex v of span-degree � 3.

10

Proof. Let L0 be the set of leaves of TG. Let also L1 = [v2LTG
Nv. As TG[V (TG) � L0] is a

tree, L1 must contain a least one vertex v such that jNTG(v)� L0j = 1. Suppose now that any

leave in TG is simple. Then, we can notice that jNTG(v)\ L0j is either 1 or 2. In the �rst case,

NTG(v) = 2 and hence v has span degree at most 2. In the second case, NTG(v) = 3 and hence

v has span degree at most 3. 2

Lemma 10 There exists a linear time algorithm that, given a 3-labelled clique tree of a crossless

3-tree G, constructs a branch width decomposition of G of width 3.

Proof. We will describe a construction that, given a 3-labelled clique tree (TG; l) of a crossless

3-tree G, outputs an ampli�ed branch decomposition (T 0; �) of G that has width 3. Suppose

that for some v 2 V (TG); Ev = fe11; : : : ; e
1
r1
; e21; : : : ; e

2
r2
; e31; : : : ; e

3
r3
g where 8i; 1 � i � 3 : 8j; 1 �

j � ri : l(e
i
j) = i. For any vertex v 2 V (TG), we construct the tree Tv = (V (T 1

v
) [V (T 2

v
) [

V (T 3
v
)); E(T 1

v
) [E(T 2

v
) [E(T 3

v
)) where

� In case ri � 2, then we set

T i
v

= (fv0g [fv
i
1; : : : ; v

i
ri�1g

[
1�j�ri

fV (T i;j
v
)g;

ffv0; v
i
1g; fv

i
1; v

i
2g; : : : ; fv

i
ri�2; v

i
ri�1gg

[
1�j�ri

fE(T i;j
v
)g), where for j = 1; : : : ; ri � 1;

T i;j
v

= (fvij; v
i
j;1; v

i
j;2; v

i
j;3; v

i
j;4; v

i
j;5; v

i
j;6g;

ffvij; v
i
j;1g; fv

i
j;1; v

i
j;2g; fv

i
j;2; v

i
j;3g; fv

i
j;1; v

i
j;4g; fv

i
j;2; v

i
j;5g; fv

i
j;3; v

i
j;6gg) and

T i;ri
v

= (fviri�1; v
i
ri;1; v

i
ri;2; v

i
ri;3; v

i
ri;4; v

i
ri;5; v

i
ri;6g;

ffviri�1; v
i
ri;1g; fv

i
ri;1; v

i
ri;2g; fv

i
ri;2; v

i
ri;3g; fv

i
ri;1; v

i
ri;4g; fv

i
ri;2; v

i
ri;5g; fv

i
ri;3; v

i
ri;6gg):

� in case ri = 1, then we set

T i
v

= T i;1
v

= (fv0; v
i
1;1; v

i
1;2; v

i
1;3; v

i
1;4; v

i
1;5; v

i
1;6g;

ffv0; v
i
1;1g; fv

i
1;1; v

i
1;2g; fv

i
1;2; v

i
1;3g; fv

i
1;1; v

i
1;4g; fv

i
1;2; v

i
1;5g; fv

i
1;3; v

i
1;6gg):

� In case ri = 0, then we set

T i
v

= (fv0; v
i
1; v

i
2; v

i
3; v

i
4; v

i
5g; ffv0; v

i
1g; fv

i
1; v

i
2g; fv

i
2; v

i
3g; fv

i
1; v

i
4g; fv

i
2; v

i
5gg):

Observe that, according to the construction above, edge eij corresponds to the tree T
i;j
v for

1 � j � ri; 1 � i � 3. For an example illustrating the three cases above, see Figure 3. In the

clique tree of Figure 3 vertex v is incident to edges e11; e
1
2; e

1
3; e

1
4; e

2
1 where l(e1j) = 1; 1 � j � 4

and l(e21) = 2. In Tv, the subtrees corresponding to the edges labelled with 1 are T 1;1
v ; T

1;2
v ; T

1;3
v ,

and T 1;4
v . As the unique edge labelled with 2 is e21, the subtree corresponding to it is T 2

v
= T

2;1
v .

Finally, the fact that there are no edges labelled with 3 implies the existence of subtree T 3
v
in

Tv.

11

v13

v13;4 v13;6

v21;1v21;2v21;3

v34

v13;5

v35

v14;3

v14;2

v14;1

T 2

v
= T

2;1
v

T
1;4
v

T
1;3
v

T
1;2
v

T
1;1
v

T 3

v

Tv

v

e11 e12 e13 e14

e21

v14;4

v14;5

v14;6

v13;1 v13;3v13;2

v12;4 v12;6v12;5

v21;6 v21;5 v21;4

v12 v12;1 v12;3v12;2

v11 v11;1 v11;3v11;2

v11;4 v11;6v11;5

v0 v31 v32 v33

Figure 3: A vertex v in a clique tree, and the corresponding tree Tv.

The construction of the tree T 0 of the ampli�ed branch decomposition is now completed as

follows: Suppose that two vertices v;u in TG are connected by an edge e. Let also Tv and

Tu be the trees corresponding to v and u according to the construction above. Moreover, we

denote as T iv;jv
v the subtree of Tv corresponding to edge e and as T iu;ju

u the subtree of Tu cor-

responding to edge e. The construction proceeds by identifying the following couples of vertices

(vivjv;1; u
iu
ju;3); (v

iv
jv;2; u

iu
ju;2); (v

iv
jv;3; u

iu
ju;1); (v

iv
jv;4; u

iu
ju;6); (v

iv
jv;5; u

iu
ju;5); (v

iv
jv;6; u

iu
ju;4) and eliminating the

double edges that appear. If we apply this identi�cation for all edges in TG, we obtain a tree

T 0 with vertices that have degree 1 or 3 which is the tree of the required ampli�ed branch

decomposition of G.

What now remains is to de�ne the function � from the leaves of T 0 to E(G). There are two

kinds of leaves in T 0. We �rst de�ne � for the leaves appearing in triples of the form vij;4; v
i
j;5; v

i
j;6

(we call these leaves internal). Notice that each such triple corresponds to some edge e of the

clique tree of G. Let sep(e) = fw1; w2; w3g. We de�ne �(vij;4) = fw1; w2g; �(v
i
j;5) = fw2; w3g;

and �(vij;6) = fw1; w3g.

We now can note that the order of any edge in any T i;j
v -type subtree in T 0 cannot be more

than the cardinality of the separating set of the corresponding edge and thus it is equal to 3.

We observe that, so far, for any edge e connecting vertices in some minimal separator of G,

there is at least one internal leaf v in T 0 such that �(v) = e.

12

fc; ig

fb; eg

G

(TG; l)

(T 0; �)

d

a

b
c

e

f

g

h

i

j

k

fa; e; h; ig

fb; e; h; ig
fc; e; h; ig

fd; e; i; jg

fe; h; i; jg

fg; h; i; jg

fh; i; j; kg

ff; h; j; kg

1
1

1 2

3
3

1

fi; hg

fe; hg

fb; eg

fb; ig

fd; ig

fe; ig

fe; jg

fj; hg

fi; hg

fg; hg

fg; jg

fj; kg

fi; kg

fj; hg

fk;hg

fk; fg

fj; fg

ff;hg fj; hg

fe; ig

fe; hg

fh; ig

fe; ig

fe; hg

fh; ig
fe; ig

fe; ig

fd; jg

fi; jg

fi; jg

fj; hg

fi; hg

fh; jg
fi; jg

fi; jg

fk; jg

fk; jg

fj; fg

fa;hgfh; eg

fe; ig

fa; ig
fb; hg

fc; eg

fc; hg

fd; eg

fa; eg
fa; eg fe; ig

fh; eg

fe; hg

fc; eg

fe; ig

fd; ig

fi; jg

fg; ig

fi; hg

fg;hg

Figure 4: A 3-tree G, a labelled clique tree (TG; l) of G, and a corresponding ampli�ed branch

decomposition (T; �).

According to the construction above the only leaves of T 0 for which � is still unde�ned are

leaves appearing as triples of the form vi3; v
i
4; v

i
5 (we call these leaves external). Notice also that

these triples belong to T i
v-type subtrees of T 0 and correspond to vertices v of the clique tree

of G that are 4-cliques with the following property: they contain at least two triples that are

not a minimal separators of G. Suppose that v = fw1; w2; w3; w4g is a clique of this type. We

distinguish the following cases:

Case (i). fw1; w2; w3; w4g contains exactly 2 triples t1; t2 that are minimal separators of G. In

this case we observe that it is possible to choose a triple t3 of fw1; w2; w3; w4g that is not a minimal

separator and such that E(G[t1[t2])[E(G[t3]) = E(G[fw1; w2; w3; w4g]). If t3 = fwi1; wi2; wi3g,

then we de�ne �(vi3) = fwi1; wi2g; �(v
i
4) = fwi2; wi3g, and �(vi5) = fwi1 ; wi3g. Observe now that

all edges in T i
v
have order 3.

Case (ii). fw1; w2; w3; w4g contains exactly one triple t1 that is minimal separator of G. In

this case we observe that v is associated with another T i0

v
-type subtree containing one triple of

leaves of the form vi
0

3 ; v
i0

4 ; v
i0

5 where i 6= i0. It is easy now to see that we can �nd two triples t2; t3

in fw1; w2; w3; w4g such that t2 6= t3 and E(G[t1]) [E(G[t2 [t3]) = E(G[fw1; w2; w3; w4g]).

13

If t2 = fwi1 ; wi2; wi3g and t3 = fwi0
1

; wi0
2

; wi0
3

g then we de�ne �(vi3) = fwi1 ; wi2g; �(v
i
4) =

fwi2 ; wi3g; �(v
i
5) = fwi1; wi3g; �(v

i0

3) = fwi0
1

; wi0
2

g; �(vi
0

4) = fwi0
2

; wi0
3

g, and �(vi
0

5) = fwi0
1

; wi0
3

g.

Notice now that all edges in T i
v
or in T i0

v
have order 3.

Case (iii). The case where fw1; w2; w3; w4g does not contain minimal separators is trivial as this

can happen only if G is a 4-clique.

We can now see that for any edge e in G whose endpoints belong in a triple that is not a

minimal separator of G there exists an external leaf v in T 0 such that �(v) = e.

The construction above builds an ampli�ed branch decomposition (T 0; �) of G of width

exactly 3. It is also not hard to see that it can be easily implemented in O(jV (G)j) time.

Now, according to Lemma 1 it is possible to build a branch decomposition of G in O(jV (G)j)

time. An example of the construction we described can be seen in Figure 4. The grey vertices

in the tree of the ampli�ed tree decomposition represent the leaves that have to be eliminated

in order to obtain the branch decomposition. 2

Theorem 5 One can construct an algorithm that given a crossless chordal graph with maximum

clique size at most 4, �nds a minimum width branch decomposition in O(jV (G)j) time.

Proof. According to Theorem 1.d, we can check in linear time if a graph has branchwidth at

most 2 or not. Therefore we can check in linear time if branchwidth(G) = 3. In such a case,

using Theorem 7, we can construct a crossless k-tree G0 containing G as a subgraph and such

that V (G0) = V (G). Now, using algorithm 4CT and Theorems 8, and 10 we can construct a

branch decomposition of G0 with width 3. Finally, from Lemma 1, we have the required branch

decomposition. From Theorem 1.c, it is trivial to check in linear time if G has branchwidth at

most 1 or not. Therefore it is easy to know if G has branchwidth = 2. In this special case, the

corresponding branch decomposition can be computed using a straightforward modi�cation of

our algorithm. Finally, if branchwidth(G) = 1 then, from Theorem 1.c, it is trivial to construct

the minimal branch decomposition. 2

We can now proof the following.

Theorem 6 The following propositions are equivalent.

a. A graph G has branchwidth at most 3.

b. G has treewidth at most 3 and Q3 6� G.

c. G has treewidth at most 3 and G is crossless.

Proof. (a) b). Suppose that branchwidth(G) � 3. Then, from Theorem 1.b, we get that

treewidth(G) � 3. We also have that Q3 6� G because, otherwise, from Theorem 1.a, we have

that branchwidth(G) � branchwidth(Q3) = 4 and this is a contradiction.

14

(b) c). It is enough to prove that if a graph G has a cross, then it contains Q3 � G. Let

S = fv1; v2; v3; v4g be a cross in G. We set Si = S � fvig; 1 � i � 4. It is now easy to see that if

we contract all edges of G with both endpoints in
S
i=1;:::;4 att(G; Si), we obtain Q3.

(c) a). Follows immediately from Lemma 3 and Theorem 5. 2

Theorem 7 The obstruction set of the class of graphs with branchwidth at most three, B3 equals

fK5;M6;M8; Q3g.

Proof. From Lemma 2, it is enough to prove that Q3 is the only element of B3 with treewidth

equal to 3. This is true because according to Theorem 6, any graph of treewidth at most 3,

without containing Q3 as a minor, has branchwidth at most 3. 2

4 Reduction rules for graphs with branchwidth at most 3

We denote as Rb�3 the set of reduction rules shown in Figure 5.

(b:ii) (b:iii)(b:i)

(b:iv) (b:vi)

0

(b:v)
0

null

graph

1

Figure 5: The reduction rules for the class of graphs with branchwidth � 3.

Lemma 11 Let G be a graph with branchwidth at most 3. Suppose also that rule b:v or rule

b:vi occurs in G. Then, if we apply b:v or b:vi on G the resulting graph has also branchwidth at

most 3.

Proof. We will examine together the two cases where we apply b:v or b:vi. Suppose that for

some graph G, where branchwidth(G) � 3, the application of rule R, that is either b:v or b:vi,

on G results in a graph G0 with branchwidth(G0) > 3. Let fa; b; c; dg be the resulting clique in

G0. W.l.o.g. we can assume that NG0(a) = fb; c; dg. Observe that H = G0[V (G0) � fag] has

treewidth at most 3, as treewidth(G) � 3 and H is the result of a single application of rule t:v,

in case R is b:v, or of three successive applications of rule t:iv0, in case R is b:vi, on G. Moreover

G0 has also treewidth at most 3 as fb; c; dg induces a 3-clique in G0. Now, from Theorem 6, we

have that G0 contains a cross S. By the de�nition of the cross we have that for any vertex v 2 S

there must exist tree vertices in NG0(v) forming an independent set of G0. Therefore a 62 S. We

also claim that jfb; c; dg\Sj � 1. Suppose in contrary that w.l.o.g. fb; cg � S. Then, S would be

15

a cross also in G00 = G0[V (G0); E(G0)� ffb; cgg] and this is a contradiction as G00 � G. We can

now assume w.l.o.g. that fb; cg \ S = ;. Therefore, fa; b; cg belongs to the vertex set of one of

the connected components of G0[V (G0)�S]. The same connected component remains connected

even if we remove fb; cg from G0 as a is adjacent with both b; c. Therefore, the occurring graph

G00 = G0[V (G0); E(G0)� ffb; cgg] contains a cross which is a contradiction as G00 � G. 2

Lemma 12 Rb�3 is a safe set of reduction rules for the class of graphs with bounded branch-

width.

Proof. We have to prove that the application of any reduction rule from Rb�3 to a graph

preserves both its membership and non-membership. Membership for b:v and b:vi holds im-

mediately from Lemma 11. For the rest of the rules in Rb�3 membership is easy because of

Theorem 1.a, as the application of any of them on a graph G with branchwidth � 3 results a

graph H where H � G.

Suppose now in contrary, that there exists a graph G with branchwidth � 4 and a reduction

rule R 2 Rb�3 occurring in G, such that if G0 is the result of applying R on G, then G0 has

branchwidth � 3. Notice that, according to Theorem 6, G0 is crossless and has treewidth � 3. We

also have, from the same Lemma, that either G has treewidth � 4 or contains a cross. Suppose

that G has treewidth � 4. Notice that, as Rt�3 is safe, there are no rules in Rt�3 occurring in

G. Clearly R cannot be b:i (or b:ii, or b:iii, or b:iv), otherwise rule t:i (t:ii, or t:iii, or t:iv) would

occur in G). Moreover, it is not hard to see that if R is b:v (b:vi), then also t:v (t:iv) occurs in G,

a contradiction. So, G has treewidth at most 3 and therefore contains a cross. Recall that G0 has

also treewidth at most 3 and is crossless. Let S = fa; b; c; dg be a cross in G. As S is not a cross

in G0, we assume w.l.o.g. that fb; c; dg is not a minimal separator of G0. Notice that G0 cannot

result after the application of rules b:i, b:ii, b:iii, or b:v on G as those applications cannot harm

the status of S as a cross. Thus, R is either b:iv or b:vi. In the �rst case G contains one vertex

more than G0 which is adjacent with b; c and d. This case leads to a contradiction because b; c

and c are all adjacent with more than 1 vertices in V (G0[V (G0)� fb; d; cg]) and rule b:iv cannot

be applied. In the second case G contains two vertices more than G0, each one adjacent with

di�erent triples in fa; b; c; dg. In this case we have again a contradiction because a; b; c; d are all

adjacent with more than 0 vertices in G0[V (G0)� fa; b; d; cg] and rule b:vi cannot be applied. 2

Lemma 13 Let G be a crossless 3-tree. Then, there exists one reduction rule in Rb�3 occurring

in G.

Proof. Let (TG; l) be a labelled clique tree of G. Using Lemma 9, we distinguish the following

cases:

Case (i). TG contains a leaf u1 adjacent to a vertex v that is also adjacent to a vertex u2 and

such that l(fv;u1g) = l(fv;u2g). In this case we can easily see that the two vertices in the set

16

u1 [u2 � sep(fv;u1g) are adjacent only with the 3 vertices in sep(fv;u1g) = sep(fv;u2g and

thus rule b:vi can be applied.

Case (ii). Case (i) is excluded and TG contains a simple leaf u adjacent to a vertex with span

degree d where d = 1 or 2. As the case where d = 1 is directly covered by the analysis of case

(ii), we examine the case where d = 2. In this case, we may observe that v contains exactly two

triples S1; S2 that are minimal separators and one of them, say S1, contains vertices that are

all adjacent with the single vertex in u� v. Observe that the vertex in v � S2 is adjacent with

exactly one vertex not in S1 and thus rule b:iv can be applied.

Case (iii). Cases (i) and (ii) are excluded. In the remaining case there exist two simple leaves

u1;u2 in T connected with the same vertex v and v has span degree equal to d where d = 2; 3.

As the case where d = 2 is directly covered by the analysis of case (ii), we examine the case

where d = 3. In this case, v contains exactly 3 triples S1; S2; S3 that are minimal separators

and two of them, denote them S1; S2, contain vertices that are all adjacent to the single vertex

in u1 � v and to the single vertex u2 � v respectively. It is easy to see that the single vertex in

v� S3 is adjacent only with vertices in v and thus rule b:vi can be applied. 2

Lemma 14 If there exists some reduction rule in Rb�3 occurring in a graph G, then, for any

subgraph G0 of G such that V (G0) = V (G), there exists also some rule in Rb�3 occurring in G0.

Proof. It is enough to prove that if some reduction rule R occures in a graph G then, for any

e 2 E(G), there exist some rule in Rb�3 occurring in G0 = (V (G); E(G)� feg). If the removal

of e does not harm the occurence of R, then R occures in G0 as well. If this is not the case, then

we claim that, whatever the rule R is, the removal of e implies the occurrence of another rule

R0 2 Rb�3 in G0. Indeed, it is not di�cult to check that any removal of an edge in rule b:ii, b:iii,

b:iv, b:v, produces rule b:i, b:ii, b:iii, b:iii respectively and any removal of an edge in rule b:vi,

produces either rule b:iii or rule b:iv. 2

Lemma 15 Rb�3 is a complete set of reduction rules for the class of graph with branchwidth

� 3.

Proof. Let G be a non-empty graph with branchwidth � 3. We will prove that there is a

reduction rule in Rb�3 occurring in G. From Theorem 6, G has bounded treewidth and is

crossless. Let G0 be a minimal triangulation of G. According to Lemma 3, G0 is also crossless.

Also, from Lemma 7 G is a subgraph of a crossless 3-tree G00 such that V (G00) = V (G). From

Lemma 13 we know that there exists a reduction rule in Rb�3 occurring in G00. The result now

follows immediately from Lemma 14. 2

Now, from Lemmata 12 and 15 we have the following.

Theorem 8 Rb�3 is a safe and complete set of rules for rewriting graphs of branchwidth at

most 3.

17

Lemma 16 Let G be a graph with branchwidth at most 3. Let also R1: : : : ; Rr be a sequence of

reduction rules in Rb�3 that can reduce a graph G to the empty graph (such a sequence exists

because of Theorem 8). Then, one can construct a linear time algorithm that, given G and

R1: : : : ; Rr, outputs a crossless chordal graph G0 with maximum clique size at most 4 and such

that G is a subgraph of G0 and V (G0) = V (G).

Proof. Let G = G1; : : : ; Gr+1 be a sequence of graphs such thatGi+1 occurs after the application

of Ri to Gi. Clearly, we can compute in linear time the set E+ = [i=1;:::;rE(Gi). It now is easy

to see that G0 = (V (G); E+) is the required crossless chordal graph. 2

Lemma 17 One can construct a linear time algorithm that, given a graph G, checks whether

branchwidth(G) � 3 and, if so, outputs a crossless chordal graph G0 with maximum clique size

at most 4 and such that G is a subgraph of G0 and V (G0) = V (G).

Proof. According to Theorem 8, a graph has branchwidth at most 3 i� we can �nd a sequence

of reduction rules in Rb�3 that, when successively applied, reduce G to the empty graph. The

reductions can be applied in linear time observing that every edge of an occurrence of a reduction

of the set Rb�3 in a graph G is incident to a vertex of degree � 5 and using the same approach as

the one used in [13] by Matou�sek and Thomas (their algorithm is based on the same observation

about the setRt�3). Given the sequence of the reduction rules that reduce G to the empty graph,

is it now possible, using Lemma 16, to generate in O(jV (G)j) time a crossless chordal graph G0

with maximum clique size at most 4 and such that G0 is a subgraph of G with V (G0) = V (G).

2

Now, using Lemmata 1 and 17 and Theorem 5, we can conclude that one can construct an

algorithm testing if a given graph has branchwidth at most 3 and, if so, outputs a branchwidth

decomposition of width at most 3 in O(n) time. So the main conclusions of this section are

summed up by the following.

Theorem 9 The following three statements hold.

a. A graph has branchwidth at most 3 if and only if it does not contain any of the graphs in

the set B3 = fK5;M6;M8; Q3g as a minor.

b. A graph has branchwidth at most 3 if and only if there exists a sequence of reduction rules

in Rb�3 that can reduce G to the empty graph.

c. One can construct an algorithm that tests if a given graph has branchwidth at most 3 and,

if so, outputs a branch decomposition of minimum width in O(n) time.

18

5 Open problems

We believe that the methodology applied in this paper may be useful in identifying obstruction

sets and/or reduction rules for other problems as well. In this direction, the study of the graphs

with branchwidth at most four appears to be an interesting problem.

Acknowledgements

We thank Kouichi Yamazaki for discussions on this research.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of �nding embeddings in a

k-tree. SIAM J. Alg. Disc. Meth., 8:277{284, 1987.

[2] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph

reduction. J. ACM, 40:1134{1164, 1993.

[3] S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees. SIAM

J. Alg. Disc. Meth., 7:305{314, 1986.

[4] S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors characterization of

partial 3-trees. Disc. Math., 80:1{19, 1990.

[5] H. L. Bodlaender. A linear time algorithm for �nding tree-decompositions of small treewidth.

SIAM J. Comput., 25:1305{1317, 1996.

[6] H. L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of permutation

graphs. SIAM J. Disc. Meth., 8(4):606{616, 1995.

[7] H. L. Bodlaender and D. M. Thilikos. Constructive linear time algorithms for branchwidth.

In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings 24th Inter-

national Colloquium on Automata, Languages, and Programming, pages 627{637. Springer

Verlag, Lecture Notes in Computer Science, vol. 1256, 1997.

[8] W. Cook, 1996. Personal communication.

[9] W. Cook and P. D. Seymour. An algorithm for the ring-routing problem. Bellcore technical

memorandum, Bellcore, 1993.

[10] Y. Kajitani, A. Ishizuka, and S. Ueno. A characterization of the partial k-tree in terms of

certain substructures. Graphs and Combinatorics, 2:233{246, 1986.

[11] T. Kloks. Treewidth. PhD thesis, Utrecht University, Utrecht, the Netherlands, 1993.

19

[12] J. Matou�sek and R. Thomas. Algorithms �nding tree-decompositions of graphs. J. Algo-

rithms, 12:1{22, 1991.

[13] J. Matou�sek and R. Thomas. On the complexity of �nding iso- and other morphisms for

partial k-trees. Disc. Math., 108:343{364, 1992.

[14] N. Robertson and P. D. Seymour. Graph minors | a survey. In I. Anderson, editor, Surveys

in Combinatorics, pages 153{171. Cambridge Univ. Press, 1985.

[15] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-decomposition.

J. Comb. Theory Series B, 52:153{190, 1991.

[16] D. P. Sanders. On linear recognition of tree-width at most four. SIAM J. Disc. Meth.,

9(1):101{117, 1996.

[17] A. Satyanarayana and L. Tung. A characterization of partial 3-trees. Networks, 20:299{322,

1990.

[18] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217{

241, 1994.

[19] J. van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer Science, A:

Algorithms and Complexity Theory, pages 527{631, Amsterdam, 1990. North Holland Publ.

Comp.

[20] J. A. Wald and C. J. Colbourn. Steiner trees, partial 2-trees, and minimum IFI networks.

Networks, 13:159{167, 1983.

20

