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Abstract

The Ginzburg�Landau �GL� equation �generically� describes the be�
haviour of small perturbations of a marginally unstable basic state in
systems on unbounded domains� In this paper we consider the transi�
tion from this generic situation to a degenerate �co�dimension �� case
in which the GL approach is no longer valid� Instead of studying a
general underlying model problem� we consider a two�dimensional sys�
tem of coupled reaction�di	usion equations in one spatial dimension�
We show that near the degeneration the behaviour of small perturba�
tions is governed by the extended Fisher�Kolmogorov �eFK� equation
�at leading order�� The relation between the GL�equation and the
eFK�equation is quite subtle� but can be analysed in detail� The main
goal of this paper is to study this relation � which we do asymptoti�
cally� The asymptotic analysis is compared to numerical simulations of
the full reaction�di	usion system� As one approaches the co�dimension
� point� we observe that the stable stationary periodic patterns pre�
dicted by the GL�equation evolve towards various di	erent families of
stable� stationary �but not necessarily periodic� so�called �multi�bump�
solutions� In the literature� these multi�bump patterns are shown to
exist as solutions of the eFK equation� but there is no proof of the
asymptotic stability of these solutions� Our results suggest that these
multi�bump patterns can also be asymptotically stable in large classes
of model problems�
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� Introduction

The behaviour near criticality of small solutions of a system of partial dif�
ferential equations on an unbounded domain can be described by so�called
modulation or amplitude equations� The most well�known� and �generic�
modulation equation is the �complex� Ginzburg�Landau �GL� equation

A� 	 rA 
 c�A
 hAjAj�� �����

where A is a complex valued function� r a �real� control or bifurcation para�
meter and c and h complex parameters which are determined by the under�
lying �full� system of PDE�s �see for instance ��
��� Generally� h is referred
to as the Landau�constant�

The derivation of the GL�equation is based on a detailed analysis of a lin�
earised stability problem� Let

�t 	 LR� 
 N���� ��x� y� t� � Rn � ��R� � RN � �����

describe the �full� problem� where LR �respectively N� is a linear �non�
linear� operator� R is a control� or bifurcation� parameter and � is a bounded
domain � Rm� For simplicity we assume that n 	 �� The linearised stability
of the basic solution ���y� of ����� is determined by setting

� 	 �� 
 f�y�eikx��t

and solving� for any pair �k�R�� an eigenvalue problem for f�y� with eigen�
values � 	 ��k�R�� De�ne ���k�R� as the critical eigenvalue �that is� the
eigenvalue with the largest real part� for a given pair �k�R� and Rc as the
critical bifurcation value of R� Re���k�R� � � for all k � R and R � Rc�
i�e� the basic solution �� of ����� is linearly stable for R � Rc� The curve in
the �R� k��plane where Re���k�R� 	 � is the so�called neutral curve� The
critical values kc of k and wc of ���k�R� are de�ned by

���kc� Rc� 	 iwc�

fc�y� is the critical eigenfunction at R 	 Rc� k 	 kc� If R is �slightly� above
Rc� i�e� R 	 Rc 
 r�� with � � �� �� r � �� one makes the following basic
�Ansatz� on which the derivation of the GL�equation is based

��x� y� t� 	 ���y� 
 �A��� ��fc�y�ei�kcx�wct� 
 c	c	 �����

where � and � are rescaled time and space coordinates� Equation ����� gives
only the leading order term of a double expansion� as a Taylor series in �

and as a Fourier series in ei�kcx�wct�� The GL�equation ����� describes the
modulation of the unknown amplitude A��� �� �see section ��� for more de�
tails�� In the last �� years much progress has been made in the mathematical
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justi�cation of this approach� Eckhaus ���� showed that the above �Ansatz�
can be made rigorous for a large class of model systems� The validity of the
GL equation for various types of model equations has been shown by many
authors �see ��� ��� �� �����

The fact that ��x� y� t� � ���y� can be expanded in a Fourier series in
ei�kcx�wct� is a fundamental �non�degeneracy condition� on which both the
asymptotic process leading to the GL�equation and the proof of its valid�
ity is based� It is clear that the Fourier expansion must break down when
kc 	 wc 	 �� A priori this might seem like a phenomenon of high co�
dimension� but this is not necessarily the case� wc 	 � is a �generic� property
of basic reversible systems ������ i�e� systems of PDE�s that are symmetric
with respect to the transformation x � �x� Reversible systems are very
natural� a classical example is convection �see for instance ����� one of the
�rst papers in which a GL�equation has been derived�� If wc 	 �� then one
only needs one extra bifurcation parameter� s� to make the GL Ansatz �����
degenerate� i�e� there must be a special value of s such that kc�s� 	 ��

In this paper we make an asymptotic analysis of the behaviour of small
solutions near such a co�dimension � point� a point in the two�dimensional
parameter plane at which the classical GL Ansatz ����� breaks down� In
remark ��� we discuss the relation of the co�dimension � point studied in
this paper to other� similar� co�dimension � degenerations that occur in the
derivation of the GL�equation� Such co�dimension � degenerations occur in
convection problems� nematics� lasers� etc� ����� �� ��� �����

Instead of performing this analysis on a very general �reversible� model
problem as ������ we focus on a more simple� but highly relevant �basic�
problem� a general reversible two�dimensional system of reaction�di�usion
equations� �

ut 	 ru 
 c�v 
 uxx 
 N��u� v�
vt 	 sv 
 c�u 
 dvxx 
 N��u� v��

���
�

where x � R� N� and N� are analytic non�linear expressions �thus we assume
that Ni�u� v�� i 	 �� �� do not have any linear terms�� The system will be
studied by varying the bifurcation parameters r and s� the other constants�
c�� c� and d� will be kept �xed� If we compare ���
� to ����� we note that
��x� y� t� 	 �u�x� t�� v�x� t��T� thus� there is no y variable �i�e� � 	 ��� this
simpli�es the linear stability analysis considerably� Moreover� the model
problem is chosen in such a way that ���y� � ��� ��T�

It should be remarked that studying the weakly non�linear stability of a
�trivial pattern� ��u��x� t�� �v��x� t�� � � �U�� �V��� where ��u��x� t�� �v��x� t�� is a solu�
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tion of the� a priori� more general system�
�ut 	 d��u�x�x 
 f���u� �v�
�vt 	 d��v�x�x 
 f���u� �v��

�����

is completely equivalent to studying the weakly non�linear stability of the
trivial� basic pattern ��� �� of ���
�� This can be seen by setting
��u��x� t�� �v��x� t�� 	 � �U� 
 u��x� t�� �V� 
 v��x� t�� and substituting this into �����
� �x can be rescaled to x in such a way that d� 	 �� Thus� model problem
���
� can also be used to describe the GL bifurcation and its degenera�
tion in well�known models as the Brusselator �see ���� for the derivation of
the GL�equation in the Brusselator�� the Gray�Scott model ����� systems of
predator�prey type ��� etc� Moreover� our basic model is as general as the
system studied by Turing ����� although it should be noted that in that pa�
per the equations are studied on a bounded x�domain� while it is crucial for
the forthcoming GL�analysis that x � R�

Another additional advantage of studying ���
� instead of ����� is that it
is now quite easy to check the asymptotic computations by a numerical sim�
ulation of the full basic system ���
��see section ��

If c�c� � � there is a curve �GL in the �r� s� 	 R�parameter plane at which
the GL bifurcation occurs� i�e� the basic pattern ��� �� becomes unstable and
the evolution of small solutions can be described by �Ansatz� ����� and the
GL�equation ����� where now c� h � R� due to the reversibility symmetry�

and � 	 ��

���
� From now on we rescale to c� 	 �� c� 	 �� to assure that

c�c� � �� However� kc 	 kc�s� and there is a point �reFK � seFK� where kc 	 �
�and wc 	 �� in section � we will also encounter a point �rcGL� scGL� where
kc 	 � but wc 		 �� see remark ����� On one side of the point �reFK � seFK�
on �GL� kc 		 � exists� on the other side kc � ��

In an O�
�� � � 
 � �� neighbourhood of the point �reFK � seFK� one has to
replace the GL Ansatz ����� by the following Ansatz�

�
u
v

�
	 
�

� p
d

�

�
B��B � �B� 
 O�
��� �����

this is only a Taylor expansion in 
� but no longer a Fourier expansion� Note
also that the unknown �amplitude� B��B � �B� is real valued� while A��� �� was
complex� Moreover� the scalings of �B and �B di�er from those of � and �

�see sections ��� and ����� Based on this Ansatz one can derive a so�called
extended Fisher�Kolmogorov �eFK� equation for B� that reads in rescaled
form

B�B 	 B 
 DB�B�B �B�B�B�B�B � B�� �����






where D still depends on r and s� D � � as kc 		 � exists� D 	 � at
�reFK � seFK� and D � � as kc 	 �� Note that the name�giving of equation
����� is in the literature somewhat confusing� Here we follow ��
� �� ��� ���
However� the name eFK�equation is usually given to equations of the type
����� with D � � and a cubic instead of a quadratic non�linearity� In the case
D � � the name Swift�Hohenberg �SH� equation would be more appropriate
������� however� the SH�equation also has a cubic non�linearity in general�
Since the transition at �reFK � seFK� from D � � to D � � is most naturally
described by an equation in the form of a �quadratic� eFK�equation we pre�
fer in this paper the name eFK� for equation ������ We will also encounter
the more standard cubic eFK or SH�equation as a degenerate case of the
eFK��equation ����� and call it the eFK��equation�

The derivation of the eFK��equation is quite straightforward� However�
if one compares the �complex� GL�equation ����� to the �real� fourth order�
eFK��equation� then it is a priori hard to grasp how the transition from the
GL�equation to the eFK��equation should take place� Understanding this
transition is the main subject of this paper�

Although we do not approach this problem by transforming it completely
into Fourier space �as for instance in ������ we will use the interpretation of
the GL Ansatz ����� and the eFK Ansatz ����� in Fourier space to study the
transition� The GL Ansatz is represented in Fourier space by sharp disjunct
�peaks� around the values nkc� n 	 ��
��
�� 			 �see �gure 
� section 
����
while the eFK Ansatz is described by a wide� solitary� �peak�� It is shown
in this paper that the GL Ansatz breaks down as kc � � and the formerly
disjunct peaks start to overlap� The wide eFK peak then appears as the
envelope of the overlapping GL peaks ��gure �� section 
����

However� this is only a part of the full picture� We will show that there
is a region on �GL near the co�dimension � point �reFK � seFK� at which
both the GL�equation and the eFK��equation are valid� In this region these
equations both describe the evolution of small solutions� but the scales of
the magnitude� and the temporal and spatial evolution di�er signi�cantly�
i�e� the GL and the eFK��equation describe di�erent patterns� Moreover�
the GL�equation should be replaced by a singularly perturbed GL�equation�

A�A 	 rA 
 ceFKA�A�A 

heFK
�� d

AjAj� � 
id�

�� d
A�A�A�A �

d
p
d��

�� d
A�A�A�A�A

�����
�at leading order�� where � � � 	 �

�
� � and ceFK � heFK are �rescaled�

limits of the values of c� h of ����� at �reFK � seFK�� Here something very
interesting occurs� It follows from the asymptotic analysis that

heFK � �� �����
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independent of the non�linear terms N��u� v� and N��u� v� in ���
�� This
is interesting because the �non�singularly perturbed� GL�equation ����� �in
one dimension� does not have bounded periodic solutions if h � �� More�
over� solutions have a tendency to blow up �in �nite time� in this case� It
follows immediately in the numerical simulations of the full system ���
�
that small O��� solutions �see ������ grow towards an O��� magnitude if
h � �� which means that the weakly non�linear GL approach is only valid
on very small time intervals and cannot be used to study the asymptotic
behaviour of patterns� Thus� as in almost all applications and studies of
the GL�equation �see ���� for a review�� one prefers a GL�equation with a
negative Landau coe�cient h when describing the evolution of small pat�
terns near �GL� If �r� s� is near �GL but not near �reFK � seFK�� this can
be achieved for a �generic choice� of N��u� v� and N��u� v� �see section 
����
One then observes stationary� stable periodic patterns in the numerical sim�
ulations of the full system ���
�� exactly as predicted by the GL�equation�
However� since we found that heFK � � we know that there must be a point
�rnl� snl� on �GL where h 	 �� This can be called a non�linear bifurcation�

This bifurcation was �rst studied in ���� �� and later more rigorously in
����� To give a correct description of the behaviour of solutions in this case
one needs to consider extra non�linear terms of higher order �such as AjAj	
and A�jAj� � see section 
��� to obtain a degenerate GL�equation of a form
as given in �
���� If the �rnl� snl� is not close to �reFK � seFK� then there
is a part of �GL where the GL approach is valid and the GL equation has
a positive Landau coe�cient� here there are no bounded small solutions�
Thus� since we are interested in bounded small solutions� we have to choose
�rnl� snl� so close to �reFK � seFK� that the eFK approach is already valid
between �rnl� snl� and �reFK � seFK��

We did not study this situation in its full asymptotic details �see �gures
�� � and �� for the numerical simulations and section ��
 for a discussion��
but� we did consider the special case heFK 	 �� This can quite easily be
achieved by considering non�linearities N��u� v� and N��u� v� in ���
� of cu�
bic or higher order� Is this case we �nd that the behaviour of small solutions
near �reFK � seFK� is governed by a cubic � � eFK�equation� the eFK� �or
SH� equation�

B�B 	 B 
 DB�B�B � B�B�B�B�B 
 lB�� ������

where D is as in ������ The sign of l can now be both positive or negative�
as function of the structure of N��u� v� and N��u� v� �see section ��
�� Thus�
although the assumption that both N��u� v� and N��u� v� are cubic makes
the problem of a higher co�dimension� it is a natural assumption� this way
there are no �problems� with solutions that cannot be described �for all time�
by the weakly non�linear theory� Moreover� it enables us to derive equations
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that appear throughout the literature ���
� �� ��� ��� ����

As already mentioned above� we supplement the asymptotic analysis of the
transition from the GL�equation to the eFK�equation by a numerical study
of the behaviour of small solutions of the full system ���
� near �GL� and of
course especially near �reFK � seFK�� Since we choose N��u� v� and N��u� v�
such that h � � we can �rst check the validity of the GL approach� we
�nd stable periodic solutions as predicted by the Eckhaus stability criterion
������� By bringing �r� s� closer and closer to �reFK � seFK�� we observe stable�
stationary patterns of a much richer structure than the sine!cosine like pe�
riodic patterns described by the �real� GL�equation �see �gures �� � and ����

These solutions have a clear �multi�bump� structure� In �gure � we show
two examples of �small� numerically stable �multi�bump� solutions of the full
reaction�di�usion system ���
�� Parameters r and s are close to �reFK � seFK�
and N��u� v� and N��u� v� are such that the solutions are �asymptotically�
described by the eFK��equation� Solutions like these have been and still
are the subject of much ongoing research �see for instance �
� and the ref�
erences given there�� In these papers the existence of solutions similar to
those observed as stable patterns of the reaction�di�usion system ���
� near
the co�dimension � point� are shown to exist for the stationary problems as�
sociated to either the eFK� ��
�� or the eFK��equation ���
� ����� However�
it should be noted� that there are no proofs �yet� of the stability of these
stationary �multi�bump� solutions as solutions to the full eFK PDE� Never�
theless� �gure ��a shows a typical example of a stable multi�bump pattern
that appears by integrating the eFK��equation� note that these patterns are
quite similar to those shown in �gure �� We refer to section ��
 for a more
detailed discussion�

Thus� the asymptotic and numeric calculations both strongly suggest that
the �multi�bump� solutions to the eFK����equations can be asymptotically
stable and that the �attractors� in these equations also are of signi�cant im�
portance to the behaviour of small solutions near the co�dimension � point
at which the kc of the GL Ansatz ����� becomes � �or small�� However�
both steps are not proven� The results of this paper are based on a detailed
analysis of the reaction�di�usion system ���
�� The essence of the method in
this paper does not depend on the exact structure of the underlying model
problem� Therefore� the analysis in this paper can also be applied to much
more general systems with a similar co�dimension � degeneration� As a
consequence� it can be expected that the asymptotic stable �multi�bump�
patterns encountered in this paper� will also occur in these more general
model problems�

Remark ��� There exist some related co�dimension � bifurcations studied
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in the literature� Two of those are quite similar to the bifurcation studied
in this paper� In ���� and ���� a complete weakly non�linear description is
given of a co�dimension � bifurcation that appears in laser dynamics� As in
this paper� kc 	 wc 	 � at the co�dimension � point described by � 	 ��
the �detuning� � plays a role similar to s in this paper� However� unlike the
eFK�bifurcation studied here� wc��� 		 � for � 		 �� As a result� the dy�
namics near threshold are described by di�erent kinds of cubic and complex
Swift�Hohenberg equations� Another co�dimension � point is the so�called
Lifshitz point that for instance appears in �planar� nematics �see for ���� ����
This is a purely two dimensional �i�e� in �x� y��space� phenomenon� the crit�
ical point of the neutral surface at k 	 kc� l 	 � bifurcates into two critical
points at k 	 k�c� l 	 
lc 		 � ������ In this case the modulation equation for
the amplitude A��� �� �� is once again cubic and complex� it reduces to the
eFK��equation if one considers a real amplitude A� independent of � �������
There are many more possible co�dimension � degenerations� we do not in�
tend to try to give a complete list here� see for instance ���� ���� and the
references given there� for co�dimension � bifurcations in convection prob�
lems�

Remark ��� As noted above� we will also encounter the co�dimension �
point �rcGL� scGL� on �GL where kc 	 �� but wc 		 �� In section ��� we
brie"y sketch how this case can be described by a coupled system of GL
equations �see ���� and the references given there�� Numerically we observe
that the stable periodic patterns described by ����� obtain a periodically
modulated amplitude near the point �rcGL� scGL�� see �gure �a�

Remark ��� The structure of the paper is as follows� in section � we
study the linear stability of the trivial solution ��� �� to ���
�� with c� 	 ��
c� 	 ��� The derivations of the GL� the eFK and some other relevant
modulation equations are given in section � �and appendix A�� The main
subject of the paper� the transition from the GL to eFK��equation is studied
in section 
� In section � we present and interpret the numerical simulations�

� The linear stability analysis

We start by performing a linear stability analysis for the solution �u� v� 	
��� �� of the reaction�di�usion system ���
� where c� 	 �� c� 	 ����

ut 	 ru 
 v 
 uxx 
 N��u� v�
vt 	 sv � u 
 dvxx 
 N��u� v�	

�����

We study the stability of the solution by substituting�
u

v

�
	 eikx��t

�
#u
#v

�
�����

�



into the linear part of the system� This gives the following eigenvalue prob�
lem




�
#u
#v

�
	

�
r � k� �
�� s � dk�

��
#u
#v

�
	 �����

Studying the linearised stability of ��� �� reduces to calculating the eigenval�
ues 
 of this �� � eigenvalue problem� The solution ��� �� is stable as long
as the real parts of both eigenvalues are negative for all k � R and becomes
unstable when the real part of one of the eigenvalues becomes positive �for
some k � R�� The characteristic polynomial reads


� � �s 
 r � �� 
 d�k��
 
 rs 
 �� �rd
 s�k� 
 dk	 	 �	 ���
�

This leads to two eigenvalues 
� and 
�� where we assume that Re�
�� �
Re�
��� Moreover� we de�ne for �xed s and d the neutral curve fRe 
��k� r� 	
�g� When we plot this curve in the �k� r��plane� we know that the solution
��� �� is stable against perturbations of the type ����� for �k� r� outside the
neutral curve� perturbations grow exponentially when �k� r� is inside the
neutral curve�

In order to study this neutral curve� we need to know more about the real
part of the two eigenvalues� We start with looking for the critical points
�kc� rc� of the neutral curve� Here the rc still depends on s� First we as�
sume that 
 is real near �kc� rc�� By de�nition we know that 
�kc� rc� 	
��
�k

�kc� rc� 	 �� Setting 
�kc� rc� 	 � in ���
� leads to

dk	c � �rcd 
 s�k�c 
 rcs 
 � 	 �	 �����

Applying �
�k

to ���
� and substituting 
�kc� rc� 	 ��
�k

�kc� rc� 	 � gives

kc�
dk
�
c � ��rcd 
 s�� 	 �	

Therefore

kc 	 � 
 k�c 	
rcd
 s

�d
�

where rc has yet to be determined� The second pair of critical values only
exists when rcd�s

�d � �� It follows from ���
� that kc 	 � is the only critical
value if 
�kc� rc� �� R�

Thus� we can distinguish between di�erent types of instabilities� As long
as rcd�s

�d � � the eigenvalue�curve� where Re�
�� is given as a function of k

for �xed �r� s�� has two maxima in kc 	 

q

rcd�s
�d and one minimum in k 	 �

�see �gure �c�� This can be seen as follows� for jkj � �� ���
� implies� by
taking only all the terms of the highest order� that 
�
��
d�k�

dk	 � ��
Thus 
 � �k� or 
 � �dk�� therefore� for jkj � �� the real parts of the
eigenvalues are negative� The �rst solution to become unstable� for this
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eigenvalue�curve� is the wave eikcx� where kc 	
q

rcd�s
�d �

We now note that a co�dimension � bifurcation occurs� where s is the second
bifurcation parameter� for rcd�s

�d 	 �� the curve has only one maximum in

k 	 � for rcd�s
�d � �� Here� the �rst solution to become unstable is the

�wave� with wavenumber k 	 �� ei�x� Thus� for �xed r 	 rc and varying
the second bifurcation parameter s we see that this bifurcation occurs at
s 	 seFK with rcd 
 seFK 	 �� For s � seFK � the curve has two maxima
and for s � seFK the curve has one maximum �see �gures �a� b and c��
Since we assume that the �rst bifurcation occurs at �kc� rc� we have to set
Re 
��k� rc� � � and Re 
��k� rc� � � for every k � R� this implies that

� 
 
� � �� Combining this with the fact that ���
� can be factorised as
�
�
���
�
�� 	 
���
�

��


�
� 	 �� leads to s
rc���
d�k� � �
for every k � R� From this it follows that

s 
 rc � �	

We now have the two conditions under which the �rst bifurcation occurs�
r
 s � � and rd
 s � �� It depends on the magnitude of d in which region
of the �r� s��plane these conditions hold� For d � �� they hold in the second
quadrant of the �r� s��plane �r � � and s � �� and for d � � they hold in the
fourth quadrant� From now on we choose d � �� this does not in"uence the
results� This choice �xes the signs of r and s� namely r � � and s � �� In �g�
ure �� we sketch the second quadrant of the �r� s��plane with the bifurcation
curves obtained for d � �� There is a bifurcation curve �GL which consists
of three parts� ��������� The di�erent eigenvalue�curves occur on these
three parts� On �� the eigenvalue�curve has one maximum and on �� it has
two maxima� We will now determine the form of the eigenvalue�curve on ���

If s 
 rc 	 �� then Re 
���� rc� 	 Re 
���� rc� 	 � and the eigenvalue�
curve has three maxima� in k 	 � and in k 	 
kc� where Re 
� 	 � in
all three maxima� Therefore another co�dimension ��bifurcation occurs at
s 	 scGL with scGL 
 rc 	 �� Here the eigenvalue�curve transforms from a
curve with two maxima� through a curve with three maxima� to a curve with
one maximum in k 	 � �see �gures �d� e and f�� To be able to sketch the
eigenvalue�curves we also need to know where the eigenvalues are real and
where they become complex� Note that the eigenvalues are always real in a
neighbourhood of k 	 kc 		 � and for jkj � �� Since the eigenvalue�curves
are symmetric in k� the �rst k�value for which they can become complex is
for k 	 � �see ���
��� Setting k 	 � in ���
� and solving 
 from that equation
gives


��� 	
�

�
�s 
 r 


q
�s� r�� � 
�	 �����

Thus the eigenvalues become complex in k 	 � when �s� r��� 
 	 �� This
implies that the eigenvalues are complex in some interval of k�values for

��



s � � � r � s 
 �� We de�ne #s as the value of s at which the neutral curve
at r 	 rc becomes complex at k 	 �� Since r � � and s � �� the eigenvalues

become complex for r 	 s � � at s 	 #s 	 �
p
d

��
p
d
� For s � #s� all eigenvalues

are real� Complex eigenvalues exist for s � #s�

Of course we still have to determine rc� We can calculate rc from �����
for the di�erent choices of s� For s � seFK and on the bifurcation curve ���
we have that kc 	 � and so we get that

rc 	 ��

s
	

By substitution of kc 	 

q

rcd�s
�d in ������ we can determine the critical r�

value rc which belongs to the s�values on the bifurcation curve �� �seFK �
s � scGL�� We obtain that

rc 	
s

d
� �

r
�

d
�

where we chose the minus�sign because r � �� Note that from this calcu�
lation it follows that c�c� has to be negative in system ���
�� This can be
seen from the equation ����� with general c� and c�� instead of c� 	 � and
c� 	 ��

dk	c � �rcd 
 s�k�c 
 rcs � c�c� 	 �	

Substituting k�c 	 rcd�s
�d leads to

�rcd� s�� 	 �
dc�c��

from which can be seen that c�c� � � has to hold� Thus� if c�c� � � the
above described bifurcations do NOT occur� On the curve �� we know that
Re
���� rc� 	 Re
���� rc� 	 �� thus we deduce from ����� that

rc 	 �s	

Now� we can determine the above de�ned seFK and scGL� It follows from
rcd 
 seFK 	 � that

seFK 	
p
d	

From rc 
 scGL 	 � we obtain that

scGL 	
�
p
d

� 
 d
	

��



� The modulation equations

So far we showed that when varying �r� s� along the bifurcation curve �GL�
the eigenvalue curves �the real part of the eigenvalues� change smoothly
from a curve with one maximum at k 	 � �on ��� for s � seFK� to a
curve with two maxima at k 	 
kc and a minimum at k 	 � �on ��� for
seFK � s � scGL� to again a curve with one maximum at k 	 � �on ����
see �gure �� For these di�erent cases� modulation equations can be derived
by weakly non�linear stability analysis� Because the eigenvalue�curve goes
smoothly from one type to another type� the derived equations are limits of
each other� First we derive the GL�equation on �� for seFK � s � scGL�
Then there are two transitions� they occur at s 	 seFK and at s 	 scGL�
In this paper we will not study the transition at s 	 scGL � Decreasing s
so that it is close to seFK leads to the eFK�equation as modulation equa�
tion� Decreasing s further to s � seFK on �� gives the Fisher�Kolmogorov
equation� For s close to scGL a coupled system of two GL�equations can be
derived �this explains the index �cGL�� �coupled Ginzburg�Landau��� and for
s � scGL on �� we again obtain a GL�equation� However� the coe�cients
here are complex� In this section we will derive all relevant modulation
equations�

For r � rc the real part of the eigenvalue 
� becomes positive for an interval
of k�values� which means that for these k�values the solution is unstable�
The modulation equations to be derived in this section describe the behav�
iour of �small solutions� for r � rc and r�rc � �� We consider as non�linear
terms in �����

N��u� v� 	 ��u
� 
 ��uv 
 ��v

� � au� �����

N��u� v� 	 ��u
� 
 ��uv 
 ��v

� � bv�	 �����

This choice is not at all essential� we can take more �general� terms into
account but then only the calculations become more extensive� new terms
do not in"uence the derivation process� they only alter the coe�cients of the
modulation equation� Studying the stability of ��� �� is done by studying
the eigenvalue problem ������ We de�ne

Mc 	

�
rc � k�c �
�� s� dk�c

�
	 �����

Now we can derive the modulation equation�s� for di�erent choices of s�

Remark ��� General analytic non�linear terms Ni�u� v� can be expanded
into a power series in u and v� Expressions ����� and ����� can then be seen
as the �rst four terms in these expansions� It is easy to check that only the
quadratic and the cubic terms in Ni�u� v� are relevant in the derivation of
the modulation equations�

��



��� The GL�equation

We start by setting seFK � s � scGL �and s not close to seFK� along ���
then a standard� real GL�equation can be derived� Although the derivation
is quite standard and straightforward we present it here in some detail so
that it can serve as background for the subsequent sections� Here rc 	 s

d
� �p

d

and kc 	
q

rcd�s
�d 	

q
s�pd
d

� therefore

Mc 	

� � �p
d

�

��
p
d

�
	

The eigenvalues of this matrix Mc are �� 	 � and �� 	 ���dp
d

� � and

the corresponding eigenvectors are w� 	

� p
d

�

�
resp� w� 	

�
�p
d

�

�
	 We

will see that a modulation equation appears as a consequence of a certain
solvability condition� Here� the solvability condition is given by the equation
Mcx 	 b� This equation can only be solved when b � Spfw�g� Thus� if we

write b 	

�
b�
b�

�
we �nd the solvability condition

b� � �p
d
b� 	 �	 ���
�

In the following sections� we will �nd that Mc is� in highest order� always as
given above and thus the solvability condition is also the same in all deriva�
tions�

As is standard in the derivation of the GL�equation� we take r close to
rc� r 	 rc � v��

� where � � � � � and v� � �� In the non�linear stability
analysis we model the perturbation of the solution ��� �� as a slow modu�

lation of the wave with wavenumber k 	 kc 	
q

s�pd
d

� the �most unstable
wave�� �

u
v

�
	 �

� p
d

�

�
A��� ��eikcx 
 c	c	
 hot�

here

� p
d

�

�
is the �most critical direction�� it is the eigenvector which

belongs to the eigenvalue �� 	 �� The slow space and time variables �

and � are scaled in a standard way� � 	 �x and � 	 ��t �see ���� for a
rigorous foundation of these scalings�� We will explain the scaling of � a
bit further� Classically� this scaling is related to the width of the interval
of k�values for which the solution ��� �� is unstable at r 	 rc � v��

�� We
have to determine for which k the eigenvalue�curve of the largest eigenvalue

��



intersects the k�axis� Substituting 
 	 � and r 	 rc � v��
� into ���
� leads

to
dk	 � ��s� �

p
d� v�d�

��k� 
 �
sp
d
� ��� � v�s�

� 	 �	

This equation has four solutions� k 	 
kc 
 �
�

r p
dv�

s�
p
d
� Therefore the width

of the interval of the unstable k�values is of O��� and we scale � 	 �x� Note
that for s� seFK 	

p
d� the term s�pd becomes small� which changes the

width of the interval of unstable k�values and thus the scaling of � changes�
see section ���� The relevant scalings of �� � and the magnitude of the
perturbation of solution ��� �� can also be deduced by using the signi�cant
degeneration method �see ������

The non�linear terms in ����� will generate harmonics of the simple linear
wave eikcx� Thus the higher order terms in the expansion of the perturbation
are constructed from a product of this most unstable wave with itself�

��
�

X��

Y��

�

 � � ��

u
v

�
	 eikcx��

� p
d

�

�
A��� �� 
 ��

�
X��

Y��

�

��

�
X��

Y��

�



e�ikcx���
�

X��

Y��

�

 � � �
 c	c	

�����

Here the Xij � Yij are functions of � and � for every i� j � N� Substituting this
expansion into ����� and gathering terms of the form �aeikcbx for a�� b� �N
will lead to the GL�equation� The equations at the a� 	 ��level can be
solved� the functions in expansion ����� can all be expressed in terms of

A� the unknown amplitude� The solvability condition for

�
X��

Y��

�
at the

a� 	 �� b� 	 ��level� yields the GL�equation for A �see Appendix A for the
details of the derivation��

A� 	
v�
p
d

��� d�
A 




p
d�s� pd�

��� d�
A�� 


h

��� d�
AjAj� �����

where

h 	 ��
p
d����

p
d
 ���� ����

p
d
 ����F

��
p
d�
p
d�� 
 ����� �

p
d�� 
 �����G
 ��ad� � b� �����

F 	 � d

��s� pd��
�����s
 


p
d�� ���� �����

G 	 � �

��s� pd��
���d�
 ����s� �


p
d�� �����

�




� 	 d�� 

p
d�� 
 �� ������

� 	 d�� 

p
d�� 
 ��	 ������

where ��� � � � � �� are introduced by the non�linear terms ����� and ������
Note that h� F and G seem to blow up as s � seFK 	

p
d� We refer to ���

and the references given there for results on the validity of ������

The equation ����� can be brought into a standard�form by rescaling ��
� and A �introducing #� 	 c��� #� 	 c�� and A 	 c� #A�� We can now choose
the c�� c� and c� so that� after omitting the tilde� the equation becomes�

A� 	 A 
 A�� 
 lAjAj� ������

where l 	 
�� The sign of l depends on the sign of h�

Note that there are three situations in which this scaling degenerates� First

we note that the di�usion constant 	
p
d�s�pd�
���d� in ����� disappears as s � pd�

the study of this process is the main topic of this paper� it describes the
transition of the GL�equation to the eFK�equation� The second bifurcation
occurs as h 	 � �or jhj � ��� In this case ����� is not the correct modulation
equation� it should be replaced by the so�called degenerate GL�equation �see
��� ��� and ���� for a validity result�� This bifurcation will be encountered
in section 
��� The third degeneration� d 	 �� corresponds to a fundamental
observation due to Turing �������

��� The eFK��equation

We consider s near seFK �on �� or ���� i�e� we set s 	 seFK 
 �
� with

� � 
 � �� Thus� kc 	 � and rc 	 ��
s

	 � �p
d


 	�
d
� 	���

d
p
d


O�
��� Note that

� � � corresponds to �gure �c� 
��k� rc� has three extremes that merge as
� � �� � � � is represented by �gure �b� As above we choose r O�
�� close to
rc� r 	 rc�v�


� where v� � �� Therefore� by substitution of the expressions
for rc and kc into ������ it follows in highest order that Mc is the same as
de�ned in section ��� and the solvability condition is also as given there�
Below we will introduce a number of scalings which are di�erent from those
used in the classical GL case� In section 
 we will analyse the transition
from the classical GL case �see section ���� to this eFK case� there� these
scalings will also be explained in more detail�

We model the perturbation of the solution ��� �� as a slow modulation of
the �most unstable wave� with wavenumber k 	 kc 	 �� However� here this

�wave� eikcx
�

	
	

�
reduces to �

�
	
	

�
� This yields that in this case we can�

not expand the perturbation as both a Fourier series and a Taylor series in

��




� Thus� ����� has to be replaced by

�
u

v

�
	 
p

� p
d

�

�
B��B � �B� 
 
p��

�
X��

Y��

�

 hot ������

where

� p
d

�

�
is again the �most critical� direction� Note that the unknown

amplitude B has to be real now� all eigenvalues and eigenfunctions are real�
The replacement of the complex amplitude A by a real amplitude B will
�also� be discussed in section 
� In standard non�linear stability analysis� as
in the derivation of the GL�equation in section ���� the perturbation of the
solution ��� �� is taken to be O�
� i�e� p 	 �� Using the same assumption in
this case and substituting the expansion into the reaction�di�usion system
������ leads on the O�
���level to an inconsistent system of equations� on
the 
��level we obtain

� 	 � �p
d
X�� 


�p
d
B 
 Y�� 
 �B�

� 	
p
dY�� 
 �B �X�� 
 �B�

where � and � are as de�ned in ������ and ������ in section ���� This leads
to

Mc

�
X��

Y��

�
	 ��

�
�p
d

�

�
B �

�
�
�

�
B�	 ����
�

Applying the solvability condition gives

��� �p
d

�B� 	 �� ������

which yields� since � and � are arbitrary constants� B 	 �� i�e� we need to
consider smaller perturbations� Therefore� we are forced to choose p 	 � in
this subsection� The variables �B and �B are slow space and time variables�
where the scaling of �B is standard� �B 	 
�t� The scaling of �B is not the
same as in the GL case� It is related to the width of the interval of the
k�values for which the solution ��� �� is unstable �the largest eigenvalue is
positive for these k� at r 	 rc�v�
� �as is also the case in the derivation of the
GL�equation�� Therefore we have to determine for which k the eigenvalue�
curve of the largest eigenvalue intersects the k�axis� Substituting 
 	 � and
the expressions for r and s into ���
� leads in highest order to

dk	 
 �
�k� � v�
p
d
� 	 �	

This equation has two solutions� k 	 
�

p
	��v�d

p
d�	

d
�
�

�

p

� Therefore the

width of the interval of the unstable k�values is of order
p

 and we scale

��



�B 	
p

x� The higher order terms in the expansion of the perturbation are

modelled as�
u
v

�
	 
�

� p
d

�

�
B��B � �B� 
 
�

�
X��

Y��

�

 
	

�
X��

Y��

�

 hot	 ������

Here the X�i� Y�i are real functions of �B and �B for every i � N� i � ��
Substituting this expansion into ����� and sorting together the terms which
have the same order of 
 will lead� by applying the solvability condition
���
�� to the eFK��equation on the 
	�level� On the 
��level we have

Mc

�
X��

Y��

�
	 ��

�
�p
d

�

�
B �

� p
d

d

�
B�B�B 	 ������

Applying the solvability condition ���
� leads to the trivial condition

���
�p
d
� �p

d
�B � �

p
d� dp

d
�B�B�B 	 �	 ������

Hence� the inconsistency which appeared for choosing p 	 � in ������� is no
longer there� Because detMc 	 �� equation ������ does not have an unique
solution� therefore we have to introduce a second amplitude function B�

which depends on �B and �B� Then X�� and Y�� can be solved in terms of
B and B���

X��

Y��

�
	

�
�B 
 dB�B�B

�

�



� p
d

�

�
B���B� �B�	 ������

The equation on the 
	�level reads

Mc

�
X��

Y��

�
	

� p
d

�

�
B�B 


�
v�
p
d 
 	�

d

�

�
B � �

�
�
d
X��

Y��

�

�
�

X���B�B

dY���B�B

�
�
�

�

�

�
B�

where � and � are as in equations ������ and ������ in section ���� Applying
the solvability condition ���
� here yields

�d� ��B�B 
�v�d
 	�p
d
�B � �� �p

d
X�� � Y���

��
p
dX���B�B � dY���B�B�� �

p
d�� ��B� 	 �	

������

Substituting ������ gives

B�B 	
�

�� d
�v�dB � �

p
d�B�B�B � d

p
dB�B�B�B�B � �

p
d� � ��B��������

��



This equation can be brought into a standard�form by rescaling the �B� �B
and B

B�B 	 B 
 DB�B�B �B�B�B�B�B � B�� ������

where D 	 D��� v�� d� 	 � �	
p
v�d

�

�

is the only parameter left� Note that the

sign of D decides between an eigenvalue�curve with three critical points
�D � � or � � �� or one critical point �D � �� � � ��� Besides the
Turing degeneration at d 	 � ������ we also encounter again a �non�linear�
degeneration as

p
d�� � 	 �� see sections ��
 and ��
�

��� More modulation equations

So far� we derived on �� for seFK � s � scGL� the GL�equation and for s
close to seFK � the eFK��equation� In this section we give the modulation
equations which can be derived for other choices of s� We will only state the
equations here and will not derive or study them any further�

We start on �� with s not close to seFK � then kc 	 � and a Fisher�
Kolmogorov equation can be derived�

��� s��B� 	 v�s
�B � �s� � d�B�� � �s�� ��B�	 ������

Here � and � are as de�ned in section ��� and � 	 ��t and � 	 �x� The
perturbation of the solution ��� �� is taken of O����� as in the case of the
eFK�equation� Of course there is a transition from this FK�equation to the
eFK�equation by letting s� seFK � but we will not study this transition here�

There is a second branch of GL�bifurcations for r 	 �s �on ���� see �gure
�� Here the eigenvalue�curve has one maximum in kc 	 � and around this
maximum the eigenvalues are complex� Therefore a complex GL�equation
can be derived where the perturbation of the solution is taken around the
�wave� ei�ct where 
c 	 Im 
��� rc��

C� 	 r�C 
 d�C�� 
 c�CjCj�	 ����
�

Here r�� d� and c� are complex�valued �see for instance Kuramoto ���� for the
derivation of this equation in the Brusselator model and ���� for a validity
result�� One would expect here that the space variable � has to be chosen
as a �travelling� variable� � 	 ��x 
 �t� where � 	 Re �

i
��
�k
j�kc�rc�� see ��
��

However� since kc 	 �� it follows that � 	 � thus the scaling of � is as before�
The two GL�bifurcation branches �� and �� intersect at the co�dimension
� bifurcation point �rcGL� scGL�� see �gure �� Both �instability mechanisms�
�at k 	 kc and at k 	 �� can interact here� thus the bifurcation is described
by a system of coupled GL�equations�

A� 	 r�A 
 d�A�� 
 c�AjAj� 
 c�AjCj�
C� 	 r�C 
 d�C�� 
 c�CjCj� 
 c	CjAj�	 ������

��



Again the ��variable is as before� By setting C 	 � we recover the real GL�

equation described in section ��� around the critical wave eikcx� kc 	
q

s�
p
d

d

�thus r�� d�� c� � R�� A 	 � yields the above described complex GL�equation
for C� We refer to ���� for more information �general derivation� behaviour
of solutions� references� on coupled GL�equations�

��� The eFK�equation with cubic terms

Up till now we studied the reaction�di�usion system ����� with general non�
linear terms N� and N� as given in ����� and ������ As we showed in section
���� this leads for s close to seFK to an eFK�equation with quadratic non�
linear terms� We can also study the case when N� and N� do not contain
quadratic terms but only cubic terms� We will show that in this case the be�
haviour of �patterns� near �reFK � seFK� is governed by an eFK�equation with
cubic terms �denoted by eFK��� This observation is especially interesting�
since the eFK�equation with cubic terms is studied extensively in literature
�see ��
� �� ��� and the references given there�� See also section ��
 for a
discussion� Thus we consider in ����� non�linear terms of the following form�

N��u� v� 	 �au�� N��u� v� 	 �bv��
which follows from setting �i 	 �i 	 � for i 	 �� �� � in ����� and ������ We
again set s 	 seFK 
 �
� with kc� rc and r as de�ned in section ���� We
model the perturbation of the solution ��� �� as a slow modulation of the
wave with wavenumber k 	 kc 	 �� We now note that the inconsistency
which appears in section ��� if we consider p 	 � does not appear� ������ is
again �trivial� since � 	 � 	 � here� Thus� we expand�

u

v

�
	 


� p
d

�

�
B��B � �B� 
 hot�

where B is a real amplitude function which depends on the slow space and
time variables �B and �B� which were de�ned in section ���� The scaling of
�B is standard� �B 	 
�t and since the eigenvalue�curve is still the same as
in section ���� the scaling of the �B is the same as in that section� �B 	

p

x�

The higher order terms in the expansion are given as�
u

v

�
	 


� p
d

�

�
B��B � �B� 
 
�

�
X��

Y��

�

 
�

�
X��

Y��

�

 hot	

where the X�i� Y�i are real functions of �B and �B for every i � N� i � ��
After substituting this expansion into ����� and solving the equations on the

��level �as in section ����� we �nd the eFK��equation by the application of
the solvability condition on the 
��level�

B�B 	
v�d

��� d�
B � �

p
d�

��� d�
B�B�B �

d
p
d

��� d�
B�B�B�B�B 


�ad� � b�

��� d�
B�	������

��



This equation can again be brought into standard�form by rescaling the
�B� �B and B�

B�B 	 B 
 DB�B�B �B�B�B�B�B 
 lB�� ������

Here l 	 
� and D is as in section ���� the sign of l depends on the sign of
ad� � b� Note that in rescaling the eFK�equation with quadratic terms the
sign of the non�linear term was irrelevant but now in the case of the eFK��
equation� the sign of ad� � b is very important in reducing the equation
to standard�form� as in the GL case it is important for the existence of
bounded solutions�

� The transition from the GL�equation to the eFK��

equation

In section ��� we described the non�linear evolution of small solutions of
����� by a GL�equation� since s � seFK and js� seFK j 	 O���� We found in
section ��� that the evolution of small solutions is described by the eFK��
equation when js � seFK j 	 O�
� � �� In this section we will study the
transition between these two modulation equations�

First we will study the GL�equation for js � seFK j 	 O�
� � �� in this
case one can still derive the GL�equation as long as r�rc 	 �v��� � O�
���
At leading order this GL�equation is exactly the same as the one derived in
section ���� however� now the higher order derivatives A��� and A���� are of

order O� �
�
�� respectively O� �

�

��
�� and thus much larger than in section ����

Also� we will �nd that� the coe�cient h of the non�linear term becomes pos�
itive�

Thus� in the overlap region js � seFK j 	 O�
� � � both modulation equa�
tions� the eFK��equation and the singularly perturbed GL�equation� de�
scribe the evolution of small solutions� However� these equations describe
di�erent processes� as we shall show in detail below� At this point this can
be seen by noticing that the eFK��equation governs the evolution of O�
��
solutions on the time scale �B 	 
�t and the spatial scale �B 	

p

x �see

section ����� while we shall �nd in section 
�� that the singularly perturbed
GL�equation governs O��
� solutions on a O� �

��
� time scale and a O� �p

�
�

spatial scale� Observe that these scalings merge as �� 
� but� we shall see
that in this limit the derivation process leading to the singularly perturbed
GL�equation looses its validity� However� we will show in section 
�� that
in this limit� the GL�equation can be interpreted as an equation governing
the evolution of a special class of spatially periodic solutions of the eFK��
equation� This interpretation� for instance� enables us to understand the

��



relation between the quadratic non�linear term in the real eFK��equation
and the cubic non�linear term in the complex GL�equation�

First we study the form of the eigenvalue�curve for s 	 seFK 
 
� see
also �gure �c� We �nd that the di�erence in the eigenvalue between the
maxima and the minimum of the curve is of O�
��� This can be seen as
follows� at r 	 rc 	 s

d
� �p

d
we have that 
�kc� rc� 	 � and 
��� rc� 	

�
��s 
 rc 


p
�s� rc�� � 
�� Substituting the expressions for rc and s gives

that 
��� rc� 	 O�
�� and thus the di�erence between 
�kc� r� and 
��� r� is
of order 
��

��� The singularly perturbed GL�equation

Now we study the derivation of the modulation equation for 
 � �� this is
quite similar to the derivation of the GL�equation in section ���� We set s
as in section ��� with � 	 �� thus s 	 seFK 
 
� Here rc 	 � �p

d

 �

d
� k�c 	 �

d

and we assume r to be close to rc� r 	 rc � v��
� with v� � �� One of the

di�erences with the GL derivation in section ��� is the order of magnitude
of the perturbations of the trivial solution ��� ��� Taking the perturbation
of O��� leads to an inconsistent system on the O�����level� which appears
in the same way as we showed in section ���� therefore we must take the
perturbation of order �
��

u
v

�
	 �


� p
d

�

�
A��A� �A�eikcx 
 c	c	
 hot	 �
���

Here �A and �A are slow time and space variables� with for �A the standard
scaling �A 	 ��t� The scaling of �A is again related to the width of the
interval of the k�values at which the solution ��� �� is unstable� Thus we
have to determine for which k�values 
� 	 �� Substituting 
 	 � and the

expressions for r and s into ���
� leads in highest order to k� 	 �
d
��


p
v�d

�

�

�
��

which gives four solutions� k 	 
kc 
 O� �p
�
�� Therefore the width of the

interval of unstable k�values is of O� �p
�
� and we scale �A 	 �p

�
x�

It is a priori not clear how to choose the magnitudes of the harmonics and
the higher order terms of �
���� For instance� the non�linear interactions
suggest that the e�ikcx and the e�x mode should be O���
��� while

��

�x�
��
Aeikcx� 	 ����A�A�A 
 �i

�
p
d
A�A � 
k�cA�eikcx�

which suggests that a higher order correction on the eikcx mode should
become O���
�� However� it follows from the computations in the appendix

�see equations �A���� �A���� that the

�
X��

Y��

�
and

�
X��

Y��

�
vectors in �����

��



do not remain O��� as s 	
p
d 
 
� Thus� the higher order terms of �
���

should be modelled as�

��
�

X��

Y��

�

 � � �

�
u

v

�
	 eikcx��


� p
d

�

�
A 
 ��


�
X��

Y��

�

 ��

�
X��

Y��

�

 �
���

e�ikcx���
�

X��

Y��

�

 � � �
 c	c	

Again� A�Xij� Yij are functions of �A and �A for every i� j � N� Substituting
this expansion into ����� and gathering terms of the form �a�
a�eikcbx for
a�� a�� b� � N will lead to a modulation equation on the a� 	 �� a� 	 �� b� 	
��level� The equations on the �a�� a���level where a� 
 a� � � can be solved
in terms of A� The equation including higher order terms becomes

��� d�A�A 	 v�dA 
 

p
dA�A�A 
 hAjAj� � �




idA�A�A�A

��
�


�
d
p
dA�A�A�A�A 
 O���� �
���

where the O��� terms are the usual higher order terms in the GL�equation
�see for instance ����� Note that the A�A�A�A�A�term should be included in
the O��� terms if 
� � �� The expression for the coe�cient h of the non�
linear term simpli�es considerably due to the new scalings and the fact that
s 	 seFK 
 
 �see ��������������

h 	
��

�

p
d�
p
d�� ��� 
 O�
�	 �
�
�

Thus� h is always positive near the eFK�bifurcation In other words� even if
h � � for s not close to seFK � h will become positive if s decreases towards
seFK � This means that there must be a value of s� snl� at which h changes
sign� Near snl the GL�equation should be replaced by a degenerate GL�
equation �see ��� ��� ���� of the form

A� 	 rA 
 A�� � c�AjAj� 
 c�AjAj
 
 i�c�jAj�A� 
 c	A
� $A��	 �
���

This behaviour has a drastic e�ect on the patterns exhibited by ������ if
s � snl the GL�approximation predicts stable� stationary� periodic patterns
of the form ReiK� in ������ However� these solutions do not exist for h � ��
In section � we will encounter this phenomenon numerically� In ��� the sta�
bility of the stationary periodic patterns to �
��� is studied�

Note also that the cubic coe�cients in the non�linear terms of ����� do not
have a leading order in"uence on h as js� seFK j � �� Thus� this procedure

��



degenerates if we only consider cubic �and higher order� terms in ������ This
is in agreement with the analysis of section 
� in this case the GL�equation
limits on the eFK��equation �and many scalings are di�erent�� In this paper
we do not pay attention to the details of this transition� it is quite similar
to� and even a bit less complex than� the transition from the GL�equation
to the eFK��equation�

��� The limit � � O��	

The transition case � 	 O�
� or 
 	 O���� can be obtained in two di�erent
ways� either one �xes r � rc� i�e� �� and decreases s �i�e� 
�� or one �xes
s�seFK �
� and increases r�rc ���� The behaviour at � 	 O�
� is indepen�
dent of this� Here we consider 
 � O���� The best way to understand what
happens to the GL�equation in this limit� is to interpret the GL Ansatz and
scalings in Fourier space� The Fourier transform of the classical decomposi�
tion ����� �with the scaling � 	 �x� consists of �peaks� of width O��� around
the points Nkc� N � Z� the peaks around 
kc are of height O��

�
� and the

peaks around 
�kc and � are O���� In general � the peaks around Nkc are of
a O��jN j��� height �N 		 ��� see ���� for more details� The Fourier transform
of the decomposition leading to the singularly perturbed GL�equation has
a similar structure� there are peaks of height �

��
around k 	 
kc and peaks

around k 	 ��
�kc of height �� All these peaks have a width of O� �p
�
�� see

�gure 
� As 
 decreases we see that the width of the peaks increases� while
the distance between the peaks� kc� decreases �since kc 	 O�

p

��� When 


has become O��� we see that we cannot distinguish between separate peaks�
they are all overlapping �see �gure ���

Thus� one cannot assume any longer a decomposition like �
���� It must
be replaced by the eFK decomposition ������� see again �gure �� the struc�
ture in Fourier space is now only one �wide� peak of height �

��
and width

p
��

Note that one can also observe the evolution of the GL Ansatz �
��� to the
eFK Ansatz ������ in �
��� itself� as 
 decreases to �� the leading order term
becomes

�
u
v

�
	 ���

� p
d

�

�
A��A� �A�e

i �p
d
�B 


�
X��

Y��

�



�
X��

Y��

�
e
�i �p

d
�B 
 � � ��

	 ��B��B � �B�

by de�nition �note that kcx 	 �p
d�
�A 	 �p

d
�B�� Another way to see that the

GL Ansatz is not valid anymore is the fact that when 
 � � all the terms
of the form �N

��N
A �for every N� become O��� in equation �
���

We now want to study how the transition from the eFK��equation ������

��



to the singularly perturbed GL�equation �
��� takes place quantitatively�
Note that this means that all the coe�cients in the equations have to agree�
Since r is di�erently de�ned in the derivations of the singularly perturbed
GL�equation and of the eFK��equation� the coe�cients cannot agree yet�
We have taken in the derivations rGL 	 rcGL � v��

� 	 � �p
d


 �
d
� v��

�

and reFK 	 rceFK � v�

� 	 � �p

d

 �

d
� ��

d
p
d
� v�


� �when taking � 	 ���

Comparing these two expressions for r gives a relation between v� and v��

v� 	 � �

d
p
d


 v�
��


�
	 �
���

We need to compare the two expansions of the perturbation around the
solution ��� �� and equate ������ and �
���� This leads to


�B��B � �B�

� p
d

�

�

 hot 	 �
A��A� �A�

� p
d

�

�
eikcx 
 c	c	
 hot

where �A 	 �p
�
x� �B 	

p

x� �A 	 ��t� �B 	 
�t and kc 	

q
�
d
� Thus

B��B � �B� 	
�



A��A� �A�e

i
�Bp
d 


�



$A��A� �A�e

�i �Bp
d 
 hot �
���

However� the higher order terms cannot all be neglected� as we will see
below� Therefore� we write

B��B� �B� 	
�




�X
n���

�n��A� �A�e
in

�Bp
d � �
���

where ��n 	 $�n since B is real �the �n�s� n 		 �� correspond to the

�
Xn�

Yn�

�

amplitude of the harmonics in �
����� We know that �� 	 A and that
j�nj � � for n 		 �� Substituting this expression for B into the eFK��
equation ������� we �nd� after multiplying by �

�
� the following set of equations

for the �n�

��


�
��� d��n�A 	 ���n� � ���p

d

 v�d

��


�
��n 



in�



�n� � ���n�A


�
p
d��n� � ��

��


�
�n�A�A � 
ind

��


�
�n�A�A�A

�d
p
d
�	


	
�n�A�A�A�A �

�



�
p
d�� ��

�X
l���

�l�n�l	

where we have already used �
���� Now� we want to derive the equation for
�n�	 A�� we should obtain the singularly perturbed GL�equation� Recall

�




that j�nj � � for n 		 � which implies that the �n for n 		 
� still can be
rescaled� For n 	 � we obtain� at leading order�

� 	 � �p
d
�� � �

�



�
p
d�� ��

�X
l��

j�lj�	

This implies that we must rescale �� with the factor �
�

�� � when � � 
�

to obtain a consistent system� Thus we introduce �� 	 �
�

#��� This yields

#�� 	 ��
p
d�
p
d�� ��j��j�	 �
���

Setting n 	 � gives� at leading order�

� 	 � �p
d
�� � �



�
p
d� � ��

�X
l���

�l���l�

which gives us that �� also must be scaled with �
�
� therefore we introduce

�� 	 �
�

#��� And obtain

#�� 	 �
p
d

�
�
p
d�� ����

�	 �
����

The equation for �� reads�

��� d����A 	 v�d�� 
 

p
d���A�A �

�




id���A�A�A �

��


�
d
p
d���A�A�A�A

���
p
d� � ��� #�� $�� 
 #����� 
 hot	

Substituting the expressions �
��� and �
���� for #�� and #��� �nally gives
exactly the singularly perturbed GL�equation �
��� for ���

Thus in the region � � �� 
 � � one can derive the GL�equation from the
eFK��equation by using the relation �
���� However� one should be careful
here� inserting �
��� violates the assumptions made in the derivation of the
eFK��equation �section ����� There� we assume that B 	 O��� and that it
is a function of the spatial scale �B and time scale �B� This is clearly not the
case in �
���� Another way to see this is to look once again at �gure 
� here
we plotted both the singularly perturbed GL�peaks and the eFK�peaks for
� � �� 
 � �� These structures describe di�erent phenomena� One cannot
describe the GL behaviour using the eFK Ansatz� Thus� the singularly per�
turbed GL�equation and the eFK��equation do not coincide in the overlap
region � � �� 
 � � �they coincide as 
 	 O��� but then the GL�equation
is no longer valid�� However� the above derivation of an equation for �� 	 A

is still useful� it clearly shows� for instance� the subtle relation between the
quadratic non�linearity in the eFK��equation and the cubic non�linearity in
the GL�equation�

��



Remark ��� We can now compare the #�� and #��� which are given above�

with the

�
X��

Y��

�
and

�
X��

Y��

�
appearing in the derivation of the GL�

equation� see section ��� and Appendix A� Setting s 	
p
d 
 
 in equation

�A��� gives� after rescaling A with 
� for Y�� exactly the same equation as we
obtained for #��� In the same way� after rescaling A with 
 in equation �A����
we obtain for Y�� the same equation as for #��� This rescaling of A comes
from the fact that the �rst order term of both expansions of the perturba�
tions �for the GL�equation in section ��� and for the singularly perturbed
GL�equation in section 
��� di�er by a factor 
�

��� Deriving the GL�equation within the eFK��equation

If one studies the eFK��equation on an unbounded domain� one can analyse
the non�linear stability of the trivial �i�e� � �� solution by the �GL approach�
of section ���� Below we show that we can derive the GL�equation within the
eFK��equation� Note that this has also been done rigorously in ��� for the
SH �or eFK���equation� Here we present the asymptotic approach to relate
it to the transition studied in section 
��� Thus we study the eFK��equation
������ and write it as

B�B 	 L�B� 
 N�B��

where

L 	
�

�� d
�dv� � �

p
d�

��

���B
� d

p
d
�	

��	B
�

N�B� 	 ��
p
d� � ��

�� d
B�	

This system has a basic solution B � �� The linearised stability of the
solution is determined by setting

B��� �� 	 ce���k�v���ik� 
 c	c	

Substituting this into the linear part of the equation gives


�k� v�� 	
�

�� d
�dv� 
 �

p
d�k� � d

p
dk	�	

This gives the eigenvalue�curve� As long as 
�k� v�� � � for every k� the
solution B 	 � is stable and for 
�k� v�� 	 �� the solution becomes unstable�
For � � �� the eigenvalue�curve has one maximum at k 	 �� we will not

study this� For � � �� the eigenvalue�curve has two maxima at k 	 

q

	
d

and one minimum at k 	 �� For v� � � 	�

d
p
d

the eigenvalue is negative for

all k� the solution B 	 � is stable� whereas for v� 	 � 	�

d
p
d

the solution

��



becomes unstable at k 	 

q

	
d
� And so for v� � � 	�

d
p
d

there is a whole

interval of k�values around k 	 

q

	
d

where the solution is unstable� Thus

we can derive a classical modulation equation by the GL approach� Here the

critical point is �kc� v�crit� 	 �
q

	
d
�� 	�

d
p
d
�� And we take v� 	 � 	�

d
p
d


 w��

where � � � � � and w � �� The perturbation of the basic solution B 	 �
is taken as a slow modulation of the most unstable wave eikcx�

B��� �� 	 �A��� ��eikcx 
 c	c	
 hot� �
����

where � and � are slow space and time variables which are given by � 	 ��

and � 	 ��� �the standard GL�scaling�� Then we can derive on the ��eikcx�
level the following GL�equation

��� d�A� 	 wA 
 

p
d�A

 


��

�

p
d

�
p
d�� ���

��
AjAj�	

Note that the Landau�constant is always positive This equation is exactly
the same as the leading order part of the singularly perturbed GL�equation�
when we set � 	 �� derived in section 
��� This is no surprise� the above
analysis is in essence the same as that of section 
��� compare �
��� to �
�����
Note that �� � plays the role of �

�
in section 
���

Thus� the leading order part of the singularly perturbed GL�equation can be
considered as a GL�equation within the eFK��equation� However� as we ex�
plained in section 
�� and �gure 
 � this does not mean that the GL�equation
can be replaced by the eFK��equation�

� Numerical simulations

In this section� we study numerically the dynamics of the reaction�di�usion
system ������ For the GL�equation it is proved theoretically that when the
Landau�constant is negative there exist� for some interval of wave numbers�
stable� periodic solutions� see Appendix B� We will use the existence of
these solutions of the GL�equation to look for �periodic� solutions near the
eFK�bifurcation�

First we will numerically check the existence of the periodic solutions which
are theoretically known to be solutions of the GL�equation� Then we will
decrease s to study how the transition to the eFK��equation in"uences the
behaviour of these solutions� To be able to do numerical simulations we have
to restrict x to a bounded interval� This interval has to be large enough to
ensure that the boundaries do not in"uence the dynamics �too much�� We
refer to section ��
 for a discussion� We �xed the length of the interval on
x � ��� 
���� This choice is �justi�ed� by a numerical check of the theoretical

��



predictions of the stability of periodic solutions of the GL�equation�

Most of the parameters in system ����� remain �xed during the simula�
tions� We chose for most of the simulations d 	 �

� and �� 	 �� 	 �� 	 �� 	
�� �� 	 �	��� �� 	 �	� and a 	 �� b 	 �� We also did simulations for other
choices of ��� � � � � ��� a and b and found that the results of the numerical
simulations do not really depend on the choice of these parameters �see also
section ��
�� The choice of d is so that d � � is satis�ed �section ��� and
it gives us that seFK 	 �

�

p
� � �	��� and scGL 	 �

�

p
� � �	�
� �section ���

With above chosen coe�cients the Landau�constant ����� remains negative
for almost all s�values� For seFK � s � �	��� it is positive� We did change
s and r and the initial conditions� we will explain the choice of initial data
in more detail later on�

We used a moving�grid code to integrate system ����� which is described
in detail in ���� see also ���� for an application to reaction�di�usion systems�
The space variable x in system ����� is scaled to #x so that the numerical sim�
ulations take place on the #x�interval ��� ��� We take homogeneous Neumann
boundary�conditions�

�u

�#x
�#x 	 �� t� 	

�u

�#x
�#x 	 �� t� 	

�v

�#x
�#x 	 �� t� 	

�v

�#x
�#x 	 �� t� 	 �	

Because it is known that the GL�equation has stable stationary periodic
solutions� the initial conditions are also taken periodic with respect to x�

u�#x� �� 	 v�#x� �� 	 �	��cos�p�x�	

We chose the amplitude of this initial condition to be of O���� �we set
�� 	 �	��� because near the eFK�bifurcation we �nd that the magnitude of
the solution is of O����� see sections ��� and 
��� In some of the simulations
we �xed p to obtain a certain number of periods in the interval ��� ��� in other
simulations we changed p as to vary the number of periods in the interval�
Throughout the simulations we have been looking for asymptotically stable
solutions� we only found stable stationary patterns�

��� Checking the GL�equation

We started the numerical simulations by checking the theoretical results
which are known for the GL�equation� Thus we chose seFK � s � scGL
along �� ��gure �� to be in the interval of s�values for which the GL�equation
is derived�

First we took as initial data

u�#x� �� 	 v�#x� �� 	 �	��cos�kcx��

��



where kc is the critical k�value
q

s�pd
d

�section �� and chose s such that
the initial data satisfy the boundary conditions� It follows from GL�theory
that this solution is stable �as long as the Landau�constant is negative��
Therefore� we calculated for several seFK � s � scGL the correspond�
ing kc and rc� Throughout the simulations we set r 	 rc � �� where
�� 	 �	��� Then for every pair �r� s� we started with the initial data
u�#x� �� 	 v�#x� �� 	 �	��cos�kcx� and studied the evolution in time� We
�nd that for �	�� � s � �	� the initial function is stable� where the ampli�
tude of u decreases to ����� �and for v it still is ������ see �gure �b for the
v�component of the stable� periodic solutions for s 	 �	���

For s � �	�� we �nd� because s is coming closer to scGL that� the solu�
tions are in"uenced by the dynamics of the coupled GL�system ������ which
governs the behaviour for s close to scGL�� �	�
�� We see here that the am�
plitude of the stable solution is periodic �see �gure �a�� For �	�� � s � �	���
the number of maxima of the stable solution is the same as the number of
maxima of the initial periodic solution� However� the stable stationary so�
lutions are no longer periodic� they have a �multi�bump� structure� In �gure
�c the v�component of the stable solution is given for s 	 �	���

Thus for s not too close to seFK or to scGL� the numerical results coin�
cide with the theoretical results which are known for the GL�equation� And
for s close to seFK or scGL we �nd that the eFK��equation resp� the cou�
pled system of GL�equations in"uences the behaviour of the stable solution
considerably�

The predictions of the GL�theory can also be checked by �xing s �and
thus r� and changing the period of the initial data� Theoretically� we know
that around k 	 kc there is a whole interval of k�values for which there
are stable stationary periodic solutions cos�kx�� see Appendix B� We �xed
s 	 �	�� r 	 ��	�
 and started with an initial periodic cosine�function which
has a integer number of periods in the interval� We changed this number
from � to 
� periods� From the simulations we see that periodic solutions
which start with a number of periods that is between �� and �� �including
�� and ��� are stable� Initial data which have more or less periods in the
interval are not stable and will go to solutions which have a number of pe�
riods in between �� and ���

These results more or less coincide with the theoretical results� However�
theoretically the interval of number of periods where the solution is stable is
slightly di�erent� The number of periods has to lie �theoretically� between
���
 and ���� periods� see Appendix B� The observation that the interval
of stable solutions di�ers from what could be expected by the theoretical

��



predictions for the GL�equation might be explained by the in"uence of the
singularly perturbed GL�equation� The interval of numerically stable solu�
tions is shifted to the left with respect to the interval of theoretically stable
solutions of the GL�equation� This is exactly what is shown for the singu�
larly perturbed GL�equation� see Appendix B� We will not study this in
detail because for s 	 �	� the singularly perturbed GL�equation can only be
expected to have a very small in"uence on the solutions�

��� Numerical simulations near �reFK � seFK	

So far� we showed numerical simulations for s in the region where we derived
the GL�equation� However� we already observed some �strange� behaviour
for s � �	�
 when starting with initial data u�#x� �� 	 v�#x� �� 	 �	��cos�kcx��
This is ascribed to the in"uence of the eFK��equation� Now� we will study
this in"uence further� We will start with �xed initial data and vary the pair
�r� s� from ���	��� �	�
� to ���	
�� �	��� where we decrease s with steps of
��� �or sometimes larger steps� and take r 	 rc�s�� ��� We performed these
simulations for initial data with �� �� and �� periods� We found that when
taking �	�� � s � �	�
� the initial data evolve towards a stable� sinusoidal
periodic solution� for �	�� � s � �	�� the simulations exhibit a non�periodic
stable solution� for s even smaller we �nd a constant solution� The transition
from s 	 �	�� to s 	 �	�� is quite drastic� see �gures �a and b �and section
��
��

First we focus on �	�� � s � �	�
� Here we observe stable periodic solutions�
however� the number of periods of the stable solution is not the same as in
the initial data� We also see that the number of periods at the end of the
simulation depends on the number of periods of the initial function� The�
oretically� we would expect that the end�period lies in an interval which is
symmetric around ��

kc
� this is the period of the stable solution cos�kcx� where

kc depends on s� We �nd that� except for s 	 �	�� � the end�periods lie in
the theoretical stable interval� For s 	 �	��� the periodic stable solution
must have� according to theory� from ���� to ���� periods� We �nd a stable
function with �� periods if we take an initial condition with � and �� periods
�taking an initial condition with �� periods� we �nd a stable function with
�� periods� this is in the interval of theoretically stable solutions��see also
section ��
� This could be ascribed to the same phenomenon which shifted
the theoretical interval of stable solutions which we found before for s 	 �	��

Now� we will look at the behaviour of the solutions for �	�� � s � �	���
The number of maxima of the stable solution remains the same as in the
initial data� see �gures �� � and ��� Again we see that the stable function
depends on the number of periods of the initial function� Some of the sim�
ulations result in a periodic stable solution� However� these solutions are

��



not a �simple� sin� or cosine�like function as in the GL case� but so�called
multi�bump solutions� When starting with �� periods where s	���� ��gure
�b� and with �� periods where s 	 �	�� and s 	 �	�� the periodic solutions
have maxima which are sharp peaks and minima which are much smoother�
For initial data with � periods where s 	 �	�� and s 	 �	�� ��gure �c� and
with �� periods where s 	 �	�
� s 	 �	�� and s 	 �	�� ��gure �a� the solu�
tions still have sharp peaks as maxima� At the minima we see that a �dip�
appears� For the other initial data� the stable solutions are not periodic�
However� we see repeating patterns similar to the ones we saw before� The
maxima are always sharp peaks and the minima are either smoother or have
a �dip� ��gures �b and d and ��a and b and section ��
�� All the stable
solutions are symmetric in the middle of the x�interval�

��� Numerical simulations with cubic nonlinearities

In section ��
 we derived an eFK�equation with cubic non�linear terms� this
followed by setting ��� � � � � �� equal to zero in the non�linear terms N� and
N� ������ and ������� Because the eFK��equation is studied extensively in
literature ���
� �� ��� ���� we also did some numerical simulations in this
case� where the eFK��equation is expected to describe the behaviour of
small solutions� We started with an initial function with � periods and
decreased s from s 	 �	�� to s 	 �	�� where we take steps of size �����
Except for s 	 �	�� and s 	 �	��� the stable solutions are periodic� but�
these solutions are not all �simple� sin� or cosine�like functions� once again
multi�bump solutions occur� For s 	 �	�� and s 	 �	�� we do �nd a �simple�
cosine�like function� In the transition to s 	 �	�� the stable solution changes
drastically� see �gures ��a and b� For �	�� � s � �	�� the solutions have
both at the maxima and at the minima a �dip�� see �gure ��b�

For s 	 �	� and s 	 �	��� this dip vanishes at the maxima and still
remains at the minima �see �gure ��c�� Note that this solution is not sym�
metric in the x�axis�

We also performed numerical simulations for other initial data� Similar
behaviour as described above is found� We �xed s 	 �	�� changing the pe�
riod of the initial condition gives interesting stable solutions when starting
with 
 and � periods� see �gures �a and b� However� when starting with ��
or more periods� nearly all the exotic behaviour has vanished and the stable
solutions become periodic cosine�functions�

��� Interpretation

At the beginning of section � we remarked that the outcome of the simu�
lations did not really depend on the choices of N��u� v� and N��u� v�� We
for instance chose ��� 			� ��� a� b such that the sign of the quadratic term in

��



the eFK��equation changed �with respect to the standard choice of �gures
�� � ����� This yields the expected outcome� we found that the observed
multi�bump patterns are in essence the same� except for the fact that the v�
components of the stable patterns are now re"ected in the x�axis� However�
in choosing N��u� v� and N��u� v� it is crucial that

p
d�� � �see ������ and

�
�
�� is small� If that is not the case then the simulations follow the pre�
dictions of the asymptotic theory �see section 
���� the Landau coe�cient
does not change sign near �reFK � seFK�� thus� there are no bounded small
solutions between �rnl� snl� and �reFK � seFK� for r near and below rc�s��

A priori� one might guess that the fact that
p
d� 	 � is small will not

in"uence the asymptotic analysis too much� However if
p
d�� � is �numer�

ically� small� then it is not clear whether one can neglect the asymptotic
higher order terms of the eFK��equation ������ of O�
�� On the contrary�
it can be expected that at least some of these terms cannot be neglected�
Of course� this problem can be circumvented by only considering cubic non�
linearities N� and N�� then

p
d� � � � � �see ������ and �������� Here the

above problem does not occur� the asymptotic dynamics are described by
the eFK��equation �see section ��
�� In �gure ��a we show a plot of the out�
come of a numerical simulation of the eFK��equation� Here the coe�cients
and initial condition are comparable to the choices we made when perform�
ing the numerical simulations on ����� that produced the solution given in
�gure �a� We know by section ��
 that the behaviour of these solutions
should be described asymptotically by the eFK��equation� There is a strik�
ing resemblance between �gures ��a and �a �at least qualitatively�� This
strongly suggests that the attractors of the eFK��equation should also be
�approximations� of the attractors of the full system ���
� near �reFK � seFK�
�for cubic N� and N��� Of course� we are still far away from a mathematical
proof of such a statement�

A full asymptotic analysis of the more �generic� case of quadratic non�
linearities is the subject of future research� The analysis will become much
more involved�

p
d��� should be considered as a third small quantity� This

yields that the �non�linear� degenerate GL bifurcation described in section

�� ����� �� ���� occurs asymptotically close to the eFK bifurcation point�
Thus� the analysis of this paper should be combined with the approach of
���� ��� As a result� one expects that the dynamics near �reFK� seFK� are
described by a combination of the eFK�� the eFK� and the degenerate GL�
equation �
���� This is also supported by a numerical simulation of the
�eFK�
�� equation�

Bt 	 B 
 DBxx � Bxxxx 
 kB� 
 lB� �����

We again consider the situation �and initial conditions� similar to that de�
scribed by the asymptotic eFK��equations of this section� Then� we �nd

��



that there are no bounded solutions for l 	 � �and D � ��� Note that this
agrees with the above� this is the case that

p
d�� � is not small� Thus� the

existence of a �negative� possibly small� cubic term is of crucial importance�
In �gure ��b we show an attractor of ����� for k 	 �	�� l 	 �� and D 	 ���
At this point it is not clear whether this is a pattern that can also be found
in the simulations of ������� it is certainly not exactly like those shown in
�gures �� �� ��� A full analysis will yield all relevant non�linear terms of the
�degenerate� eFK�equation �one might� for instance� also expect the appear�
ance of �Kuramoto�Sivashinsky terms� as �Bx����

Another interesting phenomenon that we so far did not discuss is the sharp
transition between the �regular� GL patterns and the multi�bump patterns�
compare for instance �gure �a to �b� here the only di�erence is a �	�� change
in s �or �gure ��a to �gure ��b� �s 	 �	���� This transition is � at least
numerically � closely related to the process by which an unstable periodic
pattern of the �real� GL�equation evolves towards a stable periodic pattern�
This process has been described by Kramer and Zimmerman in ����� but that
description does not seem to be accurate enough to understand it completely
� at least not in the context of this paper �note that the transition occurs
in a region where the GL�equation should be replaced by the singularly per�
turbed GL�equation �
����� Initially there is no signi�cant di�erence in the
numerical simulations leading to �gures �a and �b� both unstable cosines
of the initial conditions form �dips� either at the maxima or the minima�
and start to look like a multi�bump pattern� However� in the simulation
leading to �gure �a these �dips� grow until a sinusoidal pattern appears� In
the simulation leading to �gure �b the �dips� stop to grow at a certain level
and the stable multi�bump pattern is formed� The same mechanism seems
to be responsible for all multi�bump patterns observed in this paper� Thus�
a more detailed understanding of the process by which the GL�equation
brings a periodic pattern from outside the Eckhaus band into this band of
stable solutions would shed more light on the creation of stable multi�bump
solutions �and vice versa��

Finally� we remark that changing the length of the x�interval has a very
subtle in"uence on the numerical simulations of this process and thus on
the type of the observed asymptotically stable multi�bump patterns� the
�dips� appear �suddenly� at di�erent places� resulting either in an periodic
GL pattern with an unexpected number of periods� or a structurally di�er�
ent multi�bump pattern�
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A Appendix

Here we give a detailed derivation of the GL�equation� First we express the
functions in expansion ����� in terms of A by solving the equations at the
a� 	 ��level� For a� 	 �� b� 	 �� we get�

rcX�� 
 Y�� 
 ��jAj� 	 �
sY�� �X�� 
 ��jAj� 	 �

where

� 	 d�� 

p
d�� 
 ��

� 	 d�� 

p
d�� 
 ��	

From this system we can solve X�� and Y����
X��

Y��

�
	 � �djAj�

�s �pd��

�
s�� �

� 
 �rc

�
	 �A���

On the a� 	 b� 	 ��level we have��
rcX�� 
 Y�� � 
k�cX�� 
 �A� 	 �
sY�� �X�� � 
k�cdY�� 
 �A� 	 �	

Solving X�� and Y�� from this system��
X��

Y��

�
	

dA�

��s� pd��

�
��s� 


p
d�� 
 �

�� 
 �
d
��s� �

p
d�

�
	 �A���

For a� 	 �� b� 	 � we �nd

Mc

�
X��

Y��

�
	 ��ikcA�A

� p
d

�

�
	 �A���

This equation automatically satis�es the solvability condition ���
���
X��

Y��

�
	

�
�idkcA�A

�

�



� p
d

�

�
A���A� ��	

Where A� is a second higher order amplitude which depends on �A and � �
Finally� on the a� 	 �� b� 	 ��level� the modulation equation is derived from

Mc

�
X��

Y��

�
	

� p
d

�

�
A� 


�
v�
p
d

�

�
A�

� p
d

d

�
A�A�A � �ikc

�
X���A

dY���A

�

�
�

���
p
d�x�� 
 x��� 
 ���

p
d�y�� 
 y��� 
 x�� 
 x��� 
 ����y�� 
 y���

���
p
d�x�� 
 x��� 
 ���

p
d�y�� 
 y��� 
 x�� 
 x��� 
 ����y�� 
 y���

�
AjAj�


�

�
ad
p
d

b

�
AjAj�� �A�
�

�




where

�
X��

Y��

�
	 jAj�

�
x��
y��

�
and

�
X��

Y��

�
	 A�

�
x��
y��

�
	 Setting F 	

x�� 
 x�� and G 	 y�� 
 y�� and applying the solvability condition ���
�
leads to

�d� ��A� 
 v�
p
dA� �ikc�

p
dX���A � dY���A� 
 �����

p
d 
 �� � ���d�

p
d���F


�
p
d�� 
 ��� � d�� � �

p
d���G
 ��ad� � b��AjAj� 	 �	

which yields equations �������������

B Appendix

Here we brie"y describe results on the stability of periodic solutions of the
GL�equation� It is known that for a general GL�equation

A� 	 RA 
 bA�� 
 lAjAj� �B���

there exist periodic solutions of the form

A 	 
�eik� where �� 	
bk� �R

l
	

These periodic solutions are stable as long as k� � R
�b �see ������ This gives

us the stable periodic solutions of the GL�equation ����� where R� b and l
can be expressed in terms of d� s and h �we set v� 	 ���

R 	

p
d

�� d
� b 	



p
d�s� pd�

�� d
� l 	

h

�� d
	

Thus� for k� � �
���s�pd� the periodic solutions A 	 
�eik� with �� 	

	
p
d�s�pd�k��pd

h
of the GL�equation ����� are stable� Now we want to �nd

stable periodic solutions of the reaction�di�usion system ������ Therefore we
use the expansion�

u
v

�
	 �

� p
d

�

�
�Aeikcx 
 $Ae�ikcx� 
 hot

where k�c 	 s�pd
d

�see section ����� Substituting the expression which we

found for A� gives for v �observe that u 	
p
dv at leading order�

v 	 ��� cos��k� 
 kc�x�

where we used the fact that � 	 �x� This solution is stable as long as
k� � �

���s�pd�
� Thus� �xing d and s �which are the only parameters left in

this problem�� the family of stable periodic solutions can be calculated�

��



For example� setting d 	 �	� and s 	 �	�� as we do in the simulations
in section ���� we obtain kc 	 �	
�� and stability for k� � �	���� Thus the
solutions a cos�mx� are stable when �	��� � m � �	��� where a 	 ��� �here
we used the fact that in the numerical simulations � 	 �	��� This coincides
with a cosine�function which has from ���
 to ���� periods in the interval
��� 
����

For the singularly perturbed GL�equation stability of periodic solutions can
also be given� We will only state the results here� the calculations go along
the same line as for the classical GL�equation� We can rescale the singu�
larly perturbed GL�equation �
���� by rescaling �� � and A� to the following
equation

A� 	 A 
 A�� � �ibA��� � b�A���� � lAjAj� �B���

where l 	 
� and � � b � �� Then there exist periodic solutions of the
form A 	 Reik� where R� 	 �� k��bk 
 ���� These solutions are stable for
��

�b� �p
�
� k � ��

�b
 �p
�

�for the non�singular GL�equation the solutions

are stable for k� � �
��� Thus� the interval of k�values for which the solution

Reik� is stable has shifted to the left�
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Figure �� The v�component of the asymptotically stable �small� solutions to
���
� for �r� s� close to the co�dimension � point �s 	 �	���� In section ��
 it
will be shown that these solutions are described by the eFK��equation� The
only di�erence between a� and b� is the choice of initial conditions� a� 

periods b� � periods �we refer to the caption of �gure �� for more details��
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Figure �� The v�component of the stable solutions when starting with the
initial data �	�� cos�kcx� for a� s	���
 b� s	���� c� s	����� Here �� 	 �� 	
�� 	 �� 	 �� �� 	 �	��� �� 	 �	�� a 	 � and b 	 ��
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initial data �	�� cos�kcx� for a� s	���
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Figure �� The v�component of the stable solutions for an initial condition
that has � periods in the interval� The �gures are given for the following
choices of s� a� s	���� b� s	���� c� s	���� d� s	���� �N� and N� are as in
�gure ���
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Figure �� The v�component of the stable solutions with an initial condition
that has �� periods in the interval �N� and N� are as in �gure ��� a� s	����
b� s	����
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Figure ��� The v�component of the stable solutions with an initial condition
that has �� periods �N� and N� are as in �gure ��� a� s	���� b� s	����
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Figure ��� The v�component of the stable solutions with an initial condition
that has � periods in the interval� Here �� 	 �� 	 �� 	 �� 	 �� 	 �� 	
�� a 	 � and b 	 �� the dynamics are described by the eFK��equation� The
�gures are given for the following choices of s� a� s	���� b� s	���� c� s	���
d� s	����
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Figure ��� a� The stable solution for the eFK��equation ������ with an
initial condition that has 
 periods in the interval� here we chose l 	 ��� D 	
��� b� The stable solution for the �eFK�
���equation ����� with an initial
condition that has 
 periods in the interval� here D 	 ��� k 	 �	� and
l 	 ���
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