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Abstract

The principle of maximum entropy is a general method to assign values to probability
distributions on the basis of partial information. This principle, introduced by Jaynes
in 1957, forms an extension of the classical principle of insufficient reason. It has
been further generalized, both in mathematical formulation and in intended scope, into
the principle of maximum relative entropy or of minimum information. It has been
claimed that these principles are singled out as unique methods of statistical inference
that agree with certain compelling consistency requirements. This paper reviews these
consistency arguments and the surrounding controversy. It 1s shown that the uniqueness
proofs are flawed, or rest on unreasonably strong assumptions. A more general class of
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inference rules, maximizing the so-called Rényi entropies, is exhibited which also fulfill
the reasonable part of the consistency assumptions.

1 Introduction

In any application of probability theory to the problems of science or practical life one
meets the question of how to assess the probability of the occurrence of some event or of
the truth of some hypothesis. And although the mathematical formalism of probability
theory serves as a powerful probe when analyzing such problems, it cannot by itself answer
this question. Indeed, the formalism necessarily remains silent on this issue, since its goal is
just to provide theorems valid for all probability assignments allowed by its axioms. Hence,
recourse is necessary to an additional rule which tells us in which case one ought to assign
which values to probabilities. Such a rule must, of course, refer to the meaning of the
concept of probability, and will hence be subject to debate and controversy.

In 1957 E.T. Jaynes proposed a rule to assign numerical values to probabilities in cir-
cumstances where certain partial information is available. Jaynes showed in particular how
this rule, when applied to statistical mechanics, leads to the usual canonical distributions in
an extremely simple fashion. He also showed that a general method of statistical inference
could be built upon this rule, which subsumes the techniques of statistical mechanics as a
mere special case. Today this rule, known as the maximum entropy principle (MEP), is
used in many fields, ranging from physics and chemistry to image reconstruction and stock
market analysis. The series of volumes on Maximum FEntropy and Bayesian Methods and
many other publications amply illustrates the wide interest in the subject.

Nevertheless the MEP has always remained controversial. In part this controversy de-
rives from the fact that Jaynes’ principle relies on a ‘subjective’ (also known as ‘objective
Bayesian’ or ‘neoclassical’) interpretation of probability, as a measure of the degree of belief
which a rational person ought to assign to the event. This contrasts with the ensemble
or ‘frequency of occurrence’ interpretations which are more common in statistical physics.
More generally, the controversy is related to the very goal of Jaynes’ approach, namely to
remove statistical mechanics from the field of physics and reconstruct it as a theory of stat-
istical inference, i.e. as a branch of logic or epistemology. Jaynes (1978) presents a colourful
personal recollection of the resistance which the MEP met from the physics community, es-
pecially because of this perspective. We shall not, however, go into this side of the debate.
The works of Penrose (1979), Denbigh and Denbigh (1985), Lavis and Milligan (1985), Buck
and Macaulay (1991), Balian (1991) and Dougherty (1993) provide insight in the pro’s and
con’s of the MEP in relation to statistical physics. For our purpose it suffices to note that
the term ‘maximum entropy principle’” as it is used in this paper is not a physical principle
in the proper sense, and should be carefully distinguished from the ‘entropy maximum prin-
ciple’ of Tisza (1966) and Callen (1960). The latter is not a rule of inference but a condition
for thermodynamical equilibrium.

Jaynes’ approach has not drawn objections only for its radical reconstruction of a tra-
ditional physical theory. Also authors more sympathetic to the field of statistical inference
and subjective probability have raised serious criticism, in particular Shimony and coworkers
(Friedman and Shimony, 1971; Dias and Shimony, 1981; Shimony, 1985), Seidenfeld (1979,
1986) and Van Fraassen e.a. (1981,1986). These critics argued that the MEP conflicts with
other established rules of statistical inference, in particular with that of Bayesian condition-



alization. On the other hand, defenders of the MEP have claimed that the principle is the
unique rule of statistical inference satisfying certain compelling ‘consistency requirements’.
This claim indeed appears already in Jaynes’ first paper on the subject. It has been greatly
generalized and elaborated in the work of Shore and Johnson (1981), Tikochinsky, Tishby
and Levine (1984) and Skilling (1988, 1989). If true this claim should, of course, silence all
criticism. After all, nobody would be eager to “claim the distinction of reasoning incon-
sistently”, as Jaynes (1986) put it. The very fact that critics were not silenced, however,
suggests that these uniqueness proofs do not entirely settle this issue. Van Fraassen, Hughes
and Harman (1986) challenged the claim more explicitly by exhibiting two alternative rules
which, they argue, are no less reasonable rules of inference.

It is the purpose of this paper to review and investigate the controversy surrounding
the MEP as a rule for statistical inference. In particular, we shall examine three versions of
the claim that the MEP is the unique consequence of consistency requirements. We shall
argue that not all the requirements needed for a unique characterization of the MEP are
in fact reasonable. It is shown that a slightly smaller set of reasonable requirements are
fulfilled if and only if the rule belongs to a class of which the maximum entropy principle,
as well as the alternative rules of Van Fraassen, Hughes and Harman are members. This is
the class of rules to maximize a generalized entropy expression containing a free continuous
parameter (the so-called Rényi entropies).

These results suggest that a fruitful generalization of the MEP is obtained by the class of
maximum Rényi entropy principles, as a new ‘continuum of inductive methods’. However,
the question which entropy expression to maximize is not the only issue involved in the
controversy. The truly weak spot of the MEP and the alternative rules envisaged here
lies in the way constraints on probability distributions are formed from the given partial
information. The procedure for constructing these constraints brings back many objections
that the MEP is able to avoid at first sight. This will be argued in more detail in a sequel
paper.

This paper is organized as follows. In section 2 we recall the objections which beset
the classical precursor of the MEP, the principle of insufficient reason. Section 3 shows
how the MEP succeeds in avoiding many of these objections. The remaining questions
concern the extension of the rule to continuum problems and the justification of the choice
for the entropy expression. The extension of the principle to the continuum is discussed
in section 5. A well-known solution for this problem is obtained by replacing the entropy
expression by the relative entropy. We emphasize the consequences of this replacement for
the status and interpretation of the resulting maximum relative entropy principle (MREP).
The remainder of the paper is devoted to the problem of justification. We analyze three
approaches to the claim that the choice for the entropy expression is the consequence of
consistency requirements in section 4, 6 and 7. Section 8 is devoted to a short comparison
with the conditions formulated by van Fraassen, Hughes and Harman (1986). Section 9,
finally, summarizes the conclusions.

2 The principle of insufficient reason

The maximum entropy principle was introduced by Jaynes as an extension of the principle
of insufficient reason of Laplace. The controversy surrounding the MEP is also to a large
extent inherited from the legacy of this notorious predecessor. It is therefore worthwhile



going back first to the classical principle of insufficient reason (PIR).

Consider a random variable z. The values of  may represent outcomes of an experiment,
states of a physical system, or just label various propositions; they are what Laplace calls
the possible ‘cases’. We assume in this section that z can take on only a finite number of
possible values: @ € § = {zy,...2,}. Our problem is to assign probabilities to the various
values of x. The PIR states: whenever we have no reason to believe that one case rather
than any other is realized, or, as it is also put, in case all values of & are judged to be
‘equally possible’, then their probabilities are equal to each other, i.e.

1
pla;) = - i=1,...,n.

This principle thus relies on a symmetry in our belief or judgment in order to obtain
numerical values for probabilities. The underlying motivation is, of course, that in this
view the term probability should be understood as a degree of belief and hence, the uniform
probability distribution represents exactly the situation where all possible states are equally
credible. Laplace was not the first to make this connection between probability and belief.
Earlier similar arguments can be found in the work of Leibniz (1678), James Bernoulli (1713)
and Bayes (1763). Laplace was the first, however, to turn this rule into the cornerstone of
a comprehensive theory of probability.

Since the middle of the last century, the principle of insufficient reason and its con-
sequences have become subject to extensive criticism —and sometimes ridicule- by R.L.
Ellis (1842), J.S. Mill (1843), G. Boole (1854), J. Venn (1866), J. von Kries (1871) and J.
Bertrand (1889) to name the most prominent. In fact even the very name of the principle
is bound to make one feel uneasy.! The critics could find easy ammunition in the liberal
and sometimes naive usage Laplace, Poisson and others made of the principle, especially in
applications to the probability of testimony and in the rule of succession. In this century,
the combined authority of R.A. Fisher, R. von Mises, J. Neyman, E.S. Pearson and H.
Reichenbach has discredited the principle even further. In fact, until its revival by Jaynes,
the principle of insufficient reason had hardly any supporters at all, with the outstanding
exceptions of J.M. Keynes and H. Jeffreys. It seems that the objections under which the
principle of insufficient reason has succumbed can be divided into four types.

(i). The first objection concerns the underlying interpretation of the notion of probab-
ility. According to many present-day authors this notion represents or entails a statement
about the relative frequency of occurrence of an event. To say that in a certain situation the
probability distribution is uniform means, according to this view, that when this situation
is realized many times, all possible cases occur about equally often. In the principle of
insufficient reason, on the other hand, probability assignments are based on a symmetry
in our judgment, i.e. on the absence of knowledge that would favour the occurrence of one
case above the other. The objection is then that one cannot derive empirical predictions
from a lack of knowledge. As Ellis put it clearly (1850): “Mere ignorance is no ground for
any inference whatsoever. Ex nihilo nihil. It cannot be that because we are ignorant of the
matter we know something about it.”

Taplace did not, as far as I know, name his principle, and it is not certain who invented the expression,
clearly intended as a nickname. Many modern authors credit Von Kries (1871) for coining the phrase (as
the Princip des mangelnden Grundes). Indeed Von Kries himself also claimed to be the originator of this
term (see Von Kries, 1916). Yet Boole already refers to the ‘principle of non-sufficient reason’ in an essay of
1862 as if it were a common name.



Therefore, most authors who are sympathetic to the view that probability is an empirical
notion reject the principle of insufficient reason, whereas those who accept the principle
mostly maintain that probability should be seen as an epistemological notion: a probability
distribution represents the state of knowledge or belief of a rational mind, with the uniform
distribution corresponding to a state of ignorance about z.

(ii). The Bertrand paradox. The second type of objection is more technical. It was
shown by examples of Von Kries, Bertrand and Von Mises that the PIR leads to paradox
when it is applied to the case where z ranges over a continuum. Indeed, the obvious exten-
sion of the principle to such cases is to adopt a uniform probability density when we have
no reason to believe in the realization of one possible value rather than any other. The
problem is now that one can choose different parametrizations for a continuum, and a prob-
ability density that is uniform over x becomes non-uniform under a non-linear parameter
transformation, say y = 2>. This conflicts with the intuition that in a state of ignorance
our judgment ought to be invariant under reparametrization: if we are ignorant of  we are
also ignorant of y. Similar problems are actually also encountered in the case of discrete
variables. In this case too a mere difference in bookkeeping can lead to different probability
assignments, as is shown in Bertrand’s example of the golden and silver coins.

(iii). The third objection goes back to James Bernoulli’s Ars Conjectandi (1713). Long
before Laplace, Bernoulli was already quite familiar with the idea of assigning numerical
values to probabilities based upon lack of information, and sometimes he is regarded as
the originator of the PIR. But Bernoulli also argued that this idea was of very limited
applicability. According to him, it could be used almost exclusively in games of chance.
Outside of this restricted context, for example in judging the risk of death, it is often too
difficult to specify, say, the number of possible diseases, let alone to judge whether they are
equally possible or not. In those cases Bernoulli advocated another method, based on his
famous law of large numbers.

(iv). The last famous objection we mention has been made by Reichenbach. He claimed
that the PIR was circular on the grounds that the only sensible meaning one can give to
the phrase ‘equally possible’ is, in fact, ‘equally probable’ (Reichenbach 1935, p. 339). This
criticism is obviously unfair to Laplace, who explicitly clarified that he meant the term to
refer to a judgment: “cas également possibles, c’est a dire tels que nous soyons également
indécis sur leur existence” (Laplace 1829). But Reichenbach is right to draw attention to the
vagueness in the notion of possibility. The analysis of Von Mises (1928) and Hacking (1971,
1975) shows that in common language the notion of possibility is even more ambiguous than
the notion of probability itself, so that a principle that grounds probability assignments in
judgments of possibility, if not circular, is still not very enlightening.

The objections listed above played an important role in the downfall and eventual (al-
most) universal abandonment of the PIR. I do not claim that the list is exhaustive or even
exclusive. In fact it is not easy to give a fair discussion of the PIR since many authors differ
greatly in their statement of the meaning of the principle. Modern texts like those of Jaynes
(1957a) or Fine (1973) formulate the PIR as the requirement to assign the alternative cases
equal probability “if there is no reason to think otherwise” or “in the absence of known
reasons to the contrary”. These formulations seem rather different from Laplace’s own, in
the sense that they make a judgment about the probability itself rather than about the
occurrence of cases the criterion for a probability assignment. Thus they are much more
vulnerable to the charge of circularity. There are also variations of the PIR such as the
principle of cogent reason (the Prinzip des zwingenden Grundes of Czuber) which are also



not always stated clearly and hard to distinguish from the PIR.

The disreputable status of the PIR is best illustrated by quoting from Keynes, who in
1921 attempted to save some valid version of the principle from its many difficulties. He
admitted that these difficulties were

“responsible for the doubts which philosophers and many others have often felt
regarding any practical application of the [probability] calculus. Many candid
persons, when confronted with the results of probability, feel a strong sense of
uncertainty of the logical basis upon which it seems to rest. It is difficult to find
an intelligible account of the meaning of probability, or of how we are ever to
determine the probability of any particular proposition; and yet treatises on the
sub ject profess to arrive at complicated results of the greatest precision and most
profound practical importance. The incautious methods and exaggerated claims
of the school of Laplace have undoubtedly contributed towards the existence of
these sentiments.” (Keynes, 1973, p. 55)

Keynes proposed to relieve the principle from its bad reputation by renaming it the ‘principle
of indifference’. This name seems no improvement because it suggests unwanted connota-
tions with the notion of preference. In a game of Russian roulette, for example, one may
very well judge the location of the bullet in each of the chambers of a revolver as equally
possible, without feeling indifferent on the matter.

3 The revival of insufficient reason by maximum entropy

The principle of maximum entropy is a generalization of the principle of insufficient reason.
We start again from the assumption that the variable z can take values in a finite set
S ={21,...,2,}. It is now assumed that some information about this variable is given
which can be modeled as a constraint on the set of probability distributions over 5. It is
assumed that this constraint exhaustively specifies all relevant information about z. The
principle of maximum entropy is then the prescription to choose that probability distribution
p for which the Shannon entropy, i.e. the expression

H(p) = =3 _p(wi)logp(w:) (1)

is maximal under the given constraints.
The most simple and often studied type of constraint is the case where the expectation
value of some function f has a given value:

(f) = Zf(%)p(%) =a. (2)

In that case a well-known argument using Lagrange multipliers shows that the probability
distribution with maximum entropy is of the form
pp(r) = ———
T )

where the parameters g and Z are determined by the constraint and normalization condi-
tions,

—%bg 2(5) = a (4)



Z(3) = Ze—ﬁf(xi)' (5)

The MEP contains the PIR as a special case. Indeed, in the absence of reasons, i.e. in
the case where no or only trivial constraints are imposed on the probability distribution, its
entropy H(p)is maximal when all probabilities are equal. But then, as the ‘son of insufficient
reason’, the principle of maximum entropy of course enherits all objections associated with
its infamous predecessor. How does it cope with these?

(i). With respect to the objection that no empirical knowledge can be derived from
ignorance, the MEP can only agree. Indeed, in the frequency interpretation of probability
the MEP seems to make little sense at all. Therefore, Jaynes has often emphasized that in
the present view probability is not meant to represent a factual property of the real world
but rather a state of knowledge about the world. Probability theory is in this approach not
an empirical science and one should not expect to derive empirical consequences from the
MEP. The maximum entropy probability distribution only represents our best prediction
or judgment based on the given information.

(ii). The Bertrand paradox. In 1973 Jaynes produced a powerful argument to resolve the
Bertrand paradox in line with the Maximum Entropy method and showed how a satisfactory
solution for this problem is obtained by consideration of the relevant symmetry group.
However, in order to do so the principle has to be adapted so as to be applicable to a
continuum. We shall discuss the technical changes necessary to obtain this extension in
section 5. We shall also argue that these technical changes involve important conceptual
changes which alleviate the alleged merely subjective aspect of the principle.

(iii). How does the MEP fare in relation to Bernoulli’s objection? Again, it provides
progress. Since the MEP allows for using partial information in the form of constraints, it
has obviously a much wider applicability than the PIR. Of course this is not to say that all
of Bernoulli’s worries are solved. Not every case of partial information can be modeled as
a constraint on probability distributions. Also, the question what to do when the number
of possible cases is unknown remains as yet unsolved.

(iv). Does the MEP boil down to a circularity, like the PIR in Reichenbach’s analysis?
Obviously not, because the MEP is much more specific and general than its predecessor.
The choice to maximize the Shannon entropy expression H is clearly not trivial. One can
envisage many alternative rules different from the MEP that also generalize the PIR. For
example, consider the rule to choose that probability distribution that maximizes

H(p) =3 o(p(x:)) (6)

with ¢ a concave function. It can be shown (see Hardy, Littlewood and Pélya, 1934,
p. 89) that in the absence of constraints, the maximum of this expression for all probability
distributions with n possible events is again obtained when all probabilities are equal.
Thus, a ‘maximum H principle’ will also generalize the principle of insufficient reason. But
in general, such a rule will lead to very different value assignments. Hence, one may ask
why the choice ¢(z) = —xloga is singled out above other concave functions in (6). Thus
by avoiding the threat of circularity one raises the problem of justification of the MEP.

To summarize, we can say that the Maximum Entropy Principle provides clarification
or progress on all of the objections that proved fatal to the PIR. There is however also an
urgent new problem, that of justification of the entropy expression. It is to this problem
that we now turn.



4 Justification by consistency: the approach of Jaynes

The claim that the MEP is justified by an appeal to consistency already appears in Jaynes’
original article (1957a). In this article Jaynes based his claim on the following theorem of
Shannon (1948) 2

Theorem 1 If the expression H,(p1,...,pn) for p; > 0,5 . p; = 1 and n > 2 satisfies the
conditions:

1. Hy(p,1—p) is a continuous positive function of p.

2. For all n, Hy(p1...,pn) is a symmetrical (i.e. permutation invariant) function of
Py -y Pn-

3. Foralln > 2,

yal P2 )
p1+p2 vt pe

Hn(plv B 7pn) = Hn—l(pl +p27p37 B 7pn) + (Pl +p2)H2(

then H, has the form
H,=-K sz 1ng2

=1

for some positive constant K.

This theorem shows that the entropy or information measure H (we shall drop the subscript
n for simplicity) is uniquely singled out (up to a multiplicative constant) by the three
assumptions above. Jaynes argued:

“Aln] ...important reason for preferring the Shannon measure is that it is the
only one which satisfies the condition of consistency represented by the com-
position law [i.e. the assumptions of Shannon’s theorem]. Therefore one expects
that deductions made from any other information measure, if carried far enough,
will eventually lead to contradictions.” (Jaynes, 1981, p. 9)

And again in 1963:

“It has by now been amply demonstrated by many workers that the “informa-
tion measure” introduced by Shannon has special properties of uniqueness and
consistency that make it the correct measure of the “amount of uncertainty” in
a probability distribution” (Jaynes 1981, p. 45)

The justification of the MEP is then that the maximum entropy distribution is the distri-
bution that correctly corresponds with a maximal amount of uncertainty. It represents the
only probability assignment that is “maximally noncommittal with regard to missing in-
formation”, i.e. that, while obeying the constraint, does not assume any information which
we actually do not have.

This type of argument clearly hinges essentially on the idea that the Shannon entropy is
the only measure of uncertainty that complies with conditions of consistency. The sense in
which the term consistency is meant in these quotations is not completely clear, however.

*Here the assumptions of the theorem are given in the version of Faddeev (1957), who gave the first
rigorous proof of the theorem.



In logic, the term ‘consistency’ is used to refer to a theory which does not entail a con-
tradiction. In this logical sense, the most one can understand by a ‘condition of consistency’
is the requirement to reject logical contradictions and to accept tautological truths. And
although the quotation above refers to the avoidance of contradictions, it is quite obvious
that the MEP, or indeed any inference rule whatsoever, cannot be derived from such a re-
quirement alone. Thus, in the present quotations the term ‘consistency’ is not to be taken
in this logical sense. What is meant, presumably, is that the assumptions of Shannon’s
theorem are intuitively appealing, or perhaps even rationally compelling conditions to be
demanded of any measure of information.?

Jaynes often attributed this ‘consistency’ argument to Shannon. In 1985, he even stated
that, were it not for this appeal to consistency, “The name ‘Claude Shannon’ or the term
‘Information Theory’ would be quite unknown today” (p. 135). In fact, however, Shannon
did not appeal to consistency in the derivation of his theorem at all. On the contrary, he
rather de-emphasized the importance of his uniqueness theorem by writing:

“This theorem and the assumptions needed for its proof are in no way necessary
for the present theory. It is given chiefly to lend a certain plausibility to some
of our later definitions. The real justification of these definitions, however, will
reside in their implications.” (Shannon 1948, p.393, emphasis added)

Thus, Shannon’s assumptions are used by Jaynes for a purpose which apparently is not his
own. But perhaps the theorem can bear a stronger reading than Shannon himself argued for.
So let us ask whether the assumptions on which the theorem rests can be seen as conditions
of consistency, i.e. whether alternative information measures would be ‘incorrect’, ‘lead to
contradictions’ or have other undesirable consequences.

In this respect, the assumptions of Shannon’s theorem are not immune to criticism. To
mention an obvious point first, the third assumption implicitly assumes a scale on which
entropy or information is to be measured. Is that scale rationally compelling? Khinchin
wrote on this issue:

“...it is natural to express the amount of information ...by an increasing func-
tion of H. The choice of this function means the choice of some unit for the
quantity of information and is therefore fundamentally a matter of indiffer-
ence.”(Khinchin 1957, p. 7.)

In particular, one may add, this choice should not matter if our only interest is in the ques-
tion for which distribution H becomes maximal, and not in the value of that maximum.
But the choice does matter in Shannon’s assumptions since they characterize H up to a
multiplicative constant, and not H? or exp H, etc. Hence these assumptions, however nat-
ural or convenient they may be, involve also what is more appropriately called convention,
rather than consistency requirement.

A more substantial drawback is that Shannon’s assumptions cannot be extended to the
continuous case in a straightforward way. As is well-known, and will be discussed in more

°In later articles (1968, 1973) Jaynes uses the term ‘consistency desideratum’ for the demand that “in two
problems where we have the same state of knowledge we should assign the same subjective probabilities.”
To me this formulation seems to express the intended interpretation of probability rather than a demand of
consistency.



detail in section 5, more mathematical ingredients are needed in order to obtain a mean-
ingful measure of information for continuous probability distributions than are mentioned
in Shannon’s formulation.

The most serious objection against regarding the assumptions of Shannon’s theorem as
compelling concerns one of its properties which, also according to Shannon, should provide
the real justification of the expression. To explain this property and the objection against
it, it is necessary to consider the concept of conditional entropy. Consider two variables z
and y. The entropies of x and y are given by

Zp ) log p(x),

H(y) =~ ply;)log p(y;)-
J
(N.B.: in the notation H(z) z should not be thought of as the argument of a function, but
as a mere label specifying the variable.) The conditional entropy of  given y is defined as

Zp Zp (z]y)log p(z|y) (7)

and one can derive the relation :

H(zly) < H(z) (8)
where equality holds just in case the variables z and y are independent. (To prove (8), use
Jensen’s inequality for the concave function —zlogz.) Shannon explained relation (8) as
expressing the property of H that the uncertainty about one variable is never increased by
knowledge of another. This, according to him, was among the properties that gave H its
real justification. The idea is surely very appealing and pleasing, but it is not correct.

There are situations where knowledge about one variable in fact increases uncertainty
about another. An example is given by Aczél and Daréczy (1975): assume that the prob-
ability of a raven being black versus white is 0.99 versus 0.01, but that if a raven has a
white mother, the probability of it being white is 0.5. Then if we learn that a particular
unobserved raven has a white mother the uncertainty about its colour is increased. In fact
information about a variable x may increase uncertainty about x itself: the entropy of the
probability distribution for the location of my housekeys increases when I discover that they
actually are not, as I held to be very probable, in the pocket of my coat (cf. Uffink, 1990).

Seidenfeld (1979) discussed similar examples of ‘reverse ordering” as important objec-
tions against the MEP. They show that entropy and information do not always vary in the
same sense and that Shannon’s explanation of relation (8) was not correct. This relation
says only that the entropy of z is not expected to increase upon knowledge of y.

In view of the present puzzles Jaynes wrote:

“...one can easily invent situations where acquisition of a new piece of knowledge
(that an event previously considered improbable had in fact occurred) can cause
an increase in the entropy.”

and he concluded:

“This paradox shows that ‘information’ is an unfortunate choice of word to
describe entropy expressions.” (Jaynes 1957b, p. 186)

10



This conclusion is rather disappointing, when compared with the earlier quotation in which
it was argued that every measure of information except H will lead to contradictions. If
now H itself leads to paradox when it is used as an information measure, one may very
well ask again whether alternative measures would behave so much worse. We shall take
up the question again after a discussion of the problems encountered with the extension to
continuous probability distributions.

In conclusion, the strategy of justifying the MEP by means of Shannon’s uniqueness
theorem seems to fail. First of all, the assumptions on which the theorem rests are not all
compelling, but contain also conventional elements. Secondly there is still the problem of
extension to the continuum. Thirdly there are examples showing that the entropy expression
has properties which do not correspond completely with what one would intuitively expect
of an information measure. To be sure, these examples are perhaps more telling against
intuition than against the Shannon entropy. But they do undermine the claim that the
assumptions needed to characterize this expression uniquely can be justified by an appeal
to consistency or intuitive assent.

5 Extension to the continuum: maximum relative entropy

Up till now we have assumed that the set S of possible cases is finite. If we wish to extend
the MEP to more general situations, the first obvious case to consider is that where S
is infinite but still discrete, e.g. S = IN. This case poses the problem that the entropy
expression

H == p;logp;
=1

is now unbounded from above. It may occur that H becomes infinite for more than one
distribution allowed by the constraints and thus does not possess a unique maximum. The
problem how the MEP is to be applied in this case is not often studied in the literature,
presumably because it seems almost neglible compared with those encountered in the ex-
tension to the continuum. We shall therefore leave it as it is, and simply assume that the
constraints are such that a unique maximum for the entropy is admitted.

A more formidable problem is obtained when we assume that the set of possible states
x forms a continuum, say S = IR. It is well known that the entropy expression (1) does not
have a natural extension to this case. Indeed, the expression one would naively write down
for this case,

~ [ pa)tog pla) e

for a probability density p(z), has properties which are rather different from those of its
discrete counterpart (1). In particular, probability densities mostly carry a physical dimen-
sion (say probability per length) which gives H the unit of “logcm”, which seems somewhat
odd. Also, in contrast to (1), this expression is not invariant under a reparametrization of
S, e.g. by a change of unit. Further, H may now become negative, and is not bounded from
above nor below so that new problems of definition appear. (Cf. Hardy, Littlewood and
Pélya, 1934, p. 126.)

These problems are clarified if one considers how to construct an entropy for a con-
tinuous probability distribution starting from the discrete case. A natural approach is to

11



partition S into a disjoint subsets (Ay,..., A,), and then calculate the entropy of the dis-
crete probability distribution P(A;),...P(A,). The entropy of the continuous probability
distribution ought then to be obtained by taking the limit of finer and finer partitions.
Unfortunately, this approach is frustrated, because this limit is infinite for all continuous
probability distributions. This divergence is also obtained —and explained— if one adopts the
well-known interpretation® of the Shannon entropy as the least expected number of yes/no
questions needed to identify the value of z, since in general it takes an infinite number of
such questions to identify a point in continuum. In view of these problems many authors
have denied the possibility of defining entropy expressions for the continuum.

A more fruitful way of dealing with the continuum is by replacing the entropy expres-
sion (1) by the so-called relative entropy. (See Kolmogorov, 1957; Gelfand, Yaglom and
Kolmogorov, 1958; and Kullback 1957). For the discrete case, this entropy is defined as

p(a;)
(@)

Hdisc(pv ,u) = - Zp(wl) 1Og (9)

where p(z;) are positive weights determined by some ‘background measure’ p. In the special
case where 1 is the counting measure, i.e. if Vi : p(z;) = 1, the relative entropy (9) becomes
equal to the (absolute) entropy (1). This relative entropy (not to be confused with the
conditional entropy (7)!) however has a natural extension to the continuous case. The
important difference with the absolute entropy (1) is that if one now partitions the real
line in increasingly finer subsets, the probabilities P(A;) and the background weights u(4;)
are both split simultaneously and the logarithm of their ratio will generally not diverge. In
fact, it can be shown that this relative entropy is non-increasing under refinement:

P(B))
1(B;)

— > P(4i)log Pl —> P(Bj)log

1(A;)

if the partition (By...B,,) is a refinement of (4 ...A,). Hence the relative entropy over
a continuum can be defined unambiguously as the limit under increasing refinement if we
make the assumption that p does not vanish on any set A for which P(A) > 0.°

The relative entropy of the continuous probability measure P with respect to a back-
ground measure g can be written as

1P = [ G0 log G (o) due) (10)

where P /0u denotes the Radon-Nykodim derivative. In the case where p is the Lebesgue
measure A, this reduces to

H(P.X) = = [ ple)logp(e)do (11)

where p(2) is the probability density of the probability measure P. This is of course exactly
the expression one would have expected as an analogue of (1) also from a naive point
of view. It is important to note, however, that because the relative character, i.e. the
dependence on a second measure is brought out in (11), the expression is now invariant

*This interpretation supposes that the logarithm in (1) has base 2.
®Of course the limit may still be infinite (positive or negative) for particular choices of P and p.
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under a reparametrization of the continuum, as long of course as the background measure
is unchanged.

In the case where pu is itself a probability measure, it is sometimes more convenient
to represent both measures by their corresponding densities. lLe. if we put p = 9P/OA,
m = du/0N, we get

or . _ px)

a(x) = () and du(z) = m(z)dz,
so that the expression (10) takes the form
_ p(z)

which we shall use later.

It appears that in order to define an entropy for continuous probability distributions
we should replace the concept of absolute entropy by that of relative entropy. How does
this affect the maximum entropy principle? Obviously this can now be generalized into the
mazimum relative entropy principle (MREP): choose that probability distribution which,
under given constraints, and for a given background measure g maximizes the relative
entropy. Technically, this fixes the problem of dealing with the continuum. The relative
entropy does not change when we reparametrize z, because P and p will transform in
exactly the same way. Thus the MREP does not fall prey to the Bertrand paradox.

The new rule, however, is obviously different from the earlier (absolute) maximum en-
tropy principle because it is relative to a choice of the background measure. Different choices
of u will lead to different probability assignments. So how do we choose u? This in turn
depends on how one interprets this measure. There are two options in the literature. In
Jaynes’ approach (Jaynes, 1968, 1973), u is taken to reflect the physical symmetries in the
problem at hand. In particular, if there is a physical symmetry group for the problem, p
must be invariant under the action of this group. For example when z is a location in space,
and if the problem is symmetrical under spatial translations, the background measure must
be proportional to the Lebesgue measure. Note that, as this example shows, p need not be
a probability measure.®

A second interpretation of the background measure is that it too represents a probability
distribution, a prior distribution that corresponds to our knowledge of the system before the
information encapsulated in the constraints comes in. In this interpretation the principle of
maximum relative entropy becomes a rule for changing or updating a previous probability
distribution. This version of the principle is used by Williams, Shore and Johnson, Skyrms,
Van Fraassen and many others. It is also called the minimum cross-entropy or minimum
information principle. It seems that Jaynes always rejected this point of view.

In both versions, the transition from an absolute to a relative entropy principle has
important implications also for the first objection discussed in section 2, the ‘ex nihilo nihil’.
This is not to say that the MREP is acceptable for those who interpret probability as an
objective quantity. But it seems to me that the misgivings that many ‘candid persons’
have against the PIR or the MEP are connected with the suspicion that it just plucks
the probability values out of thin air (cf. Edwards, 1972). Since the MREP requires a
specification of the background measure as an extra mathematical ingredient, the situation
is different, as follows.

5Unless, following Jeffreys, one allows for unnormalized (improper) probability distributions.
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In Jaynes’ interpretation a connection is made with the symmetries of the problem. It
is, of course, still true that these symmetries characterize our state of knowledge rather
than the physical world. But Jaynes (1973) also assumes that every circumstance that
may ‘exert an influence’ is explicitly included in the statement of the problem. Hence the
symmetries in our formulation of a problem are assumed to be reflections of those existing
in the physical world. This means that the choice of the background measure presupposes
fallible, empirical knowledge, and one does not proceed ez nihilo.

In the second interpretation the change in status of the entropy principle is even greater.
Here, maximization of relative entropy is no longer regarded as a general principle by which
one assigns a probability distribution. On the contrary, it should be regarded as a rule to
adapt or update a distribution already in our possession. It has been aptly called a rule of
‘probability kinematics’. And just like ordinary kinematics, the rule has to supplemented
by a specification of initial conditions in order to obtain tangible results. This means that
the question of how to asign values to probabilities, with which we started our discussion, is
left to be answered by other means. And with this more modest goal, the second version of
the MREP is also not vulnerable to the objection that it plucks the values of probabilities
out of thin air.

Either way, there seems to be genuine and important progress in the extension of the
MEP to the MREP. But there still remains the question of justification: why maximize
relative entropy, and not, say, the relative analogue of (6)

A= [ ¢(g—§)du (13)

for some other concave function ¢? One approach to answering this question could be to
find a set of assumptions which characterize the relative entropy uniquely, in analogy with
Shannon’s theorem. Such a characterization has been given by Hobson (1971), but the
assumptions needed seem to have less intuitive appeal than those of Shannon. Another
axiomatization has been given by Rényi (1962). An alternative axiomatization, character-
izing all expressions (13) is given by Uffink (1990). We shall not pursue this approach here.
In the following we shall see that there are desirable properties obeyed only by a special
class of concave functions ¢. The choice ¢(z) = —x log z, leading to the relative entropy, is
among them but it is not unique.

6 Justification by consistency: Shore and Johnson

The strongest and most careful attempt to answer the question why the rule to maximize
the relative entropy (12) is to be preferred was made by Shore and Johnson (1981). These
authors explicitly present their work as a proof that this rule represents the unique correct
rule of inference, and as a vindication of Jaynes’ claim that every other rule will lead
to contradictions. We shall see, however, that their results actually provide considerable
evidence against these claims.

In the present approach, it is assumed that one is looking for a procedure by which a
prior probability density p(«) is changed into a posterior density ¢(z) when new information
is taken into account. Thus, we are dealing here with the second interpretation of the
MREP discussed in the previous section, as a rule of updating. It is assumed that the new
information specifies a set 7 of probability densities in which the posterior is constrained
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to lie. For example, the constraint might fix the expectation value of some function f:

T={q: [fa)g(e)de=c}

or puts inequality bounds on such expectations:

I=A{q:a< /f(w)q(x) dz < c}.

But more general constraints are also allowed, e.g. fixing a conditional expectation:

T={¢: [f@lals)dr =)
where ¢(z|95;) is the conditional density restricted to a subset S; C 5.

B g e S;
q(2]S;) = { Js 1@z
0

otherwise

It is further assumed that the procedure takes the form of maximizing some relative uncer-
tainty expression of the form F(q,p) under the constraint ¢ € Z. However, the procedure
is characterized not by desiderata on F’, but by how the posterior depends on the prior
distribution and the new information.

This approach, which differs considerably from that of relying on Shannon’s uniqueness
theorem, indeed solves two of the drawbacks which we found in section 4. In the first
place, Shore and Johnson axiomatize the inference rule itself, instead of the uncertainty
measure. The merit of this is that the question what convention we shall choose to scale
the measure of uncertainty no longer plays any role. The rules ‘maximize H(q,p) and
‘minimize exp —H (q,p)’ can be identified, because they yield the same result on the same
input. Secondly, Shore and Johnson characterize the MREP rather than the MEP. The
latter appears only as the special case where the prior distribution is uniform. Thus, no
problems with the extension to the continuum appear. Both aspects represent important
advantages. A weak point, of course, is still that one simply assumes in this approach
that the inference rule proceeds by maximizing some functional depending only on prior on
posterior.

Technically, the problem is formulated as follows. A system has a set .S of possible
states with an unknown true’ probability density ¢f. We write the class of all probability
densities over S as P. The prior distribution, p(z) represents a (subjective) estimate of ¢
before new information is given. It is assumed that the prior is diffuse, Vo € S : p(z) > 0.
The new information I is assumed to single out a closed® convex subset Z of P in which
the true probability ¢f must fall. This is written as I = (qJr € 7). In response to this
information, the prior density p is changed into a posterior density ¢ in Z. It is assumed
that the inference rule yields this posterior ¢ as a function depending only on the prior p
and the constraint I, symbolically written as:

g=1op (14)

"The assumption of the existence of a ‘true’ probability distribution may not be palatable to strict

followers of the subjectivist view of probability. One can however easily replace the idea of a ‘constraint on
¢’ by a ‘constraint on the posterior ¢’ without damage to the mathematical argument.
®In Shore and Johnson (1981) this closure was specified as being understood in L'-norm.
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where o is an ‘updating operator’. Shore and Johnson give five “consistency axioms” for
this updating operator (Shore and Johnson, 1980; Johnson and Shore, 1983).

“1. Uniqueness: The result should be unique.”

This axiom is in fact already implicit in the notation (14), specifying that ¢ is determined
as a function of I and p.

“2. Invariance: The choice of coordinate system should not matter.”

Thus, if I' : p(2) — p(y) = p(w(y))|§—§| represents the transformation of a probability density
under a bijective reparametrization of the set 5, one has

[(Iop)=(I'T)o(I'p)

where '] is to be read as stating that the true distribution I'¢f(y) obeys the transformed
constraint I'Z = {¢ € P : TI'" !¢ € Z}. This expresses the desire to avoid Bertrand’s
paradox.

“3. System independence: It should not matter whether one accounts for in-
dependent information about independent systems separately in terms of
different densities or in terms of a joint density.”

Thus, let p; and I; denote prior probability densities and constraints for two systems,
each with its individual state x;, ¢ = 1,2. For independent systems, a probability density
describing the combined system should take the form of a product of the separate densities.
Thus, when the prior joint density is taken as p(x1, pr2) = p1(a1)p2(z2), the axiom states:

(Iy Ag) o (pip2) = (Lyopr)(L2 0 p2)
where I1 A I5 is the conjunction of Iy and I5.

“4. Subset independence: It should not matter whether one treats disjoint?
subsets of system states in terms of separate conditional densities or in
terms of the full density.”

This requirement may need some explanation. Note that the axiom differs from the
preceeding one, at least in spirit, in the sense that one does not consider the structure of a
composite system but the structure of the state space. The motivation behind the axiom
can perhaps be illustrated as follows. Suppose one is interested in the probability of different
political parties winning the next election. The set of parties S is divided into the subsets
St and Sg (left and right wing). Now suppose some partial information [y, is obtained (say
by a poll) that indicates that among left-wing voters a relative shift in support is to be
expected, say from radical left to social-democrat. Let the updated probability distribution
of party  winning the election be written as ¢(z) = I, o p(z). Now it seems reasonable
to argue that since the information Iy concerns parties from the left only, the updating
procedure should affect the distribution over that part of the political spectrum only.

°The original text reads ‘independent’ instead of ‘disjoint’. It seems clear from the context however that
the latter term was intended.
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Thus if we conditionalize the updated probability ¢(z) under the supposition that the
winning party belongs to the set 57, of left-wing parties, this should give the same result as
when we update the prior distribution conditionalized on Sp:

q(z|S) = Ir, o p(x]S5L).

Similarly, conditionalizing the updated probability under the supposition that the winner
belongs to Sk should equal the updated conditional probability p(z|Sg). Furthermore, this
distribution should not be affected by the information Iy, concerning left-wing parties only
and remain equal to the prior:

q(z|Sr) = Ir o p(z[SR) = p(z|5R)

More generally, let 5, ...5,, denote disjoint subsets of S and let each of the informations

I; merely constrain the conditional distributions ¢(.|5;). Then, first updating the prior

distribution under I; A ... A I, and next conditionalizing on 5; should lead to the same

result as first conditionalizing the prior density and next updating under the constraint ;.
Formally:!©

If g=(LA...NL,op) then ¢(z]9;) = I; o p(x|5;) (15)

The final axiom is:
5. “In the absence of new information, we should not change the prior.”

Thus, when we are given the trivial constraint I = (¢f € P) then T op = p.

The above axioms do indeed seem reasonable for the outlined problem. This is not to
say, however, that they are compelling or motivated by consistency. The first demand, for
example, rather seems to follow from the desire that the rule settles the problem. A rule
that in some occasions leaves more than one option open would only be less useful; i.e. it
would have to be supplemented by other considerations. (To give an example from a quite
unrelated area, the traffic regulation laws do not prescribe uniquely how one has to drive.
But that does not mean these laws are inconsistent.) Actually, the MREP rule would not
meet axiom 1 in general either, if one dropped the earlier assumption that the constraints
pick out a closed convex set of probability distributions.'!

Still, the Shore-Johnson axioms are to a large extent reasonable. However they do not
characterize the MREP uniquely. The following theorem is shown in the appendix of this

paper.

Theorem 2 An updating procedure satisfies the five consistency axioms above if and only
if it is equivalent to the one of the rules

Mazimize U,(q,p) under the constraint I. (16)

19This formulation is what Shore and Johnson (1981) call weak subset independence. A stronger version
than this is actually necessary for the proof of their theorem, namely the demand that p(.|S;) is also
unaffected by any information M which merely specifies the overall probabilities of the sets S;. Thus, if
M:(g"(S))=a;,5=1,...m) then (I, A... ALy A M) op(.|S;) =1, 0 p(.|S;).

1To see what goes wrong with the MREP if we allow non-convex sets it is sufficient to think of the case
where the constraint fixes the value of the relative entropy, i.e.: I = {q: H(q,p) = ¢}. An example showing
that there may be no solution when the constraint set is convex but not closed is given by Csiszdr (1985):
let p be a standardized normal (Gaussian) probability density and 7 = {¢ : [{2%)| < 1}. Here H(g,p) can
be made arbitrarily close to zero, without attaining this value for any ¢ € I. See also the discussion by
Williams (1980).
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where

vien = ([ Dyam ) (17)
and r > —1.

The MREP rule is a member of this class of procedures if we define
Uo(g, p) := lim U, (g, p)

because a Taylor expansion in r gives (cf. Hardy, Littlewood and Pédlya, 1934, p. 15):
Ur(q,p) = exp TIOg/(Z) qdx

= exp <_—110g (1—|—7‘/qloggdx—|—(’)(r2)))
T P

— exp H(q,p) when r — 0

For fixed densities ¢ and p, U, is a non-increasing left-continuous function of r, provided

one defines the limiting cases as 12

Usolg,p) = (supqw)_l

v plx)
U-i(g,p) = Pz @ q(z) >0})

(i)

For general » > —1, the expressions log U, are called Rényi entropies (Rényi, 1962). The
case 7 = —0.5 is remarkable as the only one in which U, (¢, p) is symmetrical in p and ¢, and
which determines a distance function between probability distributions (See Bhattacharrya,
1943; Wootters, 1981; Hilgevoord and Uffink 1991).

Clearly the axioms given above do not entail the conclusion of Shore and Johnson that
the MREP is the uniquely consistent rule of inference. Something is still missing in the
argument. What is it? The answer to this question appears when the informal statement of

5
:
|

the axioms is compared with the exact formulation which is used in the proof. In particular,
when the system independence axiom is formulated exactly, something much stronger than
the informal statement is demanded. Let us spell this out.

Suppose there are two systems, 1 and 2, with possible states z1 € 51 and x5 € 55 and
two prior distributions pi(21) and pa(2z2). The unknown true probability densities are qir

and q;r respectively, and there are two separate pieces of information

Il = (QI € Il) and IQ = (q;r € IQ)

!2Note that if we replace the prior probability measure by the Lebesgue measure, as in eq. (13), the
expressions Us, Up and U_; become familiar measures of width of the density ¢(z), Us being the ‘equivalence
width’ and U_; the support. The supremum in Us is to be understood as the ‘essential supremum’, i.e. as
the least upper bound of the values s such that for all € > 0 the set Ac = {z : ¢(z)/p(z) > s — €} has
positive prior measure: P(Ac) > 0. The essential infimum is defined similarly.
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where the constraint sets Z;,7Zy are closed convex subsets of Py and P, respectively. The
information Iy and I; can be processed either for each system separately to obtain the
posteriors

q=hop , @=1I0op; (18)

or, alternatively, we can think of the conjunction of Iy and I, as one piece of information
pertaining to a combined system composed of 1 and 2 and described by a joint probability
density.

It is now assumed first that the systems are in fact independent, i.e. the true joint
density is given by the product

q'(21,22) = g} (21)gb(22) (19)

The joint information about the combined system is then formulated by the constraint
I AN = (gt € Ty3) where:

T12 = {q(a1,22) : /q($1,$2) dzo € 71 and /q($1,$2) drey € Iy}

is the set of all joint distributions ¢ of which the two marginals fall in 7y and Z; respectively.
Using the rule of inference on the joint prior p;(z1)p2(22) under this constraint leads to a
posterior ¢(z1,x2) represented by

q= (11 A1) o (p1p2)

which we can compare with the product ¢1g2 = (I3 o p1)(I2 o p2) of the posteriors which
result from (18). At this point Shore and Johnson state:

“Because p; and py are independent and because Iy and I give no information
about any interaction between the two systems, we expect these two ways to be
related by ¢ = q1q2, whether or not [(19)] holds.” (p. 29, emphasis added)

It is this emphasized phrase that goes much further than the original statement of axiom 4
and that excludes the generalized rules (17) for r» # 0. The phrase means that the axiom of
system independence is intended to hold not only for independent systems but regardless
of whether the systems are independent! In their article of 1981, Shore and Johnson made
the point even more explicit:

“Whether the systems are in fact independent is irrelevant; the property [of
system independence] applies as long as there are independent priors and inde-
pendent new information.” (p. 475)

Clearly we should raise the question whether this remarkable addition can be explained
as a consistency requirement. Let us first consider the reasons Shore and Johnson themselves
offer in the above quotations. Can we use the fact that the joint prior is the product of
independent priors p; and py as a motivation? I don’t think so. After all the prior density
is in this approach just an estimate of ¢' before the new information comes in. Thus,
it need not be based on extensive knowledge of the two systems. One might very well
choose a factorizing prior p(z1,z3) = p1(@1)p2(22) even when one knows the two systems
to be correlated, but does not know how they are correlated. Certainly the factorization
of the prior is no ground for the demand that the posterior should also factorize. So let
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us consider the second argument, that Iy and /5 give no information about any interaction
or correlations between the two systems. This, of course, refers to the fact that Iy and I,
pertain to the systems 1 and 2 separately, and thus by themselves do not convey information
about interaction or correlations between the systems. But no information about interaction
is not the same as the information that there is no interaction! So this is not sufficient either
for the demand that after the reception of I1 and I, we should still regard the systems as
independent.

Let me give two examples to show that the extra requirement is not only unwarranted
but can actually be unreasonable. Suppose the two systems are two inhabitants of Utrecht.
They can be in either of two states, ‘brown-eyed’ or blue-eyed’. Knowing nothing in par-
ticular about these persons and judging that blue eyes and brown eyes are about equally
prolific, I would opt for a prior that gives equal probability % to all four combinations. Now
suppose information I; specifies the exact time and place of birth of the first person.'® This,
certainly, gives no information about the second person, or about any correlation between
them. So, I update the marginal distribution for system 1. Similarly, let I specify the
exact time and place of birth of system 2. In fact, not expecting any correlation between
eye colour and birth date, I keep the two posteriors exactly the same as the priors. But now
suppose that it turns out that the two persons were born the same day, and in the same
place. Then I could reason very differently when the information is combined: it would
raise my suspicion that they might be twins, so that I expect some correlation between the
colours of their eyes. Such an expectation would surely not be ‘inconsistent’.

The second example is in the same spirit, and is offered mainly to show that the objection
can be put in exact mathematical form. The mathematics is borrowed from the famous
Einstein-Podolski-Rosen argument in quantum mechanics. I wish to emphasize, however,
that the issues of non-locality usually associated with this argument are irrelevant for our
purpose. Also, our discussion will focus on the parameters of the macroscopical apparatus
and not on the microscopic particles.

In an EPR-experiment, two photons are prepared in a singlet state and then fly apart
towards two detectors Left and Right. In front of these detectors there are two coplanar
polarization filters oriented in direction #; and 63 (0 < 6; < 27). Suppose these directions
are initially regarded as completely unknown, so that the prior distribution over 64,6, is
given by

1
(2m)

When the photons reach the filters they are either absorbed or transmitted and registered
by the detector. So for each detector L and R the outcome will either be ‘+’ (detection)
or ‘=’ (absorption by the filter), and one of the four combinations (+,+), (+,—-), (—,+),
or (—,—) is obtained experimentally. The probability distribution for these joint outcomes

p(017 02) =

depends on 6, and 8y and is specified by quantum theory as:

(p€192(++) Pé, 6, (+-) ) _ (

Lcos?(0y — 0;) Lsin?(6y —6y)
Po16,(—+)  Poyo,(——) i ) (20)

cos?(6y — 61)
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The question is how to change the prior distribution for the unknown orientations in the

131 admit that in this example it is not easy to say how this information singles out a convex subset of
probability distributions which is closed in L' topology.
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cases when the data consist of

Dy : 4+ is obtained in detector L
Ds : 4+ is obtained in detector R
Dy ANDy : (+,4) is obtained in both L and R

Let us first see what a traditional method of inference would give. In Bayesian statistics
one would update the prior distribution as

qp,(01,02) = p(01,02| D;) o p(D;|01,02)p(01,02)

for D; = Dy, Dy or D13 = Dy A Dy respectively. The result is

p(61,02|D1) = p(64,62[Ds) (27)?
i.e. neither of the two results ‘+ in L’ or ‘+ in R’ by themselves give any reason to change
our opinion. However,

1
q(01,0:| D1 N Dy) = 5.3 cos? (81 — 63)

so that the combined data give some reason to believe that the directions are parallel, and
strong evidence against believing that they are orthogonal.

The challenge for this example is, of course, to show that data as considered here can be
represented as convex sets of probability distributions, as assumed in the discussion of Shore
and Johnson. A simple way to achieve this is by letting each datum D; correspond to the
set of all marginal posteriors ¢(.|D;), which can be obtained by Bayesian conditionalization
from arbitrary priors. Thus:

Iy = {q(61) : 3p(61,62) such that ¢(61) x Z/P(‘|‘ab|91792):0(91792)daz}a
b

Ty = {al(62) + 3p(61.02) such that q(0:) x 3 [ pla, +]61. 02)p(01.02) a0}

Tig = {q(01,02) : Ip(61,02) such that ¢(6;,602) x /P(‘|‘a‘|‘|91792),0(91792)d91}

where a,b € {+,—}. In the assumed theoretical model (20) the sets 7,75 are in fact equal
to the entire sets P;, corresponding to the fact that whatever our prior belief about 8; was,
the result found in a single detector will not change it.

The examples show, I believe, that evidence for a dependence or correlation between
two systems can very well be contained in the mere logical conjunction of two pieces of
information, each of which taken separately give no clue for the dependence at all. This
means that the additional requirement of Shore and Johnson, namely that the ‘system
independence axiom’ should hold regardless of whether the systems are independent, is
unreasonable. However, without this addition, the MREP is not the unique rule of inference
that satisfies their consistency axioms.

Finally some remarks on how related inference rules violate the Shore-Johnson axioms.
First, consider the rule to maximize (17) with » < —1. This case differs essentially from
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that of r > —1 because now 27" is convex and z=1/7

is increasing, so that the rule is not
of the form of maximizing an expression (6) for the concave function ¢(x) = z'*" (as for
—1 < r < 0) or a minimization with ¢ convex, as for » > 0. Thus, for r < —1, (17) has
radically different properties. However the rules to minimize U, when r < —1 do satisfy all
the axioms except the first: if I demands that ¢(z) equals zero within a region of positive
prior probability, then U,(¢,p) = 0 if r < —1 for all ¢ € Z. Then there will not be a
unique solution to the minimization problem. (A similar problem in the case r > —1 may
occur if the density ¢(2) is constrained to have an integrable singularity.) Next, the rules to
maximize the more general expressions (13) for concave ¢ violate both system independence
and the strong subset independence axioms (cf. footnote 10). However, these rules do obey
the weak subset dependence axiom 4 as expressed by equation (15). It seems likely that
for strictly concave ¢ they are the only rules obeying axioms 1,2, 5 and weak 4. A more
detailed study is given in Uffink (1990).

7 Justification by consistency: Tikochinsky, Tishby and Lev-
ine

Another claim that the principle of maximum entropy can be proven to be the only method
of statistical inference satisfying conditions of consistency was made in 1984 by Tikochinsky,
Tishby and Levine (TTL) (1984a, 1984b). In the approach of these authors, like that of
the previous section, conditions are imposed only on the inference scheme itself and not on
the entropy expression. The approach differs from Shore and Johnson in the sense that the
discussion is restricted to discrete probability distributions and the original maximum (ab-
solute) entropy principle instead of the MREP. That is, we are dealing here with a rule for
assigning probability values and not with one for updating a prior probability assignment.
Also, only linear constraints are considered. Important advantages are, however, that in-
stead of the five axioms of Shore and Johnson only two very simple conditions are imposed
here which were baptized ‘repetition consistency’ and ‘uniformity’. Furthermore, TTL dis-
pense with the implicit assumption of Shore and Johnson that the inference procedure is
obtained by maximizing some functional of the probability distribution.

The argument or T'TL was hailed by Skilling as “brilliantly simple” (Skilling 1984a) and
“deeply compelling” (Skilling 1984b) and he concluded that:

“These ideas justify the fundamental claims made for maximum entropy in data
analysis. It is sufficient to know that we must use maximum entropy — or lay
ourselves open to the charge of inconsistency. Let’s get on with it.” (Skilling
1984a)

However, critical comments were published by Johnson and Shore (1984) and by Shimony
(1984). In particular, Johnson and Shore agreed that the condition of repetition consistency
was “extremely compelling”, but they pointed out that the condition of uniformity was not
formulated precisely and that a crucial step in the proof remained unclear. Nevertheless,
they concluded that the theorem was probably correct, even if the proof appeared to be
flawed. Shimony likewise did not doubt the validity of the theorem but argued that one of
their assumptions (equation (22) below) need not hold universally. We shall show, however,
that the theorem of TTL is false, even if their later clarifications (1984b) and replies (1984c,
1984d) are taken into account.
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The problem is described by TTL as follows. Consider an experiment described by a
probability distribution over a set of n possible outcomes S = {zy,...,z,}. It is assumed
that there is some algorithm which picks out a unique probability distribution for the
experiment whenever the constraints

(fe) = pifules) = o (21)
=1
are imposed, where k = 1,...m, m < n — 1. It is further assumed that the experiment can

be repeated under identical conditions. We can then argue in two ways.

(i). First we apply the algorithm with the constraint (21) to obtain a unique distribution
p = (p1,...pn)over S. Then we consider N independent (identically distributed) repetitions
of the experiment under this probability distribution. Let ¥ = (952'(1)7 .. '7$i(N)) e 5N stand
for the sequence of outcomes in this repeated performance. The probability of such a
sequence is given by the product

P(E)=p" -y (22)

where N; is the frequency with which outcome z; occurs in the sequence ¥ and Y N; =
N. Now collect all sequences that differ only by a permutation, i.e. that show the same
frequencies N = (Ny,...,N,), to obtain a more condensed description. This gives the

multinomial distribution N

: N- Ny,
P(N):mp1l‘“l7n (23)
for the probability of obtaining the frequencies N. Further, consider the average of the

functions fr, taken over the sequence of outcomes
_ 1 &
fi(@) = v > N filwi)
=1

and notice that these averages depend on the observed frequencies only, and can thus be
considered as functions of V: B B
Ji(E) = fu(N)

The expectation values of f; are, of course, equal to those of fi, and thus we have

(fr) =D f(N)P(N) = ay. (24)
N

(ii). We directly consider an N-fold independent repetition of the experiment, and
regard it as a single compound experiment with the frequencies N as possible outcomes.
We impose the constraints (24) on the expectations of fk(N) and apply the algorithm to
obtain a unique probability distribution P'(N).

Repetition consistency is now the demand that the results of procedures (i) and (ii)

agree, i.e. we should have

P(N) = P'(N) (25)

TTL claim to prove that the only algorithm obeying this consistency condition and
which is ‘uniform’ is the maximum entropy principle. Here, the condition of uniformity
is formulated as the demand that the algorithm treats “all data of the form [(21)] using
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one and the same procedure.” In particular it is urged that the value of n does not have a
special standing in the algorithm. For example, a uniform algorithm may not use a different
procedure depending, say, on whether n were prime or not (Tikochinsky, Tishby and Levine,
1984b and 1984c).
To see that the theorem is false, consider the absolute counterparts of the inference rules
(17):
“Maximize U,(p)” (26)

where
n -1/r
Ur(p) = (Zp($i)1+T) (27)

and r > —1. Here, the only role of n is to provide the upper limit of the summation. Hence
these rules are clearly uniform in the intended sense of the word, or at least no less so than
the MEP itself. Yet they also obey repetition consistency because, for any distribution of
the form (22),

N
U(PyT = Y P@ET =Y (p(wiu))---p(wi(]v)))“r:(Z(pnm) = U

FeSN i(1)..i(N) '

K3

so that maximization (or minimization) of U,(P) for the compound experiment is exactly
equivalent to the maximization of U,(p) in a single experiment.

The error in the proof can be seen more clearly as follows. The space of all probability
distributions for the compound experiment is typically of very high dimension. Indeed, as

TTL point out, there are [ = (N:fl_l) different sets of frequencies N, and thus the space

of probability distributions over N is [ — 1-dimensional (or [-dimensional if one treats the
normalization condition as an extra constraint). TTL use their condition of uniformity to
argue that if we impose the constraint (24) on this probability space the algorithm should
vield a distribution in which n does not play a special role, “since n is not an input and is
unknown to the problem in the [-dimensional space” (1984b). An important point however
is that, by assumption, we are considering independent repetitions in both arguments (i)
and (ii). Thus although the probability space for the compound experiment is indeed
embedded in an [-dimensional probability space, we are actually only concerned with the
subset corresponding to independent repetitions:

N

{P(N) :3ay,...,a, a; > O,Zai =1 such that P(N) = 7N1!"'Nn!a1

K3

' 'anNn}v

i.e. a curved n» — 1-dimensional hypersurface in obvious one-to-one correspondence with the
probability space of the original experiment. Thus the assumption of independence of the
trials actually forces the parameter n to play a special role.

The condition of uniformity as applied by TTL ignores this and effectively demands
that the algorithm, when applied to the constraint (24) on all distributions in the { — 1-
dimensional space, selects the same distribution as when it is applied to this constraint on
the n — 1-dimensional hypersurface of independent distributions. This means that in the
case when it is not given that the repetitions of experiment are independent the algorithm
should nevertheless reach the same result as when this is given! This is very similar to
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the hidden requirement of Shore and Johnson, and we have already argued in the previous
section that this is not reasonable.

It is interesting to note that the same set of inference rules allowed by the informal Shore-
Johnson consistency axioms are also allowed by the TTL requirements. But it is hard to
say whether they the only ones because, as noted by Shore and Johnson (1984), more tacit
assumptions seem to be present in the present approach. From numerical examples one
can see, however, that maximization of the more general expressions (6) need not obey
repetition consistency.

8 The Judy Benjamin Problem

Van Fraassen (1981) proposed the problem of evaluating the merits of the MREP inference
for the problem of updating a prior distribution over three possible disjoint events, A, B
and € under a constraint of the form

IT=A{Q : Q(A|J[AUB) = a}.

He named this the ‘Judy Benjamin problem’, after a movie character. He argued that the
solution yielded by the MREP needed more justification. Next, Van Fraassen, Hughes and
Harman (1986) formulated a list of desiderata for general inference rules in this problem.
They emphasized that these desiderata were not intended as compelling consistency re-
quirements. They showed that the desiderata were satisfied by the MREP as well as two
other rules which they called ‘MTP’ (maximum transition probability) and ‘MUD’. They
also argued that none of these rules was clearly superior to the others.
The desiderata read as follows:

“1. If @ = 1 the prior is transformed by Simple [i.e. Bayesian] Conditionaliza-
tion on AU C'; if @ = 0 by Simple Conditionalization on B U C.

2. If @ equals the prior conditional probability P(A|A U B) then all probabil-
ities stay the same.

3. The ratio P(C')/P(A) should change (to Q(C)/Q(A)) by a factor y(s,r)
which is a function only of the initial odds s = P(B)/P(A) and the con-
strained odds r = Q(B)/Q(A).

4. The function v described in 3 is such that y(1/s,1/r) = s/rvy(s,r) [This is
relabeling invariance for the interchange of A and B.]” 14

These principles are clearly related to the Shore-Johnson formulation. Thus, desideratum
2 is identical with axiom 5 of Shore and Johnson, and desideratum 3 is comparable in
spirit to (though not identical with) their subset independence axiom. Only the system
independence axiom, which would not be meaningful with only three possible cases, and
the uniqueness axiom are left out here.

As one might already expect, and is easy to show, all the rules (17) fulfil the present
desiderata. The special rules that Van Fraassen, Hughes and Harman call MTP and MUD

1] have changed the notation in this quotation. Van Fraassen, Hughes and Harman also formulate a fifth
principle, which is not reproduced here because it is, as they make clear, actually already contained in the
first desideratum.

25



correspond to the cases r = —0.5:

U—O.S(va) = (Z \/]qu) P

and and r = oo,
Us(Q, P)= maxﬂ.
v
I have not been able to determine whether the rules (17) are the only ones that obey the
above desiderata. However this seems very likely to be the case. More general rules to
maximize the expressions of the form (6) for arbitary concave ¢ can violate desideratum 3.

It is interesting to consider briefly the case of the rules to minimize U, with r < —1. As
noted before (section 6), U,((), P) then becomes zero as soon as the posterior is constrained
to be zero on a set of non-zero prior probability. This happens in the present problem if «
is 0 or 1. The rule to minimize U, then becomes mute and does not yield a unique solution.
Hence they do not reduce to Bayesian conditionalization and violate desideratum 1. But
one can simply amend the rules by stipulating that simple conditionalization should take
over whenever the minimum U, distribution is not unique. Understood in this way, the case
of r < —1 is allowed by the FHH conditions, in contrast to those of Shore and Johnson or
TTL. (Of course this amendment will not help in more general constraints which can be
considered when there are more then three possible events.)

As a conclusion to this section, it is gratifying to be able to give an explicit numerical
solution to the original formulation of the Judy Benjamin problem (What should Q(C') be
when P(A) = P(B) =1, P(C) =1 and a = 0.257) by the result that she remains within
the bounds set upon her by her creators if she chooses Q(C') between 1/3 (using r = —o0)
and 0.6 (r = 00).

9 Conclusions

The MEP evades the problems that beset the notorious Principle of insufficient reason. It
is a concrete and clear recipe that yields unique numerical values for probabilities in many
problems where more orthodox methods of inference do not. The most obvious problem
facing this rich method is its justification, precisely because it yields unique probability
values in cases where, according to orthodox methods, there is no unique solution. So why
should one choose the maximum entropy probability distribution?

We have discussed three different approaches to solving this problem of justification by
Jaynes, by Shore and Johnson, and by Tikochinsky et al. All these authors claim that the
maximum entropy principle is justified as the unique consistent method of inference. We
have found these approaches to be defective. Jaynes’ approach puts a heavy weight on
the assumptions of Shannon’s uniqueness theorem, as if they were implied by the ideal of
consistency itself. It has been argued that Shannon’s assumptions simply cannot bear this
weight. The approach of TTL fails because it rests on a technically false theorem. Shore
and Johnson’s work is the most sophisticated of the three approaches. However, in their
analysis a hidden requirement is made, additional to their explicitly stated ones, which can
be expressed as the demand that when it is not given whether systems (or experiments)
are to be regarded as dependent we are justified in believing that they are independent. A
similar conviction seems to lie at the bottom of the work of Tikochinsky et al. as well. This
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sounds as a curious echo of the old principle of insufficient reason, but now on the level of
dependence. 1T have argued by means of examples that the requirement is not reasonable.

It has been demonstrated that a viable class of inference rules do not obey the additional
requirement. This class of ‘Maximum (relative Rényi) Entropy’ principles also satisfy a list
of desiderata put forward by Van Fraassen et al. These rules can be seen as a new ‘continuum
of inductive methods’, to use the terminology of Carnap, generalizing the maximum entropy
method. It seems that more research would be needed to assess their performance in
concrete cases and in general.

On the one hand one might ask whether there still are other properties of the Shannon
entropy that justify its privileged status within this continuum. It is of interest that in
his original article of 1957 Jaynes actually considered the expression —Ul_1 = -3, p? as
an alternative with “many of the qualitative propeties of Shannon’s information measure,
and in many cases leading to substantially the same results.” However, he dismissed this
expression for the reason that its maximum value under a linear constraint might be attained
at the boundary of the constraint set, in which case it cannot be found by the Lagrange
multiplyer technique.

One may indeed consider it desirable that an inference method should choose for a
distribution from the interior of a constraint set, in order not to appear too biased. It is
easy to show that this will hold for the Rényi entropies under linear constraints in case r < 0.
Thus, this desideratum does not single out the Shannon entropy uniquely. Furthermore, one
should note that once the generalization to arbitrary convex constraint sets 7 is accepted,
all measures of uncertainty will occasionally attain their maximum at the boundary of the
constraint set.

On the other hand, it should also be investigated how the present class of inference rules
fares against even more general alternatives. This issue is particularly significant because
some of the objections levelled against the Shannon entropy in section 4, namely that it
does not always vary in the same sense as our information about a variable, holds equally
for the more general entropy expressions.

It seems to early therefore to recommend the unqualified use of such rules. In fact
another problem which affects all of them in equal measure is the question how to choose
the constraint set. As mentioned in the introduction, this will be the subject of a sequel

paper.
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10 Appendix

Here we show that an inference rule obeys the restricted Shore-Johnson axioms if and only
if it is of the form (17). We start with the ‘if” part.
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It is obvious that U, is invariant under any coordinate transformation, so that axiom 2
is evidently fulfilled. To show that axiom 1 is fulfilled, we show that U, obeys the following
property, called Schur convexity (see Roberts and Varberg, 1973; Uffink 1990):

if UT(lep) = UT(q%p) = U7 then UT(aq1 + ﬁ(Z?vp) > U (28)

for all 0 < @ < 1, @+ g = 1. This means that whenever there are two distinct probability
densities ¢; and ¢y allowed by the constraint set 7 with equal Rényi entropy, there will be
a third density aq; + B¢ with higher Rényi entropy. Since the constraint set is assumed
to be convex, this third density is also in 7. Hence, if there is a maximum, it is necessarily
unique. To prove the inequality (28) we observe that for r > 0,2 > 0, f(z) = 2! is
strictly convex and g(z) = 2~ 1/7 is strictly decreasing. Hence, for ¢; # ¢z and 0 < o < 1,
0 =1— «a we have

Urlaqi + Bez,p))™" = /(aql(x;(‘;)ﬁ‘Z2($))l+Tp(x)dx

2 147 9 (2
o f (?((@)) playdet 5 f (qp((x))
= alU.(q,p)”" + B8U.(q2,p0)”"
o (29)

)H—T p(z)dz

A

-1/r

and since x is decreasing we obtain

Ulagi + Bq2.p) > U

When —1 < 7 < 0, f(z) = 2177 is concave, and one can show by an argument analogous to
that leading to (29) that
Ur(aq1 + ﬁ(Z?vp)_T >U™"

is increasing, so we obtain the same result (28).
To show that axiom 3 (system independence) is fulfilled, we observe that for p(z,y) =

p1(@)p2(y) and ¢(z,y) = ¢1(2)q2(y) one has

Ur(¢,p) = Ur(q1, p1)Us (g2, p2) (30)

But in this case z~ /7

Thus the maximum of the left-hand side under constraints which affect the two factors
on the right hand side separately, is attained exactly when these factors themselves are
maximized.

Finally, to prove subset independence, let us put p(z) = Y_; aupi(2) and ¢(z) = >, Biqi(z),

where p;(z),qi(z) are conditional probability densities on a disjoint partition (Aq,...,A4,)

of 5, 1.e. pi(x) = p(z|A;), qi(z) = q(z|A;), and a; = P(A;), B = Q(A;). It follows that

Ur(g,p)™" = Z; (ﬁ)lw Oéi/ (qi(x))pﬂpi(w)dx

o pi(z)

Z;UT_T(%APZ') (ﬂi)lw o (31)

Qy

Thus, U.(q, p) depends only on the coefficients a; ,and 3; and U,(g;, p;) for i = 1,...n. Now
in the axiom of strong subset independence (cf. footnote 10), 3; are assumed to be fixed,
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and constraint sets Z; are given for ¢;(z). It is demanded that the procedure or maximizing
U(gq,p) under the constraint

LN N (qT(ac) € {q(z) : ¢(z|4;) € Z; for i = 1,...n})

must lead to the same result as maximizing U(g;,p;) on the constraint I; : (q:r(x) €1
separately. But it is clear from (31) that U,(q, p) reaches an extremum only in case all the
terms U,(q;, p;) in the sum on the right-hand side are extreme under the given constraints,
since they are all non-negative. (There is one exception for this statement, viz. when one
of the U,(¢;,p;) becomes zero. This can only happen if the measure ¢ is not absolutely
continuous with respect to P, i.e. when Q(A) # 0 for some set A with P(A) = 0. This case
is excluded also in Shore and Johnson’s proof.)

Next we show the ‘only if’ part of the assertion. We first employ a theorem of Shore
and Johnson which shows that any inference rule which is assumed to maximize some
functional F'(¢,p) and obeys axiom 1, 2 and 5 must be equivalent to the the maximization

or minimization of
[y

where I is a yet undetermined function. It is slightly more convenient to put h(y) := yo(y)
so that the above expression reads:

[ o (45) s (32)

It is also assumed by Shore and Johnson that the maximization problem can be solved by
the Lagrange multiplier technique, from which we may infer that ¢(y) is a continuous and
smooth function for y > 0. The maximization problem under the constraint

[ at@)ft@)da =

leads, by the multiplier technique, to

| q(ﬂ@)) _
A+ pa(z) + ¢ (p(w)
where A and p are as yet undetermined. In order to obtain a unique solution for ¢ we must,
of course, assume that qﬁ is invertible. If qﬁ is continuous, this implies that qﬁ is monotonously
increasing or decreasing, so that ¢ is either convex or concave. It can be shown that we
have a minimization problem in the first case and a maximization problem in the second
case. But these two problems are equivalent, and we can restrict ourselves to the case where
¢ is convex. We now show that if the minimization of (32) obeys system independence for
convex ¢, then ¢(y) = ay'™" + b for some constants a, b.
System independence means that the following two problems should have identical solu-
tions: Let z,y denote possible states of two systems and
(i) Determine the distribution ¢(z,y) = ¢1(«)g2(y) which minimizes

[ o (LY by o) oy (33)

Pl(w)])z(@/)
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under the constraints ¢; € Iy, ¢ € Z5.
(ii) Determine the distributions ¢q(2), ¢2(y) which minimize

[o(B)ar [o(28)ay

under the same constraints.

Let us focus on system 1. Since py and 75 can be chosen arbitrarily, a necessary condition
for the validity of system independence is that the following holds: The distribution ¢; that
minimizes (33) for any gz, p2 also minimizes

[ () meone

and conversely. Now consider a case with only three possible outcomes: 5 = {xy, 9, 23} and

let go(@1)/pa(®1) = q2(22)/p2(72) = q2(23)/p2(23) = a. Put qi(@;)/p1(x;) = Bi, 1 = 1,2,3,
and let 7, consists of a one-parameter family of distributions {¢1s : 6 € IR} so that we can

parametrize: qig(x;) = p1(@;)5:(60).
The solution of problem (i) is now determined by the condition:

. g
Z;Cb(aﬁz)@ =0

and for problem (ii):
. dBs
2915 dﬁé =0

Further, the normalization Y, ¢1(2;) = 1 implies:
d dp;
@Zi:fh(%) = ;Pl(%’) 0 ="

In particular, consider the case p; = 1/3, and d3/df = (%, %, —1). The condition of the
equivalence of problems (i) and (ii) is then:

S((01) + $(2)) = (55) = () + (o)) = dafks)
Eliminating s from these equations, and writing:

My(p1,52) = o HH(B1 + ¢(82)/2)

we obtain the condition:

M (B, afy) = aMy(f1, B2)
Le., the expression M¢'s must be linear. A theorem of Hardy, Littlewood and Polya (1934,
p. 68) shows that any such U for a monotonous ¢, must be equivalent to the choice ¢ = "
for some r € IR. (Equivalence means: equality upto multiplicative and additive constants

which have no effect on the value of My.) Hence ¢ is equivalent to the choice ¢(z) = x'*7",
and the procedure is equivalent to either a minimization of

147
JEDT e e

p(x)
if ¢ is convex, i.e. r > 0 or r < —1; or to a maximization of this expression if ¢ is concave,
for —1 < r < 0. QED. The further restriction to r > —1 is explained in the final paragraph
of section 6.
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