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Abstract

For a set P of points in the plane, we introduce a class of triangulations that is an
extension of the Delaunay triangulation. Instead of requiring that for each triangle the
circle through its vertices contains no points of P inside, we require that at most & points
are inside the circle. Since there are many different higher-order Delaunay triangulations
for a point set, other useful criteria for triangulations can be incorporated without sacri-
ficing the well-shapedness too much. Applications include realistic terrain modelling and
mesh generation.

1 Introduction

One of the most well-known and useful structures studied in computational geometry is the
Delaunay triangulation [9, 13, 22]. It has applications in spatial interpolation between points
with measurements, because it defines a piecewise linear interpolation function. The Delaunay
triangulation also has applications in mesh generation for finite element methods. In both
cases, the usefulness of the Delaunay triangulation as opposed to other triangulations is the
fact that the triangles are well-shaped. It is well-known that the Delaunay triangulation of a
set P of points maximizes the smallest angle, over all triangulations of P.

One specific use of the Delaunay triangulation for interpolation is to model elevation in
Geographic Information Systems. The so-called Triangulated Irregular Network, or TIN, is
one of the most common ways to model elevation. Elevation is used for hydrological and
geomorphological studies, for site planning, for visibility impact studies, for natural hazard
modeling, and more.

Because a TIN is a piecewise linear, continuous function which is generally not differen-
tiable at the edges, these edges play a special role. In elevation modeling, one usually tries to
make the edges of the TIN coincide with the ridges and valleys of the terrain. Then the rivers
that can be predicted from the elevation model are a subset of the edges of the TIN. When
one obtains a TIN using the Delaunay triangulation of a set of points, the ridges and valleys in
the actual terrain will not always be as they appear in the TIN. The so-called ‘artificial dam’
in valleys is a well-known artifact in elevation models, Fig. 1. It appears when a Delaunay
edge crosses a valley from the one hillside to the other hillside, creating a local minimum in
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Figure 1: Artificial dam that interrupts a valley line (left), and a correct version obtained
after one flip (right).

the terrain model slightly higher up in the valley. It is known that in real terrains such local
minima are quite rare [15]. These artifacts need to be corrected, if the TIN is to be used
for realistic terrain modeling [24], in particular for hydrological purposes [20, 21, 25]. If the
valley and ridge lines are known, these can be incorporated by using the constrained Delaunay
triangulation [8, 11, 19]. The cause of problems like the one mentioned above may be that
the Delaunay triangulation is a structure defined for a planar set of points, and does not take
into account the third dimension at all. One would like to define a triangulation that is both
well-shaped and has some other properties as well, like avoiding artificial dams. This leads
us to define higher-order Delaunay (HOD) triangulations, a class of triangulations for any
point set P that allows some flexibility in which triangles are actually used. The Delaunay
triangulation of P has the property that for each triangle, the circle through its vertices has
no points of P inside. A k-order Delaunay (k-OD) triangulation has the relaxed property that
at most k points are inside the circle. The idea is then to develop algorithms that compute
some HOD triangulation that optimizes some other criterion as well. Such criteria could,
for example, be minimizing the number of local minima, or minimizing the number of local
extrema. The former criterion deals with the artificial dam problem, and the latter criterion
also deals with interrupted ridge lines. For finite element method applications, criteria like
minimizing the maximum angle, maximum area triangle, and maximum degree of any vertex
may be of use [4, 5, 6].

In Section 2 we define HOD triangulations and show some basic properties. In Section 3
we give an algorithm to compute which edges can be included in a k-OD triangulation.
The algorithm runs in O(nk? 4+ nlogn) expected time. In Section 4 we consider 1-OD tri-
angulations, and prove more specific, useful results in this case. In Section 5 we give the
applications. We show that for 1-OD triangulations, most of the criteria we study can be
optimized in O(nlogn) time. We also give an approximation algorithm for the case of k-OD
triangulations. Directions for further research are given in Section 6.

2 Higher-order Delaunay triangulations

We first define higher-order Delaunay edges, higher-order Delaunay triangles, and higher-
order Delaunay triangulations. Given two vertices u and v we will denote by wv the edge
between u and v and by ub the directed line segment from u to v. Furthermore, the unique
circle through three vertices u,v and w is denoted C(u,v,w), and the triangle defined by u, v
and w is denoted Auvw. We will assume throughout this paper that P is non-degenerate,
that is, no three points of P lie on a line and no four points of P lie on a circle.



Definition 1 Let P be a set of points in the plane. For u,v,w € P:

e An edge uv is a k-order Delaunay edge (or k-OD edge) if there exists a circle through
u and v that has at most k points of P inside, Fig. 2.

e A triangle Auvw is a k-order Delaunay triangle (or k-OD triangle) if the circle through
u, v, and w has at most k points of P inside.

o A triangulation of P is a k-order Delaunay triangulation (or k-OD triangulation) of P
if every triangle of the triangulation is a k-OD triangle.

For k = 0, the definitions above match the usual Delaunay edge and triangle definitions.

Lemma 1 Let P be a set of points in the plane.
(a) Every edge of a k-OD triangle is a k-OD edge.
(b) Every edge of a k-OD triangulation is a k-OD edge.
(¢) Every k-OD edge with k > 0 that is not a 0-OD edge intersects a Delaunay edge.

Proof: For the first part, consider the circle through the three vertices of the k-OD triangle.
This circle contains at most k& other points of P. Since no four points are co-circular, we can
slightly change the circle by letting one of the vertices loose and leaving it to the outside,
while acquiring no other point of P. This shows that the edge connecting the two other
vertices of the triangle is a k-OD edge. The second part of the lemma follows immediately
from the first part, and the third part is trivial. O

(a) (b) c

Figure 2: (a) The 0-OD edges (b) extended with the new 1-OD edges, and (c) the new 2-OD
edges.

Note that the converse of Lemma 1 (a) is not true. Not every triangle consisting of three
k-OD edges is a k-OD triangle. Fig. 3a shows an example where three 1-OD edges form a
3-OD triangle.

Figure 3: (a) Not every triangle with three 1-OD edges is a 1-OD triangle. (b) Not every
1-OD triangle (Auvz) can be included in a 1-OD triangulation.

The following observation is a reformulation of Lemma 9.4 in [9].



Observation 1 For any k-OD edge uv and any Delaunay edge sp that intersects uv, the
circle C(u,v,s) contains p.

The following corollary is a direct consequence of Observation 1.

Corollary 1 Consider a k-OD edge uv. Any circle through w and v that does not contain
any vertices to the left (right) of vl contains all vertices to the right (left) of v that are
incident to Delaunay edges that intersect uv.

There is a close connection between k-OD edges and higher-order Voronoi diagrams.

Lemma 2 Let P be a set of n points in the plane, let k < n/2—2, and let u,v € P. The edge
uv is a k-OD edge if and only if there are two incident faces, Fy and Fs, in the order-(k + 1)
Voronoi diagram such that u is in the set of points that induces F1 and v is in the set of
points that induces Fj.

Proof: For two points u and v in P, let m be the smallest integer such that the bisector of
u and v appears in the order-m Voronoi diagram. Since on the one side of the line through
u and v there are at least n/2 — 1 points of P, the bisector of u and v will appear in all
higher-order Voronoi diagrams from order-m up to order-(n/2 — 1). This bisector separates
two faces representing subsets of P as stated in the lemma. O

Since the worst case complexity of order-(k + 1) Voronoi diagrams is O((k+1)(n —k — 1))
[18], it follows that O(n + nk) pairs of points can give rise to a k-OD edge. These pairs can
be computed in O(nk2°1°8" ¥ 4 nlogn) expected time [23].

A natural question to ask is whether any k-OD edge or any k-OD triangle can be part
of some k-OD triangulation. Put differently, can k-OD edges exist that cannot be used in
any k-OD triangulation? Indeed, such edges (and triangles) exist. In the next section we
will give a method to test for any k-OD edge if it can be extended to a k-OD triangulation.
Fig. 3b shows an example where Auwvz is a 1-OD triangle that cannot be included in a 1-
OD triangulation since Auwvy is not a 1-OD triangle. To distinguish between “useful” and
“non-useful” k-OD edges we use the following definition.

Definition 2 Let P be a set of points in the plane. A k-OD edge uv with u,v € P is useful if
there exists a k-OD triangulation that includes uv. A k-OD triangle Auvw with u,v,w € P
is valid if it does mot contain any point of P inside and its three edges are useful.

3 Finding all useful k-OD edges

In this section we give an efficient way to compute all useful k-OD edges of a point set P. We
also show how a useful k-OD edge can be included in a k-OD triangulation.

To decide if a k-OD edge, uv can be included in some k-OD triangulation one has to check
if the point set can be k-OD triangulated with the edge uv. We will show that it suffices to
check only two circles through the points u, v, and count how many points these contain. For
simplicity, we will assume, without loss of generality, that wo is vertical and that u is above
.
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Figure 4: (a) If wo is useful then Ausiv is a useful k-OD triangle. (b) The hull of k-OD edge
uv (shaded) and the completion of uw.

Lemma 3 Let uv be a k-OD edge and let sy be the point to the left (right) of vii, such that
the circle C(u,s1,v) contains no points to the left (right) of vt. If Ausiv is not a k-OD
triangle then uv is not useful.

Proof: Assume that Ausiv is not a k-OD triangle. It follows that the circle C(u,s1,v)
contains more than k points to the right of v%.. Suppose that still a k-OD triangulation T
exists that includes uww. Let Aus;v be the triangle in T to the left of v&i. Then point s; must
lie such that vs; intersects usy or such that ws; intersects vs7. By symmetry we may assume
the latter to be the case, see Fig. 4a. Let p; and py be two points in P such that Asipipo is
in T and it intersects the triangle Auvs;. Possibly, p1 = u, or ps = s;, or both. The circle
C(s1,p1,p2) includes the whole part of the circle C(u,v, s1) to the right of v since p; and
p2 lie outside C(u,v,s1) (one of them may lie on the circle). Hence, C(s1,p1,p2) contains at
least k + 2 vertices: k + 1 points that are also inside C(u, s1,v), and furthermore the point
v. This implies that Aus;v cannot be a k-OD triangle either, contradicting the assumption
that a k-OD triangulation exists. O

We would like to go a step further than the result of Lemma 3, namely, prove that if
the “first” triangle on the left side of ub, Ausiv, is a k-OD triangle, and the symmetrically
defined triangle on the right side of v is also a k-OD triangle, then uw is useful. We show
this result constructively, by giving a method that gives a k-OD triangulation that includes
uv. It appears that we only have to compute a triangulation of a region near uw, called the
hull of . The hull is defined as follows.

Definition 3 The hull of a k-OD edge uv is the closure of the union of all Delaunay triangles
whose interior intersects uv, Fig. 4b.

The following algorithm computes a triangulation of the hull. Let wv be a k-OD edge. Let
p1 be the point to the right of v such that the part of C(u,v,p1) to the right of ¥ is empty.
Note that p; must be a vertex on the boundary of the hull of 7w. Add the two edges up; and
vp1 to the graph. Continue like this recursively for the two edges up; and vpy until the hull
of uT to the right of vis is completely triangulated. The same procedure is then performed on
the left side of v&i. The obtained triangulation is called the greedy triangulation of the hull of
uw, see Figure 5. The next corollary, which is a direct consequence of Corollary 1, shows that
the hull is a simple polygon consisting of at most 2k + 2 vertices.



Corollary 2 The Delaunay edges intersecting one useful k-OD edge uv are connected to at
most k vertices on each side of the k-OD edge.

Proof: Assume that there are more than k vertices incident to a Delaunay edge that inter-
sects uw, say, to the right of vii. Let s1 be as in Lemma 3. Then C(u,v,s;) must contain all

those points to the right of ¥4 by Corollary 1, so uv is not useful, a contradiction. O
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Figure 5: Greedy triangulation to the right of ub.

Lemma 4 Let uv be a k-OD edge, let s be the point to the left of v, such that the circle
C(u, s1,v) contains no points to the left of vii. Let so be defined similarly but to the right of
vti. Edge v is a useful k-OD edge if and only if Auvsy and Auvss are k-OD triangles.

Proof: The “only if” part is given in Lemma 3. For the “if” part, consider the greedy
triangulation of ww. It is given that Awuwvs; and Awuwvss are k-OD triangles. Since the recur-
sive continuation for the edges Usy, Usg, W81, and us3 yields circles to be tested that can only
contain fewer points than C(u, s1,v) or C(u, s2,v), the corresponding triangles must be k-OD
triangles too. O

After preprocessing, we can test efficiently whether an edge wv is a useful k-OD edge.
First, locate u and v in the Delaunay triangulation, and traverse it from u to v along v from
Delaunay triangle to Delaunay triangle. Collect all intersected Delaunay edges. If there are
more than 2k — 1 of them, stop and report that wo is not a useful k-OD edge. Otherwise,
determine the endpoints of intersected Delaunay edges to the left of vt and to the right of
vti. If there are more than k on one side, stop with the same result. Next, determine s; and
so as in the lemma just given. Now we must test how many points—at most k& or more—lie
in the circles C(u, s1,v) and C(u, s2,v) to determine usefulness. To this end, we use a data
structure on a set of points that can report the k-th furthest point from a given query point,
which will be the center of the circle C(u, s1,v) and of C(u, s9,v). If the k-th furthest point
we find is further from the center of C'(u, s1,v) than the radius of C(u, s1,v), and the similar
test is true for C(u, s2,v), then we can conclude that wv is useful. The data structure that we
need is the k-th order Voronoi diagram preprocessed for efficient point location. It answers
queries in O(logn) time. This makes the total test for usefulness run in O(logn + k) time.

Theorem 1 Let P be a set of n points in the plane. In O(nk%+nlogn) time one can compute
all useful k-OD edges of P.

Proof: In Section 2 we showed that all k&-OD edges can be determined in O(nk2°198" % +
nlogn) expected time using an algorithm for higher-order Voronoi diagrams [23]. There are



O(nk) edges to be tested, so it takes O(nk? + nlogn) expected time overall to determine all
useful £-OD edges. O

If k is constant or small, the algorithm just given is efficient, but for larger values of k
there are better algorithms based on partition trees. The idea is to build a data structure that
determines whether a query k-OD edge is useful or not, without spending (k) time for the
query. We store all points of P in a 2-dimensional partition tree such that the points inside a
query halfplane are represented by a small number of canonical subsets [3]. If we test an edge
uw, the halfplane will be the bounded by the line through v and v. The canonical subsets are
preprocessed into associated structures for further querying. To this end, we translate the
problem of pushing a circle (initially, infinitely large, that is, a halfplane) through u and v to
find the first point hit, to a 3-dimensional ray shooting problem. Any point p = (p,,p,) in a
canonical subset is mapped to p = (pz, py, p> + pi), a point on the unit paraboloid z = 22 +y2.
The circle squeezing through u and v becomes a plane rotating about 4 and ¥ from vertical
position until a third point is contained in it. This problem is dualized to ray shooting from
infinity in a set of planes in 3-dimensional space. Since the total complexity of the unbounded
cells in the 3-dimensional arrangement is only quadratic, we can solve the problem in an
associated structure on m planes with O(m?) storage, O(m?logm) preprocessing time, and
O(logm) query time (find the cell in logarithmic time, and do ray shooting in that cell in
logarithmic time) [2]. For the main tree, the 2-dimensional partition tree on the points of
P, we can use one that has quadratic size and close to quadratic preprocessing time, and
gives the points in a logarithmic number of canonical subsets [3]. To test all k-OD edges
for usefulness, we obtain an O’(n?) time solution overall (we use the notation O'(f(n)) as a
shorthand for O(f(n) - log®n) for some constant ¢). When k is considerably larger than /n,
this solution is more efficient than the previous one.

Alternatively, we can use for the main tree one that has O'(n®?) size and preprocess-
ing time, and yields O’(n'/*) canonical subsets to be examined at each query [3]. For
the associated structure, we take a partition tree for ray shooting in sets of planes in 3-
dimensional space [3]. The query problem in the associated structure can also be solved
in O'(n/m'/?) query time with a data structure that uses O'(m) storage and preprocessing
time, where n < m < n3. Since we know that O(nk) queries are performed, we can balance
the query time for the associated structures and their construction time. This occurs when
O(nk) - n/m!/? = m, yielding an O'(n3/2k3/*) time solution overall.

Theorem 2 Let P be a set of n points in the plane. In O(n?log®n) time one can compute
all useful k-OD edges of P, where c is some constant. Alternatively, the problem can be solved
in O(n3/2k3/* log®n) time.

Which solution is the most efficient one depends on the given value of k. It should be
noted, however, that one can expect constant values of k£ to be most useful in practice, in
which case the more complex solutions based on partition trees are not necessary.

To conclude this section we observe that the greedy triangulation of the hull of a useful
k-OD edge can be computed in O(k?) time with the straightforward algorithm given earlier.
Alternatively, for non-constant k, we can preprocess the hull of a useful k-OD edge for arc
pushing queries [7]. This yields an O(klog® k) time algorithm for the greedy triangulation of
the hull.



4 First order Delaunay triangulations

We examine the special structure of 1-OD triangulations in this section. We already observed
in Corollary 2 that if v is a useful 1-OD edge, and not a 0-OD edge, then it intersects exactly
one Delaunay edge. We again assume without loss of generality that wv is vertical and that
u is above v.

Lemma 5 FEwvery useful 1-OD edge intersects at most one useful 1-OD edge.

Proof: From Corollary 2 we know that any Delaunay edge intersects at most one useful
1-OD edge. It remains to prove the lemma for any non-Delaunay, useful 1-OD edge uw. Let 57y
be the Delaunay edge that intersects wv. Then us, vs, uy, and vy are Delaunay edges. If there
exists a useful 1-OD edge that intersects the Delaunay edge us, then it must be connected to
y, according to Corollary 2; see Fig. 6. Denote this edge 7y. Since 7y is a useful 1-OD edge,
x must be connected to u and s by Delaunay edges. Consider the circle C(u,v,y). This circle
contains only s, by Observation 1 and from the fact that ww is useful. The circle C(u,y, z)
can be obtained by expanding C(u,v,y) until it hits 2 while releasing v. Since we let go of v,
both v and s is contained in C(u,y,x). Thus Azuy cannot be a 1-OD triangle and hence Ty
cannot be a useful 1-OD edge, which contradicts our assumption. By symmetry this holds
for any edge intersecting uy, Us, or Uy. O

Figure 6: There are no non-Delaunay, useful 1-OD edges that intersect.

The lemma just given also shows that if uw is a useful 1-OD edge that is not Delaunay,
then the four Delaunay edges us, uy, sv, and vy must be in every 1-OD triangulation. Given
a triangulation 7 and two edges e; and es in T, we say that e; and e, are independent if
they are not incident to the same triangle in 7. From Corollary 2 and Lemma 5 we obtain
the main result of this section.

Corollary 3 FEvery 1-0OD triangulation can be obtained from a Delaunay triangulation by
flips of independent Delaunay edges.

It is easy to see that—given the Delaunay triangulation—all 1-OD edges can be determined
in linear time. In O(nlogn) time, we can find out which ones are useful.

5 Triangulations with additional criteria

Recall from the introduction that Delaunay triangulations are often used in terrain mod-
eling, because they give well-shaped triangles. However, artifacts like artificial dams may



arise. Since the Delaunay triangulation is completely specified by the input points (in non-
degenerate cases), there is no flexibility to incorporate other criteria into the triangulation,
which is why HOD triangulations were introduced. In this section we try to minimize the
number of artificial dams in HOD triangulations, and deal with a number of other criteria
as well. Many of these criteria can be optimized for 1-OD triangulations, which is what we
will show first. Then we give an approximation algorithm to incorporate some of the criteria
in k-OD triangulations. The approximation factor is not a constant, but a function of k,
unfortunately.

5.1 Applications for 1-OD triangulations
5.1.1 Minimizing the number of local minima

To minimize the number of local minima is straightforward if the domain is the class of 1-OD
triangulations. If the number of local minima is minimized, so is the number of artificial
dams. Assume that the Delaunay triangulation of a point set is given, and for each vertex
the height is known.

Lemma 6 The insertion of a useful 1-OD edge while deleting a Delaunay edge to remove a
local minimum cannot prevent any other local minimum from being removed.

Proof: Consider a convex quadrilateral with vertices v, y, u, and s, such that vy, yu, us,
v, and ys are Delaunay edges. Assume that wo is a useful 1-OD edge, otherwise we have
no choice but to include ys. If a local minimum in u or v can be removed by the flip that
makes u and v connected, then u or v must be that local minimum and the other of v and
v must even be lower. In particular, v and v are both lower than y and s. The only two
vertices that lose a neighbor by the flip are y and s—they lose each other as neighbor— but
neither can become a local minimum because they remain connected to the vertices 4 and v. O

Theorem 3 An optimal 1-OD triangulation with respect to minimizing the number of local
minima can be obtained by flips of independent Delaunay edges in O(nlogn) time.

5.1.2 Minimizing the number of local extrema

The number of local extrema—minima and maxima—can also be efficiently minimized over all
1-OD triangulations. In the previous subsection we could choose the edge in any quadrilateral
that connects to the lowest of the four points. But if we want to minimize local minima
and maxima we get conflicts: it can be that the one edge of a convex quadrilateral gives an
additional local minimum and the other edge gives a local maximum. Consider the subdivision
S consisting of all edges that must be in any 1-OD triangulation, so S contains triangular and
convex quadrilateral faces only. Consider the set of points that either have no lower neighbors
or no higher neighbors; they are extremal in S. Consider the graph G = (M, A), where M is
the set of nodes representing the local extrema, and two nodes m,m’ are connected if they
represent points on the same quadrilateral face and the one triangulating edge makes that
m is not a local extremum and the other triangulating edge makes that m' is not a local
extremum, see Fig. 7. Since nodes in the graph G correspond uniquely to vertices in S, we
will call the nodes minimal, maximal, or extremal if the vertices they represent are minimal,
maximal, or extremal.



Figure 7: Local extrema appearing in an even cycle.

Lemma 7 Any quadrilateral face of S defines at most one arc in G, and this arc connects a
local minimum to a local mazimum.

Proof: Any triangulating edge of a quadrilateral face can only avoid a local extremum if the
highest two points are opposite and the lowest two points are opposite in the quadrilateral.
One triangulating edge can only make the second-highest point non-maximal, and the other
triangulating edge can only make the second-lowest point non-minimal. O

From the lemma it follows that G is bipartite, because every arc connects a local minimum
to a local maximum. G may contain many isolated nodes; these extreme points can be
removed. For every arc one can choose to make one of its nodes non-extremal by choosing the
appropriate triangulation of the quadrilateral represented by the arc. For any node incident
to only one arc, we can choose to make that node non-extremal without giving up optimality
(minimum number of local extrema). If there are no nodes connected to only one other node,
all nodes appear in cycles. Since the graph is bipartite, every cycle has even length, see Fig. 7.
Take any cycle (of even length). Now all nodes in the cycle can be made non-extremal: we
assign one quadrilateral (represented by the arc) to one incident extremum of S and choose
the triangulating edge to make it non-extremal. We can repeat to treat nodes with only
one incident arc, and even cycles, until no more extrema can be removed by triangulating
edges. Then we complete the triangulation of S in any manner. This greedy, incremental
method completes the subdivision S to a 1-OD triangulation that minimizes the number of
local minima and maxima. The algorithm can be implemented to run in linear time when S
is given.

Theorem 4 An optimal 1-OD triangulation with respect to minimizing the number of local
extrema can be determined in O(nlogn) time.

5.1.3 Other criteria

In visualization applications it is sometimes important to construct planar drawings with small
degree and large angles between the edges. Thus, a natural optimization criterion for a 1-OD
triangulation would be to minimize the maximum degree, since the Delaunay triangulation
already maximizes the minimum angle. Besides visualization applications [10], constructing
drawings with high angular resolution is important in the design of optical communication
networks [12]. The problem of minimizing the maximum degree has been studied in several
papers [14, 16, 17]. We know of no polynomial-time algorithm that gives an optimal solution
to this optimization problem. The problem of completing the triangulation of a biconnected
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planar graph while minimizing the maximum degree is known to be NP-hard. There is an
efficient approximation algorithm though, as the following result shows. Let A(G) be the
maximum degree of a graph G.

Theorem 5 (Kant & Bodlander [17]) There is a linear time algorithm to triangulate a
biconnected planar graph G such that for the triangulation G' of G A(G') < [3A(G)] + 11.

We cannot use the result directly since it does not work on biconnected embedded straight-
line graphs such as the embedded graph G formed by all Delaunay edges not intersecting
useful 1-OD edges. But every quadrilateral face of G is convex, hence the bounded faces of G
can always be triangulated using the above result. The problem is the unbounded face of G,
the convex hull of P, which will be triangulated by edges that are not straight lines. Before
using the theorem above, we will extend the graph G by adding points outside the convex
hull and making the unbounded face to be triangulated. Let h be the number of points in P
on the convex hull of P. Recursively we add points until the convex hull contains three points
as follows: Construct an exterior hull H with [h/2] points that entirely includes P. Connect
each point in H with three points in the convex hull of P, keeping the resulting graph planar.
Note that this recursive procedure gives a triangulation of the region outside P, where each
point originally not in P has degree at most 7, and each point on the convex hull of P is
connected to at most two additional edges. This gives us the following theorem.

Theorem 6 There is an O(nlogn) time algorithm to compute a 1-OD triangulation T of a
set P of n points, such that the mazimum degree of a vertex in T is at most [%A] + 13, where
A is the degree of the mazimum degree vertex in the 1-OD triangulation that minimizes the
mazimum degree.

Note that the Delaunay triangulation itself is a 2-approximation of the optimal 1-OD
triangulation.

As was pointed out in the introduction, criteria such as minimizing the maximum angle
and minimizing the maximum area triangle may be of use for finite element method appli-
cations. These criteria (together with a number of other criteria not mentioned above) are
trivial to optimize for 1-OD triangulations. This follows from the fact that these are all local
optimization criteria, thanks to the nice properties of 1-OD triangulations.

Theorem 7 For a Delaunay triangulation of a set P of n points in the plane, an optimal 1-
OD triangulation can be obtained by flips of independent Delaunay edges in O(nlogn) time for
each one of the following criteria: (i) minimizing the mazimal area triangle, (ii) minimizing
the mazimal angle, (iii) mazimizing the minimum radius of a circumcircle, (iv) maximizing
the minimum radius of an enclosing circle, (v) minimizing the sum of inscribed circle radii,
and (vi) minimizing the total edge length.

5.2 Applications for £-OD triangulations

It appears to be difficult to obtain general optimization results for all of the criteria listed
before, given a value of kK > 2. When £ is so large that every pair of points gives a useful edge
(like kK = n — 3), then certain criteria can be optimized. For example, when minimizing the
number of local minima, we can choose an edge from every point to the global minimum (in
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non-degenerate cases), so that there is only one local minimum. For minimizing the maximum
angle and some other criteria, various optimal results are known [4].

To develop approximation algorithms for k-OD triangulations, we need to determine how
many hulls a single hull can intersect. To this end, we first prove an upper bound on the
maximum number of useful k-OD edges that intersect a given Delaunay edge. Figure 8 shows

Figure 8: Many 2-OD edges can intersect a Delaunay edge uwv.

that Q(n) 2-OD edges can intersect a given Delaunay edge. But these 2-OD edges cannot all
be useful. The next lemma shows that the maximum number of useful k-OD edges intersecting
a given Delaunay edge does not depend on n, but only on k.

Lemma 8 Let uv be any Delaunay edge. The number of useful k-OD edges in a triangulation
T that intersect uv is O(k).

Proof: For simplicity we assume that u is vertically above v. Let (); and @), be the left
endpoints, respectively the right endpoints of the useful k-OD edges of 7 that intersect uv.
Assume without loss of generality that |@Q;| < |@Q,|. Let p, be the point in @, such that
C(u, v, p,) includes all points in @, except p, itself. Let p; € Q; be such that p;p, € T and
it intersects uv.

Since the interior of C(u,v,p,) is completely contained in the union of the interiors of
C(u,pr,p;) and C(v,pr,p), it follows that C(u,p;,p,) together with C(v,p;,p,) contain all
the points in @, \ {pr}, see Fig. 9. Now we apply Lemma 3. If p;p, is useful then the “first” tri-
angles left, denoted Ap;p,z, and right, denoted Ap;p,y, of pyp; must be k-OD triangles, that
is, the two circles C(p;, pr, ) and C(p;, pr,y) each include at most k points. The union of the
interiors of C(py, pr, ) and C(p;, pr,y) includes the union of the interiors of C(u,p,,p;) and
C(v,pr,p1), and therefore it also includes the interior of C(u,v,p,), which contains |@Q,| — 1
points. Hence, it follows that |Q,| — 1 < 2k, and |@Q;| < |Q;| < 2k + 1. Since T is a planar
triangulation the total number of useful k-OD edges intersecting wv is O(k). O

Lemma 9 Let uv be a useful k-OD edge and let H be its hull. The number of hulls of useful
k-OD edges included in a triangulation T that intersect the interior of H is O(k?).
Proof: By Corollary 2, the hull H of v contains O(k) Delaunay edges of P in its interior.

Any useful k-OD edge intersecting H must intersect at least one of these Delaunay edges, or
itself be the Delaunay edge. By Lemma 8, O(k) useful k-OD edges included in a triangulation
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Figure 9: Ilustration of the proof of Lemma 8.

T can intersect a common Delaunay edge. The bound of O(k?) follows. O

To keep track of which hulls intersect we define a hull intersection graph G as follows.
There is a node for the hull of every useful k-OD edge. Two nodes are connected by an arc
if their hulls intersect, that is, there exists a point that is interior to both hulls. The choice
of one useful k-OD edge e possibly prohibits the choice of any other useful k-OD edge whose
hull intersects the hull of e. In any case, if we choose an independent set of nodes in graph G,
we get a set of hulls of useful k-OD edges that can be used together in a k-OD triangulation.

5.2.1 Minimizing the number of local extrema (revisited)

Suppose that all useful k-OD edges and their hulls have been computed, and the hull intersec-
tion graph G as well. Choose any useful k-OD edge e that removes a local minimum. Mark
the node for the hull of e in G, and also the adjacent nodes. Choose the greedy triangulation
of the hull of e. The choice of e can prevent other useful k-OD edges to be chosen in the
triangulation. Let 7 be the optimal triangulation with respect to minimizing the number of
local mimima. Then at most O(k?) useful k-OD edges of 7 are removed from consideration
according to Lemma 9. Therefore, at most O(k?) points can be prevented from not being a
local minimum. Continue to choose a useful k-OD edge that avoids another local minimum,
provided its node in G is unmarked, until no such choice exists.
The same approach can be used to minimize the number of extrema.

Theorem 8 Let m be the smallest number of local minima (or extrema) in any k-OD tri-
angulation of a set P of points. There is an O(nlogn + nk3) ezpected time algorithm that
computes a k-OD triangulation of P with at most O(m - k?) local minima (or eztrema).

6 Conclusions and directions for further research

This paper introduced a class of triangulations that generalizes the Delaunay triangulation:
the empty-circle property for the triangles in the Delaunay triangulation is replaced by re-
quiring that the circle of each triangle contains at most some given number k of points. Such
a triangulation is called a k-OD triangulation. For any point set, there may be several dif-
ferent k-OD triangulations. Therefore, one can study the optimization of some geometric
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criterion over all possible k-OD triangulations of a given point set. Such optimizations have
applications in terrain modelling for GIS and in mesh generation for finite element methods.

The class of 1-OD triangulations was studied in more detail, and because of its special

properties, most of the criteria could be optimized efficiently. For minimizing the maximum
degree we obtained an approximation result. For the case when k£ > 2 we just gave some
initial result. Obviously, optimization or approximation results are a topic of future research.
Another issue we would like to address is experimental: how much benefit can one obtain for
the criterion of optimization, with respect to the Delaunay triangulation?
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