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INTRODUCTION

The road to complete comprehension of a biological

process inevitably passes through the knowledge of the

detailed atomic structures of its participants.1 Unfortu-

nately, experimental determination of biomolecular struc-

tures is often problematic and time consuming, whereas

in silico molecular modeling methods devised as comple-

mentary approaches suffer from chronic inaccuracy

because of the simplified physics they are based on.2

Nevertheless, the relative ease and speed with which the

latter yield near-atomic resolution models earned them a

spot in the limelight of structural biology methods.

To counterweigh their innate inaccuracy, molecular

modeling methods often generate thousands to tens of

thousands of possible conformations for a single struc-

ture, each representing a discrete point in its energy

landscape. A posterior selection process is then necessary

to salvage the most native-like conformations. Previous

research has shown that, because a native structure is

very unlikely to be an isolated event in the energy land-

scape, it is expected to neighbor similar near-native con-

formations in a basin with overall low potential energy.3

This observation hinted at the adoption of clustering

techniques, devised to group elements sharing common

attributes, to the benefit of the selection process. In fact,

it has been shown in both protein structure prediction3

and protein–protein docking4 that clustering indeed

helps discriminate near-native structures better than

energetics alone. Predictably, the most successful algo-

rithms at both CASP (Critical Assessment of Techniques

for Protein Structure Prediction)5 and CAPRI (Critical

Assessment of Prediction of Interactions)6 experiments

have incorporated at least one clustering step in their

protocols.
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ABSTRACT

Inaccuracies in computational molecular modeling methods are often counterweighed by brute-force generation of a pleth-

ora of putative solutions. These are then typically sieved via structural clustering based on similarity measures such as the

root mean square deviation (RMSD) of atomic positions. Albeit widely used, these measures suffer from several theoretical

and technical limitations (e.g., choice of regions for fitting) that impair their application in multicomponent systems

(N > 2), large-scale studies (e.g., interactomes), and other time-critical scenarios. We present here a simple similarity mea-

sure for structural clustering based on atomic contacts—the fraction of common contacts—and compare it with the most

used similarity measure of the protein docking community—interface backbone RMSD. We show that this method produces

very compact clusters in remarkably short time when applied to a collection of binary and multicomponent protein–protein

and protein–DNA complexes. Furthermore, it allows easy clustering of similar conformations of multicomponent symmetri-

cal assemblies in which chain permutations can occur. Simple contact-based metrics should be applicable to other structural

biology clustering problems, in particular for time-critical or large-scale endeavors.
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The performance of clustering algorithms is neverthe-

less dependent on the similarity measure used to deter-

mine the similarity between any two elements of a data-

set, which for the majority of the state-of-the-art cluster-

ing algorithms is the root mean square deviation

(RMSD) of atomic coordinates. Yet, previous research

has shown that, despite widely adopted, RMSD suffers

from several shortcomings. First, it loses sensitivity as the

molecular weight of the system increases, because large

regions with little deviations become dominant.7 Second,

and more importantly, the necessity of choosing the

regions to fit the structures under scrutiny to one

another results in biased measurements. Finally, RMSD

calculations are CPU intensive and consume a large

amount of live memory (RAM), yet another hindrance

to the structural comparison of increasingly larger and

more complex systems.

This conjecture motivated several studies comparing and

assessing similarity measures.8,9 Metrics such as dihedral

angles and variants of RMSD such as distance matrix

RMSD have been used to cluster molecular dynamics trajec-

tories. It has also been shown that a metric based on residue

contacts—contact matrix distance—accounted for less cha-

otic clusters. Furthermore, contact-based measures (lDDT10

and FNAT11) are already being used to assess the quality of

submitted models in CASP and CAPRI, respectively.

The protein docking community is shifting its focus to

more intricate systems such as entire interactomes or

supramolecular assemblies consisting of a large number of

components.12 As a result, similarity measures that retain

a high sensitivity while performing substantially faster

than traditional RMSD-based metrics are required.

Inspired by the widespread usage of contact information

in structure comparison, we theorized that calculating the

fraction of common contacts (FCCs) between two struc-

tures, akin to the notion of fraction of native contacts

used in CAPRI, would first describe the relative orienta-

tion of the interacting partners and second provide

detailed residue-level information. Such a measure, if

applied to structural clustering, should yield sufficient dis-

criminatory power without suffering from any of the theo-

retical downsides of positional RMSD measures and save a

considerable amount of computation time as it discards

the structural alignment step. In the following, we intro-

duce the concept of FCC clustering and demonstrate its

performance in a set of binary and multimeric complexes,

selected not only to reflect typical scenarios in protein

docking but also challenging cases including assemblies

with internal symmetry and protein–DNA complexes.

MATERIALS AND METHODS

Identifying residue contacts

For each nonhydrogen atom pair (i, j) in a structure,

the Euclidean distance between the atoms (rij) is com-

puted. If this distance is below a threshold rc and both

atoms belong to different polypeptide chains, the pair of

residues to which the atoms belong to is considered to

be in contact. We defined rc as 5 Å in accordance with

CAPRI criteria, the standard in the docking field.

Calculating the FCCs

We define our similarity measure, FCCAB, as the FCCs

between structures A and B with respect to the total

number of contacts in A:

FCCAB ¼ jA \ Bj
jAj 2 ½0; 1� ð1Þ

The outcome is a value ranging from zero, when the

structures share no contacts, to a maximum of one when

all contacts of structure A are present in structure B. The

normalization of the number of common contacts over

the number of contacts of the first structure brings asym-

metry to the similarity measure and consequently to the

similarity matrix as FCCAB might not be equal to FCCBA.

In principle, the matrix could be symmetrized before

clustering. However, a comparison of the clustering cov-

erage and entropy of the obtained clusters using the two

different matrices revealed that, for the majority of the

cases, the symmetric matrix produces larger clusters but

also with a larger entropy (Supporting Information Fig.

S4). In addition, the averaging of both FCC values

reduces the resolution of the matrix, making it harder to

optimize the clustering threshold. In light of these obser-

vations, the asymmetric matrix approach was chosen for

all subsequent work.

In the case of symmetrical complexes, the chain identi-

fier is omitted from the contact string identifier for the

FCC calculation. This ‘‘chain-agnostic’’ variant of the

FCC computation allows efficient clustering of structures

that share the same interface regardless of the permuta-

tion of their chains along the symmetry axis.

Clustering algorithm

We adapted a version of the disjoint Taylor–Butina

clustering algorithm developed to use asymmetric matri-

ces13 that can be described in four steps:

1. Create a nearest-neighbor table from the full similarity

matrix using a predefined threshold for the FCCs.

Structure A is a neighbor of B only if FCCBA is above

the threshold, and vice versa.

2. Detect true singletons (structures with an empty near-

est-neighbor list, i.e., no neighbors at this threshold)

and remove them from the dataset.

3. Find the structure with the largest nearest-neighbor

list and define it as the center of the first cluster.

Exclude this structure and all its neighbors from the

dataset and update all nearest-neighbor lists. This
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update step is crucial to have disjointed clusters, or in

other words, to ensure that structures belong to one

and only one cluster.

4. Repeat step 3 until no structures are left in the dataset

or the remaining have nearest-neighbor lists shorter

than a predefined minimum cluster size threshold

(default 4).

The original algorithm by Prinzie and Van der Poel13

comprised the inclusion of the remaining structures—

false singletons—in the cluster with the largest number

of structures neighboring them. Preliminary analysis

revealed that it contributed to an increase in the struc-

tural variability within the clusters, while being not at all

justified with a significant increase of cluster population.

Consequently, we forfeited this step in our implementa-

tion.

Implementation of the FCC-based clustering
algorithm

Our clustering algorithm was implemented in the

Python programming language and is freely available

upon request. All the calculations were performed on a

standard desktop computer with 2.66-GHz CPU and 4-

GB RAM.

Measures for cluster quality assessment

The quality of the cluster i can be assessed by the con-

formational variability of its N members. In the case of

complexes, it is defined as the mean interface positional

RMSD (i-RMSD) of all members from the center of the

cluster, clus.ctr:

Clusteri Entropy ¼ 1

N

Xni

s¼1

i� RMSDðsÞclus:ctr ð2Þ

This measure was further expressed to account for the

entropy of a given clustering run consisting of M clusters

as the population-weighted average of the individual

cluster entropies:

Average Cluster Entropy ¼
PM

i¼1 SðiÞ3Clusteri EntropyPM
i¼1 SðiÞ

ð3Þ

where S(i) represents the number of elements in cluster i.

Because of the internal symmetry of some cases of our

structure set, calculating their cluster and average cluster

entropies required an iterative i-RMSD calculation where

all chain combinations were tried. The lowest i-RMSD

value was then chosen. This ensured that, despite chain

permutations, the entropies truly reflected the conforma-

tional variability within the clusters, while free from sym-

metry-induced artifacts.

Definition of i-RMSD and iL-RMSD

i-RMSD

The interface RMSD is defined following CAPRI

standards as the positional RMSD of all interface resi-

dues (calculated on the Ca, N, C, and O atoms) that

have a heavy atom within 10 Å of any other interact-

ing partner.

L-RMSD

The ligand RMSD is also defined following CAPRI

standards. The models are first fit onto the larger chain

(receptor) and then the RMSD (on Ca, N, C, and O

atoms) is calculated on the smaller chain (ligand).

iL-RMSD

The interface–ligand RMSD (iL-RMSD) used in HAD-

DOCK for clustering purposes14 is a slight variation of

i-RMSD, in which the models are first fit on the interface

of the first molecule and the RMSD is then calculated on

the interface residues of all other molecules. Interface res-

idues are automatically defined based on all contacts

observed over all generated docking solutions. For speed

purposes only CA atoms are considered. Depending on

the conformation sampling of the docking models, this

measure will be somewhere in between i- (sampling only

close to the true interface) and L-RMSD (sampling of

the entire surface of all molecules).

RESULTS

Evaluating FCC as a similarity descriptor

To evaluate the performance of FCC clustering, we an-

alyzed docking models obtained with HADDOCK14 for

a set of six complexes consisting of two to five compo-

nents and with various internal symmetries (see Tables I

and II) whose structures were experimentally determined.

We calculated both the FCCs with the reference native

structure (FCCNAT) and the i-RMSD (i-RMSDNAT) from

the native structure (see Materials and Methods section).

Additionally, we also calculated the ligand RMSD (L-

RMSDNAT) from the native structure.

Unsurprisingly, for all complexes, near-native models

(low i-RMSDNAT) share a substantial number of contacts

(high FCCNAT) with the native structure, whereas those

more dissimilar share progressively fewer or none at all

(Fig. 1). The same, albeit less obvious for some struc-

tures, is observed for L-RMSDNAT (Supporting Informa-

tion Fig. S1). The anomaly observed for the LecB pro-

tein, a dimer of dimers, is due to its particular symmetry

type (D2), in which the larger intradimer interface

accounts for the majority of contacts, causing solutions

mirrored across the interdimeric axis to have high FCC

values (Supporting Information Fig. S2). Nevertheless,
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the most native-like structures have a distinctly higher

FCC value. These observations indicate that FCC is a

good similarity descriptor, suitable for clustering of bio-

molecular interfaces, regardless of their molecular com-

ponents and their quaternary arrangement.

Choice of optimal threshold for FCC-based
clustering

The clustering threshold defines the rigor with which

the clustering algorithm considers two structures similar

enough to belong together in the same cluster. Although

previous works4 have attempted to derive an optimal

threshold for protein–protein docking using the distribu-

tion of values in the similarity matrix, pursuing a similar

approach for FCC proved unreasonable. The distribution

of the values in the similarity matrix depends on the

conformational variability of the generated models. For

complexes whose models are widespread over the confor-

mational landscape, such as in the majority of our struc-

ture set (Table II), the distribution of similarity matrix

values resembles a negative exponential function [Sup-

porting Information Fig. S3(B–E)] and is therefore

unsuitable for extracting an optimal clustering threshold

as per Ref. 4. Interestingly, the chain-agnostic variant of

the algorithm affects the distribution of the matrices of

multimeric complexes, producing a shift toward higher

FCC values [Supporting Information Fig. S3(C–E)]. In

light of these observations, we opted to evaluate several

clustering runs at different thresholds (starting at 0.5,

Figure 1
Assessing the FCCs (FCCNAT) as a similarity descriptor by comparison

with the i-RMSD (i-RMSDNAT). Both FCC and i-RMSD are calculated

with respect to the experimentally determined structure of each

complex. Low i-RMSDNAT values correspond to high FCCNAT values,

which supports the hypothesis that FCC is a good similarity descriptor

and, hence, a good similarity measure for structural clustering. In the

case of LecB, symmetrical solutions that share only the larger of the two

dimeric interfaces with the native structure have high FCC values
(highlighted by gray circles) (see also Supporting Information Fig. S2

and the main text for explanation).

Table II
Structural Characteristics of the Model Set and Clustering Statistics for

Both RMSD and FCC Clustering Methods

Complex

Mean
i-RMSD
of the

ensemble
(�)

Similarity
measure

Number
of

clusters

Clustered
structures

(%)

Average
cluster
entropy
(a.u.)

E2A-HPR 2.4 � 1.8 RMSD 3 99 1.6
FCC 7 83 1.7

Barnase-Barstar 8.9 � 4.0 RMSD 8 92 1.9
FCC 7 65 1.8

TBEV 27.2 � 11 RMSD 22 94 1.7
FCC 17 92 0.9

LecB 8.9 � 7.7 RMSD 25 93 1.9
FCC 18 79 0.8

VP1 15.0 � 5.3 RMSD 32 72 2.7
FCC 32 50 2.1

PVUII/DNA 5.57 � 1.3 RMSD 8 93 2.2
FCC 11 80 2.1

The mean interface RMSD of the ensemble informs on the variability of the con-

formations present in the model set. The percentage of clustered structures and

average cluster entropy refer to two measures we defined to assess the clustering

algorithms. FCC clustering is shown to have consistently lower entropy, at a cost

of less structures clustered, and performing particularly well for multimeric

assemblies (TBEV, LecB, and VP1).

Table I
Biomolecular Complexes Used to Assess FCC Clustering Performance

Complex PDB ID # Components Type # Models
Symmetry

type

E2A/HPR 1GGR15 2 Protein/protein 200 None
Barnase-

Barstar
1BRS16 2 Protein/protein 200 None

TBEV 1SVB17 3 Protein/protein 400 C3
LecB 1OUS18 4 Protein/protein 400 D2
VP1 1VPN19 5 Protein/protein 400 C5
PVUII/DNA 1EYU20 2a Protein/DNA 200 None

The models were taken from previously published datasets. The references of the

experimental structure determination protocols are shown in parenthesis after the

PDB ID.
aThe focus in this complex was on the protein–DNA interface. Accordingly, the

protein–protein interface was not considered for clustering purposes.
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with increasing steps of 0.1) monitoring the conforma-

tional entropy of the resulting clusters and the total per-

centage of models included in clusters (Fig. 2).

As expected, raising the clustering threshold enhances

structure discrimination. This increasingly isolates struc-

tures and consequently reduces the size of the resulting

clusters. Eventually, these clusters fail to meet the mini-

mum size requirement (four members) and their mem-

bers are considered isolated events in the conforma-

tional landscape [Fig. 2(B)]. This effect is particularly

evident at very highly discriminative thresholds (0.9)

where the fraction of clustered structures drops below

0.5 for most cases. The average cluster entropy depends

on the quality of the docking prediction and on the

dispersion of the models over the conformational land-

scape of the molecule. Well-defined model sets such as

E2A-HPR produce clusters through the FCC algorithm

with an entropy comparable to those of RMSD cluster-

ing at thresholds as low as 0.5 (50% of the interface

contacts in common) [Fig. 2(A)]. Stricter discrimina-

tion has little effect on the structural variability in

each cluster, as seen by the slow decrease in average

cluster entropy of E2A-HPR (1.78–1.32). On the other

hand, clustering more chaotically distributed model sets

(e.g., VP1) clearly benefits from higher thresholds,

because the entropy of the resulting clusters steadily

drops (from 3.30 to 1.22) as the threshold increases.

Notably, LecB deviates from the rest of the complexes

because of its particular symmetrical arrangement (Sup-

porting Information Fig. S2). Up to a threshold of 0.8,

most clusters include several mirror-like symmetrical

conformations and have consequently very high entropy

values (>10). Increasing the threshold to 0.9 allows the

discrimination of both interdimer and intradimer inter-

faces, splitting the very large cluster obtained at

0.8 (Cluster #1, entropy 10.55, N 5 297) into smaller

but extremely compact subclusters. This brings the av-

erage cluster entropy sharply down (0.91) while retain-

ing the large majority of the structures (78.5%; Fig. 2).

These observations suggest that a threshold between 0.7

and 0.8—empirically, 0.75—is the most suitable for

generic application of FCC clustering. However, this

might require adaptation in particular cases, such as

LecB.

Quantitative assessment of FCC clustering

To cement the quality of FCC as a valid similarity

measure for structural clustering, we performed a direct

comparison with the protocol integrated in HADDOCK,

which uses iL-RMSD of atomic coordinates (see Materi-

als and Methods section) and the clustering algorithm

implemented by Daura et al.21 with a default clustering

threshold of 7.5 Å (Fig. 3). iL-RMSD clustering at this

threshold collects a larger number of structures at an

expected cost of higher entropy clusters [Fig. 3(A,B)].

Although for the heterodimers and PVUII/DNA this is

acceptable, analysis of clustering of symmetric multicom-

ponent complexes reveals an important limitation of iL-

RMSD, and by extension all positional RMSD-based met-

rics, as clustering similarity measures: recognizing similar

conformations with different symmetrical chain arrange-

ments is not trivially possible and results in several clus-

ters that should, in truth, be merged. This happens

because these methods are bound to the chain identifiers

of the PDB file format, which in turn results in high

RMSD values for structures that share very similar struc-

tural features but whose chain identifiers are swapped,

placing them in separate clusters. Detailed analysis of the

centers of iL-RMSD-generated clusters corroborates this

hypothesis, showing little conformation differences

between several models, indicating that these should

belong in the same cluster. By contrast, the chain-agnos-

tic variant of the FCC clustering algorithm agglomerates

the several chain permutations (i.e., for a three-chain

complex: ABC and ACB) in one single and larger cluster

(N 5 87). Because these structures are nevertheless very

similar, the entropy of the clusters remains extremely low

[Fig. 3(B)].

Figure 2
Definition of an optimal clustering threshold from an analysis of
different runs at different clustering thresholds. A value of 0.75 was

selected based on the observation that the entropy of the clusters

declines with increasing values of threshold, whereas the number of

structures included in the clusters only drops sharply at 0.9. This

threshold is appropriate for good clustering in all cases but LecB, which

requires a higher value (0.9) because of its particular symmetric

arrangement.

J.P.G.L.M. Rodrigues et al.

1814 PROTEINS



Finally, because structural alignment and fitting is

absent in FCC clustering, computational efficiency is

greatly enhanced [Fig. 3(C)]: iL-RMSD clustering takes

several minutes to several hours to build similarity matri-

ces for the complexes, depending on the interface size.

Using FCC as a similarity measure reduces this computa-

tion time by a factor of, on an average, 100, smoothing

the path for structural clustering of intricate multicom-

ponent systems such as those described before.

DISCUSSION

Residue contacts are enough to differentiate
binding poses

We have developed a new clustering approach for mac-

romolecular complexes based on the premise that residue

contacts alone are enough to discriminate binding poses

between interacting partners. Although already used by

the docking community to assess the accuracy of the

docking results, the application of the FCCs in structural

clustering of docking solutions is novel and shows good

results. Direct comparison with the commonly used i-

RMSD reveals that FCC is a good descriptor of structural

similarity (Fig. 1). We have shown that a high value of

FCC unequivocally corresponds to low i-RMSD and L-

RMSD values, and therefore similar structures, independ-

ently of the number of components in the complex or its

symmetry type.

FCC clustering can accommodate various
levels of biomolecular complexity

We have shown that FCC clustering deals effortlessly

with large assemblies, greatly reducing the computation

time while generating clusters of similar quality with

the current state-of-the-art methods (Fig. 3). This leap

in performance is due to the avoidance of pair-wise

structural alignments, which has the added value of

removing the bias stemming from the choice of regions

on which to perform the alignment. Another problem

tied to structural alignment lies in the handling of sym-

metrical solutions. Although structural biologists artifi-

cially name molecular chains to distinguish them from

one another, for structural comparison and by proxy,

structural clustering purposes, the chain arrangement

does not matter as long as the molecular architecture is

similar. Because RMSD calculations are bound to the

chain identifiers, clustering based on such measures of-

ten produces very similar clusters whose structures dif-

fer only in the symmetrical arrangement of their chains.

This is evident in all the cases with internal symmetry

presented above (TBEV, LecB, and VP1) and poses a

problem for postclustering analysis. Avoiding this prob-

lem in RMSD-based methods requires an iterative calcu-

lation of all the several permutations of the chain

arrangements (e.g., ABC and ACB), which further

aggravates computational performance. FCC clustering

sidesteps all these issues by considering each complex a

whole entity free from chain identifiers—the chain-

agnostic variant. Although simplistic, this solution suc-

cessfully merges the several clusters that share the same

conformation, which not only accounts for larger clus-

ters but also facilitates posterior analysis, namely in

determining the lowest energy cluster, likely to contain

the best representative structure. This advantage will be

crucial in case where only few similar conformations are

present in the model set. Furthermore, as the calcula-

tion of the FCCs, as per the current algorithm, reads

only the residue index within the structure, FCC has a

wide range of applications regarding different molecular

representation scales (coarse-grained to all-atom). It

also allows for clustering of point mutants of the same

Figure 3
Average cluster entropy, cluster coverage, and computational

performance for both the FCC clustering (gray bars) and the iL-RMSD

clustering (black bars). Clusters were generated using the default

threshold for iL-RMSD of 7.5 Å in all cases and 0.75 for FCC, except

LecB, which was clustered at 0.9 (striped bar). FCC clustering leads to

smaller but more compact clusters, which indicates a better

discrimination of fringe structures. For multimeric structures with

internal symmetry, in particular TBEV and VP1, the advantage of

clustering based on FCC is evident. Performance-wise, avoiding

structural fitting reduces the computation time required for FCC

clustering by a factor of 100 on an average.
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structure, or even gapped models, given that the num-

bering is preserved and consistent across all models.

Ranking of clusters is largely independent of
the clustering method

The discriminative power of FCC clustering for the

chosen general threshold of 0.75 (75% of the interface in

common) is superior to that of iL-RMSD clustering,

reducing the entropy of the clusters, but also the size of

the clusters. Analysis of which structures are effectively

discarded through FCC clustering showed that these are

largely fringe structures, the furthest away from the clus-

ter center, and that in most cases do not impact the over-

all quality of the clusters when compared with the native

structure. An analysis on the average i-RMSDNAT of all

clusters generated with both FCC and iL-RMSD algo-

rithms for an extended dataset composed of 20 real-case

scenarios (previous CAPRI experiment targets) showed

that the ranking of the clusters is largely unaffected by the

clustering method (Supporting Information Table S1).

Comparison of the top ranking clusters reveals in a ma-

jority of cases a good agreement between both clustering

algorithms and for a number of cases, for similar ranking

performance, the resulting clusters show an increased ac-

curacy as measured by i-RMSDNAT. Therefore, this cor-

roborates that FCC clustering is not discarding important

native-like structures and is therefore suitable for large-

scale application.

FCC clustering accommodates current and
future needs in biomolecular docking

Both the increased computational efficiency and the

overall performance of our FCC clustering algorithm are

encouraging. Efficient methods that allow for rapid

RMSD calculation of protein complexes exist but are,

however, mostly based on simple rigid body transforma-

tions (i.e., rotations and translations over the center of

mass of the complex) and thus do not account for inter-

nal flexibility of the system. Because the models were

generated with HADDOCK, which includes a semiflexible

refinement step, rigid body-based clustering algorithms

are inappropriate. In contrast, FCC clustering worked

effectively on these models, meaning that the method is

suited for flexible docking approaches, without degrading

performance. Furthermore, considering the shift toward

the modeling of entire interactomes or very large systems

(e.g., nuclear pore1) to fill in the gaps left by low-resolu-

tion or high-throughput experimental techniques, fast

and accurate clustering methods will be critical in the

near future. We have demonstrated here that our FCC

algorithm is well suited for this task as it performs well

in diverse environments, from traditional protein–protein

complexes to more complicated multicomponent assem-

blies and heterogeneous biomolecular systems like

protein–DNA complexes, while being computationally

efficient.

CONCLUSION

The current perspectives for the field of biomolecular

docking call for methods able to deal with large datasets,

both in number of molecules and molecular size. RMSD-

based clustering methods are computationally expensive

and their sensitivity decreases with the molecular size of

the system. Yet, suggested alternatives so far, although

useful in particular scenarios, fail at reproducing both

their quality and performance when applied generically.

Although the concept of contact-based molecular com-

parison is known and used in both CASP and CAPRI, it

is limited to the assessment of results. The inclusion of

FCC clustering in docking algorithms, as shown here

with HADDOCK, has the potential to greatly enhance

their computational performance. In addition, FCC clus-

tering is able to deal with symmetry and multicompo-

nent complexes with negligible performance degradation.

Furthermore, given its sole dependence on residue num-

bering, it allows for the clustering of mutants and gapped

structures, broadening even more its usefulness to the

clustering of structures coming from different trajectories

or simulations. All these, allied to the simplicity of the

algorithm and its flexibility in dealing with several mole-

cule types, tailor FCC clustering for the upcoming chal-

lenges in the docking field and offer an effective alterna-

tive to traditional RMSD-based clustering methods and

their inherent shortcomings.
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