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The electric contributions to the bending moduli of a charged fluid interface are calculated 
from the transverse pressure profile in an electric double layer. The results are in complete 
agreement with the expressions obtained from the electrical free energy of curved double 
layers. 

I. Introduction 

Recently expressions for the electric contribution to the curvature elastic 
moduli of charged monolayers  and membranes  were obtained [1-3]. By 
expanding the electrical free energy for a spherical and cylindrical surface in 
inverse powers of the radius of curvature a, the bending elastic moduli were 
obtained f rom the ( l / a ) :  coefficient in this expansion of the free energy. 

In the theory of surface tension the mechanical expression for the surface 
tension [4], in which the surface tension is related to the surface excess value of 
the transverse pressure,  plays an important  role. For example Kirkwood and 
Buff [5], who initiated the statistical mechanical theory of the surface tension 
of the planar l iquid-vapour  interface about  40 years ago, based their theory on 
this mechanical concept of the surface tension. Also for the effect of an electric 
double layer on the surface tension it was noted by Frenkel  [6] many years ago 
that a clearer insight into the nature and origin of the decrease of surface 
tension is obtained f rom a consideration of the tensions acting in the electrolyte 
solution near  the interface. 

About  10 years ago Helfrich [7] gave expressions relating the curvature 
elastic propert ies  to the moments  of the transverse pressure profile. The use of 
these relations has been discussed extensively in the review paper  on curvature 
elastic propert ies  by Petrov and Bivas [8]. Recently Szleifer [9] gave a new 
derivation of the expressions first given by Helfrich [7] and added an important  
new relation relating one of the curvature elastic constants to the curvature 
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dependence of the transverse stress profile. Here we show how the electric 
contribution to the curvature elasticity of charged interfaces can be obtained 
from the electric contribution to the transverse pressure profile. For the case of 
low surface charge densities where the electric double layer can be described 
by the linearized Poisson-Boltzmann equation this was already partially done 
by Winterhalter and Helfrich [1]. It turns out that also for the case of high 
surface charge densities where one has to use the full (non-linear) Poisson- 
Boltzmann equation, the calculations can still be carried out analytically. As a 
matter of fact, not only gives the calculation of the curvature elastic moduli 
from the transverse pressure profile a clearer insight into the nature and origin 
of the effect of the electric double layer, they actually turn out to be slightly 
simpler than starting from the curvature dependence of the free energy. 
Whereas in the latter method the free energy has to be calculated up to order 
( l / a )  2, the elastic bending moduli can be calculated from the transverse 
pressure profile to order ( I /a) .  

2. The transverse pressure profile in an electric double layer 

2.1. The planar double layer 

The lateral pressure profile II(z)  in an electric double layer contains a 
contribution from the Maxwell pressure (i.e. minus the Maxwell stress) and the 
osmotic pressure due to the excess of ions in the electric double layer. Adding 
these contributions one obtains for the case of a 1-1 electrolyte 

II(z)  = leoe , (d~bW)~ 2 [ / e~b(°)\ - 1] 
\ dz ] + 2 n e ' k B T k c ° s h ~ B T )  ' (1) 

where $(0) is the electric potential in the planar double layer (the superscript 0 
denotes that we are dealing with the planar double layer), k B is Boltzmann's 
constant, T is the absolute temperature, ne~ is the number of molecules of 
electrolyte per unit volume, e r is the dielectric constant of the aqueous medium 
and e 0 is the permittivity of the vacuum. Changing to dimensionless potential 

w(o) = eg '(°) 
kB T (2) 

and dimensionless distance 

x = K z ,  ( 3 )  
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where K is the inverse Debye length 

~ 2 \ 1 / 2  
Ae nel \ 

K = eoe--~-T) , (4) 

the lateral pressure profile can be written as 

H(x) = eoe , 1 + [cosh(~P (°)) - 1] (5) 
\ e /  \ d x /  

We assume that the potential aY (°) can be described by the Poisson-Boltzmann 
equation, which in terms of the dimensionless variables introduced in eqs. (2) 
and (3) can be written as 

d2~- ( o ) 
dx 2 - s inh(~(°)) .  (6) 

Integrating this equation once we obtain 

d~(o) 
- 2 sinh(½~(°)).  (7) 

dx 

Using this result in  eq. (5) we can write 

( ka T)  2 
H(x) = 4e0e r \ - - ~ - /  K2[sinh(l~F(°))]2. (8) 

The solution of the Poisson-Boltzmann equation for a flat double layer is well 
known and can be written as 

( l + t o  e -x )  
~ (° ) (x )=21n  1 - t  oe-x , (9) 

where 

t o = tanh( z 1  o l  ~(o)~j (10) 

with ~o  °) the value of the potential at the surface. The potential ~(°)(x) can 
also be related to the surface charge density ~r. Inverting eq. (7) it follows that 

~o  °) = 2 ln(p + q) ,  (11) 

where 
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l (dqS'°)'~ 
P = -2 \ dx / x=O =sinh(!~(°)~2x° / 

and (12) 

q = ~/p2 + 1 = cosh(½qt(o°)). 

(In writing down eq. (11) we have assumed that we are dealing with a situation 
where ~(0 °) is positive.) Through the equation of Gauss the quantity p is 
related to the surface charge density o', 

2~rQl~[ 
p = - - ,  (13) 

Ke 

where Q is the Bjerrum length 

e 2 

Q = 4~reoerkBT (14) 

(Q = 0.714 nm for aqueous solutions at 298 K). 
Eq. (8) together with eq. (9) gives a complete description of the lateral 

pressure profile in an electric double layer on the level of the Poisson- 
Boltzmann equation. 

2.2. The spherical double layer 

As mentioned in the introduction, for the calculation of the curvature elastic 
moduli we need to know the transverse pressure profile up to order (1/a). This 
means that we have to solve the Poisson-Boltzmann equation for a curved 
charged surface up to that order. Such a solution can be obtained by expanding 
the electrical potential ~ in 1/Ka, 

= ~ ( ° ) +  1 _ _ ~ ( 1 ) + . . . .  (15) 
K a  

Substituting this expansion in the Poisson-Boltzmann equation for a spherical 
double layer, 

d2q s 2 daP 
dr  2 + -r --dr = K2 sinh(~P) (16) 

where r is the radial coordinate and ~ is the dimensionless potential and 
making the coordinate transformation 

x 
r = a + - , (17) 

K 
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one obtains 

d2( 1 ) 2 , .  d( ) 
dx 2 ~/z(°) + --Ka qtu) + . . .  + 1 + x / K a  d x  qt(°) + --Ka + " " " 

= sinh (~(°)  + 1 . . . .  1/~ (1) -[- ) . (18) 
K a  

Equating terms of the same power of 1 / K a  on both sides of eq. (18) gives the 
following equations: 

d2~,(o) 
dx 2 - s inh(~(°)) ,  

dZqt~ I) 

dx 2 
d qt(o ) 

I / / ( 1 )  cosh(q t~°)) = - 2  dxx 

(19) 

The first equation is again the Poisson-Boltzmann equation for a flat double 
layer and the second equation determines the first order modification of the 
electrical potential due to curvature. With the boundary condition that 

1/~r(0) ~- 1 /~(1)  . . . . .  0 a s  x ----> oo , (20) 

one obtains from eq. (19) 

d ~  1) 
d---~ + ~( t )  cosh( ½q it°)) = - 4  tanh( ~ ~v(°)). (21) 

This equation can be solved easily by writing 

q r(l)(x) = sinh( ½ ~(0)) X ( x ) .  (22) 

S~abstituting this ansatz in eq. (21) one obtains 

d X  4 tanh( ~ ~(o)) 
d-~ = sinh(½qt (°)) (23) 

In solving this simple equation one has to distinguish carefully between two 
boundary conditions: 

i) constant surface potential, implying ~(0 ' ) =  0; 
ii) constantsurface charge, implying (d~(~)/dx)x=0 = 0. 
In the case of constant potential obviously X(0) = 0 and we find 

X ( x )  = t02(1 - e - 2 x )  - 2x .  (24) 
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This solution was first obtained by Dukhin et al. [10] (see also refs. [11-13]). 
In the case of constant charge it follows directly from the differential 

equation for ~(X)(x) that 

~V (o~) = 4/0 
cosh( ½ ~(oO)) , (25) 

and thus the solution for X ( x )  now becomes 

4/0 _ e -2x) . 
X ( x ) = -  1 (o) • ~ (o) +t~(1 - 2 x  (26) 

c o s h ( ~ o  )smh(~Wo ) 

Again adding the Maxwell pressure and the osmotic pressure due to the excess 
of ions in the double layer we find for the transverse pressure profile at a 
dimensionless distance x from the surface 

( k ,  T)  2 K2 {4[sinh(½~(0))]2 
/ / ( x )  = ~0 ~r ~ T J 

1 ( dl/-f'°)~( d1~(1)~ 
+ ~ a a [ \ - - - d ~ x / \ ~ / + s i n h ( W ' ° ) ) a F ' l ) ] } .  (27) 

Using eqs. (7) and (21) this result can be written as 

( k B T I 2  K 2 {4[sinh(½ ~(0))]2 / / ( x )  = eOer 
\ e / 

1 
+ - -  [4 s i n h ( i ~  (°)) cosh(½ ~V (°)) ~ v(l) 

K a  

+ 8 sinh(1~(o))  tanh( ~ ( o ) ) ] } .  (28) 

As we will see in the next section, using this expression for the transverse 
pressure profile in a spherical double layer it is possible to calculate the 
electrical contribution to the bending elastic modulus. 

3. Bending elastic moduli 

The curvature free energy per unit area of a fluid layer can be written as [14] 

f~ = 1K(c 1 + c 2 - Co) 2 + Kclc2 , (29) 

where c 1 and c 2 are the principal curvatures, c o is the spontaneous curvature, K 
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is the bending elastic modulus and k is the modulus of Gaussian curvature. 
Using mechanical arguments Helfrich [7] has shown that Kc o and /{ can be 
related to moments of the transverse pressure profile II(z) of a flat surface, 

+ o e  

Kc o = J z l I (z)  dz  (30) 

and 
+ ~  

I( = - f z2II(z) d z .  
- o c  

(31) 

Recently Szleifer [9] has presented a new derivation of these relations and at 
the same time obtained an important new relating the bending elastic modulus 
to the curvature dependence of the transverse pressure profile 

K =  - f Zk3(2 /a ) /2 /a_ ,odZ ,  
- o o  

(32) 

where now H(z) is the transverse pressure around a spherical surface with 
radius a. 

Since, as we have seen in the previous section, the transverse pressure profile 
both for a fiat and spherical double layer can be calculated being the Poisson- 
Boltzmann equation in a straightforward manner, the above expressions can be 
used to calculate the electric contribution to the curvature elastic moduli of 
charged interfaces. Using eqs. (8) and (30) we obtain 

Kel e l  12 f Co = - -  xlI(x)  dx 
K 

0 

= 4eoe ' \ ---~-/  [sinh(l~(°))]2x dx (33) 
0 

The integral that occurs on the right-hand side of eq. (33) can easily be 
evaluated by using the relation 

2t° e-X (34) 
sinh(l~V(°)) = 1 - t o e 2 - 2 x  " 

Using this expression one obtains by elementary methods 

f [sinh(lq'(°))]2x dx = - In(1 - t~). (35) 
0 
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This means that 

Kel el kaT c o = - ~ -  [-In(1 - t2o)]. (36) 

In the above expression .,el el ~, c o is related to the surface potential ~ o  °) via t o. 
Using the relation 

2 2 2 (37) 
1 - t o = 1 + cosh(½~o °)) = 1 +-----q ' 

r T e |  e l  we can also express ~, c o in terms of q, which is related to the surface charge 
density, 

Kel el k B T 
c o = ~ ln[½(q + 1)]. (38) 

This is exactly the same result as follows from the comparison of the (1 / a) term 
in the phenomenological expression for the curvature free energy and the 
electrical free energy for a charged spherical surface [3]. 

We now consider the modulus of Gaussian curvature. Using eqs. (8) and 
(31) we obtain 

~c 

K 
0 

(kBr]  2 1 f [sinh(½~(O))lZx2 dx (39) = - 4 e ° G , 7 /  7 
0 

Using the relation (35) the integral appearing on the right-hand side of eq. (39) 
can again be evaluated by elementary methods, 

j [sinh(½~t(°))]2x 2 d / =  J In(u) d u .  (40) 
0 l _ t  2 

The dilogarithm appearing on the right-hand side of eq. (40) can be expressed 
in terms of rapidly converging power series [15]. We now find 

1 

kel= kBT f In(u) 
~rQK ~ du (41) 

l - - t  2 

1 

kaT f In(u) 
- rrQK u- - - i  d u ,  (42 t 

2 / ( l + q )  
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where in eq. (41)/~el is related to the surface potential q,~o) via t o and in eq. 
(42) k ~l depends on the surface charge density in terms of q. The expression 
obtained here for / ~ e l  from the transverse pressure profile agrees exactly with 
the result obtained from the ( l /a )  2 term in the electrical free energy [3]. 

We finally consider the calculation of the bending elastic modulus from the 
curvature dependence of the transverse pressure profile. Combining eqs. (28) 
and (32) we find 

{ kBT'~ 2 1 i K ~1 = - e ° e '  ~,--7--} ~ a [2 sinh(lq,{o)) cosh(½q,¢o)) q,{l) 
0 

+ 4 sinh( ½ qt(o)) tanh( k ~(°))]x dx.  (43) 

Using the differential equation (21) in combination with partial integration one 
obtains 

Kel  (kBT) 21 f sinh(l (O,) ( )dx 
= --EOEr \ e / ~ 

0 

(44) 

With the expressions obtained for ~(~) in section 2.2 we get for a constant 
surface potential 

f sinh( ½aP (°)) ~.(1)dx = -2t~ 
0 

(constant surface potential) (45) 

and in the case of a constant surface charge we get 

f sinh(½~(0)) 1/f(l) dx = -2t2o 
4t° - - 2  (q - 1)(q + 2) 

cosh( 1~(o)~2~o J (q + 1)q 

(constant surface charge). (46) 

Combining the above results with eq. (44), we obtain for the constant surface 
potential 

Kel kBT - 2rrQ~ t°2 (constant surface potential) (47) 

and for the constant surface charge 

K~,_ kBT ( q - 1 ) ( q - 2 )  
2~rQr (q + 1)q 

(constant surface charge). (48) 
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Again the result at constant surface charge obtained here for K el from the 

curvature dependence of the transverse pressure profile agrees exactly with the 
result obtained from the (1/a)  2 term in the electrical free energy [3]. The result 
for gel at constant surface potential has as far as I know not been presented 
before. Notice that contrary to the case for Kelco I and /~et, in the case of K e~ 
the transition from constant surface potential to constant surface charge cannot 
be made by simply expressing t o in terms of q. The reason for this is that ~(1) 
changes in a non-trivial manner depending on whether we are dealing with 
constant surface charge or with constant surface potential. 

4. Concluding remarks 

I have shown how to calculate the electric contribution to the curvature 
elastic moduli of charged interfaces from the transverse pressure profile. The 
results are in complete agreement with the expressions obtained from the free 
energy. It is interesting to compare the two methods to calculate the curvature 
elastic moduli. In the case of the calculation starting from the free energy one 
needs to know the dependence of the surface potential on the surface charge 
up to ( l / a )  2. On the other  hand, in the case one uses the transverse pressure 
profile one only has to go to terms of order ( l / a ) .  So the calculation of the 
curvature elastic properties from the pressure profile apears to be simpler than 
the free energy method. But it should be realized that one has to know the 
pressure profile as a function of the distance from the surface, whereas in the 
case of the free energy method only the surface potential as a function of the 
surface charge is required. 

In the case of a charged amphiphilic monolayer  at an oi l -water  interface one 
has in the aqueous phase the electric double layer and in the oil phase the 
"brush"  formed by the tails of the surfactants. Szleifer et al. [9, 16, 17] 
presented detailed statistical mechanical calculations of the contribution of the 
tials of the curvature elastic moduli. By combining the approach of Szleifer et 
al. and the considerations presented here it should be possible to calculate the 
complete transverse pressure profile, i.e. both in the oil and in the water phase. 
From that information it is possible to calculate the full curvature elastic 
moduli of a charged amphiphilic monolayer at an oi l -water  interface. 
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