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Abstract

The Ginzburg-Landau (GL) equation ‘generically’ describes the be-
haviour of small perturbations of a marginally unstable basic state in
systems on unbounded domains. In this paper we consider the transi-
tion from this generic situation to a degenerate (co-dimension 2) case
in which the GL approach is no longer valid. Instead of studying a
general underlying model problem, we consider a two-dimensional sys-
tem of coupled reaction-diffusion equations in one spatial dimension.
We show that near the degeneration the behaviour of small perturba-
tions is governed by the extended Fisher-Kolmogorov (eFK) equation
(at leading order). The relation between the GL-equation and the
eFK-equation is quite subtle, but can be analysed in detail. The main
goal of this paper is to study this relation , which we do asymptoti-
cally. The asymptotic analysis is compared to numerical simulations of
the full reaction-diffusion system. As one approaches the co-dimension
2 point, we observe that the stable stationary periodic patterns pre-
dicted by the GL-equation evolve towards various different families of
stable, stationary (but not necessarily periodic) so-called ‘multi-bump’
solutions. In the literature, these multi-bump patterns are shown to
exist as solutions of the eFK equation, but there is no proof of the
asymptotic stability of these solutions. Our results suggest that these
multi-bump patterns can also be asymptotically stable in large classes
of model problems.



1 Introduction

The behaviour near criticality of small solutions of a system of partial dif-
ferential equations on an unbounded domain can be described by so-called
modulation or amplitude equations. The most well-known, and ‘generic’
modulation equation is the (complex) Ginzburg-Landau (GL) equation

A = 1A+ cAA+ hA|A?, (1.1)

where A is a complex valued function, r a (real) control or bifurcation para-
meter and ¢ and & complex parameters which are determined by the under-
lying ‘full” system of PDE’s (see for instance [14]). Generally, h is referred
to as the Landau-constant.

The derivation of the GL-equation is based on a detailed analysis of a lin-
earised stability problem. Let

Yy = Lp + N(¥), ¥(z,y,1): R" x @ x RY — RV, (1.2)

describe the ‘full” problem, where Lp (respectively N) is a linear (non-
linear) operator, R is a control, or bifurcation, parameter and €2 is a bounded
domain C R™. For simplicity we assume that n = 1. The linearised stability
of the basic solution 1g(y) of (1.2) is determined by setting

¥ = o+ fly)et

and solving, for any pair (k, R), an eigenvalue problem for f(y) with eigen-
values u = p(k, R). Define po(k, R) as the critical eigenvalue (that is, the
eigenvalue with the largest real part) for a given pair (k, R) and R, as the
critical bifurcation value of R: Repo(k,R) < 0 for all £ € R and R < R,,
i.e. the basic solution g of (1.2) is linearly stable for R < R.. The curve in
the (R, k)-plane where Repo(k, R) = 0 is the so-called neutral curve. The
critical values k. of k and w, of uo(k, R) are defined by

,UO(kcv Rc) = we;

fe(y) is the critical eigenfunction at R = R., k = k.. If R is ‘slightly’ above
R. ie. R= R.+re? with 0 < e < 1, r > 0, one makes the following basic
‘Ansatz’ on which the derivation of the GL-equation is based

W(, 9, 1) = Yoly) + e A&, 7) foly)e et ed) 4+ cc. (1.3)

where £ and 7 are rescaled time and space coordinates. Equation (1.3) gives
only the leading order term of a double expansion: as a Taylor series in ¢
and as a Fourier series in e¢!(fe"+we) " The GL-equation (1.1) describes the
modulation of the unknown amplitude A(£, 7) (see section 3.1 for more de-
tails). In the last 10 years much progress has been made in the mathematical



justification of this approach. Eckhaus [15] showed that the above ‘Ansatz’
can be made rigorous for a large class of model systems. The validity of the

GL equation for various types of model equations has been shown by many
authors (see [5, 17, 3, 26]).

The fact that ¥ (z,y,t) — 1o(y) can be expanded in a Fourier series in
¢'lkertwet) i 5 fundamental ‘non-degeneracy condition’ on which both the
asymptotic process leading to the GL-equation and the proof of its valid-
ity is based. It is clear that the Fourier expansion must break down when
k. = w., = 0. A priori this might seem like a phenomenon of high co-
dimension, but this is not necessarily the case: w. = 0 is a ‘generic’ property
of basic reversible systems (1.2), i.e. systems of PDE’s that are symmetric
with respect to the transformation #+ — —xz. Reversible systems are very
natural, a classical example is convection (see for instance [23], one of the
first papers in which a GL-equation has been derived). If w. = 0, then one
only needs one extra bifurcation parameter, s, to make the GL Ansatz (1.3)
degenerate, i.e. there must be a special value of s such that k.(s) = 0.

In this paper we make an asymptotic analysis of the behaviour of small
solutions near such a co-dimension 2 point: a point in the two-dimensional
parameter plane at which the classical GL Ansatz (1.3) breaks down. In
remark 1.1 we discuss the relation of the co-dimension 2 point studied in
this paper to other, similar, co-dimension 2 degenerations that occur in the
derivation of the GL-equation. Such co-dimension 2 degenerations occur in
convection problems, nematics, lasers, etc. ([30, 2, 21, 22]).

Instead of performing this analysis on a very general (reversible) model

problem as (1.2), we focus on a more simple, but highly relevant ‘basic’

problem, a general reversible two-dimensional system of reaction-diffusion
equations:

w = Tu4 v+ Upe + Ni(u,v)

(1.4)

vy = sv+cou+ dvg, + Nao(u,v),

where € R; N7 and N are analytic non-linear expressions (thus we assume
that N;(u,v), ¢ = 1,2, do not have any linear terms). The system will be
studied by varying the bifurcation parameters r and s; the other constants,
1, ¢ and d, will be kept fixed. If we compare (1.4) to (1.2) we note that
Y(x,y,t) = (u(z,t),v(x,1))", thus, there is no y variable (i.e. Q = 0): this
simplifies the linear stability analysis considerably. Moreover, the model
problem is chosen in such a way that 1o(y) = (0,0)T.

It should be remarked that studyinAg t;he weakly non-linear stability of a
‘trivial pattern’ (a(Z,t),d(2,t)) = (Uy, Vo), where (a(2,t),(2,t)) is a solu-



tion of the, a priori, more general system

{at = dyizs + f1(4,0) (1.5)

@t = d27}i’i’ + fQ(ﬁv ?})7

is completely equivalent to studying the weakly non-linear stability of the
trivial, basic pattern (0,0) of (1.4). This can be seen by setting

(a(#,1), 9(,1)) = (Uo + u(&,1), Vo + v(&,t)) and substituting this into (1.5)
— & can be rescaled to z in such a way that d; = 1. Thus, model problem
(1.4) can also be used to describe the GL bifurcation and its degenera-
tion in well-known models as the Brusselator (see [20] for the derivation of
the GL-equation in the Brusselator), the Gray-Scott model [10], systems of
predator-prey type [6] etc. Moreover, our basic model is as general as the
system studied by Turing [29], although it should be noted that in that pa-
per the equations are studied on a bounded z-domain, while it is crucial for
the forthcoming GL-analysis that z € R.

Another additional advantage of studying (1.4) instead of (1.2) is that it
is now quite easy to check the asymptotic computations by a numerical sim-
ulation of the full basic system (1.4)-see section 5.

If ¢c1eq < 1 there is a curve I'gy, in the (r,s) = R-parameter plane at which
the GL bifurcation occurs, i.e. the basic pattern (0,0) becomes unstable and
the evolution of small solutions can be described by ‘Ansatz’ (1.3) and the
GL-equation (1.1) where now ¢,h € R, due to the reversibility symmetry,
and A = %. From now on we rescale to ¢4 = 1,¢9 = —1 to assure that
c1c2 < 0. However, k. = k.(s) and there is a point (r.pg, Scrx) where k. = 0
(and w. = 05 in section 2 we will also encounter a point (r.qr, Sccr,) where
k. = 0 but w. # 0, see remark 1.2). On one side of the point (r.rx, SerK)
on I'gr, k. # 0 exists, on the other side k. = 0.

In an O(¢), 0 < 6§ < 1, neighbourhood of the point (r.px, seri ) one has to
replace the GL Ansatz (1.3) by the following Ansatz:

( :j ) = 8 ( \gﬁ ) B(¢B.7B) + 0(8%), (1.6)

this is only a Taylor expansion in 8, but no longer a Fourier expansion. Note
also that the unknown ‘amplitude’ B({p, 7p) is real valued, while A(§, 7) was
complex. Moreover, the scalings of £p and 7 differ from those of £ and 7
(see sections 3.1 and 3.2). Based on this Ansatz one can derive a so-called
extended Fisher-Kolmogorov (eFK) equation for B, that reads in rescaled
form

Bry = B+ DBepey — Bepepepes — B27 (1.7)



where D still depends on r and s: D < 0 as k. # 0 exists, D = 0 at
(reric, Serk) and D > 0 as k. = 0. Note that the name-giving of equation
(1.7) is in the literature somewhat confusing. Here we follow [24, 8, 18, 7].
However, the name eFK-equation is usually given to equations of the type
(1.7) with D > 0 and a cubic instead of a quadratic non-linearity. In the case
D < 0 the name Swift-Hohenberg (SH) equation would be more appropriate
([28]), however, the SH-equation also has a cubic non-linearity in general.
Since the transition at (r.py, sepr) from D > 0 to D < 0 is most naturally
described by an equation in the form of a (quadratic) eFK-equation we pre-
fer in this paper the name eF'K2 for equation (1.7). We will also encounter
the more standard cubic eFK or SH-equation as a degenerate case of the
eFK2-equation (1.7) and call it the eFK3-equation.

The derivation of the eFK2-equation is quite straightforward. However,
if one compares the (complex) GL-equation (1.1) to the (real, fourth order)
eF'K2-equation, then it is a priori hard to grasp how the transition from the
GL-equation to the el’K2-equation should take place. Understanding this
transition is the main subject of this paper.

Although we do not approach this problem by transforming it completely
into Fourier space (as for instance in [17]), we will use the interpretation of
the GL Ansatz (1.3) and the eFK Ansatz (1.6) in Fourier space to study the
transition. The GL Ansatz is represented in Fourier space by sharp disjunct
‘peaks’ around the values nk., n = 0,+1,42,... (see figure 4, section 4.2),
while the eFK Ansatz is described by a wide, solitary, ‘peak’. It is shown
in this paper that the GL Ansatz breaks down as k. | 0 and the formerly
disjunct peaks start to overlap. The wide eFK peak then appears as the
envelope of the overlapping GL peaks (figure 5, section 4.2).

However, this is only a part of the full picture. We will show that there
is a region on I'gz near the co-dimension 2 point (r.pi, serk) at which
both the GL-equation and the eF'K2-equation are valid. In this region these
equations both describe the evolution of small solutions, but the scales of
the magnitude, and the temporal and spatial evolution differ significantly,
i.e. the GL and the eFK2-equation describe different patterns. Moreover,
the GL-equation should be replaced by a singularly perturbed GL-equation:

dv/d?

’ZiAfAfAfA - ﬁAfAfAfAfA

(1.8)
(at leading order), where 0 < v = £ < 1 and ccpg, hepr are (rescaled)
limits of the values of ¢,h of (1.1) at (r.px, seri ). Here something very
interesting occurs. It follows from the asymptotic analysis that

heri 4id
A = 1A+ corcAg e, + %AMP - —

1

hepr > 0, (1.9)



independent of the non-linear terms Ny(u,v) and Na(u,v) in (1.4). This
is interesting because the (non-singularly perturbed) GL-equation (1.1) (in
one dimension) does not have bounded periodic solutions if A > 0. More-
over, solutions have a tendency to blow up (in finite time) in this case. It
follows immediately in the numerical simulations of the full system (1.4)
that small O(e) solutions (see (1.3)) grow towards an O(1) magnitude if
h > 0, which means that the weakly non-linear GL approach is only valid
on very small time intervals and cannot be used to study the asymptotic
behaviour of patterns. Thus, as in almost all applications and studies of
the GL-equation (see [25] for a review), one prefers a Gl-equation with a
negative Landau coefficient A when describing the evolution of small pat-
terns near I'qr. If (r,s) is near I'qr, but not near (r.pi,Scrx), this can
be achieved for a ‘generic choice’ of Ny(u,v) and Ny(u,v) (see section 4.1).
One then observes stationary, stable periodic patterns in the numerical sim-
ulations of the full system (1.4), exactly as predicted by the GL-equation.
However, since we found that h.px > 0 we know that there must be a point
(71, Sn1) on 'y, where h = 0. This can be called a non-linear bifurcation.

This bifurcation was first studied in [16, 9] and later more rigorously in
[27]. To give a correct description of the behaviour of solutions in this case
one needs to consider extra non-linear terms of higher order (such as A|A|*
and A¢|A]? — see section 4.1) to obtain a degenerate GL-equation of a form
as given in (4.5). If the (7., su) is not close to (repi, Serx) then there
is a part of I';, where the GL approach is valid and the GL equation has
a positive Landau coefficient: here there are no bounded small solutions.
Thus, since we are interested in bounded small solutions, we have to choose
(71, Sn1) so close to (repk, Serr) that the eFK approach is already valid
between (7,1, 8,1) and (repk, SeFK)-

We did not study this situation in its full asymptotic details (see figures
8, 9 and 10 for the numerical simulations and section 5.4 for a discussion),
but, we did consider the special case h.px = 0. This can quite easily be
achieved by considering non-linearities Ny(u,v) and Nz(u,v) in (1.4) of cu-
bic or higher order. Is this case we find that the behaviour of small solutions
near (r.ry, serr ) is governed by a cubic (!) eFK-equation, the el'K3 (or
SH) equation:

B;p = B+ DBepey — Begepenes + lB37 (1'10)

where D is as in (1.7). The sign of [ can now be both positive or negative,
as function of the structure of Nqy(u,v) and Ny(u,v) (see section 3.4). Thus,
although the assumption that both Ny(u,v) and Ny(u,v) are cubic makes
the problem of a higher co-dimension, it is a natural assumption: this way
there are no ‘problems’ with solutions that cannot be described (for all time)
by the weakly non-linear theory. Moreover, it enables us to derive equations



that appear throughout the literature ([24, 8, 28, 18, 7]).

As already mentioned above, we supplement the asymptotic analysis of the
transition from the GL-equation to the eF’K-equation by a numerical study
of the behaviour of small solutions of the full system (1.4) near 'z, and of
course especially near (r.p, sepi ). Since we choose Ny(u,v) and Ny(u,v)
such that o < 0 we can first check the validity of the GL approach: we
find stable periodic solutions as predicted by the Eckhaus stability criterion
([12]). By bringing (7, s) closer and closer to (r.p, serk ), we observe stable,
stationary patterns of a much richer structure than the sine/cosine like pe-
riodic patterns described by the (real) GL-equation (see figures 8, 9 and 10).

These solutions have a clear ‘multi-bump’ structure. In figure 1 we show
two examples of (small) numerically stable ‘multi-bump’ solutions of the full
reaction-diffusion system (1.4). Parameters r and s are close to (7., Seri )
and Ni(u,v) and Ny(u,v) are such that the solutions are (asymptotically)
described by the eFK3-equation. Solutions like these have been and still
are the subject of much ongoing research (see for instance [4] and the ref-
erences given there). In these papers the existence of solutions similar to
those observed as stable patterns of the reaction-diffusion system (1.4) near
the co-dimension 2 point, are shown to exist for the stationary problems as-
sociated to either the eF'K2 ([4]) or the eFK3-equation ([24, 18]). However,
it should be noted, that there are no proofs (yet) of the stability of these
stationary ‘multi-bump’ solutions as solutions to the full eFK PDE. Never-
theless, figure 12a shows a typical example of a stable multi-bump pattern
that appears by integrating the eF'K3-equation: note that these patterns are
quite similar to those shown in figure 1. We refer to section 5.4 for a more
detailed discussion.

Thus, the asymptotic and numeric calculations both strongly suggest that
the ‘multi-bump’ solutions to the eFK2,3-equations can be asymptotically
stable and that the ‘attractors’in these equations also are of significant im-
portance to the behaviour of small solutions near the co-dimension 2 point
at which the k. of the GL Ansatz (1.3) becomes 0 (or small). However,
both steps are not proven. The results of this paper are based on a detailed
analysis of the reaction-diffusion system (1.4). The essence of the method in
this paper does not depend on the exact structure of the underlying model
problem. Therefore, the analysis in this paper can also be applied to much
more general systems with a similar co-dimension 2 degeneration. As a
consequence, it can be expected that the asymptotic stable ‘multi-bump’
patterns encountered in this paper, will also occur in these more general
model problems.

Remark 1.1 There exist some related co-dimension 2 bifurcations studied



in the literature. Two of those are quite similar to the bifurcation studied
in this paper. In [21] and [22] a complete weakly non-linear description is
given of a co-dimension 2 bifurcation that appears in laser dynamics. As in
this paper, k. = w, = 0 at the co-dimension 2 point described by = 0:
the ‘detuning’ © plays a role similar to s in this paper. However, unlike the
el'K-bifurcation studied here, w.(2) # 0 for @ # 0. As a result, the dy-
namics near threshold are described by different kinds of cubic and complex
Swift-Hohenberg equations. Another co-dimension 2 point is the so-called
Lifshitz point that for instance appears in (planar) nematics (see for [30, 2]).
This is a purely two dimensional (i.e. in (z,y)-space) phenomenon: the crit-
ical point of the neutral surface at k = k., [ = 0 bifurcates into two critical
points at k = k%, [ = +l. # 0 ([2]). In this case the modulation equation for
the amplitude A(&,n,7) is once again cubic and complex, it reduces to the
el'K3-equation if one considers a real amplitude A, independent of £ ([30]).
There are many more possible co-dimension 2 degenerations, we do not in-
tend to try to give a complete list here; see for instance [31, 11], and the
references given there, for co-dimension 2 bifurcations in convection prob-
lems.

Remark 1.2 As noted above, we will also encounter the co-dimension 2
point (r.¢r,sS.qr) on I'gr, where k. = 0, but w. # 0. In section 3.3 we
briefly sketch how this case can be described by a coupled system of GL
equations (see [11] and the references given there). Numerically we observe
that the stable periodic patterns described by (1.1) obtain a periodically
modulated amplitude near the point (r.cr, s.qr1), see figure 7a.

Remark 1.3 The structure of the paper is as follows: in section 2 we
study the linear stability of the trivial solution (0,0) to (1.4), with ¢ = 1,
ca = —1. The derivations of the GL, the eFK and some other relevant
modulation equations are given in section 3 (and appendix A). The main
subject of the paper, the transition from the GL to eFK2-equation is studied
in section 4. In section 5 we present and interpret the numerical simulations.

2 The linear stability analysis

We start by performing a linear stability analysis for the solution (u,v) =
(0,0) of the reaction-diffusion system (1.4) where ¢; = 1,¢5 = —1:

w = TU+ v+ Uy + Ni(u, ) (2.1)
vy = sv—u+dvg + No(u,v). ’

We study the stability of the solution by substituting

( ; ) = etk ( ) (2.2)

8

S =2



into the linear part of the system. This gives the following eigenvalue prob-

D)) () e

Studying the linearised stability of (0,0) reduces to calculating the eigenval-
ues w of this 2 x 2 eigenvalue problem. The solution (0,0) is stable as long
as the real parts of both eigenvalues are negative for all £ € R and becomes
unstable when the real part of one of the eigenvalues becomes positive (for
some k € R). The characteristic polynomial reads

S 2
S 2

W= (s+r—(1+dE)w+rs+1— (rd+ s)k* + dk* = 0. (2.4)

This leads to two eigenvalues w; and wq, where we assume that Re(w;) >
Re(wy). Moreover, we define for fixed s and d the neutral curve {Re wy(k,r) =
0}. When we plot this curve in the (k,r)-plane, we know that the solution
(0,0) is stable against perturbations of the type (2.2) for (k,r) outside the
neutral curve; perturbations grow exponentially when (k,r) is inside the
neutral curve.

In order to study this neutral curve, we need to know more about the real
part of the two eigenvalues. We start with looking for the critical points
(ke,7re) of the neutral curve. Here the r. still depends on s. First we as-
sume that w is real near (k.,7.). By definition we know that w(k.,r.) =
% (ke,re) = 0. Setting w(k.,r.) = 0 in (2.4) leads to

dkt — (red + 8)k2 +res +1 = 0. (2.5)

dw

Applying £ to (2.4) and substituting w(k.,r.) = 22(k.,7.) = 0 gives
ko(4dk? — 2(r.d + 5)) = 0.
Therefore
r.d + s
2d
where 7. has yet to be determined. The second pair of critical values only

exists when <& > 0. It follows from (2.4) that k. = 0 is the only critical
value if w(k.,r.) ¢ R.

ke=0VE: =

Thus, we can distinguish between different types of instabilities. As long
as “;l% > 0 the eigenvalue-curve, where Re(wy ) is given as a function of k

for fixed (7, s), has two maxima in k. = +/ “;l% and one minimum in k = 0
(see figure 2¢). This can be seen as follows: for |k| > 1, (2.4) implies, by
taking only all the terms of the highest order, that w? 4 (1 —|—d)k2w+dk4 ~ 0.
Thus w ~ —k? or w ~ —dk?, therefore, for |k| > 1, the real parts of the
eigenvalues are negative. The first solution to become unstable, for this



eigenvalue-curve, is the wave e'** where k, = \/“g%.

We now note that a co-dimension 2 bifurcation occurs, where s is the second
bifurcation parameter, for “;l% = 0: the curve has only one maximum in
k = 0 for “;l% < 0. Here, the first solution to become unstable is the
‘wave’ with wavenumber k& = 0: €. Thus, for fixed r = 7. and varying
the second bifurcation parameter s we see that this bifurcation occurs at
8 = Sepi With red + scpx = 0. For s > s.px, the curve has two maxima
and for s < s.pi the curve has one maximum (see figures 2a, b and c).
Since we assume that the first bifurcation occurs at (k.,r.) we have to set
Re wi(k,r.) < 0 and Re wy(k,7.) < 0 for every k € R, this implies that
w1 + wz < 0. Combining this with the fact that (2.4) can be factorised as
(w—wi)(w—w2) = w?— (w1 + w2 )w+wiws = 0, leads to s+ 7. — (1 +d)k* <0
for every k € R. From this it follows that

s+ r. <0.

We now have the two conditions under which the first bifurcation occurs:
r+s < 0and rd+ s > 0. It depends on the magnitude of d in which region
of the (r, s)-plane these conditions hold. For d < 1, they hold in the second
quadrant of the (r, s)-plane (r < 0 and s > 0) and for d > 1 they hold in the
fourth quadrant. From now on we choose d < 1, this does not influence the
results. This choice fixes the signs of r and s, namely r < 0 and s > 0. In fig-
ure 3, we sketch the second quadrant of the (r, s)-plane with the bifurcation
curves obtained for d < 1. There is a bifurcation curve 'z, which consists
of three parts: I'y,I'5,I's. The different eigenvalue-curves occur on these
three parts. On I'y the eigenvalue-curve has one maximum and on I'; it has
two maxima. We will now determine the form of the eigenvalue-curve on I's.

If s+ r. = 0, then Re wy(0,7.) = Re wy(0,7.) = 0 and the eigenvalue-
curve has three maxima, in £ = 0 and in & = £k., where Re wy = 0 in
all three maxima. Therefore another co-dimension 2-bifurcation occurs at
s = seqp, with s.qr, + 7. = 0. Here the eigenvalue-curve transforms from a
curve with two maxima, through a curve with three maxima, to a curve with
one maximum in k = 0 (see figures 2d, e and f). To be able to sketch the
eigenvalue-curves we also need to know where the eigenvalues are real and
where they become complex. Note that the eigenvalues are always real in a
neighbourhood of £ = k. # 0 and for |k| > 1. Since the eigenvalue-curves
are symmetric in k, the first k-value for which they can become complex is
for k = 0 (see (2.4)). Setting k = 0in (2.4) and solving w from that equation
gives

ors = %(5 trf(s—r—4). (2.6)

Thus the eigenvalues become complex in k& = 0 when (s —r)? —4 = 0. This
implies that the eigenvalues are complex in some interval of k-values for

10



s —2<r< s+ 2. We define 5 as the value of s at which the neutral curve
at r = r. becomes complex at £ = 0. Since r < 0 and s > 0, the eigenvalues

= 2V/d

become complex for r = s —2 at s = § = i For s < 3, all eigenvalues

are real. Complex eigenvalues exist for s > 3.

Of course we still have to determine r.. We can calculate 7, from (2.5)
for the different choices of s. For s < s.rx and on the bifurcation curve I'y,
we have that k., = 0 and so we get that

1
Te=——.
S

By substitution of k. = £ “;l% in (2.5), we can determine the critical r-
value r. which belongs to the s-values on the bifurcation curve I'y (s.px <

s < Scqr). We obtain that
S Qf
Te =~ — R
d

where we chose the minus-sign because r < 0. Note that from this calcu-
lation it follows that ¢1cq has to be negative in system (1.4). This can be
seen from the equation (2.5) with general ¢; and ¢y, instead of ¢; = 1 and
Cy = -1

dkf — (red + S)kz + 7.8 — cye9 = 0.

Substituting k% = “;l% leads to
(r.d — 5)2 = —ddcycy,

from which can be seen that ciecg < 0 has to hold. Thus, if ¢cieo > 0 the
above described bifurcations do NOT occur. On the curve I's we know that
Rew;(0,7.) = Rew(0,7.) = 0, thus we deduce from (2.6) that

T, = —S.

Now, we can determine the above defined s.px and s.gr. It follows from

r.d + s, = 0 that
sepr = V.

From r. + s.cr, = 0 we obtain that

Y
ScGL = 1—|—d

11



3 The modulation equations

So far we showed that when varying (r, s) along the bifurcation curve I'qp,
the eigenvalue curves (the real part of the eigenvalues) change smoothly
from a curve with one maximum at & = 0 (on I'y, for s < s.pi) to a
curve with two maxima at k& = £k. and a minimum at £ = 0 (on I'y, for
Serk < 8 < Ser) to again a curve with one maximum at & = 0 (on I's),
see figure 2. For these different cases, modulation equations can be derived
by weakly non-linear stability analysis. Because the eigenvalue-curve goes
smoothly from one type to another type, the derived equations are limits of
each other. First we derive the GL-equation on I's for s.px < s < Sqqr-
Then there are two transitions, they occur at s = s.px and at s = s.qr.
In this paper we will not study the transition at s = s.qr. Decreasing s
so that it is close to s.pi leads to the eFK-equation as modulation equa-
tion. Decreasing s further to s < s.px on I'y gives the Fisher-Kolmogorov
equation. For s close to s.qr, a coupled system of two GL-equations can be
derived (this explains the index ‘cGL’: ‘coupled Ginzburg-Landau’); and for
s € s.qp, on I's we again obtain a GL-equation. However, the coeflicients
here are complex. In this section we will derive all relevant modulation
equations.

For r < r. the real part of the eigenvalue wy becomes positive for an interval
of k-values, which means that for these k-values the solution is unstable.
The modulation equations to be derived in this section describe the behav-
iour of ‘small solutions’ for r < r. and r —r, € 1. We consider as non-linear
terms in (2.1)

Ni(u,v) = aru? 4+ ayuv + azv? — au® (3.1)
No(u,v) = pru* + Bouv + Bav* — bo®. (3.2)

This choice is not at all essential, we can take more (general) terms into
account but then only the calculations become more extensive: new terms
do not influence the derivation process, they only alter the coefficients of the
modulation equation. Studying the stability of (0,0) is done by studying
the eigenvalue problem (2.3). We define

rc—kf 1
M. = ( 1 5= di? ) (3.3)

Now we can derive the modulation equation(s) for different choices of s.

Remark 3.1 General analytic non-linear terms N;(u,v) can be expanded
into a power series in u and v. Expressions (3.1) and (3.2) can then be seen
as the first four terms in these expansions. It is easy to check that only the
quadratic and the cubic terms in N;(u,v) are relevant in the derivation of
the modulation equations.
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3.1 The GL-equation

We start by setting s.px < s < scqr (and s not close to s.px ) along I'g,
then a standard, real GL-equation can be derived. Although the derivation
is quite standard and straightforward we present it here in some detail so

that it can serve as background for the subsequent sections. Here r. = %— %

and k. = w“g% = 5—3/37 therefore

-1 1
_( v ,
M (—1 ﬂ)
1—d

The eigenvalues of this matrix M. are Ay = 0 and Ay, = ~ 7 < 0 and

1
the corresponding eigenvectors are wy = ( \{3 ) resp. wy = ( \/13 ) . We

will see that a modulation equation appears as a consequence of a certain
solvability condition. Here, the solvability condition is given by the equation
M.z = b. This equation can only be solved when b € Sp{ws}. Thus, if we

write b = ( 21 ) we find the solvability condition
2

1
Vd

In the following sections, we will find that M. is, in highest order, always as
given above and thus the solvability condition is also the same in all deriva-
tions.

by — —=by = 0. (3.4)

As is standard in the derivation of the GL-equation, we take r close to
Te: T =T, — vie? where 0 < ¢ € 1 and v; > 0. In the non-linear stability
analysis we model the perturbation of the solution (0,0) as a slow modu-

lation of the wave with wavenumber k& = k. = 5—3/37 the ‘most unstable
wave’:
( Z ) =¢ ( \{3 ) A(f,r)eikcx + c.c. + hot,

here \{_ is the ‘most critical direction’, it is the eigenvector which

belongs to the eigenvalue Ay = 0. The slow space and time variables &
and 7 are scaled in a standard way, £ = ex and 7 = &%t (see [15] for a
rigorous foundation of these scalings). We will explain the scaling of £ a
bit further. Classically, this scaling is related to the width of the interval
of k-values for which the solution (0,0) is unstable at r = r. — vy, We
have to determine for which k the eigenvalue-curve of the largest eigenvalue

13



intersects the k-axis. Substituting w = 0 and r = 7. — v1e? into (2.4) leads
to

dk4—25—2\/3—vd52k2—|— i—12—11552:0.
( 1de”) (\/3 ) =

This equation has four solutions: k = tk. & 54/ %. Therefore the width
of the interval of the unstable k-values is of O(¢) and we scale £ = cz. Note
that for s — s.pr = \/3, the term s —/d becomes small, which changes the
width of the interval of unstable k-values and thus the scaling of £ changes,
see section 3.2. The relevant scalings of £, 7 and the magnitude of the
perturbation of solution (0,0) can also be deduced by using the significant
degeneration method (see [13]).

The non-linear terms in (2.1) will generate harmonics of the simple linear
wave €*<¥_ Thus the higher order terms in the expansion of the perturbation
are constructed from a product of this most unstable wave with itself,

2 X02

( Z ) = eikem(¢ ( \{E ) A(E, )+ &2 ;122 +e? ( i(,llj ) +  (3.5)

62““5“’(52 ( gjj ) +---+c.c.

Here the X;;,Y;; are functions of £ and 7 for every ¢, 7 € N. Substituting this
expansion into (2.1) and gathering terms of the form c%¢*<** for a;,b; € N
will lead to the GL-equation. The equations at the ay = 2-level can be
solved: the functions in expansion (3.5) can all be expressed in terms of
Xi3
Yis
a; = 3,by = 1-level, yields the GL-equation for A (see Appendix A for the
details of the derivation):

711\/3
TET )

A, the unknown amplitude. The solvability condition for at the

4\/3(5 — \/3) h

A = A
££+(1_d)

AlA|? (3.6)

where

h = —[\/3(2041\/3+ 042) - (Qﬁl\/g‘|‘ ﬁ?)]F
—[Vd(Vday + 2a3) — (Vdps + 263)]G + 3(ad® — b)) (3.7)

F = —%(a(158—|—4\/3)—19ﬁ) (3.8)

G = —ﬁ(wda + B(155 — 34V/d)) (3.9)
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o = dog+Vdag+ as (3.10)
B = dBi+ VdBs + Bs. (3.11)

where aq,---, 3 are introduced by the non-linear terms (3.1) and (3.2).
Note that A, F' and G seem to blow up as s — s.pr = Vd. We refer to [3]
and the references given there for results on the validity of (3.6).

The equation (3.6) can be brought into a standard-form by rescaling ¢,
7 and A (introducing 7 = ¢17,& = 3§ and A = c3A). We can now choose
the ¢1,¢o and e3 so that, after omitting the tilde, the equation becomes,

A= A4 Age +1A|A? (3.12)
where [ = +1. The sign of [ depends on the sign of A.

Note that there are three situations in which this scaling degenerates. First

we note that the diffusion constant % in (3.6) disappears as s | Vi,
the study of this process is the main topic of this paper: it describes the
transition of the GL-equation to the el"K-equation. The second bifurcation
occurs as h = 0 (or |h| < 1). In this case (3.6) is not the correct modulation
equation: it should be replaced by the so-called degenerate GL-equation (see
[9, 16] and [27] for a validity result). This bifurcation will be encountered
in section 4.1. The third degeneration, d = 1, corresponds to a fundamental

observation due to Turing ([29]).

3.2 The eFK2-equation

We consider s near s.pi (on I'y or I'z), i.e. we set s = s.pi + 06, with
0<é<« 1. Thus,k.=0and r. = —% = —Ld—l—%— C;i;; —|—O(63). Note that
o > 0 corresponds to figure 2c: wq(k, ;) has three extremes that merge as
o | 0; ¢ < 0is represented by figure 2b. As above we choose r O(6?) close to
Te: T = To— 1262 where vy > 0. Therefore, by substitution of the expressions
for r. and k. into (3.3), it follows in highest order that M., is the same as
defined in section 3.1 and the solvability condition is also as given there.
Below we will introduce a number of scalings which are different from those
used in the classical GL case. In section 4 we will analyse the transition
from the classical GL case (see section 3.1) to this eFK case; there, these
scalings will also be explained in more detail.

We model the perturbation of the solution (0,0) as a slow modulation of
the ‘most unstable wave’ with wavenumber k = k. = 0. However, here this

‘wave’ etker ( ' ) reduces to 1 ( ' ) This yields that in this case we can-

not expand the perturbation as both a Fourier series and a Taylor series in

15



6. Thus, (3.5) has to be replaced by

( z ) e ( \{3 ) B(¢g,TB) + 61! ( );(?11 ) + hot (3.13)

Vd
1
amplitude B has to be real now: all eigenvalues and eigenfunctions are real.
The replacement of the complex amplitude A by a real amplitude B will
(also) be discussed in section 4. In standard non-linear stability analysis, as
in the derivation of the GL-equation in section 3.1, the perturbation of the
solution (0,0) is taken to be O(¢) i.e. p = 1. Using the same assumption in
this case and substituting the expansion into the reaction-diffusion system
(2.1), leads on the O(6?)-level to an inconsistent system of equations: on

the §2-level we obtain

where is again the ‘most critical’ direction. Note that the unknown

1 o
0 = ——Xg+—
NZ V7|

0 = VdYy + 0B — Xo, + 3B?

B+ Yy + aB?

where o and 3 are as defined in (3.10) and (3.11) in section 3.1. This leads

to
MC();S;):—U(?)B—(Z)B? (3.14)

Applying the solvability condition gives
(a — —=)B* =0, (3.15)

which yields, since o and  are arbitrary constants: B = 0, i.e. we need to
consider smaller perturbations. Therefore, we are forced to choose p = 2 in
this subsection. The variables g and 75 are slow space and time variables,
where the scaling of 7 is standard: 7 = §%t. The scaling of £p is not the
same as in the GL case. It is related to the width of the interval of the
k-values for which the solution (0,0) is unstable (the largest eigenvalue is
positive for these k) at r = r.—v96? (as is also the case in the derivation of the
GL-equation). Therefore we have to determine for which k the eigenvalue-
curve of the largest eigenvalue intersects the k-axis. Substituting w = 0 and
the expressions for 7 and s into (2.4) leads in highest order to

dk* + 260k% — vo/d6? = 0.

This equation has two solutions: k = :t(iW)%\/g. Therefore the

width of the interval of the unstable k-values is of order v/§ and we scale
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¢ = V/6x. The higher order terms in the expansion of the perturbation are
modelled as

( ‘ ) g2 ( ?)B(fB,TB)-F(S?’ ( )5511 ) gt ( )é(?; ) + hot. (3.16)

Here the Xy;, Yo; are real functions of £g and 7 for every ¢« € N,7 > 0.
Substituting this expansion into (2.1) and sorting together the terms which
have the same order of é will lead, by applying the solvability condition
(3.4), to the eFK2-equation on the é*level. On the §°-level we have

Mc(f/S;):—U(?)B—(?)BgBSB. (3.17)

Applying the solvability condition (3.4) leads to the trivial condition

1 1 d
—U(ﬁ - W)B - (Vd - W)BngB =0. (3.18)

Hence, the inconsistency which appeared for choosing p = 1 in (3.13), is no
longer there. Because det M. = 0, equation (3.17) does not have an unique
solution, therefore we have to introduce a second amplitude function By
which depends on £g and 75. Then Xy and Yy can be solved in terms of
B and By:

( i(/(?ll ) _ ( UB+§B£B£B ) + ( \{3 ) Bl(fBaTB)- (3.19)

The equation on the é*-level reads
Xo2 _ Vd veV/d + % %XOI

_ XOlfBﬁB _ a B2
dYOlﬁBﬁB p

where a and § are as in equations (3.10) and (3.11) in section 3.1. Applying
the solvability condition (3.4) here yields

(d=1)Bry, +(v2d+ Z)B - o( 3 Xo1 = You)

3.20
_(\/EX01£B£B - dYOlfBﬁB) - (\/Ea - ﬁ)Bz = 0. ( )

Substituting (3.19) gives

1
BTB = = d(Ude - 2\/EUB£B£B - d\/EBngBngB — (\/304 _ ﬁ)Bz)(&Ql)
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This equation can be brought into a standard-form by rescaling the 75, &p
and B

B-y =B+ DBepey — Bepegenen — B27 (3.22)
where D = D(0,vy,d) = ——22 is the only parameter left. Note that the
Jzdd

sign of D decides between an eigenvalue-curve with three critical points
(D < 0 or o > 0) or one critical point (D > 0,0 < 0). Besides the
Turing degeneration at d = 1 ([29]) we also encounter again a ‘non-linear’
degeneration as vda — 3 = 0, see sections 3.4 and 5.4.

3.3 More modulation equations

So far, we derived on I'y for s.pr < s < s.qr, the GL-equation and for s
close to s.pg, the eF'K2-equation. In this section we give the modulation
equations which can be derived for other choices of s. We will only state the
equations here and will not derive or study them any further.

We start on I'y with s not close to s.pgx, then k. = 0 and a Fisher-
Kolmogorov equation can be derived:
(1 —s*)B, = 128 B — (s* — d)Bge — (sa — 8)B. (3.23)

Here a and 3 are as defined in section 3.1 and 7 = £2¢ and ¢ = ex. The
perturbation of the solution (0,0) is taken of O(c?), as in the case of the
el K-equation. Of course there is a transition from this FK-equation to the
el K-equation by letting s — s.px, but we will not study this transition here.

There is a second branch of GL-bifurcations for r = —s (on I's), see figure
3. Here the eigenvalue-curve has one maximum in k. = 0 and around this
maximum the eigenvalues are complex. Therefore a complex GL-equation
can be derived where the perturbation of the solution is taken around the
wet where w. = I'm w(0,7.):

Cr = 130 + d3Cee + c3C|C|*. (3.24)

‘wave’ e

Here 73, d3 and ¢35 are complex-valued (see for instance Kuramoto [20] for the
derivation of this equation in the Brusselator model and [26] for a validity
result). One would expect here that the space variable £ has to be chosen
as a ‘travelling’ variable, £ = ¢(x 4+ vt) where v = Re %g—‘g (keire)s See [14].
However, since k. = 0, it follows that ¥ = 0 thus the scaling of £ is as before.
The two GL-bifurcation branches I'y and I's intersect at the co-dimension
2 bifurcation point (r.qr, SccrL ), see figure 3. Both ‘instability mechanisms’
(at k = k., and at k£ = 0) can interact here, thus the bifurcation is described
by a system of coupled GL-equations:

AT = 7‘1A—|—d1A££+61A|A|2+62A|C|2

Cr = 1C 4 doCes + eC|CI2 + eaC| A2 (3.25)
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Again the £-variable is as before. By setting €' = 0 we recover the real GL-

equation described in section 3.1 around the critical wave e#* k, = 1/ %
(thus ri,dy,c1 € R); A = 0 yields the above described complex GL-equation
for C'. We refer to [11] for more information (general derivation, behaviour
of solutions, references) on coupled GlL-equations.

3.4 The eFK-equation with cubic terms

Up till now we studied the reaction-diffusion system (2.1) with general non-
linear terms Ny and N; as given in (3.1) and (3.2). As we showed in section
3.2, this leads for s close to s.px to an eFK-equation with quadratic non-
linear terms. We can also study the case when Ni and Ny do not contain
quadratic terms but only cubic terms. We will show that in this case the be-
haviour of ‘patterns’ near (r.ry, s.ri ) is governed by an eF'K-equation with
cubic terms (denoted by el'K3). This observation is especially interesting,
since the eFK-equation with cubic terms is studied extensively in literature
(see [24, 8, 18] and the references given there). See also section 5.4 for a
discussion. Thus we consider in (2.1) non-linear terms of the following form:

Ni(u,v) = —au®, No(u,v) = —bv”,

which follows from setting a; = 8; = 0 for ¢ = 1,2,3 in (3.1) and (3.2). We
again set s = s.px + 00, with k., 7. and r as defined in section 3.2. We
model the perturbation of the solution (0,0) as a slow modulation of the
wave with wavenumber £ = k. = 0. We now note that the inconsistency
which appears in section 3.2 if we consider p = 1 does not appear: (3.15) is
again ‘trivial’ since @ = 8 = 0 here. Thus, we expand

(3)25(\{3)3(5&73)-%/10%

where B is a real amplitude function which depends on the slow space and
time variables £ and 7p, which were defined in section 3.2. The scaling of
7p is standard: 7 = 62t and since the eigenvalue-curve is still the same as
in section 3.2, the scaling of the 5 is the same as in that section: {g = Véz.
The higher order terms in the expansion are given as

u Vi X X
(U)I(S( 1 )B(ﬁB,TB)-I-(SQ( Y(?ll)—l-é?’( Ys;)—l-hot-

where the Xy, Yy, are real functions of £g and 75 for every ¢+ € N,z > 0.
After substituting this expansion into (2.1) and solving the equations on the
62-level (as in section 3.2), we find the eFK3-equation by the application of
the solvability condition on the ¢§>-level:

vod 2V/do dvd (ad? —b)

B, = B - - —B Ak
B (1—d) (1—d) ¢BEB (1—d) ¢péptptp T (1—d)

B*(3.26)
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This equation can again be brought into standard-form by rescaling the
78,&p and B:

B;p = B+ DBepep — Begepepes + lB37 (3'27)

Here | = +£1 and D is as in section 3.2, the sign of [ depends on the sign of
ad? — b. Note that in rescaling the eFK-equation with quadratic terms the
sign of the non-linear term was irrelevant but now in the case of the eF'K3-
equation, the sign of ad? — b is very important in reducing the equation
to standard-form: as in the GL case it is important for the existence of
bounded solutions.

4 The transition from the GL-equation to the eFK2-
equation

In section 3.1 we described the non-linear evolution of small solutions of
(2.1) by a GL-equation, since s > s.px and |s — s.pi| = O(1). We found in
section 3.2 that the evolution of small solutions is described by the eFK2-
equation when |s — s.px| = O(6) < 1. In this section we will study the
transition between these two modulation equations.

First we will study the GL-equation for |s — s.pi| = O(6) < 1: in this
case one can still derive the GL-equation as long as r —r. = —v1e? < 0(6?).
At leading order this GL-equation is exactly the same as the one derived in
section 3.1, however, now the higher order derivatives Agge and Aggee are of

order O(%), respectively O(;—z), and thus much larger than in section 3.1.
Also, we will find that, the coefficient h of the non-linear term becomes pos-
itive.

Thus, in the overlap region |s — s.pi| = O(6) < 1 both modulation equa-
tions, the eFK2-equation and the singularly perturbed GL-equation, de-
scribe the evolution of small solutions. However, these equations describe
different processes, as we shall show in detail below. At this point this can
be seen by noticing that the eFK2-equation governs the evolution of O(é?)
solutions on the time scale 7 = 6%t and the spatial scale {5 = iz (see
section 3.2), while we shall find in section 4.1 that the singularly perturbed
GL-equation governs O(ed) solutions on a O(Z%) time scale and a O(%)
spatial scale. Observe that these scalings merge as ¢ — 6, but, we shall see
that in this limit the derivation process leading to the singularly perturbed
GL-equation looses its validity. However, we will show in section 4.1 that
in this limit, the GL-equation can be interpreted as an equation governing
the evolution of a special class of spatially periodic solutions of the eFK2-
equation. This interpretation, for instance, enables us to understand the
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relation between the quadratic non-linear term in the real eFK2-equation
and the cubic non-linear term in the complez GL-equation.

First we study the form of the eigenvalue-curve for s = s.px + 6, see
also figure 2c. We find that the difference in the eigenvalue between the
maxima and the minimum of the curve is of O(§%). This can be seen as

follows: at r = r. = § — % we have that w(k.,r.) = 0 and w(0,r.) =

H(s+r.+ /(s —r.)? —4). Substituting the expressions for r. and s gives
that w(0,r.) = O(6?) and thus the difference between w(k.,r) and w(0,r) is
of order 6%

4.1 The singularly perturbed GL-equation

Now we study the derivation of the modulation equation for § > ¢, this is
quite similar to the derivation of the GlL-equation in section 3.1. We set s

as in section 3.2 with ¢ = 1, thus s = s.px + 6. Here r. = _\/LE + %, k? = g

and we assume 7 to be close to r.: ¥ = r. — v;e? with v > 0. One of the
differences with the GI derivation in section 3.1 is the order of magnitude
of the perturbations of the trivial solution (0,0). Taking the perturbation
of O(e) leads to an inconsistent system on the O(e?)-level, which appears
in the same way as we showed in section 3.2, therefore we must take the
perturbation of order ¢é:

( Z ) =cé ( \{E ) A(Ea,Ta)e T + c.c.+ hot. (4.1)

Here 74 and £4 are slow time and space variables, with for 74 the standard
scaling 74 = €2t. The scaling of £4 is again related to the width of the
interval of the k-values at which the solution (0,0) is unstable. Thus we
have to determine for which k-values w; = 0. Substituting w = 0 and the

3
expressions for 7 and s into (2.4) leads in highest order to k% = 5(1+ Uéﬂ £)
which gives four solutions: k& = £k, + O(%). Therefore the width of the

interval of unstable k-values is of O(%) and we scale {4 = %x.

It is a priori not clear how to choose the magnitudes of the harmonics and
the higher order terms of (4.1). For instance, the non-linear interactions
suggest that the e?*¢* and the ¢ mode should be O(£26%), while

0 : € :
Gaa (F0AC™T) = (¥ Aese + 25 e, — SRTA),
which suggests that a higher order correction on the e
become O(e%6). However, it follows from the computations in the appendix

(see equations (A.1), (A.2)) that the ( i(/m ) and ( i(/m ) vectors in (3.5)
2

ket mode should

02 2
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do not remain O(1) as s = v/d + é. Thus, the higher order terms of (4.1)

should be modelled as:
X
2 02
€

(z):eikcx(gé(\{g)zl+g25(§1;) + 53(§j§)+ (4.2)

: X
2tkewy 2 22
e (e + -+ ec.c.

Again, A, X;;,Y;; are functions of £4 and 74 for every ¢, j € N. Substituting
this expansion into (2.1) and gathering terms of the form £%1§9%2¢'%<** for
a1, a2,b1 € N will lead to a modulation equation on the ay = 3,a, = 1,b1 =
1-level. The equations on the (ay,a3)-level where a; + az < 3 can be solved
in terms of A. The equation including higher order terms becomes

(1-d)A

TA

= vndA+ 4\/3A5A5A + hA|A|2 - %4idA£A£A£A
2
1
_6_2d\/3A£A£A£A£A + 0(5)7 (4'3)

where the O(¢) terms are the usual higher order terms in the GL-equation
(see for instance [9]). Note that the Ag ¢ ,¢,¢,-term should be included in
the O(e) terms if 62 > ¢. The expression for the coefficient h of the non-
linear term simplifies considerably due to the new scalings and the fact that

s =s.pK + 6 (see (3.7)-(3.11)):

h= 39—8\/3(¢3a _ B2+ 0(6). (4.4)
Thus, h is always positive near the eF'K-bifurcation! In other words: even if
h < 0 for s not close to s.rx, h will become positive if s decreases towards
Serkc- This means that there must be a value of s, s,;, at which h changes
sign. Near s,; the GL-equation should be replaced by a degenerate GL-
equation (see [9, 16, 27]) of the form

Ar = 1A+ Age — ct AAP + 2 AJAPP + i(ca| AP A + g A® Ag). (4.5)

This behaviour has a drastic effect on the patterns exhibited by (2.1): if
s > s, the GL-approximation predicts stable, stationary, periodic patterns
of the form Re¢ in (3.6). However, these solutions do not exist for A > 0.
In section 5 we will encounter this phenomenon numerically. In [9] the sta-
bility of the stationary periodic patterns to (4.5) is studied.

Note also that the cubic coefficients in the non-linear terms of (2.1) do not
have a leading order influence on h as |s — s.pg| < 1. Thus, this procedure
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degenerates if we only consider cubic (and higher order) terms in (2.1). This
is in agreement with the analysis of section 4: in this case the GL-equation
limits on the el'K3-equation (and many scalings are different). In this paper
we do not pay attention to the details of this transition: it is quite similar
to, and even a bit less complex than, the transition from the GL-equation
to the eFK2-equation.

4.2 The limit ¢ | O(¢)

The transition case ¢ = O(8) or é = O(¢), can be obtained in two different
ways: either one fixes r — r., i.e. ¢, and decreases s (i.e. ¢), or one fixes
s—s.pi (6)and increases r — 7, (¢). The behaviour at ¢ = O(¢) is indepen-
dent of this. Here we consider ¢ | O(¢e). The best way to understand what
happens to the GL-equation in this limit, is to interpret the GL Ansatz and
scalings in Fourier space. The Fourier transform of the classical decomposi-
tion (3.5) (with the scaling £ = ex) consists of ‘peaks’ of width O(¢) around
the points Nk., N € Z; the peaks around £k, are of height O(%) and the
peaks around +2k. and 0 are O(1). In general , the peaks around Nk, are of
a O(eN1=2) height (N # 0), see [17] for more details. The Fourier transform
of the decomposition leading to the singularly perturbed GL-equation has
a similar structure: there are peaks of height % around k = tk. and peaks

around k = 0, £2k. of height 1. All these peaks have a width of O(%), see

figure 4. As 6 decreases we see that the width of the peaks increases, while
the distance between the peaks, k., decreases (since k. = O(v/6)). When &
has become O(¢) we see that we cannot distinguish between separate peaks:
they are all overlapping (see figure 5).

Thus, one cannot assume any longer a decomposition like (4.2). It must
be replaced by the eF'K decomposition (3.16), see again figure 5: the struc-
ture in Fourier space is now only one ‘wide’ peak of height 6% and width /e.
Note that one can also observe the evolution of the GL Ansatz (4.2) to the
eFK Ansatz (3.16) in (4.2) itself: as 6 decreases to ¢, the leading order term
becomes

()

by definition (note that k.z = ﬁfA = \/Lng). Another way to see that the

GL Ansatz is not valid anymore is the fact that when 6 — ¢ all the terms

aag—ijvA (for every N) become O(1) in equation (4.3)

&’ vd A(Ea,ma)e V2 4 Soz ) (A 2idges
1 Yoo Yoo

= €2B(£B77—B)

of the form

We now want to study how the transition from the eFK2-equation (3.21)
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to the singularly perturbed GL-equation (4.3) takes place quantitatively.
Note that this means that all the coefficients in the equations have to agree.
Since r is differently defined in the derivations of the singularly perturbed
GL-equation and of the eFK2-equation, the coefficients cannot agree yet.

We have taken in the derivations rgp = TCGL — ve? = _\/LE + % — vye?
a‘nd TeFK = TCeFI\" - /U262 = \/— —I_ d d\/_ /U262 (When taking g = 1).

Comparing these two expressions for r gives a relation between vy and vs:

82

(4.6)

1
Vg = ——=+
2 i 1
We need to compare the two expansions of the perturbation around the
solution (0,0) and equate (3.16) and (4.2). This leads to

2B(fB,TB) ( \{3 ) + hot = e6A(Ea,Ta) ( \{3 ) e*eT 4 c.e. 4+ hot

where £4 = %w,&g =Véx, 74 =%, 8 = 6%t and k, = \/g. Thus

Slé"

B(fB,TB)I —A(fA,TA) : A(fA,TA) %+h0t (4.7)

€
6
However, the higher order terms cannot all be neglected, as we will see
below. Therefore, we write

B(&s,TB) = Z $n(Ea,Ta)e %7 (4.8)

n=—0oo

where ¥_,, = 1, since B is real (the ©,’s, n # 1, correspond to the ( i(/m )
n2

amplitude of the harmonics in (4.2)). We know that ¢4 = A and that
|, < 1 for n # 1. Substituting this expression for B into the eFK2-

equation (3.21), we find, after multiplying by g, the following set of equations
for the ,:

2 2 _ 2
(1= ), = (_%md ot T (0 1),
3
+2v/d(3n” —1)62¢n€A€A 4md63¢nﬁAﬁAﬁA
_d\/_64¢an'fA'fA'fA a g(ﬂa_ﬁ) Z S
l=—00

where we have already used (4.6). Now, we want to derive the equation for
(= A): we should obtain the singularly perturbed GL-equation. Recall
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that |¢,| < 1 for n # 1 which implies that the 1, for n # £1 still can be
rescaled. For n = 0 we obtain, at leading order,

1 € -
0= _ﬁ% - 25(\/304 - B) ; |41

This implies that we must rescale 9o with the factor £ (< 1 when ¢ < §)

(
to obtain a consistent system. Thus we introduce g %1&0. This yields

o = —2Vd(Vda — B)[vr . (4.9)

Setting n = 2 gives, at leading order,

0= —%¢2 — %(\/EO[ - ﬁ) Z ¢l¢2—lv

which gives us that i, also must be scaled with %, therefore we introduce

¥z = 45, And obtain

[=—0

Uo = —?(ﬂa - At (4.10)

The equation for )y reads:

2
(1 B dﬁbl”‘ - v1d¢1 + 4\/3¢16A‘5A N %4id¢lfA'fA‘fA N %dﬂ¢lfAﬁAﬁA€A
~2(vda — B)($2t1 + o) + hot.

Substituting the expressions (4.9) and (4.10) for Yo and 1y, finally gives
exactly the singularly perturbed GL-equation (4.3) for ;.

Thus in the region 0 < ¢ € § < 1 one can derive the GL-equation from the
el'K2-equation by using the relation (4.7). However, one should be careful
here: inserting (4.7) violates the assumptions made in the derivation of the
eFK2-equation (section 3.2). There, we assume that B = O(1) and that it
is a function of the spatial scale {5 and time scale 7. This is clearly not the
case in (4.7). Another way to see this is to look once again at figure 4: here
we plotted both the singularly perturbed GL-peaks and the eFK-peaks for
0 < e € 6 < 1. These structures describe different phenomena. One cannot
describe the GI behaviour using the eF'K Ansatz. Thus, the singularly per-
turbed GL-equation and the eF'K2-equation do not coincide in the overlap
region 0 < ¢ € 6§ < 1 (they coincide as 6 = O(¢) but then the GL-equation
is no longer valid). However, the above derivation of an equation for ¢; = A
is still useful: it clearly shows, for instance, the subtle relation between the
quadratic non-linearity in the eFK2-equation and the cubic non-linearity in
the GL-equation.
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Remark 4.1 We can now compare the g and t, which are given above,

with the Xoz and X2 appearing in the derivation of the GL-
Yo2 Ya2

equation, see section 3.1 and Appendix A. Setting s = v/d + § in equation
(A.1) gives, after rescaling A with 6, for Yoz exactly the same equation as we
obtained for 4. In the same way, after rescaling A with ¢ in equation (A.2),
we obtain for Yy, the same equation as for 1&2. This rescaling of A comes
from the fact that the first order term of both expansions of the perturba-
tions (for the GL-equation in section 3.1 and for the singularly perturbed
GL-equation in section 4.1) differ by a factor é.

4.3 Deriving the GL-equation within the eFK2-equation

If one studies the eF'K2-equation on an unbounded domain, one can analyse
the non-linear stability of the trivial (i.e. = 0) solution by the ‘GL approach’
of section 3.1. Below we show that we can derive the GL-equation within the
el'K2-equation. Note that this has also been done rigorously in [5] for the
SH (or eFK3)-equation. Here we present the asymptotic approach to relate
it to the transition studied in section 4.2. Thus we study the eFK2-equation
(3.21) and write it as
Brp = L(B) + N(B),

where

b~
(

L ey — o L v
g oz ~ Vo6

(\/304 —B) po
N(B) = ————2B~.
(B) T
This system has a basic solution B = 0. The linearised stability of the
solution is determined by setting

B(£,7) = cem@Rv2) ikt ¢

Substituting this into the linear part of the equation gives
1

(dvy + 2V dok? — dv/dk™).

This gives the eigenvalue-curve. As long as w(k,vy) < 0 for every k, the
solution B = 0 is stable and for w(k, vy) = 0, the solution becomes unstable.
For ¢ < 0, the eigenvalue-curve has one maximum at £ = 0, we will not
study this. For ¢ > 0, the eigenvalue-curve has two maxima at k& = :l:\/%

. 2 . . .
and one minimum at £ = 0. For vy < —ﬁg the eigenvalue is negative for

i

all k£, the solution B = 0 is stable, whereas for v, = T the solution
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becomes unstable at k& = :l:\/g. And so for vy > —ﬁg there is a whole

interval of k-values around k = :l:\/% where the solution is unstable. Thus

we can derive a classical modulation equation by the GL approach. Here the
.. . . 2 2

critical point is (k. v2_.,,) = (\/g, —ﬁg). And we take vy = —ﬁg + wp?

where 0 < p < 1 and w > 0. The perturbation of the basic solution B =0

is taken as a slow modulation of the most unstable wave e**<®:

B(&,7) = pA(n,v)e™ + c.c. + hot, (4.11)

where 1 and v are slow space and time variables which are given by n = ué
and v = p?7 (the standard GL-scaling). Then we can derive on the p®et -
level the following GL-equation

(1 — d)AT = wA + 4Vdo A, + ‘(;—8\/3
Note that the Landau-constant is always positive! This equation is exactly
the same as the leading order part of the singularly perturbed GL-equation,
when we set ¢ = 1, derived in section 4.1. This is no surprise: the above
analysis is in essence the same as that of section 4.2, compare (4.7) to (4.11).
Note that p < 1 plays the role of % in section 4.2.

Thus, the leading order part of the singularly perturbed GL-equation can be
considered as a GL-equation within the eFK2-equation. However, as we ex-
plained in section 4.2 and figure 4 , this does not mean that the GL-equation
can be replaced by the eFK2-equation.

5 Numerical simulations

In this section, we study numerically the dynamics of the reaction-diffusion
system (2.1). For the GL-equation it is proved theoretically that when the
Landau-constant is negative there exist, for some interval of wave numbers,
stable, periodic solutions, see Appendix B. We will use the existence of
these solutions of the GL-equation to look for (periodic) solutions near the
eFK-bifurcation.

First we will numerically check the existence of the periodic solutions which
are theoretically known to be solutions of the GL-equation. Then we will
decrease s to study how the transition to the eFK2-equation influences the
behaviour of these solutions. To be able to do numerical simulations we have
to restrict x to a bounded interval. This interval has to be large enough to
ensure that the boundaries do not influence the dynamics (too much). We
refer to section 5.4 for a discussion. We fixed the length of the interval on
x € [0,400]. This choice is ‘justified” by a numerical check of the theoretical
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predictions of the stability of periodic solutions of the GL-equation.

Most of the parameters in system (2.1) remain fixed during the simula-
tions. We chose for most of the simulations d = % and oy = a3z =1 = 3 =
0,a = 0.71,82 = 0.5 and @ = 1,b = 3. We also did simulations for other
choices of ay,---,03,a and b and found that the results of the numerical
simulations do not really depend on the choice of these parameters (see also
section 5.4). The choice of d is so that d < 1 is satisfied (section 2), and
it gives us that s.pr = %\/5 ~ 0.707 and s.gp, = % 2 & 0.943 (section 2).
With above chosen coefficients the Landau-constant (3.7) remains negative
for almost all s-values. For s.pi < s < 0.709 it is positive. We did change
s and r and the initial conditions, we will explain the choice of initial data
in more detail later on.

We used a moving-grid code to integrate system (2.1) which is described
in detail in [1], see also [10] for an application to reaction-diffusion systems.
The space variable z in system (2.1) is scaled to & so that the numerical sim-
ulations take place on the Z-interval [0, 1]. We take homogeneous Neumann
boundary-conditions:

ATP RN L _ v _Ov
977 =01 = o= = 07 = 97

Because it is known that the GL-equation has stable stationary periodic
solutions, the initial conditions are also taken periodic with respect to x:

(& =1,1) (& =0,1) (#=1,1)=0.

w(Z,0) = v(Z,0) = 0.05cos(pra).

We chose the amplitude of this initial condition to be of O(e?) (we set
¢2 = 0.01) because near the eFK-bifurcation we find that the magnitude of
the solution is of O(g?), see sections 3.2 and 4.2. In some of the simulations
we fixed p to obtain a certain number of periods in the interval [0, 1], in other
simulations we changed p as to vary the number of periods in the interval.
Throughout the simulations we have been looking for asymptotically stable
solutions, we only found stable stationary patterns.

5.1 Checking the GL-equation

We started the numerical simulations by checking the theoretical results
which are known for the GL-equation. Thus we chose s.rx < s < s.qr,
along I'; (figure 3) to be in the interval of s-values for which the GL-equation
is derived.

First we took as initial data

w(Z,0) = v(Z,0) = 0.05cos(k.x),
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s—V/d

where k. is the critical k-value 2% (section 2) and chose s such that
the initial data satisfy the boundary conditions. It follows from GL-theory

that this solution is stable (as long as the Landau-constant is negative).
Therefore, we calculated for several s.px < s < $.g1, the correspond-
ing k. and r.. Throughout the simulations we set r = r. — ¢? where
e2 = 0.01. Then for every pair (r,s) we started with the initial data
uw(Z,0) = v(Z,0) = 0.05cos(k.z) and studied the evolution in time. We
find that for 0.75 < s < 0.9 the initial function is stable, where the ampli-
tude of u decreases to 0.035 (and for v it still is 0.05); see figure 7b for the

v-component of the stable, periodic solutions for s = 0.82.

For s > 0.9, we find, because s is coming closer to s.gy, that, the solu-
tions are influenced by the dynamics of the coupled GL-system (3.25) which
governs the behaviour for s close to s.qr,(~ 0.94). We see here that the am-
plitude of the stable solution is periodic (see figure 7a). For 0.71 < s < 0.75,
the number of maxima of the stable solution is the same as the number of
maxima of the initial periodic solution. However, the stable stationary so-
lutions are no longer periodic; they have a ‘multi-bump’ structure. In figure
7c the v-component of the stable solution is given for s = 0.72.

Thus for s not too close to s.px or to s.qr, the numerical results coin-
cide with the theoretical results which are known for the GL-equation. And
for s close to s.px or s.qr, we find that the eFK2-equation resp. the cou-
pled system of GL-equations influences the behaviour of the stable solution
considerably.

The predictions of the GL-theory can also be checked by fixing s (and
thus r) and changing the period of the initial data. Theoretically, we know
that around & = k. there is a whole interval of k-values for which there
are stable stationary periodic solutions cos(kx), see Appendix B. We fixed
s = 0.8;r = —1.24 and started with an initial periodic cosine-function which
has a integer number of periods in the interval. We changed this number
from 8 to 48 periods. From the simulations we see that periodic solutions
which start with a number of periods that is between 21 and 31 (including
21 and 31) are stable. Initial data which have more or less periods in the
interval are not stable and will go to solutions which have a number of pe-
riods in between 21 and 31.

These results more or less coincide with the theoretical results. However,
theoretically the interval of number of periods where the solution is stable is
slightly different. The number of periods has to lie (theoretically) between
21.4 and 33.5 periods, see Appendix B. The observation that the interval
of stable solutions differs from what could be expected by the theoretical
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predictions for the GL-equation might be explained by the influence of the
singularly perturbed GlL-equation. The interval of numerically stable solu-
tions is shifted to the left with respect to the interval of theoretically stable
solutions of the GL-equation. This is exactly what is shown for the singu-
larly perturbed GL-equation, see Appendix B. We will not study this in
detail because for s = 0.8 the singularly perturbed GL-equation can only be
expected to have a very small influence on the solutions.

5.2 Numerical simulations near (r.px, Scri)

So far, we showed numerical simulations for s in the region where we derived
the GL-equation. However, we already observed some ‘strange’ behaviour
for s < 0.74 when starting with initial data u(Z,0) = v(Z,0) = 0.05cos(k.2).
This is ascribed to the influence of the eFK2-equation. Now, we will study
this influence further. We will start with fixed initial data and vary the pair
(r,s) from (—0.96;0.94) to (—1.48;0.68) where we decrease s with steps of
0.1 (or sometimes larger steps) and take r = r.(s) — . We performed these
simulations for initial data with 8, 10 and 12 periods. We found that when
taking 0.77 < s < 0.94, the initial data evolve towards a stable, sinusoidal
periodic solution; for 0.69 < s < 0.76 the simulations exhibit a non-periodic
stable solution, for s even smaller we find a constant solution. The transition
from s = 0.77 to s = 0.76 is quite drastic, see figures 8a and b (and section
5.4).

First we focus on 0.77 < s < 0.94. Here we observe stable periodic solutions,
however, the number of periods of the stable solution is not the same as in
the initial data. We also see that the number of periods at the end of the
simulation depends on the number of periods of the initial function. The-
oretically, we would expect that the end-period lies in an interval which is
symmetric around i—”, this is the period of the stable solution cos(k.z) where
k. depends on s. We find that, except for s = 0.82 | the end-periods lie in
the theoretical stable interval. For s = 0.82, the periodic stable solution
must have, according to theory, from 26.8 to 33.7 periods. We find a stable
function with 25 periods if we take an initial condition with 8 and 12 periods
(taking an initial condition with 10 periods, we find a stable function with
30 periods, this is in the interval of theoretically stable solutions)-see also
section 5.4. This could be ascribed to the same phenomenon which shifted
the theoretical interval of stable solutions which we found before for s = 0.8.

Now, we will look at the behaviour of the solutions for 0.69 < s < 0.76.
The number of maxima of the stable solution remains the same as in the
initial data, see figures 8, 9 and 10. Again we see that the stable function
depends on the number of periods of the initial function. Some of the sim-
ulations result in a periodic stable solution. However, these solutions are
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not a ‘simple’ sin- or cosine-like function as in the GL case, but so-called
multi-bump solutions. When starting with 10 periods where s=0.69 (figure
9b) and with 12 periods where s = 0.69 and s = 0.7, the periodic solutions
have maxima which are sharp peaks and minima which are much smoother.
For initial data with 8 periods where s = 0.71 and s = 0.72 (figure 8c) and
with 10 periods where s = 0.74,s = 0.75 and s = 0.76 (figure 9a) the solu-
tions still have sharp peaks as maxima. At the minima we see that a ‘dip’
appears. For the other initial data, the stable solutions are not periodic.
However, we see repeating patterns similar to the ones we saw before. The
maxima are always sharp peaks and the minima are either smoother or have
a ‘dip’ (figures 8b and d and 10a and b and section 5.4). All the stable
solutions are symmetric in the middle of the z-interval.

5.8 Numerical simulations with cubic nonlinearities

In section 3.4 we derived an el"'K-equation with cubic non-linear terms, this
followed by setting aq,---, 33 equal to zero in the non-linear terms Ny and
Ny ((3.1) and (3.2)). Because the eFK3-equation is studied extensively in
literature ([24, 8, 18, 7]), we also did some numerical simulations in this
case, where the eF'K3-equation is expected to describe the behaviour of
small solutions. We started with an initial function with 6 periods and
decreased s from s = 0.77 to s = 0.67 where we take steps of size 0.01.
Except for s = 0.68 and s = 0.67, the stable solutions are periodic, but,
these solutions are not all ‘simple’ sin- or cosine-like functions, once again
multi-bump solutions occur. For s = 0.77 and s = 0.76 we do find a ‘simple’
cosine-like function. In the transition to s = 0.75 the stable solution changes
drastically, see figures 11a and b. For 0.71 < s < 0.75 the solutions have
both at the maxima and at the minima a ‘dip’, see figure 11b.

For s = 0.7 and s = 0.69, this dip vanishes at the maxima and still
remains at the minima (see figure 11c). Note that this solution is not sym-
metric in the z-axis.

We also performed numerical simulations for other initial data. Similar
behaviour as described above is found. We fixed s = 0.75 changing the pe-
riod of the initial condition gives interesting stable solutions when starting
with 4 and 8 periods, see figures la and b. However, when starting with 12
or more periods, nearly all the exotic behaviour has vanished and the stable
solutions become periodic cosine-functions.

5.4 Interpretation

At the beginning of section 5 we remarked that the outcome of the simu-
lations did not really depend on the choices of Nq(u,v) and Na(u,v). We
for instance chose aq, ..., 33, a, b such that the sign of the quadratic term in
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the eF'K2-equation changed (with respect to the standard choice of figures
8, 9 ,10). This yields the expected outcome: we found that the observed
multi-bump patterns are in essence the same, except for the fact that the v-
components of the stable patterns are now reflected in the z-axis. However,
in choosing Ny(u,v) and Ny(u,v) it is crucial that v/da — 3 (see (3.21) and
(4.4)) is small. If that is not the case then the simulations follow the pre-
dictions of the asymptotic theory (see section 4.1): the Landau coefficient
does not change sign near (r.ri, Scri ), thus, there are no bounded small
solutions between (7,1, s,;) and (rerk, Scpi ) for r near and below r.(s).

A priori, one might guess that the fact that vda = § is small will not
influence the asymptotic analysis too much. However if v/do — 3 is ‘numer-
ically” small, then it is not clear whether one can neglect the asymptotic
higher order terms of the eFK2-equation (3.21) of O(é). On the contrary,
it can be expected that at least some of these terms cannot be neglected.
Of course, this problem can be circumvented by only considering cubic non-
linearities Ny and Ny, then v/da — 3 = 0 (see (3.10) and (3.11)). Here the
above problem does not occur: the asymptotic dynamics are described by
the eFK3-equation (see section 3.4). In figure 12a we show a plot of the out-
come of a numerical simulation of the eF'K3-equation. Here the coeflicients
and initial condition are comparable to the choices we made when perform-
ing the numerical simulations on (2.1) that produced the solution given in
figure la. We know by section 3.4 that the behaviour of these solutions
should be described asymptotically by the eFK3-equation. There is a strik-
ing resemblance between figures 12a and la (at least qualitatively). This
strongly suggests that the attractors of the eFK3-equation should also be
‘approximations’ of the attractors of the full system (1.4) near (repx, Seri)
(for cubic Ny and Ng). Of course, we are still far away from a mathematical
proof of such a statement.

A full asymptotic analysis of the more ‘generic’ case of quadratic non-
linearities is the subject of future research. The analysis will become much
more involved: vda — (3 should be considered as a third small quantity. This
yields that the ‘non-linear’ degenerate GL bifurcation described in section
4.1 ([16, 9, 27]) occurs asymptotically close to the eF'K bifurcation point.
Thus, the analysis of this paper should be combined with the approach of
[16, 9]. As a result, one expects that the dynamics near (repi, scrk) are
described by a combination of the eFK2, the eFK3 and the degenerate GL-
equation (4.5). This is also supported by a numerical simulation of the
‘eF K243’ equation:

B, = B+ DB,y — Bypyy + kB? +1B° (5.1)
We again consider the situation (and initial conditions) similar to that de-

scribed by the asymptotic eF'K2-equations of this section. Then, we find
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that there are no bounded solutions for [ = 0 (and D < 0). Note that this
agrees with the above: this is the case that v/do — 3 is not small. Thus, the
existence of a (negative, possibly small) cubic term is of crucial importance.
In figure 12b we show an attractor of (5.1) for k = 0.5,/ = —1 and D = —2.
At this point it is not clear whether this is a pattern that can also be found
in the simulations of (3.21): it is certainly not exactly like those shown in
figures 8, 9, 10. A full analysis will yield all relevant non-linear terms of the
‘degenerate’ eF'K-equation (one might, for instance, also expect the appear-
ance of ‘Kuramoto-Sivashinsky terms’ as (B;)?).

Another interesting phenomenon that we so far did not discuss is the sharp
transition between the ‘regular’ GL patterns and the multi-bump patterns:
compare for instance figure 8a to 8b, here the only difference is a 0.02 change
in s (or figure 11a to figure 11b: As = 0.01). This transition is — at least
numerically — closely related to the process by which an unstable periodic
pattern of the (real) GL-equation evolves towards a stable periodic pattern.
This process has been described by Kramer and Zimmerman in [19], but that
description does not seem to be accurate enough to understand it completely
— at least not in the context of this paper (note that the transition occurs
in a region where the GL-equation should be replaced by the singularly per-
turbed GL-equation (4.3)). Initially there is no significant difference in the
numerical simulations leading to figures 8a and 8b: both unstable cosines
of the initial conditions form ‘dips’ either at the maxima or the minima,
and start to look like a multi-bump pattern. However, in the simulation
leading to figure 8a these ‘dips’ grow until a sinusoidal pattern appears. In
the simulation leading to figure 8b the ‘dips’ stop to grow at a certain level
and the stable multi-bump pattern is formed. The same mechanism seems
to be responsible for all multi-bump patterns observed in this paper. Thus,
a more detailed understanding of the process by which the GL-equation
brings a periodic pattern from outside the Eckhaus band into this band of
stable solutions would shed more light on the creation of stable multi-bump
solutions (and vice versa).

Finally, we remark that changing the length of the z-interval has a very
subtle influence on the numerical simulations of this process and thus on
the type of the observed asymptotically stable multi-bump patterns: the
‘dips’ appear ‘suddenly’ at different places, resulting either in an periodic
GL pattern with an unexpected number of periods, or a structurally differ-
ent multi-bump pattern.
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A Appendix

Here we give a detailed derivation of the GL-equation. First we express the
functions in expansion (3.5) in terms of A by solving the equations at the
a1 = 2-level. For ay = 2,01 = 0, we get

r.Xo2 + Yoz + 2a|A|? = 0
sYoe — Xoz +28|A* =0

where

a = da1+\/3042—|—043
g = dﬁ1+\/3ﬁ2‘|‘ﬂ3-

From this system we can solve Xgo and Ygo:

Xoz |\ _ 2d| AJ? sa— (3
(Yoz)‘ <s—ﬂ>2(a+ﬂrc)' A

On the aq = by = 2-level we have:

reXoo + Yoo — 4k2 X0y + aA? = 0
8Y22 — X22 - 4l€de22 + ﬁAQ = 0.

Solving X35 and Y39 from this system:

Xpp \ _ dA? [ (3s—4Vd)ja+p
( Yoy ) (s — Vd)? ( —a + 5(3s — 2V/d) ) ' (A.2)

For a1 = 2,061 = 1 we find
M. ( X1z ) = —2ik.Ag ( vd ) : (A.3)
Y12 1
This equation automatically satisfies the solvability condition (3.4):
X2 \ | 2idk.Ag, Vid
(3] (2% )+ () e

Where A, is a second higher order amplitude which depends on £4 and 7.
Finally, on the a; = 3,by = 1-level, the modulation equation is derived from

Xi3 _ \/3 711\/3 \/3 . X12£A
MC(YIS)—( 1 )AT—I—( 0 A— d AgAgA—Qlkc leng

B 2041\/3(9602 + 292) + 042(\/3(3/02 + y22) + o2 + T22) + 2a3( Yoz + Y22)
251\/3(9602 + 292) + 52(\/3(3/02 + y22) + To2 + ¥22) + 203(yo2 + Ya22)

+3 ( “dg/a ) AJA]2,
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Xo2 2 [ o2 X22 2 [ %22 .
where = A and = A . Setting F =
( Yoz ) | | ( Yo2 ) ( Yoo ) Y22 &
Toz + 222 and G = yo2 + y22 and applying the solvability condition (3.4)
leads to

(d— 1A, + 01VdA = 2ik (VdX12¢, — dY19e,) + ((28:Vd + By — 2a1d — Vdaz) T
+(VdBy + 203 — doy — 2V/das)G + 3(ad? — b)) A|A]* = 0.

which yields equations (3.6)-(3.11).

B Appendix

Here we briefly describe results on the stability of periodic solutions of the
GL-equation. It is known that for a general GL-equation

A, = RA+bAg + LA|A? (B.1)
there exist periodic solutions of the form

bk* — R

A = £pe™ where p? = ;i

These periodic solutions are stable as long as k* < £ (see [12]). This gives
us the stable periodic solutions of the GL-equation (3.6) where R,b and [
can be expressed in terms of d,s and h (we set v; = 1):

_ Vd o (s = V) Z_L
1—-d 1—

d 7 1-d

Thus, for k? < 12(51\/3) the periodic solutions A = £pe’ with p? =
M of the GL-equation (3.6) are stable. Now we want to find
stable periodic solutions of the reaction-diffusion system (2.1). Therefore we
use the expansion

( :j ) =¢ ( vd ) (Aetke® 4 Ae= ") L hot

1

where k2 = % (see section 3.1). Substituting the expression which we
found for A, gives for v (observe that u = v/dv at leading order)

v = 2epcos((ke + k.)z)

where we used the fact that £ = ex. This solution is stable as long as

B2 < 12(;\/3)' Thus, fixing d and s (which are the only parameters left in

this problem), the family of stable periodic solutions can be calculated.
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For example, setting d = 0.5 and s = 0.8, as we do in the simulations
in section 5.1, we obtain k. = 0.431 and stability for £? < 0.897. Thus the
solutions a cos(ma ) are stable when 0.336 < m < 0.526 where a = 2¢p (here
we used the fact that in the numerical simulations ¢ = 0.1). This coincides
with a cosine-function which has from 21.4 to 33.5 periods in the interval
[0,400].

For the singularly perturbed GL-equation stability of periodic solutions can
also be given. We will only state the results here, the calculations go along
the same line as for the classical GL-equation. We can rescale the singu-
larly perturbed GL-equation (4.3), by rescaling 7,& and A, to the following
equation

A=A+ Agg — QibAggg — bzAgggg — lA|A|2 (B.Q)

where | = 1 and 0 < b <« 1. Then there exist periodic solutions of the
form A = Re*® where R? = 1 — k?(bk + 1)?. These solutions are stable for
—%b — % <k< —%b + % (for the non-singular GL-equation the solutions

are stable for k? < %). Thus, the interval of k-values for which the solution
Re'*¢ is stable has shifted to the left.
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Figure 1: The v-component of the asymptotically stable (small) solutions to
(1.4) for (r,s) close to the co-dimension 2 point (s = 0.75). In section 3.4 it
will be shown that these solutions are described by the eF’K3-equation. The
only difference between a. and b. is the choice of initial conditions: a. 4
periods b. 8 periods (we refer to the caption of figure 11 for more details).

a Rew b. Rew C. Rew

—k. k k

) c _kc kc k A k
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Figure 2: The real part of the eigenvalue-curves given as a function of k for
different choices of the pair (r,s). a. On I'y where s is not close to s.px b.
8= Sk €. On 'y, serg < s < 8d. OnI'y, § < s < s.gr, and not close to
seair, €. For s = s.qr, . On I's. Note that only w; has been plotted in a-c.
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Figure 3: The (r, s)-plane for d < 1. The bifurcation curves I';,I'y and I's
are the thicker lines.

40



” e "L\ ﬂ
4 22 \
y 1
N
i
/ \
1 \
/ {
/ \
/ \
/ \
/ \
/ \
/ .
7 AN
N
_-7 ITRIR ~ -

Figure 4: The GL-decomposition (the peaks) and the eFK-decomposition
(the dotted curve) given in Fourier space. In the GL-decomposition the
peaks around k = k. are of height % and around &k = 0, +2k, of height 1.

All these peaks are of width O(%). The eFK-decomposition is one ‘wide’

peak of height 5% and width v/6.

41



Ol
D’“'
V4

__-7 AL S~ol
—vEo Ve |
Ve NG
O(ve)

Figure 5: The GL-decomposition (the peaks) and the eFK-decomposition
(the dotted curve) given in Fourier space in the limit 6 | O(¢). The peaks
of the GL-decomposition start to overlap and become of height 6%, which is
the same as the height of the ‘wide’ curve of the eFK-decomposition. All
the peaks of the GL-decomposition together form the ‘wide’ curve of the

eFK-decomposition.
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Figure 6: The v-component of the stable solutions when starting with the
initial data 0.05 cos(k.z) for a. s=0.94 b. s=0.82 c¢. s=0.72. Here a; = a3 =
ﬁl = ﬁ3 = 0,042 = 0.71,ﬁ2 = 0.5,@2 1 and b = 3.
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Figure 7: The v-component of the stable solutions when starting with the
initial data 0.05 cos(k.z) for a. s=0.94 b. s=0.82 c¢. s=0.72. Here a; = a3 =
ﬁl = ﬁ3 = 0,042 = 0.71,ﬁ2 = 0.5,@2 1 and b = 3.

44



0.06 T T T T T T T 0.06

0.04f 1 0.04
0.02 0.02
> 0 > 0
-0.02 -0.02f
-0.04 -0.04
& 0 : ; : : : : : b. -0.06 : ; : : : : :
0 s 10 10 20 20 W O M 0 s 10 10 20 20 W ‘O W
0.06 . . . . . . . 0.06
0.04 0.04

-0.021 9 -0.021

-0.041 1 -0.041

c. | .

-0.06

L ~0.06 L L L L L L L
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

X X

Figure 8: The v-component of the stable solutions for an initial condition
that has 8 periods in the interval. The figures are given for the following
choices of s: a. s=0.77 b. s=0.75 c¢. s=0.72 d. $s=0.69 (N; and Ny are as in
figure 7).
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Figure 9: The v-component of the stable solutions with an initial condition
that has 10 periods in the interval (Ny and N; are as in figure 7), a. s=0.75
b. s=0.69
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Figure 10: The v-component of the stable solutions with an initial condition
that has 12 periods (Ny and Ny are as in figure 7), a. s=0.75 b. s=0.72

46



0.06 T T T T T T T 0.06

0.041 R 0.04
0.021 1 0.021
> 0 > 0
-0.02 -0.021
-0.04 -0.04f
a 006 . . . . . . . b ~0.06 . . . . . . .
[¢] 50 100 150 200 250 300 350 400 [¢] 50 100 150 200 250 300 350 400
X X
0.06 T T T T T T T 0.06

0.04r 0.04-

0.02r

0.02r

-0.021 -0.021

-0.041 -0.04r

d.

L L L L L L L ~0.06 L L L L L L L
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

X X

-0.06

Figure 11: The v-component of the stable solutions with an initial condition
that has 6 periods in the interval. Here oy = ay = a3 = 31 = B3 = 03 =
0,a = 1 and b = 3: the dynamics are described by the eF'K3-equation. The
figures are given for the following choices of s: a. s=0.76 b. s=0.75 c. s=0.7
d. s=0.67
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Figure 12: a. The stable solution for the eFK3-equation (3.27) with an

initial condition that has 4 periods in the interval, here we chosel = —1, D =
—2. b. The stable solution for the ‘eF'K2+3"-equation (5.1) with an initial
condition that has 4 periods in the interval, here D = —2,k = 0.5 and
I=-1.
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