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A description of the ab initio quantum chemistry package GAMESS-UK is presented. The
package offers a wide range of quantum mechanical wavefunctions, capable of treating
systems ranging from closed-shell molecules through to the species involved in complex
reaction mechanisms. The availability of a wide variety of correlation methods provides the
necessary functionality to tackle a number of chemically important tasks, ranging from
geometry optimization and transition-state location to the treatment of solvation effects and
the prediction of excited state spectra. With the availability of relativistic ECPs and the
development of ZORA, such calculations may be performed on the entire Periodic Table,
including the lanthanides. Emphasis is given to the DFT module, which has been extensively
developed in recent years, and a number of other, novel features of the program. The
parallelization strategy used in the program is outlined, and detailed speedup results are given.
Applications of the code in the areas of enzyme and zeolite catalysis and in spectroscopy are
described.

1. Introduction

The UK version of GAMESS (Generalised Atomic and
Molecular Electronic Structure System) [1] has been
under development for nearly a quarter of a century and
this volume, in celebration of the contribution of
Nicholas Handy, presents an ideal opportunity to
describe the current status of the program. The code
represents the principal piece of software developed and
maintained under the auspices of Collaborative
Computational Project No. 1 (CCP1). Nicholas Handy
has, over this period, played a leading role in many
aspects of this project, and we, the GAMESS-UK
developers, owe a sincere debt of thanks to Nicholas for
the support he has given to the concept of a freely
available, centrally supported UK-based quantum
chemistry code. Many parts of the program, specifically
in the areas of perturbation theory for electron
correlation and analytic derivatives, can be traced to
developments in the Cambridge group. More recently,
Nicholas has been the leading UK proponent of Density
Functional Theory (DFT) in the field of molecular

quantum chemistry, as well as key contributor to the
improvement of functionals for chemical problems and
the techniques for its efficient implementation. His
influence was key to the decision to set up a CCP1
flagship project in this area, and the results of this
project are now maintained and distributed as part of
GAMESS-UK, as well as being available for use in
other projects. The DFT module in GAMESS-UK has
been available since version 6.0 of the code, and is
described in some detail in section 3 of this paper.

The article is organized as follows. An overview of the
program is given in section 2, tracing the development of
the code and outlining the possible wavefunctions that
GAMESS-UK can calculate and the types of runs that
can be performed. Section 3 describes the GAMESS-
UK implementation of DFT. Section 4 focuses on the
implementation aspects for a number of the more
popular, and the more novel, features available within
the code. These include the modules for (i) Geometry
Optimization, (ii) the treatment of Relativistic Effects
and ZORA, (iii) Valence Bond, (iv) MRDCI, (v) RPA
and MCLR treatments of Excited States, (vi) QM/
MM and the treatment of Large Systems and, finally,
our recent work on graphical interfaces, also performed
within the CCP1 programme. Details of the parallel*Corresponding author. e-mail: m.f.guest@dl.ac.uk
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implementation of GAMESS-UK and the associated
performance attributes are given in section 5, while
section 6 considers the applications of the code in a
number of areas, including enzyme and zeolite catalysis
and spectroscopy.

2. Overview of the program

The program is derived from the original GAMESS
code, obtained from Michel Dupuis in 1981 (then at
the National Resource for Computational Chemistry,
NRCC), and has been extensively modified and
enhanced over the past two decades. The key driver in
our adopting the code lay in the availability of gradient
capabilities, absent in the ATMOL suite of programs [2]
that had been the main electronic structure code
supported under CCP1. Note that these developments
have been conducted independently of the impressive
programme of extensions to the GAMESS code itself,
conducted under the leadership of Mark Gordon and
Mike Schmidt at Iowa State University [3].
When first acquired, the code was essentially limited

to HF/gradient functionality allowing for basis sets
involving s, p and d Cartesian Gaussian orbitals, with
open- and closed-shell SCF treatments available within
both the RHF and UHF framework. Generalized
valence bond [4] treatments were also supported. The
program utilized Rotation [5] techniques to evaluate
repulsion integrals over s and p Gaussians, and the Rys
Polynomial [6] for integrals involving d Gaussians. SCF
convergence controls were provided through a hybrid
scheme of level shifters and damping factors. The
analytic energy gradient was available for the above
wavefunctions, with gradients for s and p Gaussians
evaluated using the algorithm due to Schlegel [7],
while gradients involving d Gaussians utilized the Rys
Polynomial Method [8]. Force constants were evaluated
by numerical differentiation. Ab initio core potentials
were provided in a semi-local [9–11] formalism for
performing valence-only molecular orbital treatments.
Many of the initial developments around the code

focused on enriching the range of available post-
Hartree–Fock capabilities, with functionality originally
developed within the ATMOL suite of programmes
integrated into the code. Thus conventional CI treat-
ments using the table-driven selection algorithms within
the framework of MR-DCI calculations [12–14] allowed
for the treatment of electronic spectra and related
phenomena, while large-scale CI calculations of both
ground and first few excited states were provided by the
Direct-CI [15] module.
These initial correlation treatments have since been

extended through the incorporation of Full-CI [16], and

both CCSD [17, 18] and CCSD(T) [19, 20] coupled-
cluster calculations, although the latter remain limited
to closed-shell systems [21]. A size-consistent variant of
multi-reference MP2 theory, popularized in its CASPT2
form by Roos et al. [22], is also available [23]. With no
restriction to CAS wavefunctions, the module also
provides MR-MP3 capabilities. One of the more recent
developments includes an implementation of the semi-
direct table-driven MRDCI module [24, 25], providing
for more extensive capabilities in the treatment of
electronic spectra and related phenomena.

The treatment of both excited and ionized states has
long been a major requirement from users of the code.
In addition to the MRD-CI treatments above, calcula-
tions of electronic transition energies and corresponding
oscillator strengths may be performed using either the
Random Phase Approximation (RPA) method or the
Multiconfigurational Linear Response (MCLR) proce-
dure [26]. The RPA calculations may be performed
either within the conventional approach where the
two-electron integrals are transformed or with a ‘direct’
implementation. The direct calculation of molecular
valence ionization energies may be performed through
Green’s function techniques, using either the outer-
valence Green’s function (OVGF) [27] or the two-
particle-hole Tamm–Dancoff method (2ph-TDA) [28].

While employing effectively the same integral and
gradient technology, the program has been extended to
evaluate repulsion and the associated gradient integrals
over f and g Gaussians. The original limitation to
cartesian basis sets is lifted through the provision of
spherical harmonic basis sets for all options within the
programme. SCF controls now use a hybrid scheme of
level shifters and the DIIS method [29, 30]. In addition,
complete active space SCF [22, 31, 32] and more general
MCSCF [33], and Møller Plesset (MP2 and MP3) [34,
35] calculations may now be performed. Geometry
optimization is conducted using a quasi-Newton rank-
two update method, while transition state location is
available through either a synchronous transit [36], trust
region [37] or ‘hill-walking’ [38, 39] method. Force
constants may be evaluated analytically [40, 41], while
coupled Hartree–Fock (CHF) calculations provide for a
range of molecular properties, including polarizabilities
and molecular hyperpolarizabilities [42] and, through
the calculation of dipole moment and polarizability
derivatives, the computation of infra-red and Raman
intensities [43].

Many new ab initio core potentials have been
incorporated into the code which now includes both
semi-local and non-local [44] formalisms for
valence-only molecular orbital treatments.

A wide variety of wavefunction analysis methods are
available. These include population analysis, Natural
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Bond Orbital (NBO) [45–47] and distributed multipole
analysis [48], localized orbitals, graphical analysis and
calculation of one-electron properties. An interface to
the AIMPAC code of Bader is provided [49].
The treatment of solvation effects is based on the

DRF (Direct Reaction Field) model [50–52], an embed-
ding technique enabling the computation of the
interaction between a quantum-mechanically described
molecule and its classically described surroundings. The
classical surroundings may be modelled in a number of
ways, (i) by point charges to model the electrostatic field
due to the surroundings, (ii) by polarizabilities to model
the (electronic) response of the surroundings, (iii) by an
enveloping dielectric to model bulk response (both static
and electronic) of the surroundings, and (iv) by an
enveloping ionic solution, characterized by its Debye
screening length.
The treatment of relativistic effects is provided

within the ZORA scheme (Zeroth Order Regular
Approximation [53]), a two-component alternative to
the full four-component Dirac equation. While much
cheaper than the latter, ZORA recovers a large part of
the relativistic effects. The scalar (one-component) form
is now available, with the full two-component imple-
mentation (including spin–orbit coupling) in progress.
The current implementation will allow all usual ab initio
(and DFT) methods to be performed, incorporating the
major relativistic effects. More details are presented in
section 4.2.
The program structure is effectively open-ended in

direct-SCF, -DFT and direct-MP2 mode, so that direct-
SCF calculations of up to 10 000 basis functions have
been performed. Such calculations make use of the
extensive parallel capabilities, which are described in
detail in section 5. In addition to the functionality
outlined above, the program provides for Hybrid
QM/MM calculations, through an interface to the
ChemShell package and the CHARMM QM/MM
code (see section 4.7).
Arguably the most important of the recent additions

to the code, available from Version 6.0 onwards, is
a full-featured Density Functional Theory (DFT)
module, with access to a wide variety of functionals
(S-VWN, B-LYP, B-P86, B3-LYP, HCTH, B97, B97-1,
B97-2, PBE, EDF1, FT97, etc.). This module is subject
to on-going developments under the auspices of CCP1,
and will be described in some detail in the sections
below.
As with any ab initio electronic structure code, the

areas of application of GAMESS-UK are numerous.
The code is designed to be a full-featured computational
chemistry package serving a broad user community.
As such, we have developed, or will be developing, a
wide range of application modules for the package.

In the following sections we highlight a number of the
implementation aspects of the more popular, and the
more novel, features available within the code.
Particular attention is focused on the developing DFT
capabilities (section 3).

3. The GAMESS-UK implementation of

Density Functional Theory

3.1. Background

Since Hohenberg and Kohn [54] laid down the founda-
tions for a rigorous electronic theory requiring only the
electron density, density functional theory (DFT) has
enjoyed a steady increase in popularity. This popularity
increased throughout the 1990s to such an extent
that DFT has become a mainstream method for
studying electronic structure problems in chemistry.
The GAMESS-UK implementation originated with the
CCP1 flagship project (1994–1997) which undertook to
construct a DFT module to be built into a Hartree–
Fock host code. This initial work, by Philip Young, has
been extended continuously since the project ended.

3.2. Functionality

Currently the module supports the evaluation of the
Kohn–Sham energy and matrix elements, plus the
evaluation of the gradient of the energy with respect to
the nuclear coordinates. All terms can be evaluated for
GGA functionals. In all cases extensive use is made
of screening and pruning techniques to exploit the
local character of the density functionals. Finally, the
evaluation of all terms is driven by the same integrator
routine to ensure consistency of the quadrature
throughout.

The code supports Dunlap’s approximation to the
Coulomb repulsion energy in which the charge density
can be fitted to an auxiliary basis [55, 56]:

�ðrÞ ¼
X
pq

Dpq pq
�� �

�
X
u

X
pq

DpqC
pq
u

 !
uj i ¼

X
u

du uj i,

ð1Þ

where the fitting coefficients C can be obtained from

Cpq ¼ V�1bpq: ð2Þ

In this equation Vuv are the electron repulsion
integrals in the charge density basis and b

pq
t are the

three-centre electron repulsion integrals between the
wavefunction basis set and the charge density basis. This
way the evaluation of four-centre two-electron integrals
can be circumvented using at most three-centre
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two-electron integrals, clearly reducing the formal
scaling of the computational cost from fourth order to
third order. We can reduce the computational cost
further by implementing a mechanism to store the three-
centre two-electron integrals in main memory in a
distributed fashion on parallel computers.
Second derivatives of the energy are computed [57]

according to the formulation given by Johnson and
Frisch [58], and the coupled perturbed Kohn–Sham
(CPKS) equations can be solved for both external field
as well as geometrical perturbations. Terms in the CPKS
equations can be evaluated either in the AO or MO basis
dependent on what is most efficient for the size of system
under consideration, and the quadrature weights are
differentiated to ensure they are true derivatives of the
energy expression.
As GAMESS-UK is often used by non-experts some

considerable effort has been invested in defining the
predefined DFT quadratures and these are described in
the next sections.

3.3. DFT quadrature

Developing a quadrature for DFT calculations is
challenging because of three particular features of
molecular electronic densities. First of all there is a
cusp at the position of every atom, second the density
decays exponentially with increasing distance to the
atoms, and, third, in the inter-atomic region the density
is smooth but can have a number of extrema due to
contributions from various atoms. An adequate quad-
rature is one that can simultaneously address all three
features in reasonable fashion.
Because quadrature development is so challenging it

has long remained an active area of research and various
general approaches have been proposed. There are two
main strategies to meet the challenge. The first is to
devise a scheme to partition space into distinct volumes
and integrate each volume with a particular grid.
Space can either be partitioned into spheres with some
special partitioning for the space remaining between
the spheres [59, 60], or into cubes which are recursively
partitioned in further cubes until a specific accuracy is
achieved [61]. The advantage of these approaches is
that each volume element is integrated only once,
leading to favourable scaling behaviour. The disadvan-
tage is that either complex partitioning schemes or a
large number of volume elements are needed to achieve
high accuracy.
In contrast, Becke [62] proposed to partition the

integrand into a number of atom-like terms. Each term
can then be integrated with an appropriately selected
grid in polar coordinates. The advantages of this scheme

are that it is simple and can achieve high accuracy. The
downside is that the atom-like partitions will cover
overlapping volumes of space, so that each volume of
space will be integrated multiple times by the atomic
grid centred on different atoms, leading to higher
computational costs. Indeed, a Becke-type approach
scales formally with at least the square of the number of
atoms, although this can be addressed by appropriate
approximations while maintaining its advantages.

For reference we briefly reiterate the important
components of the Becke quadrature. The starting
point is the nuclear-weight function which has to satisfy
two main criteria. First, given a three-dimensional
molecular integral, multiplying the integrand with the
nuclear-weight function of a particular atom has to
result in a suitably atom-like function called an atomic
partition. Secondly, the nuclear-weight functions of all
atoms have to add up to one for all points in space, so
that the sum of all atomic partitions is equal to the full
molecular integrand. Each atomic partition can be
integrated using straightforward polar coordinate
grids which are simple Cartesian products of suitably
chosen angular and radial coordinate grids. The
nuclear-weight function is obtained simply by assigning
a cell-function to every atom and calculating the
fraction its cell-function contributes to the total sum
of cell-functions. Within these general principles a
quadrature can be modified by making different
choices for the cell-functions, the angular grids and the
radial grids.

To apply the above scheme to a particular molecule, a
set of grid points needs to be generated. Ideally this
generation would be adaptive so that any accuracy can
be obtained on demand. However the nuclear-weight
function makes the on-the-fly error analysis needed to
attribute a fraction of the overall error to specific grid
parameters very hard. Alternatively, trying various grid
parameters for each atomic partition until a satisfactory
result is obtained is very costly. Therefore, ‘predefined
grids’ which have been optimized to achieve certain
accuracies on a chosen set of molecules remain the most
practical way forward.

Before describing the way we have chosen to
optimize the predefined grids for the DFT module, it
is revealing to look briefly at a simple model analysis
that illustrates where the errors in the integration
originate. This highlights those aspects one needs to be
wary of.

Consider an Hþ
2 -like molecule, i.e. two atoms A and

B, each of which is described exactly by a single
exponential function and the molecular wavefunction
is simply the sum of the two atomic wavefunctions. In
the case under consideration here, we allow the two
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exponents to differ as this highlights additional sources
of error that would arise in real molecules. Furthermore,
we limit our analysis to the line that connects the two
atoms and which is assumed to be the z axis. Within this
approximation the atomic wavefunctions are chosen
to be

’AðzÞ ¼
3

2
exp �

3

4
ZA � zj j

� �
, ð3Þ

’BðzÞ ¼ expð� ZB � zj jÞ, ð4Þ

’ABðzÞ ¼ ’AðzÞ þ ’BðzÞ, ð5Þ

where ZA ¼ �1 and ZB ¼ 1.
The integration of the ‘atomic density’ now boils

down to a one-dimensional integration of an exponen-
tial function for which a grid can be defined which
integrates this exactly. Each grid point accounts for a
particular section of the z axis. To obtain reference
results each section can be integrated with multiple
points as well. Having established these grids, we
consider integrating the molecular density along the
line using Becke-type quadratures.
First we consider the Becke nuclear-weight function,

which is defined as

�ABðzÞ ¼
ZA � zj j � ZB � zj j

ZA � ZBj j
, ð6Þ

pð�Þ ¼
3

2
��

1

2
�3, ð7Þ

wAðzÞ ¼
1

2
½1� pðpðpð�ABðzÞÞÞÞ�: ð8Þ

Because the nuclear-weight function should partition
the integrand into atom-like partitions, the Hirschfeld
partitioning offers itself as an obvious contender to the
Becke nuclear-weight function. Becke did mention
exponential nuclear-weight functions in his original
paper but did not elaborate on his reasons for rejecting
them. The Hirschfeld nuclear-weight function [63] is
defined as

wAðzÞ ¼
�AðzÞ

�AðzÞ þ �BðzÞ
ð9Þ

which simply gives the fraction of the total density
that a particular atom contributes assuming that
the total density is a simple sum of atomic densities.
Clearly if the molecular density is little different from
the sum of atomic densities this nuclear-weight function
would be expected to give very atom-like partitions

which would be ideally suited to polar coordinate
quadratures.

In figure 1(a) we have plotted the atomic partitions of
the molecular density for atom A obtained with the
Becke nuclear-weight function and the Hirschfeld
nuclear-weight function. The density of atom A and
the molecular density are plotted for comparison.
At first sight the Hirschfeld partition looks more like
the exponentially decaying function expected for an
atom-like function than the Becke partition, which goes
to zero at the position of atom B. However, careful
inspection reveals that there is a sudden change in
the Hirschfeld partition at the position of atom B.
In figure 1(b), for each grid point of atom A, we have
plotted the error this grid point makes in integrating the
atomic partition.

Once again this grid was chosen so as to integrate the
density of atom A exactly. In this figure there are four
distinctive regions. First in the region for z smaller than
ZA we find that the error is small because the
exponential decay differs slightly from that of atom A
due to the presence of atom B. Secondly, for z between
ZA and ZB there are significant errors due to the
nuclear-weight function not being able to recover a truly
atom-like partition. Interestingly, the errors with the
Becke nuclear-weight function are actually larger than
those from the Hirschfeld nuclear-weight function in
this region. However, in the third region close to atom B
the Becke partition has decayed to zero and so has the
error associated with it. The Hirschfeld partition,
however, still has a remainder of the cusp of atom B
which causes large errors in this region. In the fourth
and final region where z is larger than ZB the Becke
partition and its associated error remain zero. The
Hirschfeld partition, however, has acquired a signi-
ficant atom B character leading to a noticeable
systematic error for every grid point in this region.
The overall result is that using the Hirschfeld nuclear-
weight function leads to a 50% larger error for this
example than using the Becke nuclear-weight function
despite having smaller errors per grid point in the
inter-atomic region. This example clearly underlines
the importance of the nuclear-weight function for a
given atom being zero at and behind all other atoms
in the molecule. It shows also that when using a
Becke-type partitioning the largest errors tend to arise
in the inter-atomic region. Furthermore, using the
cell-function as proposed by Becke, the error per
grid point changes sign where the curvature of the
function changes sign leading to a partial cancellation
of errors.

In developing a set of predefined quadratures for
the DFT module we first need to pick the basic

GAMESS-UK electronic structure package 723



components. Keeping these fixed, the grid sizes can be
optimized to meet precision tolerance targets. Initially
we set out to optimize four predefined grids named
after the relative precision they are supposed to
achieve. However, we found that the tolerance target
of the ‘very high’ grid, being a relative error of less than
1.0e–10 for the total energy and the electron count, is
not generally achievable. In particular, molecules invol-
ving fluorine and row 5 or row 6 elements posed
numerical problems we could not resolve. Therefore, we
limited ourselves to optimizing the grids for targets
listed in table 1.

3.3.1. The nuclear-weight functions implemented in
GAMESS-UK. In choosing the nuclear-weight function
we limited ourselves to Becke-like options as they are
expected to give most accurate results as concluded from

Figure 1. (a) Atomic partitions for atom A obtained from the Becke (Becke density AB) and Hirschfeld (Hirschfeld density AB)
nuclear-weight functions compared to the total molecular density (density AB) and the density of atom A (density A). (b) The errors
the grid that integrates atom A exactly contributes per point to the total error when attempting to integrate the Becke and Hirschfeld
partitions.

Table 1. Grid names and their tolerances.

Grid Target tolerated relative error

Low 1.0e–4

Medium 1.0e–6

High 1.0e–8
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the above error analysis. In particular, we implemented
the Becke, SSF [64] and MHL [65] nuclear weights.
Testing these nuclear-weight functions demonstrated
that although the SSF function had a low computational
cost it also gave the least accurate results, due to the
nuclear-weight function of an atom being forced to zero
before another atom is reached. This has the advantage
that there are easily identifiable regions where the
nuclear-weight function equals one and regions where
it equals zero. This can be exploited to save work but it
leads to larger errors near the point where the partition
reaches zero. The MHL function was found to give the
most accurate result but it is also relatively expensive as
it involves an 11-term polynomial. In a bid to combine
the lower cost of the SSF function with the high
accuracy of the MHL function two new functions were
designed as follows.
In the SSF scheme the nuclear-weight function is

defined as

wAðz; aÞ ¼ �1, �ABðzÞ � �a,

¼ pSSFð�ABðzÞ; aÞ, � a < �ABðzÞ < a,

¼ 1, �ABðzÞ � a,

ð10Þ

pSSFð�; aÞ ¼ 35
�

a

� �
� 35

�

a

� �3
þ 21

�

a

� �5
�5

�

a

� �7� �.
16

ð11Þ

Obviously different nuclear-weight functions can be
generated by choosing a different expression to replace
pSSF with. In particular, MHL-type expressions can be
chosen which are defined by

dpMHLð�Þ

d�
¼ Am�

ð1� �2Þ
m� ,

pMHLð�1Þ ¼ 1;

pMHLð1Þ ¼ 0;

ð12Þ

where MHL recommend m� ¼ 10. To use an MHL-type
expression in an SSF scheme it is important not to
distort the shape of the cell function too much. To this
effect m� was lowered and the corresponding factor a
optimized to satisfy the condition

dpMHLmSSFð�=aÞ

d�

�����¼0
m�¼m

¼
dpMHLð�Þ

d�

�����¼0
m�¼10

: ð13Þ

A number of functions of the above kind were
tested and two were found to be particularly useful.
The MHL8SSF cell-function where m� ¼ 8 and
a ¼ 0.902256 was found to give results of similar
accuracy to the original MHL function but is noticeably
cheaper to use. The MHL4SSF cell-function where

m� ¼ 4 and a ¼ 0.6651 gives noticeably less accurate
results but is much cheaper to use than either
MHL8SSF or the original MHL function. However,
MHL4SSF still gives more accurate results than the
original SSF function. Thus we recommend using
MHL8SSF over MHL for accurate calculations because
of its lower cost, and we recommend using MHL4SSF
for low accuracy calculations.

3.3.2. Selection of quadrature grids. We have imple-
mented the Euler–MacLaurin [65] and the Mura–
Knowles [66] radial grids. The Mura–Knowles transfor-
mation tends to have a higher density of grid points
close to the nucleus, resulting in a much larger fraction
of the grid points being positioned in locations where
they make significant contributions. Thus for a given
grid size the Mura–Knowles gives more accurate results
than the Euler–MacLaurin grid [66], and we have
chosen this transformation as the default. We also
chose to use the scaling parameters � recommended by
Mura et al. However, we extrapolated the table to cover
the whole periodic system of the elements, using 5.0 for
all elements except Groups I and II, for which a scale
factor of 7.0 was used.

We have implemented both the Gauss–Legendre and
Lebedev–Laikov [67, 68] angular grids. The Lebedev–
Laikov grids have been specifically optimized for
integration on a sphere. Furthermore, although the
original Lebedev grids were only available with limited
accuracy, the recently optimized Lebedev–Laikov grids
are available in 15 digits precision and are capable of
integrating 131st-order spherical harmonics exactly.
This makes these grids the preferred ones.

Having chosen the basic form of the quadrature
we set out to optimize the number of angular and
radial grid points. We choose to allow for different
numbers of grid points per row of the Periodic
Table. First we created diatomic molecules for every
pair of rows of the Periodic Table by combining
group one and group seventeen elements. Where
possible both all-electron and ECP calculations were
used.

To optimize the radial grids the angular grid was
kept fixed at 5810 points, and the radial grids were
varied from 20 to 600 grid points. For each predefined
grid and for each row the minimum radial grid size
required to meet the accuracy target was recorded. The
error in the energy was computed relative to the 600
radial grid points data.

A similar approach was followed for the angular
grids. In this case, the radial grid size was fixed at 300
points as the result from the previous experiment
showed that this was accurate enough. The angular
grids were varied across all available Lebedev–Laikov
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grids, ranging from 194 to 1454 grid points. The data
obtained in radial grid optimization with 300 radial grid
points and 5810 angular grid points were used as
references for the energy.
The resulting grid parameters were tested using

molecules from the G2 test set [69] as well as a set of
transition metal complexes including both all-electron
and ECP calculations, and a few actinide systems.
Initially, some two-dozen of these calculations failed to
achieve the target accuracy. However, as these failures
were relatively minor (the errors were typically about a
factor of 2 too large) they could be addressed through
experimentation. The final grid parameters obtained in
this fashion passed all accuracy tests. Table 2 lists the
corresponding numbers of grid points.

3.4. A DFT functional repository

Although the DFT method has become very popular, it
is well know that its accuracy depends crucially on the
density functional used. In practice, however, the exact
functional is unknown and one has to choose an
approximation that balances computational cost and
accuracy. It comes as no surprise that the rise in interest
in the theory has been accompanied by the development
of a steady stream of new functionals.
One problem given the number of functionals

available is their dissemination. Ideally, new functionals
should appear quickly in various programs to allow
scientists to reap the benefits they offer and to uncover
any weaknesses. In practice, building new functionals
into a code can be quite tedious. Often the interface
between the host program and the functional is
problematic because the functional expects quantities
that the program does not provide, or the functional
calculates quantities that the program does not expect.
An example of the latter is that some functional routines
compute not only the energy expression, but also the
potential, whilst others compute partial derivatives.

As a consequence, re-implementation of the functional
is often required.

In light of these problems, it seems useful to have a
freely available collection of routines that implement the
various functionals; these subroutines should ideally be
certified by the original authors as correctly representing
the functional they proposed. In any case it should be
clear whether such certification has been obtained or
not. This process also requires a set of reference data.
This data should validate the results of porting a given
functional routine to the host program. In those cases
where a functional is re-implemented, perhaps because
of efficiency reasons or to address interfacing issues, the
reference data should also act to validate the correctness
of the implementation.

With the above goals in mind, a density functional
repository [70] has been designed. The functionals
supported are listed in table 3. With respect to the
reference data, we chose to provide two different data
sets. The first consists of the total energies for 10
spherically symmetric atoms, chosen to cover a wide
range of density and density gradient values. In
addition, the spherical symmetry allows for numerical
integration with high accuracy, thus minimizing uncer-
tainties with respect to technicalities of the host program
implementation. The disadvantage of these reference
calculations is that the results depend on the Gaussian
basis set used. This makes the data difficult to compare
with results from programs in the physics arena which
employ plane waves as basis functions. Therefore, a
second set of data is provided which lists the results of a
functional for a given set of data points. The values for
the input data have been obtained from the atomic
calculations, but were truncated to two significant digits
to facilitate copying. More details about the design
considerations are stored with the repository.

Although the current collection of functionals is still
limited, we believe that the current implementation
provides a framework for the dissemination of new

Table 2. The grid sizes for the low, medium and high accuracy grids. The ‘reference’ grid was used to obtain the reference energies
against which the other grids were compared.

Grid Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7

Radial grid size

Low 20 40 35 40 40 40 35

Medium 60 60 70 70 70 80 70

High 180 130 160 180 220 180 110

Reference 300 300 300 300 300 300 300

Angular grid size

Low 194 266 302 302 302 302 266

Medium 266 590 590 590 770 590 434

High 770 1202 1730 1454 1730 1454 1454
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functionals, and hope to collect newly implemented
functionals as they become available.

4. Some of the application modules of GAMESS-UK

In this section we highlight a number of the implemen-
tation aspects of the more popular, and the more novel,
features available within the code. The Geometry
optimization modules are overviewed in section 4.1.
We then focus on the treatment of relativistic effects
through the ZORA Hamiltonian, (section 4.2), and on
the capability for performing valence bond calculations
(section 4.3). The various treatments available for
excited states, including MRDCI, MCLR, and the
associated treatment of the geometric derivatives of
excited state energies, are summarized in sections 4.4 to
4.6, respectively. The variety of available hybrid QM/
MM schemes central to the treatment of large systems is
considered in section 4.7. Finally, we consider the
variety of model building tools and visualization
techniques available to GAMESS-UK within the
CCP1-developed GUI (section 0).

4.1. Geometry specification, optimization and
transition-state location

The atomic coordinates of a molecule can be provided
to the program as Cartesian coordinates or as a
Z-matrix. Optimization of the Cartesian coordinates is
enabled through a Broyden–Fletcher–Goldfarb–Shanno
(BFGS) rank-two update algorithm [71] with the option
of maintaining some of the atoms fixed in space, or of
performing some partial optimizations. The most
general geometry and optimization combination is
provided by the Z-matrix geometry specification
which, as well as allowing the geometry to be specified
in the natural bond length, bond angle and torsion angle
format, also allows the user to specify the position of
atoms in Cartesian coordinates. This very flexible
geometry specification allows for dummy atoms, point
charges and ghost atoms, the latter being useful for

the calculation of basis set superposition errors.
Each numerical variable can be assigned a name which
may then be included in the geometry optimization, or
which may be held fixed throughout the calculation.
There are also options for the calculation or estimation
of the variable’s second derivative, as well as options for
the specification of values of the variable corresponding
to minima. This latter option is useful when performing
transition state calculations.

Three geometry optimization algorithms are available
to the user employing Z-matrix input. The default
algorithm begins with a calculation of the energy and its
gradient, followed by a line search using energy
calculations only. At the minimum energy along the
line of search an additional calculation of the gradients
is performed and the current estimate of the inverse
Hessian is updated using a rank-two BFGS update.
A new search direction is calculated from the current
gradient, position and Hessian and the process is
iterated until convergence. Convergence is dictated by
a series of four thresholds, all of which must be met for
the optimization to complete. The four criteria are: the
largest predicted step in any coordinate, the average
predicted step, the largest gradient term and the average
gradient values. Other optimization methods include an
optimization in Cartesian space and a method based on
the approach of Simons et al. [38].

Transition state searches can be performed by several
methods. The default algorithm is based on the work of
Cerjan and Miller [37]. The algorithm expects that some
estimation of the Hessian has been performed, either
numerically using the options on the geometric variable
specification, or analytically by calculating the full
second derivative matrix. Using the available Hessian
information, an estimate is made of the energy profile on
a sphere (in the space of the variables) defined by the
trust region radius, around the current point. If the
transition state is predicted to be outside the trust region
on the basis of a straightforward application of a
Newton step, then the appropriate minimum on the
trust region is taken for the next point, where an energy
and a gradient calculation are performed. Various

Table 3. Density functionals supported by the repository.

Exchange functionals Correlation functionals Exchangeþcorrelation functionals

Slater Perdew–Zunger ‘81 B3LYP

Becke ‘88 Perdew ‘86 Filatov–Thiel ‘97

Becke-3 Vosko–Wilk–Nusair 5 Hamprecht–Cohen–Tozer–Handy (HCTH)

including HCTC-120, -147 and -407

PBE Vosko–Wilk–Nusair 5 RPA Becke ‘97

Filatov–Thiel ‘97 Lee–Yang–Parr B97-1 and B97-2

PBE PBE

Filatov–Thiel ‘97 EDF1
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algorithms are incorporated to ensure that the trust
region radius expands and contracts in line with the
quality of the predictions of the algorithm. The inverse
Hessian is updated with a rank-one Murtagh-Sargent
update [71], although other options are available,
including a symmetric Powell update.
For those cases where it is difficult to provide

sufficient Hessian information an alternative method
based on the Quadratic Synchronous Transit (QST)
algorithm of Bell and Crighton [36] is available.
A quadratic search path joining two minima through
the current point is defined. This line is first searched
for a maximum. The Hessian is updated based on the
change in the gradients and a set of directions conjugate
to the maximum search direction is defined, in which the
energy is minimized. If the direction of the maximum
search direction changes during the minimization step,
the algorithm recalculates a maximum along the QST.
Although fairly robust, this algorithm can find itself in
difficulties if the directions defined by the QST and the
eigenvector corresponding to the negative eigenvalue of
the Hessian do not coincide. To address this problem the
method implemented has been modified to allow a more
general functional form for the quadratic curve. A
quartic polynomial is used to interpolate between the
two minima, the current point and the additional
flexibility of the quartic is used to encapsulate the
Hessian information which is available, so that at
the current point the curve aligns itself locally with the
direction defined by the eigenvector of the lowest
eigenvalue of the Hessian.

4.2. The treatment of relativistic effects and ZORA

For an adequate description of molecules containing
heavier elements, the relativistic behaviour of the inner
electrons cannot be ignored. The standard Schrödinger
equation is inadequate for these compounds, which
include the very important class of catalytic agents. The
relativistic electron density near the nucleus may be
simulated using a relativistic effective core potential [9].
Other approaches make approximations to the Dirac–
Fock operator, as in the Douglas–Kroll–Hess method
[72,73].
The CPD or ZORA method [74–76] is a two-

component approximation to the Dirac–Fock equation,
which is derived by using an expansion in E=2c2 � V
and only keeping the zeroth term. Currently, the scalar
ZORA [77] one-component approximation is opera-
tional within GAMESS-UK. Here the kinetic energy
operator is replaced by a potential-dependent term:

T̂T ¼ p:
c2

2c2 � Vc
:p ð14Þ

For practical implementation, resolutions of the
identity are inserted and ensuring that the correct non-
relativistic limit is retained, the elements of the ZORA
kinetic energy operator are written as

T�v ¼
1

2
�� p2
�� ���v� �

�
1

2

X
�

�� p
�� ����� �

S�1
� �� p

�� ���v� �
þ
1

2

X
�,�

�� p
�� ����� �

S�1
� � 1� ðVc=2c

2Þ
�� ����� ��1

S�1
� �� p

�� ���v� �
:

ð15Þ

The internal basis {��} is generated from the
molecular basis set by approximate application of the p̂p
operator [77]. The coulomb operator VC ¼ Vnuc þ J  is
generated using a standard direct Fock-matrix operator.
Subsequently, the 1� ðVC=2c

2Þ matrix is inverted using
standard matrix inversion and transformed to the
molecular basis. All basic integrals required are avail-
able in GAMESS-UK. The result is an effective one-
electron operator which, for example, allows for the
description of core ionization. All post-Hartree–Fock
techniques may be used without change [78].

The ZORA method features a coulomb operator in
the denominator, which causes the loss of gauge
invariance. The scaled ZORA approach [76] reduces
the error by orders of magnitude. The problem can be
fixed exactly by using a strictly atomic scheme, where
the ZORA corrections are calculated separately for each
atom [79]. This approach has the advantage that the
ZORA corrections only have to be determined once and
that all gradients calculated are exact, whereas the
approximation is generally negligible. Work is also
underway to incorporate the two-component ZORA,
which includes spin–orbit coupling [80], at the SCF
level. This involves some complex arithmetic.

4.3. Valence bond

Valence Bond theory has always struck a sympathetic
chord in chemists’ minds, because it can be linked so
closely to the familiar Lewis structure. A bond is
immediately translated in the wavefunction by two
non-orthogonal orbitals on neighbouring atoms that are
singlet coupled. An ionic structure may contain an
atomic orbital that is occupied twice, or alternatively
two orbitals on the same atom. So it is simply possible to
translate the assumed concept of bonding in a molecule
into a (small) set of structures. Alternatively, if the
nature of the bonding is in question, the relative
importance of the different structures may provide
insight. The benzene molecule is naturally described as
two resonating structures, each describing local bond-
ing. Vital for an unbiased wavefunction is the ability to
optimize the wavefunction, both its orbitals and its
structure coefficients [81].
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The TURTLE program [82] has been integrated into
GAMESS-UK taking advantage of, for example, the
gradient capabilities and the possibility of generating
atomic wavefunctions. Thanks to this integration all
options available to, for example CASSCF, such as
effective core potentials or scalar (atomic) relativistic
effects [79] are now also available in VB (SCF). A review
of the algorithms used in evaluating matrix elements
and in optimizing the orbitals has recently been
published [83].
Due to the non-orthogonality of the orbitals, and

therefore of the structures, a VB (SCF) calculation is
intrinsically more time consuming than an orthogonal
calculation, with a Hamiltonian matrix element between
two structures taking for N electrons in the order of N4

operations [84]. Nevertheless, basis sets with over 160
AOs have been used for small molecules and the
interpretative power of Valence Bond has already been
extended to metal–organic chemistry [85]. The calcula-
tion of the matrix elements, by far the most time-
consuming part, has been parallellized (see section 5.5).
In summary the key features of the code are:

� using a VBSCF procedure, it is possible to
optimize wavefunctions of both Heitler–London
and Coulson–Fischer type: indeed, it is even
possible to use different orbitals for different
structures (e.g., covalent or ionic);

� automatic orbital optimization using Super CI
and more approximate methods [86] offers the
possibility to keep orbitals strictly local to atoms,
‘optimal hybrids’;

� all gradient-based methods that GAMESS-UK
has to offer can be used with these wavefunctions;
associated input routines are provided that offer
extended possibilities to specify the starting
orbitals.

In collaboration with Inorganic Chemistry in Nijmegen
(P.H.M. Budzelaar) we are attempting to apply the
Valence Bond method in an area where it is always
assumed to be most useful, the elucidation of chemical
bonding. In contrast to transition metals, main-group
metals show a bewildering variety of bonding arrange-
ments to cyclo-pentadienyl (Cp) groups, including
electron-precise, electron-deficient and electron-excess
structures. Valence Bond calculations (VB) have
been performed on cyclo-pentadienyl silicon hydride
(CpSiH), cyclo-pentadienyl silicon trihydride (CpSiH3)
and cyclo-pentadienyl aluminium dihydride (CpAlH2)
to gain more insight into the number of bonds
(hapticity) of the metal atom with the ring [85]. VB
makes use of non-orthogonal orbitals, which means
orbitals can overlap; the overlap between two orbitals
can be used as a measure of the bond strength.

VB wavefunctions are constructed from structures, to
which one may attribute chemical meaning. One such
structure for CpSiH is Cp–/SiHþ. Another structure is
Cp–SiH in which the bond between the Cp-ring and the
SiH-group is covalent. When the total wavefunction is
variationally optimized weights can be calculated from
the coefficients of the structures. These weights show
the relative importance of all structures to the total
wavefunction and thus the importance of each bonding
type.

4.4. MRDCI

The MRDCI module as implemented in GAMESS-UK
is now the (semi-)direct version of Buenker, Engels, and
Peyerimhoff [24, 25], which is based on the original
table-driven implementation [12–14, 25]. It is especially
suited for the calculation of excited states, as a multi-
root Davidson diagonalization routine is implemented
which can calculate multiple solutions of the same
symmetry simultaneously. CI expansions of a few
million Configuration State Functions (CSF) can be
treated using this code.

The procedure starts like any other CI program with
an initial chosen set of reference configurations { ð1Þ

j }
which is used for the generation of the second set
{ ð2Þ

k }. In the MRDCI formulation, this second set is
generated by performing all single and double excita-
tions from the parent set { ð1Þ

j } subject to a threshold
criterion:

 ð2Þ
k

��� ���H  ð1Þ
j

��� ���2
 ð2Þ
k Hj j ð2Þ

k

D E
�  ð1Þ

j Hj j ð1Þ
j

D E
�������

������� > � for at least one j ½12�:

ð16Þ

Here, � is a preset energy criterion, typically in the range
10�3–10�6Eh to keep the calculation feasible. The CSFs
corresponding to all spin paths of a particular config-
uration are selected if at least one of them satisfies the
threshold criterion. This is required to set up calculations
that are unitarily invariant for orbital rotations that
leave the energy of the foregoing (MC)SCF unchanged.

The program avoids the calculation of the complete H
matrix in a Direct-CI like fashion [15]. It arranges the
configurations in so-called supercategories according to
their open-shell structure, thus treating the spin coupling
schemes for a whole set of configurations at the same
time.

The simultaneous diagonalization of the equisym-
metric states of interest ensures the orthogonality
requirements, enabling easy calculation of oscillator
strengths. Furthermore, the code will be extended
with MRACPF [87] and MRAQCC [88] variants.
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GAMESS-UK also provides an interface to the
DIESEL-CI program [89], which is an efficient
(and parallel) direct implementation of the selected CI
procedure.

4.5. Multi-configurational linear response

Response methods are a class of approaches in which
properties are calculated by considering how a molecule
responds to an external, most often time-dependent,
perturbation. In general, these methods can be used to
compute a wealth of properties depending on the time-
dependent perturbation, e.g. an oscillating electric or
magnetic field, and the observable for which the
response is calculated. Examples are magnetic suscept-
ibility, NMR chemical shifts, infrared spectra, optical
rotation strengths, and UV/Vis spectra. The latter is the
property of interest here. In this case the response of a
molecule to a time-dependent electric field is considered
and the transition energies and oscillator strengths
calculated. Thus response methods provide an alter-
native to CI methods. Within the context of molecules
described by a multi-configurational wavefunction,
the Multi-Configurational Linear Response (MCLR)
method was first proposed by Yeager and Jørgensen [90]
and later reformulated by Fuchs [26] to allow for
expansions to arbitrary high orders of perturbation
theory. The latter formulation forms the basis for the
implementation discussed here.
The general approach behind the MCLR method is to

derive an equation of motion for the response function
from Ehrenfest’s theorem, employing an exponential
parameterization, and to linearize this to obtain an
eigenvalue problem. The time-dependent wavefunction
itself is actually only used for the purpose of derivation.
The equation of motion for the response function is
Fourier transformed to the frequency domain to obtain
a matrix equation suitable for numerical computation.
The time-independent reference wavefunction is chosen
to be an optimized MCSCF wavefunction which there-
fore satisfies the generalized Brillouin theorem. Based on
the parameterization of the MCSCF wavefunction,
it is natural to parameterize the time-dependent
wavefunction as

0ðtÞ
�
¼ eKðtÞeLðtÞ

�� ��0i: ð17Þ

As a result of the time dependence this wavefunction
has to be complex valued and K and L are defined as

KðtÞ ¼
X
r>s

½�rsðtÞE
r
s þ �

�
rsðtÞE

s
r �, ð18Þ

LðtÞ ¼
X
m>0

½�mðtÞ mi 0hj j þ ��mðtÞ 0i mhj j�, ð19Þ

where r and s refer to orbitals, � describes the time
dependence of the orbitals, m refers to states in the
orthogonal complement of the MCSCF wavefunction,
and � describes the time dependence of the N
electron states. After the derivation sketched above
and described in detail by Fuchs [26] the following
eigenvalue problem is obtained:

ð!iS� EÞxi ¼ 0, ð20Þ

where

S ¼
� �

��� ���

� �
, ð21Þ

E ¼
A B

B� A�

� �
, ð22Þ

The submatrices are given by

� ¼
0h j½Ep

q ,E
s
r � 0j i 0h j½Ep

q ,Ln� 0j i

0h j½Lþ
m,E
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where H0 is the MCSCF Hamiltonian.The straightfor-
ward way to solve these eigenvalue equations is to
assume that there is a set of vectors x that are
eigenvectors of the matrices S and E simultaneously.
In that case direct methods based on the Davidson
diagonalization method can be applied. However,
the existence of such a set of vectors can only be
guaranteed if the reference wavefunction corresponds to
a ground-state MCSCF wavefunction.

Finally, in order to understand the electronic struc-
ture of the system under consideration it is crucial to
know the dominant configurations in the wavefunction
of the examined mth excited state. Although this is a
simple task in CI calculations, in the MCLR formalism
the question to answer is in which sense do the
eigenvectors of the response matrices correspond to
the wavefunctions of the excited states. It can be shown
[26] that

mMCLRj i ¼
X
j

ðxmÞjðKj,Lj,K
þ
j ,L

þ
j Þ 0j i ð27Þ
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plays a role analogous to the mth excited state and this
formula can be used to analyse the contributions of the
excitations from the reference wavefunction.

4.6. Random phase approximation and
geometric derivatives of the excited state

The Random Phase Approximation (RPA) is a rela-
tively simple response method. It can be obtained from
the same formalism as the MCLR method but applied
to a single determinant wavefunction. In particular, for
the closed-shell case the RPA method can be obtained
by choosing the set of active orbitals to be empty.
This leads to an ordinary eigenvalue problem for a
non-Hermitian matrix:

A B

B A

 !
Z

Y

 !
¼ E

1 0

0 �1

 !
Z

Y

 !
; ð28Þ

1 ¼ ZTZ � YTY; ð29Þ

Aai,bj ¼ ð"a � "iÞ�ab�ij þ 2ðai bj
�� Þ � ðab ij

�� Þ, ð30Þ

Bai,bj ¼ �2ðai bj
�� Þ � ðai bj

�� Þ, ð31Þ

where the eigenvalues E represent the excitation energies
of the molecule. Here, ð"a � "iÞ is an orbital energy
difference from Hartree–Fock theory, and (ai bj

�� )
denotes the Coulomb matrix element coupling occupied
orbitals (ij) and orbitals in the virtual manifold (ab).
A similar formulation can be derived from the Kohn–
Sham equations of density functional theory, leading to
a time-dependent DFT approach.
Neglecting the matrix B, the equations decouple

to two identical expressions which are equivalent
to the Single CI or Tamm–Dancoff (TDA) equations.
Therefore, it may be said that RPA is somewhat
corrected for the effect of double excitation which
appears in matrix B. However, not all double excitations
are present nor are these excitations coupled to the
single excitations. Therefore, if the double excitations
really cannot be neglected, the RPA can only be
expected to give qualitative results.
An important implementation aspect of the RPA

equations is that the expressions are simple enough to be
readily coded in a direct fashion. This allows the integral
transformation to be avoided and the two-electron
integrals are computed in the AO-basis whenever needed
[26]. This aids in removing storage bottlenecks and in
writing a replicated data parallel implementation.
The chemical behaviour of excited states within the

RPA formalism can be studied by considering the
Newtonian dynamics of these excited state potential
energy surfaces, for which an accurate energy gradient,

or force, is required. These gradients were first published
by Ortiz [91]. More recently, a derivation based on a
slightly different formulation of the RPA equations was
suggested by van Caillie et al. [92]. Following the
equations by Ortiz, we found an error probably due to a
misinterpretation of the Coupled Perturbed Hartree–
Fock (CPHF) equations. Traditionally, the CPHF
equations are written as

U�
ij ¼

Q� þ
P

dl U
�
dlf4ðij dlj Þ � ðid jl

�� Þ � ðil dj
�� Þg

"j � "i
: ð32Þ

Clearly, this equation is singular if i ¼ j, but this does
not mean that U�

ii is undefined. Differentiating the
normalization condition of the orbitals, one obtains

U�
pq þU�

ap þ S�pq ¼ 0, ð33Þ

from which it follows that

U�
ii ¼ �

1

2
S�ii : ð34Þ

This result was incorporated into the original deriva-
tion and the implementation within GAMESS-UK. The
implementation was tested in two ways. First the
gradients were compared against numerical gradients
of the energy. Second, we used the fact that the total
energy should be conserved while the nuclei move. Any
systematic error in the gradients would result in
inconsistent changes of the kinetic energy of the nuclei
and the potential energy. Following the molecule
through about 1000 geometry changes, any error
would be strongly amplified making this test extremely
sensitive. The implementation was found to yield
gradients indistinguishable from the numerical results.
Also the conservation of the energy was obeyed to
within 5 m Hartrees after 1000 steps. Given the accuracy
of the various parts of a typical quantum chemistry
code, one cannot expect to improve beyond this.

Increasingly, these excited state dynamical processes,
which occur on femtosecond timescales, are becoming
the subject of experimental study, as exemplified by the
Nobel prize-winning work of Ahmed Zewail [93].
However, interpreting the measured signals in terms of
underlying chemical processes is not easy without
simulations. In particular, in pump–probe experiments
the calculation of trajectories of molecules in the excited
state is important. The above approach can be used in
this context [94] to produce valuable data, although the
costs are quite high because of the large number of time
steps per trajectory and the large number of trajectories
needed to converge the statistics of the thermodynamics.
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4.7. QM/MM and the treatment of large systems

While developments in computer performance and QM
algorithms are bringing increasingly complex systems
within the scope of quantum mechanical calculations,
many important chemical systems remain too large for
pure quantum simulation. This is especially true if
energies for many configurations are required, as in
molecular dynamics studies. Over the last ten years or so
we have sought to extend the capabilities of the
GAMESS-UK code by including environmental effects
via interfaces to other programme packages. Two
approaches have been pursued in parallel: on one
hand, the ChemShell package [95] provides for a
generalized coupling of QM and MM packages, while
the GAMESS-UK/CHARMM interface specifically
addresses the requirement of providing a QM/MM
capability for users of the CHARMM package.

4.7.1. ChemShell. ChemShell [95, 96] is a scripting
language, based on Tcl, which provides a number of
QM/MM schemes together with a number of utility
functions for dealing with the combined QM/MM
potential energy surface (for example, MD and geome-
try optimization drivers). ChemShell is not specific
to GAMESS-UK, interfaces exist to MOLPRO,
CADPAC, Turbomole and Gaussian, however a num-
ber of modifications to GAMESS-UK to support
interfacing to the environment make it the most useful
code in this context. This interface is suitable for a
variety of application areas [95], but to date most
examples that have employed GAMESS-UK have
focussed on solid-state embedding problems such as
zeolite and metal oxide catalysis [97, 98].

4.7.2. The CHARMM/GAMESS-UK Interface. A
second approach, particularly appropriate for biomole-
cular systems, is exemplified by the direct coupling of
GAMESS-UK with the CHARMM [99] macromolecu-
lar modelling package. In this case all the tools for
system setup and exploration of conformational space
are those of CHARMM, with the QM contribution
simply a part of the energy expression. CHARMM is
one of the most widely used packages for the study of
macromolecules such as proteins, nucleic acids and
lipids. It supports energy minimization and molecular
dynamics approaches using a classical parameterized
force-field. In order to permit studies of reacting species
it is useful to be able to incorporate the quantum
mechanical energy of a part of the system into the force-
field, and over recent years a number of interfaces to
quantum mechanical programs have been developed.
Initially, these were based on semi-empirical wavefunc-
tions. More recently, computational and hardware

developments, such as those described in this paper,
have led to increased interest in ab-initio QM/MM
schemes and interfaces to the GAMESS(US) [100] and
CADPAC packages [101] have been implemented.
The coupling between CHARMM and GAMESS-UK
follows a similar approach to these.

In the CHARMM QM/MM model the standard
CHARMM force-field is used for the classical partition
and the QM/MM van der Waals interactions. The
QM/MM electrostatics are handled by including, in the
Hamiltonian, point charges at the MM positions. The
energy and forces from the QM calculation, including
electrostatic forces acting on the classical centres, are
added to those computed by CHARMM. The QM/MM
approach involves introducing additional hydrogen
(link) atoms to the edges of the QM cluster to terminate
the quantum mechanical calculation. The forces on the
link atoms can be handled by CHARMM using the
same methods developed for treating explicit models of
lone pairs.

The DFT module within GAMESS-UK employs an
auxiliary basis fit of the charge density to provide an
approximation to the Coulomb energy (see above). We
have used these elements of GAMESS-UK to imple-
ment an alternative model in which the charge density of
the classical system is included in the QM Hamiltonian
not as a set of point charges but as a continuous charge
distribution represented as a sum of Gaussian terms
[102]. This allows greater overlap between the QM and
MM charge distributions without the introduction of
major artefacts and thereby permits the exploration
of a number of QM/MM schemes. The CHARMM/
GAMESS-UK interface supports a QM/MM imple-
mentation of the replica path algorithm, which enables
simultaneous optimization of a complete reaction path
using an algorithm particularly well suited to parallel
computing [103].

4.8. Visualization and the CCP1 GUI

Visualization and input preparation for GAMESS-UK
is supported through the CCP1 GUI project, which
has arisen as a result of demand within the UK
academic community (principally through CCP1) for a
free, extensible Graphical User Interface (GUI) for
community codes, particularly for teaching purposes.

The GUI has been built around the Python open-
source programming language and the VTK visualiza-
tion toolkit, both of which have been ported to all the
major operating system platforms. The GUI is therefore
capable of running on all of these systems. Distributions
of the GUI have already been successfully tested on
Windows, and Suse and Redhat Linux distributions,
and packages for these distributions are freely available
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from our web site [104]. The design of the GUI makes
the most of Python’s high degree of object-orientation,
including advanced features such as multiple inheritance
that are not available in other object-oriented languages
such as Cþþ and Java. The strong reliance on object
orientation means that it is quick and easy to create
interfaces to new computational chemistry codes as the
need arises. The GUI already has a highly featured
interface for the GAMESS-UK program, and there are
working interfaces for the ChemShell QM/MM package
and MOPAC.

4.8.1. CCP1 GUI functionality. The GUI supports
GAMESS-UK SCF, DFT or post-Hartree–Fock calcu-
lations, and geometry optimizations, including transi-
tion state searches. As well as options to configure
everything from the convergence criteria of SCF
calculations and geometry optimizations, to functionals
and grid settings for DFT calculations, the interface
includes a tool to configure the basis sets on individual
atoms. The interface also provides access to the various
analytical options offered by GAMESS-UK and the
results of these calculations are automatically imported
into the GUI for display with the visualization tools.

Supported file formats. From its inception, the GUI
was intended to work with a number of different codes,
so a variety of file formats are supported both for
reading in molecular structures and outputting data. As
well as conventional formats such as Z-matrix and PDB,
there are programme-specific formats for CHARMM,
ChemShell, XMol and Gaussian, as well as support
for XML.

Editing capabilities. The GUI has a suite of easy-to-use
editing tools that allows complex molecules to be
created using simple point-and-click operations. There
is also a fully functional Z-matrix editor that can be
used to edit the atomic coordinates of a molecule
in internal or Cartesian form. Symbolic variables (and
constants) can be defined, and the editor can auto-
matically generate a Z-matrix (including the requisite
reordering of the atoms) which can subsequently be
customized. Used in conjunction with the graphical
tools this creates a powerful and flexible environment
for building molecular structures.

Visualization tools. The GUI has powerful and highly
customizable visualization capabilities. Scalar data can
be represented through volume rendering, coloured 3D-
isosurfaces, 2D-slices or as a raw grid of points. Vector
data can be represented as hedgehog plots, glyphs or
streamlines, and the colours and opacity of any of the
vector or scalar representations can be easily adapted to

a given schema. Multiple representations of the various
molecular properties for the same or different molecules
can be created and overlaid to extract the maximum
amount of information from the results of a calculation.
The GUI can also be used to view the dynamic
properties of a calculation, by animating molecular
vibrations or creating a movie from the different steps
in a geometry optimization.

e-Science developments. Work is already underway
[105] to enable the GUI to exploit the latest develop-
ments in the field of e-Science. Initially these will allow
the GUI to download molecular structures from
databases around the world for viewing, or to serve as
the inputs for calculations. As the e-Science Data Model
matures, however, it will become possible to not only
download and view the results of calculations carried
out with different codes, but to use the GUI to import
the inputs to serve as a basis for new calculations.

5. Parallel implementation and performance of

GAMESS-UK

5.1. The replicated data MPI implementation

Historically the development of the parallel version of
the code resulted in both SCF and DFT modules being
parallelized in replicated data fashion, with each node
maintaining a copy of all data structures present in the
serial version. While this structure limits the treatment
of molecular systems beyond a certain size, experience
suggests that it is possible on the current generation of
machines to handle systems of up to 5000 basis
functions. The main source of parallelism in the SCF
module is the computation of the one- and two-electron
integrals and their summation into the Fock matrix,
with the more costly two-electron quantities allocated
dynamically using a shared global counter. The result
of parallelism implemented at this level is a code
scalable to a modest number of processors (around
32), at which point the cost of other components of
the SCF procedure start to become significant. This
mode of parallelization is available in the current
distribution and is referred to historically as the MPI
implementation.

Improving the scalability of the code beyond this
has been addressed in part by adopting a number of
the tools developed by the High Performance
Computational Chemistry Group (HPCCG) from the
Environmental Molecular Sciences Laboratory at
PNNL. The HPCCG has developed molecular model-
ling software to take full advantage of the parallel
computing power of MPPs. These efforts have culmi-
nated in the NWChem package that includes a broad
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range of electronic structure and molecular dynamics
functionality [106–108]. We briefly outline in the next
section the tools that have been adopted in collabora-
tion with the HPCCG.

5.2. Global array tools and PeIGS

The first of these is the Global Array (GA) toolkit
[109–111], which provides an efficient and portable
‘shared-memory’ programming interface for distributed-
memory computers. The toolkit enables each process in
a MIMD parallel program to asynchronously access
logical blocks of physically distributed matrices, without
need for explicit co-operation by other processes. Unlike
other shared-memory environments, the GA model
exposes the programmer to the non-uniform memory
access (NUMA) timing characteristics of the parallel
computers and acknowledges that access to remote data
is slower than to local data. From the user perspective, a
global array can be used as if it were stored in shared
memory, except that explicit library calls are required to
access it. The information on the actual data distribu-
tion can be obtained and exploited whenever data
locality is important. Each process is assumed to have
fast access to some ‘local’ portion of each distributed
matrix, and slower access to the remaining ‘remote’
portion. Remote data can be accessed through opera-
tions like ‘get’, ‘put’ or ‘accumulate’ (floating point sum-
reduction) that involve copying the globally accessible
data to/from process-private buffer space. A number of
BLAS-like data-parallel operations have been developed
on top of these primitives.
The second tool is the scalable, fully parallel

eigensolver, PeIGS, whose numerical properties satisfy
the needs of the chemistry applications [112]. PeIGS
solves dense real symmetric standard (Ax ¼ lx) and
generalized (Ax ¼ lBx) eigenproblems. The numerical
method used is multisection for eigenvalues and
repeated inverse iteration and orthogonalization for
eigenvectors [112]. Accuracy and orthogonality are
similar to LAPACK’s DSPGV and DSPEV [113].
Unlike other parallel inverse iteration eigensolvers,
PeIGS guarantees orthogonality of eigenvectors even
for arbitrarily large clusters that span processors.
Internally, PeIGS uses a conventional message passing
programming model and column-distributed matrices.
However, it is more commonly accessed through an
interface provided by the GA toolkit, with the necessary
data reorganization handled by the interface.
Once the capability for GA is added to GAMESS-

UK, and the PeIGS-based diagonalization module
introduced, parallelization of the linear algebra becomes
straightforward by forming a distributed copy of the
relevant matrices and calling the library routine.

Depending on the subsequent operation, it may then
be necessary to re-replicate the array. As an example,
the SCF convergence acceleration algorithm (DIIS—
direct inversion in the iterative subspace) uses GA
storage for all matrices, and parallel matrix multiply and
dot-product functions. This not only reduces the time to
perform the step, but the use of distributed memory
storage (instead of disk) reduces the need for I/O. We
have also used the GA tools to map disk files into
distributed memory, an approach which proves more
efficient than keeping all files on node 0 and distributing
to all nodes using broadcast operations.

5.3. Moving to distributed data

With the increasing availability of large parallel
architectures it is becoming more and more important
to exploit such systems effectively. Methodologies that
work well on small to medium size machines may not
scale well to the top end, and so it is becoming necessary
to investigate alternative strategies that make better use
of the resources available.

The replication of all the data implies that the largest
problem that can be solved is governed by the amount of
memory available to one processor, not that available
on the whole machine. So, for example, if a machine
consists of 1024 processors each with 1GByte per
processor, the limit is not the terabyte of memory
available on the whole system, but the GByte available
locally. More generally, the communications overhead
can become very large because once a parallel operation
has been performed it will be necessary to re-replicate all
the data across the whole machine so that each
processor has a current version. This requires a global
communication, a potentially costly operation for which
the time taken grows with the number of processors.
While this may not be so important for such very
expensive operations as the Fock build, for fast, highly
efficient operations which are performed repeatedly,
such as matrix multiplies, the communication overhead
can become large relative to the time taken in the
computation, thus inhibiting scaling. Finally, replicated
data simply does not fit well with many algorithms. For
computational chemistry the most important of these is
diagonalization, which becomes an increasingly impor-
tant stage of the calculation as the system size increases.
The net result of these drawbacks is that a replicated
data strategy is not an efficient methodology for
exploiting large parallel computers due to both system
size and parallel scalability limitations.

An alternative method is distributed data. Here each
processor holds only part of each of the (major) data
structures. This overcomes many of the drawbacks of
replicated data; the limit on system size is now that given
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by all the memory on the computer, global communica-
tions are largely avoided as re-replication is not
required, and many of the algorithms that cannot be
effectively addressed by a replicated data strategy fit
more naturally within a distributed data one. Due to
these attractive features this method is being increas-
ingly used both in quantum chemistry codes, and
more generally in other areas. One example in quantum
chemistry is NWChem [106–108], which uses this
strategy throughout.
As noted above the standard parallel implementation

of GAMESS-UK uses an approach between these two
extremes. Most of the data is replicated, but when a
parallel linear algebra operation is to be performed the
data is copied into a global array; GA tools are used to
perform the operation, and then the data is copied back
into a replicated object. Whilst this solves some of the
problems associated with a replicated data strategy
the majority still remain, especially the large memory
requirements and the re-replication overheads. This
would suggest that a move to a truly distributed data
model would be desirable. However, distributed data is
not a universal panacea, for as with replicated data it
is difficult to implement certain algorithms efficiently
in parallel using it. One is the build of the Fock matrix;
consider the form of the coulomb and exchange
contributions to element �� of the Fock matrix:

F�v ¼ H0
�v þ

X
�	
P�	½ð�v 	�j Þ� �

1

2
ð�� 	vj Þ�: ð35Þ

In principle, each element of the density matrix
contributes to every element of the Fock matrix.
Within a distributed data parallelization strategy each
processor would hold a portion of both the Fock and
density matrices. Therefore, one way to implement this
is for each processor to calculate all the integrals
appropriate for the ���	 it currently holds, form the
contribution to the Fock matrix and then pass the part
of the density matrix that it currently holds onto the
next processor, in a systolic-loop-type algorithm. This is
repeated until the Fock matrix is fully formed. However,
this algorithm has a number of drawbacks, the main one
being that of load balancing. Each communication of
the density matrix will require synchronization between
a pair of processors (assuming a standard two-sided
communication protocol), and, further, since the virtual
processor topology used in the above algorithm is a ring
this implies a loose synchronization between all proces-
sors. Therefore, to avoid load imbalance at each stage
all the processors must perform the same amount of
work, and this is not straightforward to achieve. So
while good scalability in the Fock build can be achieved
readily using a replicated data strategy, it is much more

difficult using distributed data. Though these problems
can be addressed, as they are in the NWChem package
by use of one-sided communications, we have taken a
more pragmatic approach by implementing a partially
replicated version of the SCF and DFT modules, which
we describe in section 5.7.

5.4. The GA-based DFT and MP2 modules

The Density Functional Theory (DFT) module
within GAMESS-UK is a MPP implementation of
the Hohenberg–Kohn–Sham formalism [54, 114] of
DFT. The Gausssian basis DFT method breaks the
Hamiltonian down into the same basic one- and two-
electron components as traditional Hartree–Fock (HF)
methods, with the latter component further reduced to a
Coulomb and an exchange-correlation term. The treat-
ment of the former can be accomplished in identical
fashion to that used in traditional self-consistent field
(SCF) methods or from the commonly used Dunlap
charge density fit [55, 56].

The performance of both DFT and DFT second
derivative modules on a variety of high-end parallel
hardware is shown in table 4. This includes both the
IBM systems at HPCx (http://www.hpcx.ac.uk)—the
Phase1 p690 system with 1.3GHz power4 CPUs and
the Phase2 p690þ system, with 1.7GHz power4þ
CPUs—and the SGI Altix 3700 systems, with 1.3GHz
Itanium2 CPUs (‘newton’) at CSAR (http://www.csar.
cfs.ac.uk) and 1.5GHz CPUs (‘ram’) at ORNL (http://
www.ccs.ornl.gov). Older systems also shown include
‘teras’, the SGI Origin 3800/R14k-500 at SARA (http://
www.sara.nl), and the HP/Compaq AlphaServer
SC ES45/1000 system, ‘TCS1’, at the Pittsburgh
Supercomputing Centre (http://www.psc.edu). Unless
stated otherwise, the DFT calculations did not exploit
CD fitting, but evaluated the coulomb matrix explicitly.

Note that all reported timings for the IBM
p690þ system refer to the High Performance Switch
(HPS) microcode contained in Service Pack 7 (SP7),
unless stated otherwise. Considering the DFT results,
modest speedups ranging from 55 (IBM p690) to 78
(SGI Origin 3800) are obtained on 128 processors for
the larger cyclosporin calculation. Somewhat better
scalability is found in both valinomycin DFT calcula-
tions where a greater proportion of time is spent in
integral evaluation arising from the more extended basis
sets [115]. Speedups of 87 and 102 are obtained on 128
processors of the IBM p690 and p690þ, the latter figure
comparable to that found on the AlphaServer (97), the
SGI Origin 3800 (102) and Altix 3700/1300 (104) in
the 1620 GTO calculation. The performance of both
GAMESS-UK and NWChem using releases of the
Global Array Tools up to and including V3.3 showed a
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marked deterioration on SGI Altix systems that involve
partitioning across two or more linux64 partitions. This
deficiency has been remedied in V3.4 of the GA library,
so that the timings on the multi-partition CSAR Altix
system are now consistent (allowing for the clock speed
ratio of 1.15) with those on the 256-way single system
image characterizing the ‘ram’ system at ORNL (see
table 4). With the release of SP9, we see that the IBM
p690þ and Altix systems exhibit comparable perfor-
mance in the 128 CPU DFT calculations. The enhanced
performance of the DFT 2nd Derivative module on
the IBM p690 and p690þ arises from the decreased
dependency on latency exhibited by the current
implementation compared to the DFT energy module.
The less than impressive scalability of both

GAMESS-UK and NWChem on the IBM p690 and
p690þ systems (up to and including SP7) arises to some
extent from the dependency of both codes on a Global
Array implementation that is dependent on IBM’s LAPI
communication library [117]. The implementations of
LAPI on POWER4-based architectures has proved

far from optimal, with the measured latencies and
bandwidths significantly inferior to those measured on
corresponding POWER3-based systems. This provided
one of the main motivations behind a re-implementation
of the SCF and DFT modules using only tools based on
MPI (see section 5.7). The recent release of Service Pack
9 (SP9) on the p690þ has done much to address these
shortcomings, as is evident from the timings on higher
processor counts in figure 4 (vide infra).

5.4.1. The fitted Coulomb DFT module. Following on
from the discussion of section 3.2 we note that the
parallelization of the Fitted Coulomb module is
performed trivially by distributing the evaluation of
integrals with the same set of wavefunction basis
functions ðpq

�� over the processors. Because the integrals
are stored and read when needed a static load balancing
scheme has to be applied to avoid communication. If the
amount of memory available is not sufficient to store all
of the integrals then the ones that were not stored can be
recalculated. This combined in-core/direct approach can

Table 4. Time in wall clock seconds for GAMESS-UK benchmark calculations on the Compaq AlphaServer SC ES45/1000,
SGI Origin 3800/R14k-500, IBM p690 and p690þ, and SGI Altix 3700/1300 and 3700/1500.

CPUs SGI Origin

3800/R14k-500

Compaq Alpha

ES45/1000

IBM p690 IBM

p690þ(SP7)

IBM

p690þ(SP9)

SGI Altix

3700/1300

SGI Altix

3700/1500

Cyclosporin (1000 GTOs) DFT/B3LYP 6-31G

32 1049 580 556 385 392 420 379

64 587 355 369 254 231 249 221

128 269 160 173

Cyclosporin (1855 GTOs) DFT/B3LYP 6-31G**

32 3846 2084 2047 1366 1319 1522 1383

64 2271 1276 1429 876 804 900 808

128 1585 896 1193 739 555 612 615

Valinomycin (882 GTOs) DFT/HCTH

32 1947 1024 1099 802 816 893 780

64 1065 577 635 463 441 487 420

128 623 369 489 309 260 390 263

Valinomycin (882 GTOs) DFT/HCTH (J-fit)

32 649 429 473 269 279 258 237

64 425 283 370 243 193 169

128 352 355

Valinomycin (1620 GTOs) DFT/HCTH

32 9636 4738 4723 3513 3502 4147 3595

64 5110 2556 2690 1966 1886 2195 1901

128 3024 1557 1777 1259 1104 1277 1190

256 2026 1013 1343 985 731

(C6H4(CF3))2 second derivatives DFT/HCTH

32 1772 922 842 457 471 567 497

64 1081 557 471 362 295 325 338

128 826 337 294 240 180 238 326
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be optimized further by storing the largest integrals
and recalculating the small ones. This way, as with
direct-SCF, the Schwarz inequality can be tightened
by including the density factors, reducing the number
of integrals further. The inversion of the matrix V was
implemented using the PeIGS diagonalization package,
with the matrix distributed column-wise, to maximize
data locality in the evaluation of the fitting coefficients.
Timings for a number of DFT calculations on the

valinomycin molecule, conducted on the variety of high-
end hardware under consideration, are shown in table 4.
Calculations used a DZV_A2 DGausss basis of 882
functions and the HCTH functional, with timings
reported for calculations in which the Coulomb matrix
was evaluated explicitly (J-explicit) and for those that
used CD fitting (J-fit). The latter employed an A1_DFT
fitting basis (3012 functions). It can be seen that the
current implementation of the fitted Coulomb module
provides significant benefit in terms of time to solution,
with all systems showing a significant reduction in time
when using the fitted Coulomb matrix compared to
explicit treatment of the Coulomb term. These reduction
factors on 64 CPUs range from 2.51 (SGI Origin 3800/
R14k) to 1.72 (IBM p690) across the variety of systems
given in table 4. A comparison with the explicit-J
timings shows, not surprisingly, poorer scalability of the
fitted approach given the greater dependency of this
approach on interconnect.

5.4.2. The parallel MP2 module. Substantial modifica-
tions were required to enable the second-order Möller
Plesset (MP2) gradient to be computed in parallel [116].
The conventional integral transformation step is now
omitted, with the SCF step performed in direct fashion
and the MO integrals, generated by re-computation of
the atomic orbital (AO) integrals, stored in the global
memory of the parallel machine. The storage and
subsequent access is managed by the GA tools. The
basic principle by which the subsequent steps are
parallelized involves each node computing a contribu-
tion to the current term from molecular orbital (MO)
integrals resident on that node. For some steps,
however, more substantial changes to the algorithms
are required. For the MP2 gradient, the construction of
the Lagrangian (the right-hand side of the coupled
perturbed Hartree–Fock (CPHF) equations) requires
MO integrals with three virtual orbital indices. Given
the size of this class of integrals, they are not stored, the
required terms of the Lagrangian being constructed
directly from AO integrals. A second departure from the
serial algorithm concerns the MP2 two-particle density
matrix. This quantity, which is required in the AO basis,
is of a similar size to the two-electron integrals and
is stored on disk in the conventional algorithm, but

generated as required during the two-electron derivative
integral generation from intermediates stored in
the GAs.

5.5. The parallel valence bond module

The VB program has now been parallellized. Extending
earlier implementations [117] of the separate program
using MPI, the integrated version now employs the
Global Array tools. In addition to the major time-
consuming part of the code, the calculation of the
matrix elements, the four-index transformation has also
been adapted. Although this is not so efficient by itself,
it does enhance the overall efficiency of the code.
The parallel efficiency is quite adequate, as is shown in
figure 2.

Using the parallel code we have been able to perform
calculations on the aromaticity of benzyne [118] and
benzene which, for the first time, employ a completely
balanced description of the systems to be compared
when trying to estimate the resonance energy. This
is a breathing-orbital-type approach [119], where both
structures in a two-structure calculation are described
with their own set of orbitals.

5.6. Parallel Direct-CI

In the Direct-CI method [15, 120–122] the explicit
calculation of the CI Hamiltonian matrix is avoided, but
instead the matrix–vector product

Z ¼ HC ð36Þ

is calculated directly from the molecular integrals. Here
C is a trial vector of CI expansion coefficients and Z is
the resulting matrix–vector product. The Hamiltonian
matrix elements between two CSFs � and � (H�v) can be
written in terms of coupling coefficients and molecular
integrals

H�v ¼
X
pq

A�vpq ½pq� þ
X
pqrs

A�vpqrs½pq rsj �: ð37Þ

In the parallel implementation, the original structure
of the Direct-CI program as described in detail in [15] is
maintained. The generation of the H matrix and Z

vector is divided in model contributions, where each
model depends on the integral indices (number of
indices in internal and external space). For each
model, a set of coupling coefficients and a sorted list
of integrals are stored on disk. Parallelization of the
generation of the Z-vector is achieved by dividing the
coupling coefficients or the integrals (the latter only
the (ab|cd) and (ia|bc) integrals) among the nodes.
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An efficient parallelization is obtained by the imple-
mentation of the Global Array tools [109] for storing the
most current C- and Z-vectors. Each node generates a
part of the total Z-vector, which is added to the Global
Array with a distributed update. For this, a global (two-
dimensional) array is created that can hold one C-vector
and one Z-vector, and it is distributed among the nodes
as figure 3 shows. This arrangement of the C- and
Z-vectors in memory has the advantage that each node
has a part of the C-vector and its matching part of the
Z-vector in core for the calculation of a new C-vector.
The Davidson sub-space manipulations are paralle-

lized automatically by the layout of the global array:
each node operates on its own partial C- and Z-vectors
to generate the partial dot-products, and the total is
obtained by a global sum.
A CI calculation on cyclopentapyrene was used as a

test case. The CI expansion had a length of 106 353 143
CSFs. The program is found to scale reasonably well, up
till 32 processors, showing a speedup of 20 at this
processor count. It is expected that, for larger CI jobs,
the scaling should improve further. A comparison of our
speedups and that with other CI programs like the
selected DIESEL-CI program [89] (which is found to

scale to 32 processors [123]) and for the COLUMBUS
system [124] shows that our program behaves similarly.
The present parallel implementation of the Direct-CI
program enables large-scale CI jobs, and it benefits
especially from the large amount of shared memory that
can be allocated when multiple processors are used.

5.7. An MPI/ScaLAPACK implementation
of the SCF module

As discussed in the overview of GAMESS-UK paralle-
lization (section 5.1) the program is still predominantly a
replicated data one. However, the replicated data SCF
and DFT modules were showing limited scaling, in
particular those based on SP7 on the HPCx system (see
figure 4). There were problems related to the largest
chemical system which would fit in the available
memory, and problems with the scaling of the GA-
based linear algebra when implemented over LAPI (vide
infra). In the light of these problems we investigated an
alternative approach in which:

(i) MPI-based tools (such as ScaLAPACK) were
used in place of GA and LAPI, and

(ii) all data structures except those required for the
Fock matrix build were fully distributed.

A partially distributed model was chosen because, in the
absence of efficient one-sided communications, it is
difficult to efficiently load balance a distributed Fock
matrix build. The obvious drawback of this is that
some large replicated data structures are required.

Figure 2. Scaling of the GAMESS-UK VBModule for MPI with dynamic load balancing and GA with static distribution of work
units. In the first case, one processor is used for distributing work units. Speed-ups are relative to the GA single CPU result.

Figure 3. The distribution of the global array, which holds
the C- and Z-vectors, among six nodes.

738 M. F. Guest et al.



However, these are kept to a minimum. For a closed-
shell Hartree–Fock or density functional theory calcula-
tion only two replicated matrices are required, one Fock
and one density, while for unrestricted calculations this
is doubled. Further, the symmetry of these matrices is
used to cut down on the required memory.

5.7.1. Implementation and current status. The MPI/
ScaLAPACK SCF module is written in standard
conforming Fortran 95, and uses MPI for message
passing. The code is built upon a Fortran module that
implements a derived matrix type and operations on
such objects, the defined operations being those
commonly use in quantum chemistry. The matrices
can be either replicated or distributed, this being set
when they are created. After that the routines that
use the module need not know how a given matrix
is distributed, thus simplifying the high level
implementation.
For distributed matrices the matrix operations are, in

general, performed using ScaLAPACK [125, 126], while
LAPACK [113, 127] is used for replicated matrices.
Using multiple BLACS [128] contexts allows linear
algebra operations to be performed on a subset of the
processors, and this is exploited by the matrix module to
use the extra level of parallelism available in unrestricted
calculations, i.e. that over the spins. These underlying
distributed operations are transparent to the high level
routines. This is achieved by overloading many of the
operations on the matrix type, allowing them to act on
both single matrices and arrays of them.
At present, only the MPI/ScaLAPACK SCF driver

uses distributed data. As a result the memory limitations
imposed by the use of replicated data in other parts of
GAMESS-UK, particularly the initial guess at the
wavefunction and the analysis of the solution, limit

the size of problem that can be solved. However, the
implementation of a general matrix module makes it
straightforward to move these to a distributed data
strategy, and work is currently in progress to address this.

The performance of the MPI/ScaLAPACK SCF
module has been compared with the GA implementa-
tions (Service Packs 7 and 9) of GAMESS-UK on
HPCx, the large IBM p690þ cluster. The system studied
was a Zeolite-Y cluster using 3752 spherical harmonic
basis functions. Figure 4 shows the speed-up for the
three calculations. The speed-ups have been obtained
by assuming perfect scaling to 64 processors. The 1024
processor time (with a speed-up of around 400)
corresponds to an elapsed time of 20min.

It can be seen that, at the lowest number of processors
considered, the run times are comparable, with the GA
implementation being slightly the quicker. However,
as the number of processors is increased the MPI/
ScaLAPACK module displays much better scaling, and
by 512 processors it is over twice as fast as that based on
the GA tools (SP7). This improved scaling is due to the
better performance of the linear algebra, though it can
be seen that the scaling, while better, is far from perfect.
This is for two reasons:

(i) some of the linear algebra operations are not
scaling well, especially the diagonalizer;

(ii) as the MPI/ScaLAPACK module uses MPI-1
throughout, one-sided communications cannot
be used, making dynamic load balancing of the
integrals impossible. As a consequence, load
imbalance is becoming important at higher
processor counts.

Both of these effects are due to the system being
somewhat too small to run efficiently on such large
processor counts, but still the scalability is good up to
256 processors, and acceptable at 512.

6. Some applications of GAMESS-UK

In this section we provide some examples of recent
application work undertaken with the GAMESS-UK
program.

6.1. DFT calculations on biomolecules: exploring
the charge distribution of isocitrate lyase

As a Dutch Challenge project, calculations on the
enzyme isocitrate lyase were performed on two 64 node
subsystems of the Dutch national supercomputer Aster,
an SGI Altix 3700 system with 1.3GHz Itanium2
processors and 2GByte memory per node.

The aim of this project is to develop a model
suited for the design of a new class of inhibitors of

Figure 4. Scaling of the MPI-based SCF program.
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Mycobacterium tuberculosis (TBC). In the case of
chronic tuberculosis caused by persistent mycobacteria,
TBC uses an alternative pathway to sustain its citric
acid cycle, where it relies on the isocitrate lyase
enzyme for its metabolism. In this state, the
enzymes targeted by extant drugs are not used by
the bacterium, rendering these drugs ineffective.
However, non-drug-like chemical compounds that
deactivate isocitrate lyase have been shown to kill
persistent mycobacteria in vitro, indicating that this
enzyme is a potential target for treatment of chronic
tuberculosis.
In order to design inhibitors of this enzyme, we need a

reliable charge distribution of the active site of the
enzyme and its surroundings. Furthermore, we will try
to use the computed electron density as a geometric
description of the protein binding site, analogous to the
way steric grids are used in traditional mechanistic
approximations. We will subsequently use the charge
distribution and the geometry of the binding site to
design compounds that inhibit isocitrate lyase and that
have the potential to become a drug.
Density Functional (B3LYP) and ab initio Hartree–

Fock calculations have been performed on segments of
the enzyme in spheres of up to 16 Å around the active
site, both with and without an embedded ligand. This
involved up to 1800 atoms and 10 000 atomic orbitals
using 62 processors in parallel. The geometry used was
derived from X-ray crystallography [129].
To assign basis functions, shells were assigned based

on the distance to the centre of the enzyme, as shown in
figure 5. The basis sets were designed to give the best
description near the centre and slowly deteriorate going
outwards. Thus two basis sets were chosen. TZVP
consist of the shells TZVP, DZP, TZ, 6-31G, and
STO6G. SHELL4 consists of successive DZVP, 6-31G,
STO6G, and STO3G basis sets. TZVP could only be
used for a 14 Å radius; the biggest calculation with this
basis employed 9556 orbitals for 1257 atoms. With
SHELL4, systems with a 16 Å radius could be handled.
The biggest calculation with this basis involved 8315
orbitals and 1981 atoms.
The results are analysed by computing point charges

using DMA [48], natural population analysis [130] and
by calculating molecular electrostatic potentials and
electron densities on a 12� 12� 12 Å grid around the
active site, totalling 22 692 points. The densities will be
used to assess the sterically accessible volume of the
enzyme.
The timing analysis shows that the HF and DFT

calculations scale reasonably well up to 40–50 proces-
sors on this machine. The scaling of the parallel
electrostatic potential calculation is excellent and
would actually allow even denser grids. The timings

suggest that these calculations are quite feasible even on
now quite affordable 64 node Itanium clusters. Some
weeks of calculation to establish a reliable charge
distribution and molecular potential is not excessive,
as this provides the stage on which many docking
experiments may be performed.

Preliminary results in figure 6 show the molecular
potential from the ab initio Hartree–Fock calculations
(left) next to the molecular potential calculated from
force-field charges (right). These results suggest that
the now commonly used charge models may not be
adequate. We now have to establish if this has serious
consequences for the docking of inhibitors and thus for
computer-aided drug design.

Thus we will repeat the calculations for a well-
documented reference protein to allow comparison with
published docking work. To be able to make progress
on the possible new target system of the tuberculosis
bacterium [129], isocitrate lyase, we will use computa-
tional drug design methods [131, 132] to design actual
drugs using the molecular potential calculated for an
empty enzyme. Given that supercomputers remain only
a few years ahead of the mainstream, commodity

Figure 5. The isocitrate lyase subsystem, showing the shells
used for the computational study.

Figure 6. Slices through the electrostatic potential at the
active site of the enzyme.
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marketplace, the techniques explored may soon find
acceptance within the pharmaceutical industry.

6.2. Zeolite catalysis

We have used the QM/MM capabilities of ChemShell
to couple GAMESS-UK HF and DFT functionality
to the CFF zeolite force-field as implemented in the
DL_POLY [133, 134] code. This approach has been
applied to a number of zeolite reactions [95, 97, 135],
one of which, the methyl shift of the adsorbed
propenium ion, is shown here [97] (see figure 7).
Figure 8 shows how the model for this reaction

appears while being constructed, using a mixture of
Cartesian coordinates for the zeolite fragment and

internal (Z-matrix coordinates) for the propenium
group.

Using a gas-phase model, the reaction is symmetrical
as the two propenium end-points are equivalent. In the
embedded case, the end-points and therefore the
forward and reverse barriers are no longer equivalent,
and we find that the barriers are significantly lower in
the embedded case. We have analysed the QM/MM
energies in table 5. The energy in the mechanical
embedding case is easy to decompose into QM and
MM terms, and this is performed in the first section of
table 5.

In the electrostatic embedding case, the classical
atoms contribute to the Hamiltonian as point charges.
For the purpose of the analysis the QM–MM

Figure 8. The methyl shift transition state under construction in the CCP1 GUI.

Figure 7. The methyl shift reaction for the propenium species at a Bronsted acid site.
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electrostatic interaction is estimated by calculating
the interaction of a classical representation of the QM
region (Dipole Preserving Charges, DPC) with the MM
point charges. The role of polarization of the classical
partition is estimated using single-point calculation of
the interaction of the DPC representation of the QM
region with local polarizabilities at Si and O sites,
implemented using the DRF module in GAMESS-UK
(last row of table 5). These analyses provide some
insight into the way the zeolite lowers the barrier for the
reaction. Mechanical (steric and strain) factors and
electrostatic factors are both found to play an important
role in this process. The mechanical effect arises because
the transition state fits better into the zeolite framework
structure than the propoxide minima do, lowering the
barrier. The electrostatic embedding model reveals
that all the QM clusters are stabilized by electrostatic
interactions, but this has smaller effects on relative
energies (in fact, the barrier in one direction increases,
and the other one decreases). MM polarization, how-
ever, is found to contribute significantly to the lowering
of the barrier this is because the transition state has a
larger dipole moment than the minima (11 vs 6Debye).
Polarization of the zeolite framework stabilizes the
charge separation, lowering both barriers [97].

6.3. Computational studies of electronic spectra

Multi-reference, multi-root CI studies of low-lying
electronically excited states provide a stringent test of
the ability of CI methods to interpret experimental
absorption spectra. GAMESS-UK has been extensively
used in a number of combined experimental and
theoretical studies, with the excited state calculations
using the selection-based, multi-reference multi-root
MRD-CI module due originally to Buenker et al.
These studies have been greatly assisted by access to
the Synchrotron Source at Daresbury, with the Vacuum
ultraviolet (VUV) spectra recorded using the Daresbury
Molecular Sciences Absorption Apparatus coupled to

beamline 3.1. We here summarize the approach and
findings in a number of such studies.

Early calculations [136, 137] involved somewhat
modest basis sets, with two different basis sets typically
employed in these studies. A DZP basis set augmented
by centre-of-mass-based Rydberg (3s,2p,2d) functions
(DZPR) was used for the Rydberg state studies. This
basis set permits a wide study of both valence and
Rydberg states, enabling a focus on the lowest two
Rydberg series from each of the six lowest IPs with some
confidence. A more extended triple-zeta valence basis
with polarization functions (TZVP) was usually used for
the ground state molecular electronic properties, typi-
cally evaluated at the MP2 level. While these early
calculations were limited to ca. 104 selected CSFs, the
recent incorporation of the semi-direct Table-driven CI
module has significantly increased these limits (to ca.
5� 105 CSFs), enabling the use of far more extensive
basis sets.

6.3.1. The electronic states and molecular properties of
the azines. A series of studies have considered all the
known azines to date,including C6–nH6–nNn with n ¼ 0
(benzene) [138], n ¼ 1 (pyridine) [139], each of the
diazines (n ¼ 2) [140, 141], and the 1,3,5-isomers [142]
and 1,2,4-isomers [143] of the triazines (n ¼ 3), and
1,2,4,5-tetrazine [144]. The final species studied in this
series was 1,2,3-triazine [145]. In each case, a combina-
tion of optical and low-energy electron energy-loss
spectroscopy with CI calculations led to the assignment
of the singlet and triplet states in an energy range up to
ca. 10 eV, and a reconsideration of the cationic states
produced by photoelectron spectroscopy.

Considering the valence states of 1,2,3-triazine [146],
the VUV spectrum shows an intense absorption band
around 7.4 eV, involving excitation of 1pp* type states
related to the 1E1u state of benzene. A broad band
maximum around 4.7 eV and absorption intensity
between 5 and 6 eV are attributed to excitations of the
low-lying �p* states. In the electron impact spectrum,

Table 5. The decomposition of QM/MM energies for the propenium system. Z-(C,H) nb is the zeolite	 	 	hydrocarbon non-bonded
energy.

Model Energy Propoxide I TS Propoxide 2 Barrier Barrier I

Gas phase Total 0 316 0 316 316

Mechanical Total 0 247 55 247 192

QM 0 261 38 261 223

MM 0 �6 9 �6 �15

Z-(C,H) nb �12 �20 �4 �8 �16

Electrostatic Total 0 253 68 253 185

QM–MMElec �93 �103 �100 10 �3

Polarized QM–MM Pol �30 �45 �33 �15 �12
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the most intense energy-loss band is around 3.6 eV,
which must relate to the excitation of �p* states that are
not developed in optical absorption and hence is likely
to include a triplet component. The two lowest Rydberg
states, 11a1 3s and 7b2 3s are assigned to weak maxima
in the spectrum around 6.4 and 6.7 eV; suggested
energies for the p- and d-type Rydberg states are given
in [145].
For valence states of type pp*, theory suggests that

the two 1pp* states which relate to the (doubly
degenerate) benzene 1E1u state lie within the 7.4 eV
band, although as for other compounds of this type,
the computed energies are too high by about 1 eV.
The assumption, from comparison of the experimental
spectrum with that of benzene, that the two lower lying
1pp* states contribute to absorption intensity around 6.5
and 5.0 eV, is supported by both computed energies
(6.83 and 5.5 eV, respectively) and intensities. In
comparing theory with experiment for �p* states, three
optically allowed �p* states in the low-energy region are
computed to lie between 4 and 5.6 eV, the first two at 4.1
and 5.1 eV being the most intense. The second of these is
related to the 4.7 eV absorption and the former to the
leading edge of the UV band (which shows the hint of a
shoulder at s3.8 eV). The lowest-lying excited state
detected in this series of experiments is seen in electron
energy-loss at 3.6 eV, which is the computed energy of
the lowest triplet state, 3B1 (�p*). Given this accord, we
are confident that the 1�p* states are well represented in
the theory and hence that another is excited around
5.6 eV in the VUV spectrum. Satisfactory agreement
is found between the experimental assignments for
Rydberg states (made using the Rydberg formula) and
the computed energies.

6.3.2. Assignment of the electronic states of pyrazole and
isoxazole. The gas-phase VUV absorption spectrum of
pyrazole [146] and isoxazole [147] have been assigned in
the light of multi-reference multi-root CI calculations
using basis sets up to quadruple zeta quality and
containing both valence and Rydberg-type functions.
A very intense band centred near 7.8 eV in the spectrum
of pyrazole appears to arise from the summation of
three calculated bands of pp* character, of which the
first and third are the most intense. The window
resonance near the band maximum is ascribed to mutual
annihilation of a Rydberg state and valence state. The
electron energy loss (EEL) spectrum obtained previously
showed low-lying triplet states at about 3.9 and 5.1 eV,
respectively; the computations suggest that two triplet
(3pp*) states lie within the 3.9 eV band. The UV-
photoelectron spectrum confirms the identity of the
first three IPs as p3<p2<LPN (lone pair); as a
consequence, most of the excited singlet and triplet

states below 10 eV are likely to be of pp* and p	*
character with both valence and Rydberg types.
However, a number of 		* and 	p* states including
those derived from the lone pair electrons were obtained
from the CI study, which give predictive values for the
onset of such excitations. The highest pair of occupied
orbitals (p3 and p2) both interact strongly with the
lowest pair of valence VMOs (p�4 and p�5), leading to a
wide variety of valence states, and as such the molecule
behaves much more like a system with degenerate pairs
of p-MOs.

The VUV absorption spectrum of isoxazole
(5–10.8 eV, 250–115 nm) has been recorded for the first
time [147]. The molecule has also been probed using
electron impact with electrons of different incident
energies and the He(I) photoelectron spectrum has
been re-measured. Calculated energies for Rydberg
states are close to those expected. More than 30 valence
excited states having finite oscillator strengths are
computed to lie between 6 and 12 eV, but most of the
intensity in the VUV absorption spectrum is from
excitation of states of 1pp* character. The calculations
suggest that the first two states lie at about 6 and 7 eV,
respectively, and are separated by a state of type 1	p*
where 	 is nitrogen lone pair. The lowest-lying triplet
states, located by experiment at about 4.1 eV (290 nm)
and 5.3 eV (225 nm), are 3p p*. Short-lived anionic states
(electron–molecule resonances) have been detected in
both inelastic scattering and dissociative electron
attachment channels.

7. Conclusions and outlook

The GAMESS-UK package offers a wide range of
quantum mechanical wavefunctions, capable of treating
systems ranging from closed-shell molecules through to
the species involved in complex reaction mechanisms.
The availability of a wide variety of correlation methods
provides the necessary functionality to tackle a number
of chemically important tasks, ranging from geometry
optimization and transition-state location to the treat-
ment of solvation effects and the prediction of excited
state spectrum. With the availability of relativistic ECPs
and the development of ZORA, such calculations may
be performed on the entire Periodic Table, including the
lanthanides. Future developments look in particular to
enhance the existing DFT functionality, with both the
treatment of excited states through time-dependent
methods and the computation of a broader variety of
molecular properties, e.g. NMR chemical shifts.

Energy, gradient and frequency calculations have
been shown to run effectively on systems with many
processors, with the MPI and Global Array-based
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parallel implementation providing an excellent tool for
the treatment of molecular systems with up to 10 000
basis functions, while exploiting hardware with up to
1000 processors. We plan to continue the development
of GAMESS-UK on parallel systems, providing both
additional parallel functionality (e.g., CCSD(T)) and
allowing for the treatment of a broader range of
molecular systems. The treatment of larger systems on
a greater number of processors is currently in progress
through the development of a MPI/ScaLAPACK-based
SCF/DFT module. An effective task-farming strategy
for dealing with a large number of smaller molecular
systems is also under development, targeting the efficient
treatment of problems in computational screening.
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