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I. Introduction 

Hans Lyklema has made significant contributions to the physical chemistry of colloidal 

dispersions and macromolecular systems. He also has a vivid interest in the teaching of the 

fundamental aspects of these subjects. I felt it therefore appropriate to contribute to this volume 

dedicated to him on the occasion of his 60th birthday a paper which deals both with colloids and 

polymers and which is largely of a didactic nature. It concerns systems containing colloidal 

particles and non-adsorbing polymer molecules in a good solvent. As is well known the non- 

adsorbing polymer gives rise to an attractive potential of mean force between the colloidal 

particles.l-‘l At sufficiently high concentration of colloidal particles and polymer molecules this 

attractive interaction induces a phase separation in a colloid-rich phase and a polymer-rich 

phase.5-‘1 

Although undoubtedly the depletion mechanism that has been put forward to explain the 

attractive potential of mean force is essentially correct, a number of treatments of the 

accompanying phase separation10*12 are in my opinion not entirely consistent from a 

thermodynamic point of view. A great deal of attention has been lavished on the calculation of 

the dependence of the potential of mean force and the thermodynamic functions on the 

concentration and molecular weight of the free polymer. However, in the subsequent calculation 

of the phase separation using these thermodynamic functions little or no attention has been 

given to the obvious fact that after the phase separation the polymer concentration in the two 

coexisting phases is different and definitely not equal to the overall polymer concentration. 

Clearly it is not consistent to use the overall polymer concentration in the calculation of the 

colloid thermodynamic functions if one wants to describe the phase separation in a colloid-rich 

and a polymer-rich phase. Of course this criticism does not apply to the calculation of the 

spinoda17 which indicates the limit of stability of an one-phase system, 

If one wants to formulate the phase separation problem in terms of an effective one- 

component colloid system, one must use as an independent thermodynamic variable the 

chemical potential of the polymer molecules and not their concentration, since the chemical 

potential is the same in the two coexisting phases whereas the concentration is not. In this note I 

want to show that it is indeed possible to formulate the problem in this way using the method of 
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osmotic equilibrium systems.t3+14 To give an explicit example of this approach the colloid 

polymer dispersion will be modeled as a mixture of hard spheres and interpenetrating spheres. 

For this model system explicit expressions for the chemical potentials and the osmotic pressure 

can be obtained. As an illustration these expressions will be used to calculate the critical point of 

the system. 

II. Colloid polymer dispersions treated with osmotic equilibrium systems 

As indicated above we wish to obtain a thermodynamic description of a system containing 

colloidal particles and non-adsorbing polymer molecules in a good solvent with the chemical 

potential of the polymer molecules as an independent thermodynamic variable. For this purpose 

we consider the osmotic equilibrium system illustrated in Fig. 1. It consists of three 

compartments separated by two semi-permeable membranes, with solvent in I, polymer 

solution in II and a colloid-polymer dispersion in III. The solvent, denoted by the subscript o, 

has a chemical potential h throughout. Membrane II/III is permeable to polymer, denoted by 

the subscript p, with concentration (number density) np * in II and np in III. Finally the colloid, 

denoted by the subscript 1, has a concentration nt in III. The relevant osmotic pressure II in the 

present case is the pressure difference between III and II 

“=Pm-P, (1) 

This osmotic pressure II and the chemical potential pt of the colloidal component are now 

functions of the temperature T, the colloid concentration nt and the chemical potentials lto and 

~.tp of the solvent and of the polymer 

To calculate these thermodynamic functions one has to start from a specific model for the 

system. A simple example of such a model will be given in the next section. Here we wish to 

emphasize that once appropriate formulations for II and ~1 in terms of the above indicated 

thermodynamic variables have been obtained the phase separation problem can be treated in 

exactly the same way as for an one-component system. For example the coexistence conditions 

take the form 

where a and p denote the coexisting phases. 
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Although for the explicit calculation of Il and l,tt one has to start from a specific model for 

the system, these quantities must obviously obey the standard thermodynamic relationships 

such as the Gibbs Duhem relation which here takes the form 

(3) 

In addition using the thermodynamic methods discussed by Vrijls in this volume one can derive 

cross relations between the dependence of II on l.+ on the one hand and the dependence of the 

“adsorption” of polymer molecules induced by the colloidal particles on nt on the other hand. In 

the present case this relation takes the form 

an 0 dcl, 
= (nP - ni) - n1 

a(n -n*) 

T&n, ( > -&.L 
I T.P,.P* 

(4) 

The relations (3) and (4) are useful to check whether expressions for II and l.~, are 

thermodynamically consistent, but of course, by themselves, do not allow one to obtain such 

expressions. 

III. Mixtures of colloidal particles and polymer molecules modeled as mixtures 

of hard spheres and interpenetrating spheres. 

As a mode1 for a mixture of colloidal particles and polymer molecules we depict the colloidal 

particles as hard spheres with diameter ~1 and the polymer molecules as interpenetrating 

spheres of diameter oP such that the pair potentials are given by 

ull(r) = = for r < 0, 

ull(r) = 0 for r2o, 

upp(r) = 0 for allr (5) 

u&) = 00 for - r<(3 

ulP(r) = 0 for - r>o 

where 

a+, +aJ 

The use of this model to describe colloidal dispersions containing non-adsorbing polymer 

molecules was first suggested and explored by Vrij.* In the theory of liquids this mode1 is 

known as the “non-additive” hard sphere model. Widom and Rowlinsont6 have presented an 
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figure 1 

Osmotic equilibrium system consisting of three compartments separated by two semipermeable 

membranes, with solvent in I, polymer solution in II and a colloid-polymer dispersion in III. 

The solvent is denoted by the subscript o, the polymer by the subscript p and the colloid by the 

subscript 1. 

Table 1 

Volume fraction of the colloidal particles and ratio of the polymer and colloid concentration at 

the critical point for various ratios of polymer diameter an and colloid diameter 01. 

0.1 0.56 140 

0.2 0.41 33 

0.3 0.32 15 

0.4 0.26 8.7 

0.5 0.22 6.0 

0.6 0.18 4.4 

0.7 0.16 3.6 

0.8 0.14 2.9 

0.9 0.12 2.5 

1.0 0.10 2.2 
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elegant method to obtain approximate expressions for the relevant thermodynamic functions. 

The pressure and chemical potential of the polymer in compartment II are given by 

P, = P, + n@ (6) 

I.$, = pT(T,p,) + kT ln ni (7) 

the dependence on np* of the pressure and the chemical potential reflects the fact that in the 

model used here the polymer molecules in the absence of colloidal particles behave as an ideal 

gas of point particles. For the pressure and chemical potentials in compartment III one obtains 

(8) 

pp = pz (T,pO) + kT In np - kT ln f (9) 

d In f 
I.$ = l.t; U,t.t,.n,) - np kT dn 

1 
(10) 

Here m and pt’ are the osmotic pressure and chemical potential of a pure hard sphere systemI 

Sk= 
1 + $1 + 0: 

(11) 
1 wlq3 

P; P: (TG,) 
kT= kT 

+ In nt - In (l-$,1 + 7 AL+: (%I+3 ($)’ (12) 

l-Q, 

where $1 is the volume fraction of the hard spheres 

(13) 

Further f is fraction of the total volume available to an interpenetrable sphere. For low 

concentrations of hard spheres a simple geometrical calculation yields the following expression 

f=l-n h-3 1 2 4x-3 1 r3 
t3o +Znt3= K 

1_3r 
q+q > 

47tr2dr (14) 

4 

The term proportional to nt accounts for the excluded volume of a hard sphere and an 

interpenetrating sphere and the term proportional to nr* corrects for the overlap of twc rich 

excluded volumes. The calculation of higher order terms rapidly becomes extremely 

cumbersome. However, an approximate expression for f can be obtained by realizing that 

according Widom’s “particle-insertion” method 18 the chemical potential of a test hard sphere 

species p’ with diameter on and concentration np’ -+ 0 in a sea of hard spheres with diameter ot 

and number density nt can be. written as 
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pP, = pi (T) + kT In n p, - kT In f (15) 

where f has exactly the same meaning as before. Comparing this expression with the well- 

known scaled particle expression l9 (or equivalently the Percus-Yevick compressibility 

expressionm) for the chemical potentials of a mixture of hard spheres of the kind indicated one 

obtains 

f=(l -$,)ex 

pl{ 

- A(+)+B(+j+c(+j} 
(16) 

with 

A = 3q + 3q2 + q3 

B=;q2+3q3 (17) 

c = 3q’ 

and 

Expanding f given by eq. (16) in powers of nt one finds that up to terms of order nt* this 

expansion agrees exactly with eq. (14). This of course is as it should be since the scaled particle 

expression for the chemical potential, upon which f given by eq. (16) is based, is exact up to 

terms of order nt*. From eqs. (7) and (9) it follows that 

np = f n* 
P 

and thus we can write eq (10) in the form 

(18) 

l df 
I.+ = p; (T,pO,nt) - kT np dn, 

and from eqs. (6) and (8) we obtain 

fI = fI’(T,p,n,) - kT np l (l-f+n,-d$) (20) 

These are the desired expressions for II and pt in terms of the variables T,po, pp (here 

represented in terms of the variable np*) and nt. One easily verifies that II and ttt satisfy the 

Gibbs-Duhem relation (3) and the cross relation (4). The expressions for fI and pt have a 
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simple and transparent structure i.e. they consist of a hard sphere part and a part that is due to 

the presence of the polymer. This structure is reminiscent of the form of the pressure and the 

chemical potential in the Van der Waals model of a fluid where one also has a separation in a 

hard sphere part and a part due to attractive interactions. Like in the case of the Van der Waals 

fluid the additional terms compared to the hard sphere fluid are responsible for the “gas” - 

“liquid” phase separation. 

Just to illustrate the use of the expressions for H and ~1 obtained here we determine the 

dependence of the location of the critical point on the ratio of on and o. The critical point in the 

present case is defined by 

an 0 a2n 
an, =o 0 2 = 0 

T.P,.P, ant T.k& 

The results for the critical volume fraction of colloid and the ratio of the polymer and colloid 

concentration at the critical point are given in Table 1. As one intuitively expects for polymer 

molecules that are small compared to the colloidal particles one needs high concentrations of 

colloid and polymer to reach the critical point. Actually for q 5 0.14 the critical volume fraction 

of colloid is larger than 0.50 and for such size ratios the colloidal gas-colloidal liquid transition 

will most likely be preemptied by a colloidal fluid-colloidal solid transition as was earlier 

suggested by Gast, Hall and Russell2 and Vincent and coworkerslo. The latter authors have 

found experimental indications for a critical point in colloid polymer dispersions. For a system 

consisting of stearyl coated silica particles (radius a = 6.5 nm) and polydimethyl siloxane 

(molecular weight M = 31,000, radius of gyration rg = 0.027 Ml/2 . nm = 4.8 nm) the 

experimental critical volume fraction of colloid is about 0.08. Comparing this with the results of 

the model used here we find for q = 4.8/6.5 = 0.74 a critical volume fraction of colloid of 0.15. 

For the critical polymer concentration we find for the case under consideration a theoretical 

value of about 20 g/l which is roughly a factor 5 too high. This seems to indicate that the 

present “toy” model in its unadultered form does not give quantitative reliable estimates for the 

phase separation concentration. Nevertheless the model is useful from the point of view of its 

intended function namely to illustrate how to set up a thermodynamic consistent theory for 

phase separation in a mixture of colloidal particles and polymer molecules. 
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Note 

After completion of this work I received a preprint of Groot and Agterofll in which the 

stability of colloid-polymer dispersions is also treated using the osmotic equilibrium point of 

view. The details of their approach however differ considerably from the work presented here. 
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