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We consider the problem of constructing Gardner’s deformations for the N=2
supersymmetric a=4-Korteweg–de Vries �SKdV� equation; such deformations
yield recurrence relations between the super-Hamiltonians of the hierarchy. We
prove the nonexistence of supersymmetry-invariant deformations that retract to
Gardner’s formulas for the Korteweg-de Vries �KdV� with equation under the com-
ponent reduction. At the same time, we propose a two-step scheme for the recursive
production of the integrals of motion for the N=2, a=4-SKdV. First, we find a new
Gardner’s deformation of the Kaup–Boussinesq equation, which is contained in the
bosonic limit of the superhierarchy. This yields the recurrence relation between the
Hamiltonians of the limit, whence we determine the bosonic super-Hamiltonians of
the full N=2, a=4-SKdV hierarchy. Our method is applicable toward the solution
of Gardner’s deformation problems for other supersymmetric KdV-type systems. ©
2010 American Institute of Physics. �doi:10.1063/1.3447731�

I. INTRODUCTION

This paper is devoted to the Korteweg–de Vries �KdV� equation and its generalizations.1 We
consider completely integrable, multi-Hamiltonian evolutionary N=2 supersymmetric equations
upon a scalar, complex bosonic N=2 superfield,

u�x,t;�1,�2� = u0�x,t� + �1 · u1�x,t� + �2 · u2�x,t� + �1�2 · u12�x,t� , �1�

where �1 and �2 are Grassmann variables satisfying �1
2=�2

2=�1�2+�2�1=0. Also, we investigate
one- and two-component reductions of such four-component N=2 supersystems upon u. In par-
ticular, we study the bosonic limits, which are obtained by the constraint
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u1 = u2 � 0. �2�

We analyze the structures that are inherited by the limits from the full supersystems and, con-
versely, recover the integrability properties of the entire N=2 hierarchies from their bosonic
counterparts.

We address the following problem �see Ref. 2�. It is known that the N=2 supersymmetric
KdV equation �SKdv� with a=4,3,4

ut = − uxxx + 3�uD1D2u�x +
a − 1

2
�D1D2u2�x + 3au2ux, Di =

�

��i
+ �i ·

d

dx
, �3�

possesses an infinite hierarchy of bosonic Hamiltonian superfunctionals ℋ�k� whose densities h�k�

are integrals of motion. We study whether these super-Hamiltonians can be produced recursively
by using those which are already obtained. In particular, this can be done via Gardner’s
deformations,1,2 which suggests finding a parametric family of superequations E��� upon the
generating superfunction ũ���=�k=0

+� h�k� ·�k for the integrals of motion such that initial superequa-
tion �3� is E�0�. It is further supposed that, at each �, the evolutionary equation E��� is given in the
form of a �super-�conserved current, and there is the Gardner–Miura substitution m� :E���
→E�0�. Hence, expanding m� in � and using the initial condition ũ�0�=u at �=0, one obtains the
differential recurrence relation between the Taylor coefficients h�k� of the generating function ũ
�see Ref. 1 or Refs. 4–8 and references therein, for details and examples�.

Let us summarize our main result. Under some natural assumptions, we prove the absence of
N=2 supersymmetry-invariant Gardner’s deformations for the bi-Hamiltonian N=2, a=4-SKdV.
Still, we show that the deformation problem must be addressed in a different way, and then we
solve it in two steps. First, in Sec. I we recall that the tri-Hamiltonian hierarchy for the bosonic
limit of �3� with a=4 contains the Kaup–Boussinesq equation, see Refs. 9–13 in the context of this
paper. Then in Sec. III we construct new deformations for the Kaup–Boussinesq equation such that
the Miura contraction m� now incorporates Gardner’s map for the KdV equation �Ref. 1, cf. Refs.
5 and 7�. Second, extending the Hamiltonians H�k� for the Kaup–Boussinesq hierarchy to the
superfunctionals ℋ�k� in Sec. IV, we reproduce the bosonic conservation laws for �3� with a=4.
Finally, we describe necessary conditions upon a class of Gardner’s deformations for �3� that
reproduce its fermionic local conserved densities �cf. Ref. 2�. All notions and constructions from
geometry of differential equations, which are used in this paper, are standard, see Refs. 8 and
14–16.

Remark 1: The recurrence relations between the �super-�Hamiltonians of the hierarchy are
much more informative than the usual recursion operators that propagate symmetries. In particu-
lar, the symmetries can be used to produce new explicit solutions from known ones, but the
integrals of motion help to find those primary solutions.

Let us also note that, within the Lax framework of superpseudodifferential operators, the
calculation of the �n+1�st residue does not take into account the n residues, which are already
known at smaller indices. This is why the method of Gardner’s deformations becomes highly
preferrable. Indeed, there is no need to multiply any pseudodifferential operators by applying the
Leibnitz rule an increasing number of times, and all the previously obtained quantities are used at
each inductive step. By this argument, we understand Gardner’s deformations as the transforma-
tion in the space of the integrals of motion that maps the residues to Taylor coefficients of the
generating functions ũ��� and which, therefore, endows this space with the additional structure
�that is, with the recurrence relations between the integrals�.

Still there is a deep intrinsic relation between the Lax �or, more generally, zero-curvature�
representations for integrable systems and Gardner’s deformations for them. Namely, both ap-
proaches manifest the matrix and vector field representations of the Lie algebras related to such
systems, and the deformation parameter � is inverse proportional to the eigenvalue in the linear
spectral problem.17
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II. N=2 a=4–SKDV AS BI-HAMILTONIAN SUPEREXTENSION OF KAUP–BOUSSINESQ
SYSTEM

Let us begin with the KdV equation,

u12;t + u12;xxx + 6u12u12;x = 0. �4�

Its second Hamiltonian operator, Â2
KdV=d3 /dx3+4u12d /dx+2u12;x, which relates �4� to the func-

tional HKdV
�2� =− 1

2�u12
2 dx, can be extended18 in the �2 	2�-graded field setup to the parity-preserving

Hamiltonian operator,3

P̂2 =

−

d

dx
− u2 u1 2u0

d

dx
+ 2u0;x

− u2 � d

dx
�2

+ u12 − 2u0
d

dx
− u0;x 3u1

d

dx
+ 2u1;x

u1 2u0
d

dx
+ u0;x � d

dx
�2

+ u12 3u2
d

dx
+ 2u2;x

2u0
d

dx
− 3u1

d

dx
− u1;x − 3u2

d

dx
− u2;x � d

dx
�3

+ 4u12
d

dx
+ 2u12;x


 . �5�

Here the fields u0 and u12 are bosonic and u1 and u2 are fermionic together with their derivatives
with respect to x. Likewise, the components �0��ℋ /�u0 and �12��ℋ /�u12 of the columns ��

= t��0 ,�1 ,�2 ,�12� are even graded and �1, �2 are odd graded. Operator �5� is unique in the class
of Hamiltonian total differential operators that merge to scalar N=2 superoperators which are local
in Di and whose coefficients depend on the superfield u and its superderivatives, see �9� below.
Operator �5� determines the N=2 classical superconformal algebra.19 Conversely, the Poisson
bracket given by �5� reduces to the second Poisson bracket for �4�, whenever one sets equal to zero

the fields u0, u1, and u2 both in the coefficients of �5� and in all Hamiltonians; the operator Â2
KdV

is underlined in �5�.
By construction, Mathieu’s extensions of KdV equation �4� are determined by operator �5� and

the bosonic Hamiltonian functional,

ℋ�2� =� �u0u0;xx− u12
2 + u1u1;x + u2u2;x + a · �u0

2u12 − 2u0u1u2��dx , �6�

which incorporates HKdV
�2� as the underlined term; similar to �9�, Hamiltonian �6� will be realized by

�8� as the bosonic N=2 super-Hamiltonian. Now we have that

ui;t = �P̂2�ij��ℋ�2�/�uj�, i, j � �0,1,2,12� .

This yields the system

u0;t = − u0;xxx + �au0
3 − �a + 2�u0u12 + �a − 1�u1u2�x, �7a�

u1;t = − u1;xxx + ��a + 2�u0u2;x + �a − 1�u0;xu2 − 3u1u12 + 3au0
2u1�x, �7b�

u2;t = − u2;xxx + �− �a + 2�u0u1;x − �a − 1�u0;xu1 − 3u2u12 + 3au0
2u2�x, �7c�

u12;t = − u12;xxx − 6u12u12;x + 3au0;xu0;xx + �a + 2�u0u0;xxx

+ 3u1u1;xx + 3u2u2;xx + 3a�u0
2u12 − 2u0u1u2�x. �7d�

Obviously, it retracts to �4�, which we underline in �7�, under the reduction u0=0, u1=u2=0.
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At all a�R, Hamiltonian �6� equals

ℋ�2� =� �uD1D2�u� +
a

3
u3�d�dx, where d� = d�1d�2. �8�

Likewise, structure �5�, which is independent of a, produces the N=2 superoperator,

P̂2 = D1D2
d

dx
+ 2u

d

dx
− D1�u�D1 − D2�u�D2 + 2ux. �9�

Thus we recover Mathieu’s superequations �3�,4 which are Hamiltonian with respect to �9� and

functional �8�: ut= P̂2��� /�u��ℋ2��. In component notation, superequations �3� are �7�.
The assumption that, for a given a, supersystem �3� admits infinitely many integrals of motion

yields the triplet a� �−2,1 ,4�, see Ref. 4. The same values of a are exhibited by the Painlevé
analysis for N=2 superequations �3�, see Ref. 20.

Three systems �3� have the common second Poisson structure, which is given by �9�, but the

three “junior” first Hamiltonian operators P̂1 for them do not coincide.3,4,21 Moreover, system �3�
with a=4 is radically different from the other two, both from the Hamiltonian and Lax viewpoints.

Proposition 1: The N=2 supersymmetric hierarchy of Mathieu’s a=4 KdV equation is bi-

Hamiltonian with respect to local superoperator �9� and the junior Hamiltonian operator22 P̂1
a=4

=d /dx, which is obtained from P̂2
a=4 by the shift u�u+� of the superfield u, see Refs. 23 and 24,

P̂1
a=4 =

d

dx
=

1

2
· � d

d�
�

�=0
P̂2

a=4	u+�.

The two operators are Poisson compatible and generate the tower of nonlocal higher structures

P̂k+2= �P̂2 � P̂1
−1�k � P̂2, k�1, for the N=2, a=4-SKdV hierarchy, see Refs. 25 and 26. Although P̂3

is nonlocal �cf. Ref. 13�, its bosonic limits under �2� yield the local third Hamiltonian structure Â2

for the Kaup–Boussinesq equation, which determines the evolution along the second time t2�� in
the bosonic limit of the N=2, a=4-SKdV hierarchy (see Proposition 2�.

Remark 2: The Kaup–Boussinesq system9 arising here is equivalent to the Kaup–Broer system
�the difference amounts to notation�. A bi-Hamiltonian N=2 superextension of the latter is known
from Ref. 11. A tri-Hamiltonian two-fermion N=1 superextension of the Kaup–Broer system was
constructed in Ref. 12, such that in the bosonic limit the three known Hamiltonian structures for
the initial system are recovered. At the same time, a boson-fermion N=1 superextension of the
Kaup–Broer equation with two local and the nonlocal third Hamiltonian structures was derived in

Ref. 13; seemingly, the latter equaled the composition P̂2 � P̂1
−1 � P̂2, but it remained to prove that

the suggested nonlocal superoperator is skew adjoint, that the bracket induced on the space of
bosonic super-Hamiltonians does satisfy the Jacobi identity, and that the hierarchy flows produced
by the nonlocal operator remain local.

There is a deep reason for the geometry of the a=4-SKdV to be exceptionally rich. All the
three integrable N=2 supersymmetric KdV equations �3� admit the Lax representations Lt3
= �A�3� ,L�, see Refs. 2, 3, 27, and 28. For a=4, the four roots of the Lax operator La=4=
−�D1D2+u�2, which are L1,	= 	 i�D1D2+u�, i2=−1, and the superpseudodifferential operators
L2,	= 	d /dx+�i
0�¯ � · �d /dx�−i, generate the odd-index flows of the SKdV hierarchy via
Lt2k+1

= ��L2
2k+1��0 ,L�. In particular, we have Aa=4

�3� = �L3/2��0 mod�D1D2+u�3. However, the entire
a=4 hierarchy is reproduced in the Lax form via �L1

kL2�t�
= ��L1

�L2��0 ,L1
kL2� for all k�N, cf. Ref.

29. Hence the superresidues30 of the operators L1
kL2 are conserved.

Consequently, unlike the other two, superequations �3� with a=4 admits twice as many con-
stants of motion as there are for the superequations with a=−2 or a=1. For convenience, let us
recall that superequations �3� are homogeneous with respect to the weights 	d /dx	�1, 	u	=1,
	d /dt	=3. Hence we conclude that, for each non-negative integer k, there appears the nontrivial
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conserved density Sres L1
kL2, see above, of weight k+1. The even weights also enter the play.

Consequently, there are twice as many commuting superflows assigned to the twice as many
Hamiltonians.

Example 1: The additional super-Hamiltonian ℋ�1�= 1
2�u2d�dx for �3� with a=4, and second

structure �9� or, equivalently, the first operator P̂1=d /dx and the Hamiltonian ℋ�2�, or P̂3 and
ℋ�0�=�ud�dx, see above, generate the N=2 supersymmetric equation

u� = D1D2ux + 4uux = P̂3� �

�u
�ℋ�0��� = P̂2� �

�u
�ℋ�1��� = P̂1� �

�u
�ℋ�2���, � � t2. �10�

Superequation �10� was referred to as the N=2 “Burgers” equation in Refs. 15 and 31 due to the
recovery of u�=uxx+4uux on the diagonal �1=�2. On the other hand, the bosonic limit of �10� is
the tri-Hamiltonian “minus” Kaup–Boussinesq system �see Refs. 5, 7, 9, and 10 and references
therein�,

u0;� = �− u12 + 2u0
2�x, u12;� = �u0;xx + 4u0u12�x. �11�

System �11� is equivalent to the Kaup–Broer equation via an invertible substitution. In these terms,
superequation �10� is a superextension of the Kaup–Boussinesq system.11–13 In their turn, the first
three Poisson structures for �3� with a=4 are reduced under �2� to the respective local structures
for �11�, see Proposition 2.

Our interest in the recursive production of the integrals of motion for �3� grew after the
discovery, see Ref. 31, of new n-soliton solutions,

u = A�a� · D1D2 log�1 + �
i=1

n

�i exp�kix − ki
3 · t 	 iki · �1�2��, A�a� = �1, a = 1

1

2
, a = 4, � �12�

for superequations �3� with a=1 or a=4 �but not a=−2 or any other a�R \ �1,4��. In formula �12�,
the wave numbers ki�R are arbitrary, and the phases �i can be rescaled to +1 for nonsingular
n-soliton solutions by appropriate shifts of n higher times in the SKdV hierarchy. A spontaneous
decay of fast solitons and their transition into the virtual states, on the emerging background of
previously invisible, slow solitons, look paradoxal for such KdV-type systems �a=1 or a=4�,
since they possess an infinity of the integrals of motion.

New solutions �12� of �3� with a=1 or a=4 are subject to condition �2� and therefore satisfy
the bosonic limits of these N=2 supersystems. In the same way, bosonic limit �11� of �10� admits
multisoliton solutions in Hirota’s form �12�, now with the exponents �i=kix	 iki

2�	 iki�1�2, see
Ref. 31. This makes the role of such two-component bosonic reductions particularly important. We
recall that reduction �2� of �3� with a=1 yields the Kersten–Krasil’shchik equation, see Refs. 31
and 32 and references therein. In this paper, we consider the bosonic limit of the N=2, a=4 SKdV
equation,

u0;t = − u0;xxx + 12u0
2u0;x − 6�u0u12�x, �13a�

u12;t = − u12;xxx − 6u12u12;x + 12u0;xu0;xx + 6u0u0;xxx + 12�u0
2u12�x, �13b�

which succeeds the Kaup–Boussinesq equation �11� in its tri-Hamiltonian hierarchy. We construct
a new Gardner deformation for it �cf. Ref. 7�.

In general, system �7� with a=4 admits three one-component reductions �except u0�0� and
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three two-component reductions, which are indicated by the edges that connect the remaining
components in the diagram,

u0
∥
∥
∥

u1 u12 u2.

System �7� with a=4 has no three-component reductions obtained by setting to zero only one of
the four fields in �1�. We conclude this paper by presenting a Gardner deformation for the two-
component boson-fermion reduction u0�0, u2�0 of the N=2, a=4-SKdV system, see �25�.

III. DEFORMATION PROBLEM FOR N=2, a=4-SKDV EQUATION

In this section, we formulate the two-step algorithm for a recursive production of the bosonic
super-Hamiltonians ℋ�k��u� for the N=2 supersymmetric a=4-SKdV hierarchy. Essentially, we
convert the geometric problem to an explicit computational procedure. Our scheme can be applied
to other KdV-type supersystems �in particular, to �3� with a=−2 or a=1�.

By definition, a classical Gardner’s deformation for an integrable evolutionary equation E is
the diagram

m�:E��� → E ,

where the equation E��� is a parametric extension of the initial system E=E�0� and m� is the Miura
contraction.1,5,8 Under the assumption that E��� be in the form of a �super-�conserved current, the
Taylor coefficients ũ�k� of the formal power series ũ=�k=0

+� ũ�k� ·�k are termwise conserved on E���
and hence on E. Therefore, the contraction m� yields the recurrence relations, ordered by the
powers of �, between these densities ũ�k�, while the equality E�0�=E specifies its initial condition.

Example 2: �Reference 1� The contraction,

m� = �u12 = ũ12 	 �ũ12;x − �2ũ12
2 � , �14a�

maps solutions ũ12�x , t ;�� of the extended equation E���,

ũ12;t + �ũ12;xx + 3ũ12
2 − 2�2 · ũ12

3 �x = 0, �14b�

to solutions u12�x , t� of the KdV equation �4�. Plugging the series ũ12=�k=0
+� u12

�k� ·�k in m� for ũ12, we
obtain the chain of equations ordered by the powers of �,

u12 = �
k=0

+�

ũ12
�k� · �k 	 ũ12;x

�k� · �k+1 − �
i+j=k

i,j�0

ũ12
�i�ũ12

�j� · �k+2.

Let us fix the plus sign in �14a� by reversing �→−� if necessary. Equating the coefficients of �k,
we obtain the relations

u = ũ12
�0�, 0 = ũ12

�1� + ũ12;x
�0� , 0 = ũ12

�k� + ũ12;x
�k−1� − �

i+j=k−2

i,j�0

ũ12
�i�ũ12

�j�, k � 2.

Hence, from the initial condition ũ12
�0�=u12, we recursively generate the densities

ũ12
�1� = − u12;x, ũ12

�2� = u12;xx − u12
2 , ũ12

�3� = − u12;xxx + 4u12;xu12,

ũ12
�4� = u12;4x − 6u12;xxu12 − 5u12;x

2 + 2u12
3 ,
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ũ12
�5� = − u12;5x + 8u12;xxxu12 + 18u12;xxu12;x − 16u12;xu12

2 ,

ũ12
�6� = u12;6x − 10u12;4xu12 − 28u12;xxxu12;x − 19u12;xx

2 + 30u12;xxu12
2 + 50u12;x

2 u12 − 5u12
4 ,

ũ12
�7� = − u12;7x + 12u12;5xu12 + 40u12;4xu12;x + 68u12;xxxu12;xx − 48u12;xxxu12

2

− 216u12;xxu12;xu12 − 60u12;x
3 + 64u12;xu12

3 ,

etc. The conservation ũ12;t= �d /dx�� · � implies that each coefficient u12
�k� is conserved on �4�.

The densities u12
�2k�=c�k� ·u12

k +¯, c�k�=const, determine the Hamiltonians ℋ12
�k�=�h12

�k��u12�dx
of the renowned KdV hierarchy. Let us show that all of them are nontrivial. Consider the zero-
order part ŭ12

KdV, such that ũ12��u12� ,��= ŭ12
KdV�u12,��+¯, where the dots denote summands con-

taining derivatives of u12. Taking the zero-order component of �14a�, we conclude that the gener-
ating function ŭ12

KdV satisfies the algebraic recurrence relation u12= ŭ12
KdV−�2�ŭ12

KdV�2. We choose the
root by the initial condition ŭ12

KdV 	�=0=u12, which yields

ŭ12
KdV = �1 − �1 − 4�2u12�/�2�2� . �15�

Moreover, the Taylor coefficients ŭ12
�k��u12� in ŭ12

KdV=�k=0
+� ŭ12

�k� ·�2k equal c�k� ·u12
k+1, where c�k� are

positive and grow with k. This is readily seen by induction over k with the base ŭ12
�0�=u12. Ex-

panding both sides of the equality u12= ŭ12
KdV−�2 · �ŭ12

KdV�2 in �2, we notice that

ŭ12
�k� = �

i+j=k−1,

i,j�0

ŭ12
�i� · ŭ12

�j� = �
i+j=k−1

c�i�c�j� · u12
k+1.

Therefore, the next coefficient, c�k�=�i+j=k−1c�i� ·c�j�, is the sum over i , j�0 of products of
positive numbers, whence c�k+1�
c�k�
0. This proves the claim.

Let us list the densities hKdV
�k� �u12

�2k� mod im d /dx of the first seven Hamiltonians for �4�. These
will be correlated in Sec. IV with the lowest seven Hamiltonians for �3�, see Ref. 4 and �24� below.
We have

hKdV
�1� = u12

2 , hKdV
�2� = 2u12

3 − u12;x
2 + 2u12

3 + u12;xx, hKdV
�3� = 5u12

4 + 5u12;xxu12
2 + u12;xx

2 ,

hKdV
�4� = − 14u12

5 + 70u12
2 u12;x

2 + 14u12u12;xxxu12;x + u12;xxx
2 ,

hKdV
�5� = 42u12

6 − 420u12
3 u12;x

2 + 9u12
2 u12;6x + 126u12

2 u12;xx
2 + u12;4x

2 − 7u12;xx
3 − 35u12;x

4 ,

hKdV
�6� = 1056u12

7 − 18 480u12
4 u12;x

2 + 7392u12
3 u12;xx

2 + 55u12
2 u12;8x − 1584u12

2 u12;xxx
2

+ 66u12u12;4x
2 + 3520u12u12;xx

3 − 6160u12u12;x
4 − 8u12;5x

2 + 3696u12;xx
2 u12;x

2 ,

hKdV
�7� = 15 444u12

8 − 432 432u12
5 u12;x

2 + 4004u12
4 u12;6x + 216 216u12

4 u12;xx
2 + 2145u12

3 u12;8x

− 45 760u12
3 u12;xxx

2 + 3861u12
2 u12;4x

2 + 133 848u12
2 u12;xx

3 − 360 360u12
2 u12;x

4

− 936u12u12;5x
2 + 36u12;6x

2 + 6552u12;4x
2 u12;xx + 72 072u12;xxx

2 u12;x
2 − 28 314u12;xx

4 .

At the same time, the densities u12
�2k+1�= �d /dx�� · ��0 are trivial. Indeed, for 
0ª�k=0

+� u12
�2k� ·�2k and


1ª�k=0
+� u12

�2k+1� ·�2k, such that ũ=
0+� ·
1, we equate the odd powers of � in �14a� and obtain

1= �1 /2�2��d /dx�log�1−2�2
0�.

In what follows, using deformation �14� of �4�, we fix the coefficients of differential mono-
mials in u12 within a bigger deformation problem �see Sec. III� for two-component system �13�.

We split the Gardner deformation problem for the N=2 supersymmetric hierarchy of �3� with
a=4 in two main and several auxiliary steps.
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First, we note that Miura’s contraction m� :E���→E, which encodes the recurrence relation
between the conserved densities, is common for all equations of the hierarchy. Indeed, the densi-
ties �and hence any differential relations between them� are shared by all the equations. Therefore,
we pass to the deformation problem for the N=2 super-Burgers equation �10�. This makes the first
simplification of the Gardner deformation problem for the N=2, a=4 super-KdV hierarchy.

Second, let h�k� be an N=2 superconserved density for an evolutionary superequation E,
meaning that its velocity with respect to a time �, �d /d��h�k�=D1�¯ �+D2�¯ �, is a total diver-
gence on E. By definition of Di, see �3�, the �1�2-component h12

�k� of such h�k�=h0
�k�+�1 ·h1

�k�

+�2 ·h2
�k�+�1�2 ·h12

�k� is conserved in the classical sense, �d /d��h12
�k�= �d /dx��¯ � on E. Let us con-

sider the correlation between the conservation laws for the full N=2 supersystem E and for its
reductions that are obtained by setting certain component�s� of u to zero. In what follows, we
study bosonic reduction �2�. Other reductions of superequation �3� are discussed in Sec. IV, see
�25�.

We suppose that the bosonic limit limB E of the superequation E exists, which is the case for
�3� and �10�. By the above, each conserved superdensity h�k��u� determines the conserved density
h12

�k��u0 ,u12�, which may become trivial. As in Ref. 28, we assume that the supersystem E does not
admit any conserved superdensities that vanish under reduction �2�. Then, for such h12

�k� that
originates from h�k� by construction, the equivalence class �h�k� mod im Di� is uniquely determined
by

� h12
�k��u0,u12�dx =� h�k��u�	u1=u2=0d�dx, here N = 2 and d� = d�1d�2.

Berezin’s definition of a superintegration, �d�i=0 and ��id�i=1, implies that the problem of
recursive generation of the N=2 super-Hamiltonians ℋ�k�=�h�k�d�dx for the SKdV hierarchy
amounts to the generation of the equivalence classes �h12

�k�dx for the respective �1�2-component.
We conclude that a solution of Gardner’s deformation problem for the supersymmetric system �10�
may not be subject to the supersymmetry invariance. This is a key point to further reasonings.

We stress that the equivalence class of such functions h12
�k��u0 ,u12� that originate from ℋ�k� by

�2� is, generally, much more narrow than the equivalence class �h12
�k� mod im d /dx� of all con-

served densities for the bosonic limit limB E. Obviously, there are differential functions of the form
�d /dx��f�u0 ,u12�� that cannot be obtained33 as the �1�2-component of any �D1� · �+D2� · �� 	u1=u2=0,
which is trivial in the supersense. Therefore, let h12

�k� be any recursively given sequence of integrals
of motion for limB E �e.g., suppose that they are the densities of the Hamiltonians ℋ�k� for the
hierarchy of limB E�, and let it be known that each ℋ�k�=�h12

�k�dx does correspond to the superanalog
ℋ�k�=�h�k�d�dx. Then the reconstruction of h�k� requires an intermediate step, which is the elimi-
nation of excessive, homologically trivial terms under d /dx that preclude a given h12

�k� to be
extended to the full superdensity in terms of the N=2 superfield u. This is illustrated in Sec. IV.

Third, the gap between the two types of equivalence for the integrals of motion manifests the
distinction between the deformations �limB E���� of bosonic limits and, on the other hand, the
bosonic limits limB E��� of N=2 superdeformations. The two operations, Gardner’s extension of E
to E��� and taking the bosonic limit limB F of an equation F, are not permutable. The resulting
systems can be different. Namely, according to the classical scheme Refs. 1 and 8, each equation
in the evolutionary system �limB E���� represents a conserved current, whence each Taylor coef-
ficient of the respective field is conserved, see Example 2. At the same time, for limB E���, the
conservation is required only for the field ũ12���, which is the �1�2-component of the extended
superfield ũ���. Other equations in limB E��� can have any form.34

In this notation, we strengthen the problem of recursive generation of the super-Hamiltonians
for the N=2 superequation �10�. Namely, in Sec. III we construct true Gardner’s deformations for
its two-component bosonic limit �11�. Moreover, the known deformation �14� for �4� upon the
component u12 of �1� allows to fix the coefficients of the terms that contain only u12 or its
derivatives. The solution to the Gardner deformation problem generates the recurrence relation
between the nontrivial conserved densities h12

�k� which, in the meantime, depend on u0 and u12. By
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correlating them with the �1�2-components of the superdensities h�k� that depend on u, we derive
the Hamiltonians ℋ�k�, k�0, for the N=2 supersymmetric a=4-KdV hierarchy, see Sec. IV.

IV. NEW DEFORMATION OF THE KAUP–BOUSSINESQ EQUATION

In this section, we construct a new Gardner’s deformation m� : �limB E����→ limB E for the
“minus” Kaup–Boussinesq equation �11�, which is the bosonic limit of the N=2 supersymmetric
system �10�. We will use the known deformation �14� to fix several coefficients in the Miura
contraction m�, which ensures the difference of new solution �16� and �17� from previously known
deformations of �11�, see Ref. 7. We prove that the new deformation is maximally nontrivial: It
yields infinitely many nontrivial conserved densities, and none of the Hamiltonians is lost.

In components, the N=2 superequation �10� reads

u0;� = �− u12 + 2u0
2�x, u1;� = �u2;x + 4u0u1�x,

u2;� = �− u1,x + 4u0u2�x, u12;� = �u0;xx + 4u0u12 − 4u1u2�x.

Clearly, it admits reduction �2�; moreover, Kaup–Boussinesq system �11� is the only possible limit
for �10�. Let us summarize its well-known properties.9,10

Proposition 2: The completely integrable Kaup–Boussinesq system �11� inherits the local

tri-Hamiltonian structure from the two local �P̂1 and P̂2� and the nonlocal P̂3= P̂2 � P̂1 � P̂2 operators
for the N=2, a=4-SKdV hierarchy under the bosonic limit �2�,

� u0

u12
�

�

= Â1
12� �/�u0

�/�u12
��� �2u0

2u12 −
1

2
u12

2 −
1

2
u0;x

2 �dx�
= Â1

0� �/�u0

�/�u12
��−� u0u12dx� = Â2� �/�u0

�/�u12
��−� u12dx� .

The senior Hamiltonian operator Â2 is


 u0;x + 2u0
d

dx
u12;x − 4u0u0;x − 2u0

2 d

dx
+ 2u12

d

dx
+

1

2
� d

dx
�3

u12;x − 2u0
2 d

dx
+ 2u12

d

dx
+

1

2
� d

dx
�3

− 4u0u12
d

dx
− 4

d

dx
� u0u12 − u0� d

dx
�3

− � d

dx
�3

� u0

 .

The junior Hamiltonian operators Â1
0 and Â1

12 are obtained from Â2 by the shifts of the respective
fields, cf. Refs. 23 and 24,

Â1
0 =


d

dx
− 2u0;x − 2u0

d

dx

− 2u0
d

dx
− 2u12;x − 4u12

d

dx
− � d

dx
�3
 =

1

2
· � d

d�
�

�=0
Â2	u0+�

and

Â1
12 =
 0

d

dx

d

dx
0 
 =

1

2
· � d

d�
�

�=0
Â2	u12+�.

The three operators Â1
0, Â1

12, and Â2 are Poisson compatible.

083507-9 Gardner’s deformations of N=2, a=4 super-KdV J. Math. Phys. 51, 083507 �2010�

Downloaded 26 Jan 2011 to 131.211.104.231. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



Kaup–Boussinesq equation �11� admits an infinite sequence of integrals of motion. We will
derive them via the Gardner deformation. Unlike in Ref. 7, from now on we always assume that
�14a� is recovered under ũ0�0.

We assume that both the extension E��� of �11� and the contraction m� :E���→E into �11� are
homogeneous polynomials in �. From now on, we denote reduction �11� by E.

First, let us estimate the degrees in � for such polynomials E��� and m�, by balancing the
powers of � in the left- and right-hand sides of �11� with u0 and u12 replaced by the Miura
contraction m�= �u0=u0��ũ0 , ũ12� ,�� ,u12=u12��ũ0 , ũ12� ,���. The time evolution in the left-hand
side, which is of the form u�=�ũ�

�m�� by the chain rule, sums the degrees in �: deg u�=deg m�

+deg E���. At the same time, we notice that system �11� is only quadratic nonlinear. Hence its
right-hand side, with m� substituted for u0 and u12, gives the degree 2�deg m�, irrespective of
deg E���. Consequently, we obtain the balance35 1:1 for max deg m� :max deg E���. This is in
contrast with the balance 1:2 for polynomial deformations of bosonic limit �13� for initial SKdV
system �3�, which is cubic nonlinear36 �cf. Ref. 4�.

Obviously, a lower degree polynomial extension E��� contains fewer undetermined coeffi-
cients. This is the first profit we gain from passing to �10� instead of �3�. By the same argument,
we conclude that m� :E���→E, viewed as the algebraic system upon these coefficients, is only
quadratic nonlinear with respect to the coefficients in m� �and, obviously, linear with respect to
the coefficients in E���; this is valid for any balance deg m� :deg E����. Hence the size of this
overdetermined algebraic system is further decreased.

Second, we use the unique admissible homogeneity weights for Kaup–Boussinesq system
�11�,

	u0	 = 1, 	u12	 = 2, 	d/d�	 = 2,

here 	d /dx	�1 is the normalization. The Miura contraction m�= �u0= ũ0+� · �¯ � , u12= ũ12

+� · �¯ ��, which we assume regular at the origin, implies that 	ũ0	=1 and 	ũ12	=2 as well. We let
	�	=−1 be the difference of weights for every two successive Hamiltonians for the N=2,
a=4-SKdV hierarchy, see Ref. 4 and �24� below. In this setup, all functional coefficients of the
powers �k both in E��� and m� are homogeneous differential polynomials in u0, u12, and their
derivatives with respect to x. It is again important that the time � of weight 	d /d�	=2 in �10�
precedes the time t with 	d /dt	=3 in the hierarchy of �3�, where 	�i	=− 1

2 and 	u	=1. As before, we
have further decreased the number of undetermined coefficients.

The polynomial ansatz for Gardner’s deformation of �11� is generated by the procedure GENS-

SPOLY, see Appendix A, which is a new possibility in the analytic software.16,37 We thus obtain the
determining system m� :E���→E. Using SSTOOLS, we split it to the overdetermined system of
algebraic equations, which are linear with respect to E��� and quadratic nonlinear with respect to
m�. Moreover, we claim that this system is triangular. Indeed, it is ordered by the powers of �,
since the determining system is identically satisfied at zeroth order and because equations at lower
orders of � involve only the coefficients of its lower powers from m� and E���.

Third, we use deformation �14� of the KdV equation.1 We recall the following.

• Miura’s contraction m� is common for all two-component systems in the bosonic limit, see
�2�, of the N=2, a=4-SKdV hierarchy;

• For any a, the bosonic limit of �3�, see �7� and �13�, incorporates the KdV equation �4�.

Using �14a�, we fix those coefficients in m� which depend only on u12 and its derivatives, but
not on u0 or its derivatives. Apparently, we discard the knowledge of such coefficients in the
extension of bosonic limit �13�, since for us now it is not the object to be deformed. But the
minimization of the algebraic system, which we have achieved by passing to �10�, is so significant
that this temporary loss in inessential. Furthermore, the above reasoning shows that the recovery
of the coefficients in the extension E��� amounts to solution of linear equations, while finding the
coefficients in m� would cost us the necessity to solve nonlinear algebraic systems. We managed
to fix some of those constants for granted.
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We finally remark that the normalization of at least one coefficient in the deformation problem
cancels the redundant dilation of the parameter �, which, otherwise, would remain until the end.
This is our fourth simplification.38

We let the degrees deg m�=deg E��� be equal to four �cf. Ref. 4�. Under this assumption, the
two-component homogeneous polynomial extension E��� of system �11� contains 160 undeter-
mined coefficients. At the same time, the two components of the Miura contraction m� depend on
94 coefficients. However, we decrease this number by 9, setting the coefficient of ũ12;x equal to +1
and, similarly, to �1 for ũ12

2 �see �14a�, where the 	 sign is absorbed by ��−��. Likewise, we set
equal to zero the seven coefficients of ũ12;xx, ũ12ũ12;x, ũ12;xxx, ũ12

3 , ũ12;x
2 , ũ12ũ12;xx, and ũ12;xxxx in m�.

The resulting algebraic system with the shortened list of unknowns and with the auxiliary list
of nine substitutions is handled by SSTOOLS and then solved by using CRACK.39

Theorem 3: Under the above assumptions, the Gardner deformation problem for Kaup–
Boussinesq equation (11) has a unique real solution of degree of 4. The Miura contraction m� is
given by

u0 = ũ0 + �ũ0;x − 2�2ũ12ũ0, �16a�

u12 = ũ12 + ��ũ12;x − 2ũ0ũ0;x� + �2�4ũ12ũ0
2 − ũ12

2 − ũ0;x
2 � + 4�3ũ12ũ0ũ0;x − 4�4ũ12

2 ũ0
2. �16b�

The extension E��� of (11) is

ũ0;� = − ũ12;x + 4u0ũ0;x + 2��ũ0ũ0;x�x − 4�2�ũ0
2u12�x, �17a�

ũ12;� = ũ0;xxx + 4�ũ0ũ12�x − 2��ũ0ũ12;x�x − 4�2�ũ0ũ12
2 �x. �17b�

System (17) preserves the first Hamiltonian operator Â1
� = � 0 d/dx

d/dx 0
� from Â1

12 for (11).
The Miura contraction m� is shared by all equations in the Kaup–Boussinesq hierarchy. Solv-

ing the linear algebraic system, we find the extension �limB ESKdV
a=4 ���� for bosonic limit �13� of �3�

with a=4,

ũ0;t = − ũ0;xxx − 6�ũ0ũ12�x + 12ũ0
2ũ0;x + 12��ũ0

2ũ0;x�x + 6�2�ũ0ũ12
2 − 4ũ12ũ0

3 + ũ0ũ0;x
2 �x

+ �3��− 24�ũ12ũ0
2ũ0;x�x + �4�24ũ12

2 ũ0
3�x, �18a�

ũ12;t = − ũ12;xxx − 6ũ12ũ12;x + 12�ũ0
2ũ12�x + 6ũ0ũ0;xxx + 12ũ0;xxũ0;x

+ 6��ũ0;xxũ0;x − 2ũ0
2ũ12;x�x

+ 2�2�ũ12
3 − 18ũ12

2 ũ0
2 − 6ũ12ũ0ũ0;xx − 3ũ12ũ0;x

2 − 6ũ0ũ12;xũ0;x�x

+ 24�3�ũ12ũ0
3ũ12;x�x + 24�4�ũ12

3 ũ0
2�x. �18b�

Now we expand the fields ũ0���=�k=0
+� ũ0

�k� ·�k and ũ12���=�k=0
+� ũ12

�k� ·�k and plug the formal power
series for ũ0 and ũ12 in m�. Hence we start from ũ0

�0�=u0 and ũ12
�0�=u12, which is standard, and

proceed with the recurrence relations between the conserved densities u0
�k� and u12

�k�,

ũ0
�1� = − u0;x, ũ0

�n� = −
d

dx
ũ0

�n−1� + �
j+k=n−2

2ũ12
�k�ũ0

�j�, ∀ n � 2,

ũ12
�1� = 2u0u0;x − u12;x, ũ12

�2� = u12
2 + u12;xx − 4u12u0

2 − 3u0;x
2 − 4u0u0;xx,
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ũ12
�3� = �

j+k=2
2ũ0

�j� d

dx
ũ0

�k� −
d

dx
ũ12

�2� + �
j+k=1

�ũ12
�j�ũ12

�k� + � d

dx
ũ0

�j��� d

dx
ũ0

�k���
− �

j+k+l=1
4ũ12

�j�ũ0
�k�ũ0

�l� − 4u12u0u0;x,

ũ12
�n� = −

d

dx
ũ12

�n−1� + �
j+k=n−1

2ũ0
�j� d

dx
ũ0

�k� + �
j+k=n−2

�ũ12
�j�ũ12

�k� +
d

dx
�ũ0

�j��
d

dx
�ũ0

�k���
− �

j+k+l=n−2
4ũ12

�j�ũ0
�k�ũ0

�l� − �
j+k+l=n−3

4ũ12
�j�ũ0

�k� d

dx
ũ0

�l�

+ �
j+k+l+m=n−4

4ũ12
�j�ũ12

�k�ũ0
�l�ũ0

�m�, ∀ n � 4.

Example 3: Following this recurrence, let us generate the eight lowest weight nontrivial
conserved densities, which start the tower of Hamiltonians for the Kaup–Boussinesq hierarchy.

We begin with ũ0
�0�=u0 and ũ12

�0�=u12. Next, we obtain the densities

ũ0
�2� = u0;xx + 2u0u12, ũ12

�2� = − 4u0;xxu0 − 3u0;x
2 + u12;xx − 4u0

2u12 + u12
2 ,

which contribute to the tri-Hamiltonian representation of �11�, see Proposition 2. Now we proceed
with

ũ0
�4� = u0;4x − 12u0;xxu0

2 + 6u0;xxu12 − 18u0;x
2 u0 + 10u0;xu12;x + 6u12;xxu0 − 8u0

3u12 + 6u0u12
2 ,

ũ12
�4� = − 8u0;4xu0 − 20u0;xxxu0;x − 13u0;xx

2 + 32u0;xxu0
3 − 48u0;xxu0u12 + 72u0;x

2 u0
2 − 38u0;x

2 u12

− 80u0;xu12;xu0 + u12;4x − 24u12;xxu0
2 + 6u12;xxu12 + 5u12;x

2 + 16u0
4u12 − 24u0

2u12
2 + 2u12

3 ,

ũ0
�6� = u0;6x − 40u0;4xu0

2 + 10u0;4xu12 − 200u0;xxxu0;xu0 + 28u0;xxxu12;x − 130u0;xx
2 u0

− 198u0;xxu0;x
2 + 38u0;xxu12;xx + 80u0;xxu0

4 − 240u0;xxu0
2u12 + 30u0;xxu12

2 + 240u0;x
2 u0

3

− 380u0;x
2 u0u12 + 28u0;xu12;xxx − 400u0;xu12;xu0

2 + 100u0;xu12;xu12 + 10u12;4xu0

− 80u12;xxu0
3 + 60u12;xxu0u12 + 50u12;x

2 u0 + 32u0
5u12 − 80u0

3u12
2 + 20u0u12

3 ,

ũ12
�6� = − 12u0;6xu0 − 42u0;5xu0;x − 80u0;4xu0;xx + 160u0;4xu0

3 − 120u0;4xu0u12 − 49u0;xxx
2

+ 1200u0;xxxu0;xu0
2 − 312u0;xxxu0;xu12 − 336u0;xxxu12;xu0 + 780u0;xx

2 u0
2 − 206u0;xx

2 u12

+ 2376u0;xxu0;x
2 u0 − 716u0;xxu0;xu12;x − 456u0;xxu12;xxu0 − 192u0;xxu0

5 + 960u0;xxu0
3u12

− 360u0;xxu0u12
2 + 297u0;x

4 − 366u0;x
2 u12;xx − 720u0;x

2 u0
4 + 2280u0;x

2 u0
2u12 − 290u0;x

2 u12
2

− 336u0;xu12;xxxu0 + 1600u0;xu12;xu0
3 − 1200u0;xu12;xu0u12 + u12;6x − 60u12;4xu0

2

+ 10u12;4xu12 + 28u12;xxxu12;x + 19u12;xx
2 + 240u12;xxu0

4 − 360u12;xxu0
2u12 + 30u12;xxu12

2

− 300u12;x
2 u0

2 + 50u12;x
2 u12 − 64u0

6u12 + 240u0
4u12

2 − 120u0
2u12

3 + 5u12
4 ,

etc. We will use these formulas in Sec. IV, where, as an illustration, we rederive the seven
super-Hamiltonians of Ref. 4.

Theorem 4: In the above notation, the following statements hold.

• The conserved densities ũ0
�2k� and ũ12

�2k� of weights 2k+1 and 2k+2, respectively, are nontrivial
for all integers k�0.

• Consider the zero-order components ŭ0�u0 ,u12,�� and ŭ12�u0 ,u12,�� of the series
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ũ0��u0 ,u12� ,�� and ũ12��u0 ,u12� ,�� with differential-polynomial coefficients. Then these gen-
erating functions are given by the formulas

�ŭ0�u0,u12,�
2��2 =

1

8�2 · �4�2�u0
2 + u12� − 1 + �1 + 8�2�u0

2 − u12� + 16�4�u0
2 + u12�2� ,

�19a�

ŭ12�u0,u12,�
2� =

1

2�2 · �1 −�1

2
− 2�2�u12 + u0

2� +
1

2
�1 + 8�2�u0

2 − u12� + 16�4�u0
2 + u12�2� .

�19b�

• The generating functions for the odd-index conserved densities ũ0
�2k+1� and ũ12

�2k+1� are ex-
pressed via the even-index densities, see (21) and (22), respectively. We claim that all the
odd-index densities are trivial.

Proof: The densities ũ0
�k� and ũ12

�k�, which are conserved for bosonic limit �13� of the N=2, a
=4-SKdV system �7�, retract to the conserved densities for the KdV equation �4� under u0�0, see
Example 2. The corresponding reduction of ŭ12�u0 ,u12,�� is generating function �15�. This implies
that ŭ12=�k=0

+� c�k�u12
k ·�2k+¯, whence the densities ũ12

�2k� are nontrivial.
Following the line of reasonings on p. 7, we consider the zero-order terms in Miura’s con-

traction �16�, which yields

u0 = ŭ0 · �1 − 2�2ŭ12� , �20a�

u12 = ŭ12 + �2�4ŭ0
2ŭ12 − ŭ12

2 � − 4�4ŭ0
2ŭ12

2 . �20b�

Therefore,

ŭ0 =
u0

1 − 2�2ŭ12

= �
k=0

+�

u0 · �2�2ŭ12�k.

Since the coefficients c�k� of u12
k ·�2k in ŭ12 are positive, so are the coefficients of u0u12

k ·�2k in ŭ0

for all k�0. This proves that the conserved densities ũ0
�2k� are nontrivial as well.

Second, squaring �20a� and adding it to �20b�, we obtain the equality u0
2+u12= ŭ0

2+ ŭ12

−�2ŭ12
2 . In agreement with ŭ0 	�=0=u0 and ŭ12 	�=0=u12, we choose the root ŭ12= �1

−�1−4�2 · �u12+u0
2− ŭ0

2�� / �2�2� of this quadratic equation. Hence �20a� yields the biquadratic
equation upon ŭ0,

1 − 4�2�u12 + u0
2 − ŭ0

2� = u0
2/ŭ0

2.

As above, the proper choice of its root gives �19a�, whence we return to ŭ12 and finally obtain
�19b�.

Finally, let us substitute the expansions ũ0=�0��2�+� ·�1��2� and ũ12=
0��2�+� ·
1��2� in �16�
for ũ0 and ũ12, see Example 2. By balancing the odd powers of � in �16a�, it is then easy to deduce
the equality

�1 � �
k=0

+�

ũ0
�2k+1� · �2k =

1

4�2 ·
d

dx
log�1 − 4�2 · �0�, where �0 � �

�=0

+�

ũ0
�2�� · �2�. �21�

The balance of odd powers of � in �16b� yields the algebraic equation upon 
1, whence, in
agreement with the initial condition 
1�0�= ũ12

�1�, we choose its root
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1 = �1 − 2�2
0 + 4�2�0
2 + 4�4��1

2 − 2
0�0
2 + �0�1;x + �1�0;x� − 8�6�1

2
0

− �1 + 4�2�2�0
2 − 
0� + 4�4�
0

2 + 2�0�1;x − 8
0�0
2 + 2�1�0;x + 2�1

2 + 4�0
4�

+ 16�6�2
0
2�0

2 − 2�1
2
0 − 
0�0�1;x − 
0�1�0;x − 2�0

2�1�0;x + 2�1�0
0;x + 2�1
2�0

2 − 4
0�0
4 + 2�0

3�1;x�

+ 16�8��1
4 + 2
0

2�1
2 + 4
0

2�0
4 − 2�1

2�0�1;x − 4
0�0
3�1;x + 8�1

2
0�0
2 + 2�1

3�0;x

+ �0
2�1;x

2 + �1
2�0;x

2 + 4
0�0
2�1�0;x − 2�0�1;x�1�0;x�

+ 64�10��0�1;x�1
2
0 − 2
0

2�0
2�1

2 − �1
3�0;x
0 − �1

4
0� + 64�12�1
4
0

2�1/2�/�16�6�1�0� . �22�

We claim that, using the balance of the even powers of � in �16�, the representation
�k=0

+� ũ12
�2k+1� ·�2k� im�d /dx� can be deduced, whence ũ12

�2k+1��0. �

V. SUPER-HAMILTONIANS FOR N=2, a=4-SKDV HIERARCHY

In this section, we assign the bosonic super-Hamiltonians ℋ�k�=�h�k��u�d�dx of �3� with a
=4 to the Hamiltonians H�k�=�h12

�k��u0 ,u12�dx of its bosonic limit �13�. Also, we establish the no-go
result on the superfield, N=2 supersymmetry-invariant deformations of a=4-SKdV that retract to
�14� under the respective reduction in superfield �1�. At the same time, we initiate the study of
Gardner’s deformations for reductions of �7� other than �2�, and here we find the deformations of
two-component fermion-boson limit in it. However, we observe that the new solutions cannot be
merged with deformation �18� for the bosonic limit of �7�.

From Sec. III, we know the procedure for recursive production of the Hamiltonians H�k�

=�h�k�dx for bosonic limit �13� of the N=2, a=4-SKdV equation, here h�2k�= ũ0
�2k� and h�2k+1�

= ũ12
�2k�. In Sec. II, we explained why the reconstruction of the densities h�k� for the bosonic

super-Hamiltonians ℋ�k� from h�k��u0 ,u12� requires an intermediate step. Namely, it amounts to the
proper choice of the representatives h12

�k� within the equivalence class �h�k� mod im�d /dx�� such
that h12

�k� can be realized under �2� as the �1�2-component of the superdensity h�k�. This allows to
restore the dependence on the components u1 and u2 of �1� and to recover the supersymmetry
invariance. The former means that each h�k� is conserved on �7� and the latter implies that h�k�

becomes a differential function in u.
The correlation between unknown bosonic superdifferential polynomials h�k��u� and the den-

sities h�k��u0 ,u12�, which are produced by the recurrence relation, is established as follows. First,
we generate the homogeneous superdifferential polynomial ansatz for the bosonic h�k� using GENS-

SPOLY, see Appendix A. Second, we split the superfield u using the right-hand side of �1� and
obtain the �1�2- component h12

�k��u0 ,u1 ,u2 ,u12� of the differential function h�k��u�. This is done by
the procedure TOCOO, see Appendix A, which now is also available in SSTOOLS.16,37 Third, we set
to zero the components u1 and u2 of the superfield u. This gives the ansatz h12

�k��u0 ,u12� for the
representative of the conserved density in the vast equivalence class. By the above, the gap
between h12

�k� and the known h�k� amounts to �d /dx��f �k��, where f �k��u0 ,u12� is a homogeneous
differential polynomial. We remark that the choice of f is not unique due to the freedom in the
choice of h�k� mod D1�¯ �+D2�¯ �. We thus arrive at the linear algebraic equation,

h12
�k� −

d

dx
f �k� = h�k�, �23�

which implies the equality of the respective coefficients in the polynomials. The homogeneous
polynomial ansatz for f �k� is again generated by GENSSPOLY. Then Eq. �23� is split to the algebraic
system by SSTOOLS and solved by CRACK.39 Hence we obtain the coefficients in h12

�k� and f �k�. A
posteriori, the freedom in the choice of f �k� is redundant, and it is convenient to set the surviving
unassigned coefficients to zero. Indeed, they originate from the choice of a representative from the
equivalence class for the superdensity h�k��u�. This concludes the algorithm for the recursive
production of homogeneous bosonic N=2 supersymmetry-invariant super-Hamiltonians ℋ�k� for
the N=2, a=4-SKdV hierarchy.
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Example 4: Let us reproduce the first seven super-Hamiltonians for �3�, which were found in
Ref. 4. In contrast with Example 3, we now list the properly chosen representatives h12

�k��u0 ,u12� for
the equivalence classes of conserved densities ũ0

�2k� and ũ12
�2k�, here k�3. Then we expose the

conserved superdensities h�k�, such that the respective expressions h12
�k� are obtained from the

�1�2-components �h�k�d� by reduction �2�,

h12
�0� = u0 � ũ0

�0�, h�0� = − D1D2�u� � 0, �24a�

h12
�1� = u12 � ũ12

�0�, h�1� = u , �24b�

h12
�2� = − 2u12u0 � ũ0

�2�, h�2� = u2, �24c�

h12
�3� = 3

4u12
2 − 3u12u0

2 + 3
4u0;x

2 � ũ12
�2�, h�3� = u3 − 3

4uD1D2�u� , �24d�

h12
�4� = 3u12

2 u0 − 4u12u0
3 − 3

2u0
2u0;xx − u12;xu0;x � ũ0

�4�,

h�4� = u4 − 1
2uuxx − 3

2u2D1D2�u� , �24e�

h12
�5� = − 5

4u12
3 + 15

2 u12
2 u0

2 − 5u12u0
4 + 5u12u0u0;xx + 15

8 u12u0;x
2 + 15

2 u0
2u0;x

2 + 5
16u12;x

2

+ 5
16u0;xx

2 � ũ12
�4�, h�5� = u5 − 15

16u2uxx + 5
8 �D1D2u�2u − 5

2u3D1D2u , �24f�

h12
�6� = − 15

4 u12
3 u0 + 15u12

2 u0
3 − 15

8 u12
2 u0;xx − 6u12u0

5 − 75
4 u12u0u0;x

2 − 3
8u12u0;xxxx

+ 5u0
3u12;xx + 15u0

3u0;x
2 + 15

8 u0u12;x
2 + 15

8 u0u0;xx
2 � ũ0

�6�,

h�6� = u6 − 15
8 u3uxx + 3

16uu4x + 15
8 �D1D2u�2 − 15

4 u4D1D2u + 15
8 uxxD1D2u −

+ 5
8D1D2�u�D1�u�D1�ux� , �24g�

h12
�7� = − 21

8 u0;4xu0u12 + 7
64u0;xxx

2 + 105
16 u0;xx

2 u0
2 + 35

32u0;xx
2 u12 − 105

8 u0;xxu0u12
2 − 105

64 u0;4x
4

− 35
16u0;x

2 u12;xx + 105
4 u0;x

2 u0
4 − 525

8 u0;x
2 u0

2u12 − 175
32 u0;x

2 u12
2 + 7

64u12;xx
2 + 35

4 u12;xxu0
4

+ 105
16 u12;x

2 u0
2 − 35

32u12;x
2 u12 − 7u0

6u12 + 105
4 u0

4u12
2 − 105

8 u0
2u12

3 + 35
64u12

4 � ũ12
�6�,

h�7� = u7 − 105
32 u3uxx + 7

32u2u4x − 35
64u�D1D2u�3 + 35

8 u3�D1D2u�2 − 35
64�D1D2u�2uxx

− 21
4 u5D1D2u + 105

16 u2uxxD1D2u + 315
64 uux

2D1D2u + 35
16u�D1D2u��D1u��D1ux�

− 7
64u4xD1D2u − 7

8u�D1uxx��D1ux� . �24h�

Of course, our superdensities h�k� are equivalent to those in Ref. 4 up to adding trivial terms
D1�¯ �+D2�¯ �.

Remark 3: Until now, we have not yet reported any attempt of construction of Gardner’s
superfield deformation for �3�, which means that the ansatz for m� and E��� is written in super-
functions of u �cf. Ref. 4�. This would yield the super-Hamiltonians ℋ�k� at once, and the interme-
diate deformation �18� of a reduction �2� for �3� would not be necessary. At the same time, the
knowledge of Gardner’s deformations for the reductions allows to inherit a part of the coefficients
in the superfield ansatz by fixing them in the component expansions �e.g., see �14�, �16�, and �18��.

Unfortunately, this cut-through does not work for the N=2, a=4-SKdV equation.
Theorem 5: (N=2, a=4 “no go”) Under the assumptions that N=2 supersymmetry-invariant
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Gardner’s deformation m� :E���→E of (3) with a=4 is regular at �=0 , is scaling homogeneous
and retracts to (14) under the reduction u0=0 , u1=u2=0 in the superfield (1), there is no such
deformation.

This rigidity statement, although under a principally different set of initial hypotheses, is
contained in Ref. 4. In particular, there it was supposed that deg m�=deg E���=2, which turns to
be on the obstruction threshold, see below. We reveal the general nature of this “no go” result.

Proof: Suppose there is the superfield Miura contraction m�,

u = ũ + ��p3ũ2 − p1D1D2ũ + p2ũx� + �2�p15ũ
3 + p13ũũx + p10D2�ũ�D1�ũ�

− p12D1D2�ũ�ũ − p11D1D2�ũx� + p14ũxx� + ¯ .

To recover deformation �14� upon u12 in u, we split m� in components and fix the coefficients of
�ũ12;x and �2ũ12

2 , see �14a�. By this argument, the expansion of ũx yields p2=1, while the equality
−p12D1D2�ũ�ũ+ p10D2�ũ�D1�ũ�= �p12− p10��1�2u12

2 +¯ implies that p12= p10−1. Next, we gener-
ate the homogeneous ansatz for E���, which contains ũt= ¯+�2 · �d /dx��q17�D2u��D1u�u+¯�
+¯ in the right-hand side �the coefficient q17 will appear in the obstruction�. We stress that now
both m� and E��� can be formal power series in � without any finite-degree polynomial truncation.

Now we split the determining equation m� :E���→E to the sequence of superdifferential
polynomial equalities ordered by the powers of �. By the regularity assumption, the coefficients of
higher powers of � never contribute to the equations that arise at its lower degrees. Consequently,
every contradiction obtained at a finite order in the algebraic system is universal and precludes the
existence of a solution. �Of course, we assume that the contradiction is not created artificially by
an excessively low order polynomial truncation of the expansions in �.�

This is the case for the N=2, a=4-SKdV. Using CRACK,39 we solve all but two algebraic
equations in the quadratic approximation. The remaining system is

q17 = − p10, p10 + q17 + 1 = 0.

This contradiction concludes the proof. �

Remark 4: In Theorem 5 for �3� with a=4, we state the nonexistence of the Gardner defor-
mation in a class of differential superpolynomials in u, that is, of N=2 supersymmetry-invariant
solutions that incorporate �14�. Still, we do not claim the nonexistence of local regular Gardner’s
deformations for four-component system �7� in the class of differential functions of u0, u1, u2, and
u12.

Consequently, it is worthy to deform the reductions of �7� other than �2�. Clearly, if there is a
deformation for the entire system, then such partial solutions contribute to it by fixing the parts of
the coefficients.

Example 5: Let us consider the reduction u0=0, u2=0 in �7� with a=4. This is the two-
component boson-fermion system,

u1;t = − u1;xxx − 3�u1u12�x, u12;t = − u12;xxx − 6u12u12;x + 3u1u1;xx. �25�

Notice that system �25� is quadratic nonlinear in both fields, hence the balance deg m� :deg E���
for its polynomial Gardner’s deformations remains 1:1.

We found a unique Gardner’s deformation of degree �4 for �25�: the Miura contraction m� is
cubic in �,

u1 = ũ1, u12 = ũ12 − 1
9�3ũ1ũ1;xx, �26a�

and the extension E��� is given by the formulas

ũ1;t = − ũ1;xxx − 3�ũ1ũ12�x,
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ũ12;t = − ũ12;xxx − 6ũ12ũ12;x + 3ũ1ũ1;xx + 1
3�3�u1u1;xxu12 − 3u1u1;xu12;x + u1;xu1;xxx�x. �26b�

However, we observe, first, that contraction �14a� is not recovered40 by �26a� under u1�0. Hence
deformation �26� and its mirror copy under u1↔−u2 cannot be merged with �16� and �18� to
become parts of the deformation for �7�.

Second, we recall that the fields u1 and u2 are, seemingly, the only local fermionic conserved
densities for �7� with a=4. Consequently, either the velocities ũ1;t and ũ2;t in Gardner’s extensions
E��� of �7� are not expressed in the form of conserved currents �although this is indeed so at �
=0� or the components ui=ui��ũ0 , ũ1 , ũ2 , ũ12� ,�� of the Miura contractions m� are the identity
mappings ui= ũi, here i=1,2, whence either the Taylor coefficients ũi

�k� of ũi are not termwise
conserved on �7� or there appear no recurrence relations at all. This will be the object of another
paper.

VI. CONCLUSION

We obtained the no-go statement for regular, scaling-homogeneous polynomial Gardner’s
deformations of the N=2, a=4-SKdV equation under the assumption that the solutions retract to
original formulas �14� by Gardner.1 At the same time, we found a new deformation �16� and �17�
of Kaup–Boussinesq equation �11� that specifies the second flow in the bosonic limit of the
superhierarchy. We emphasize that other known nontrivial deformations for the Kaup–Boussinesq
equation7 can be used for this purpose with equal success.

We exposed the two-step procedure for recursive production of the bosonic super-
Hamiltonians ℋ�k�. We formulated the entire algorithm in full detail such that, with elementary
modifications, it is applicable to other supersymmetric KdV-type systems.
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APPENDIX A: NEW EXTENSIONS IN THE SOFTWARE SSTOOLS

The syntaxis of the homogeneous differential polynomial generator is as follows.
GENSSPOLY�N,wglist,cname,mode�,
where

• N is the number of Grassmann variables �1 , . . . ,�N;
• wglist is the list of lists �afwlist, abwlist, wgt�, each containing the list
afwlist of weights for the fermionic super- fields and the list abwlist of weights for the
bosonic super-fields; here wgt is the weight of the polynomial to be constructed;

• cname is the prefix for the names of arising undetermined coefficients �e.g., p produces
p1 , p2 , . . .�;

• mode is the list of flags, which can be fonly, whence only fermionic polynomials are
generated, or bonly, which yields the bosonic output.
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The splitting to components for differential polynomials in superfields is performed by the call
TOCOO�N,nf,nb,ex�,
where

• N is the number of Grassmann variables �1 , . . . ,�N;
• nf is the number of fermionic super-fields f(1),…,f(nf);
• nb is the number of bosonic super-fields b(1),…,b(nb);
• ex is the super-field expression to be split in components.

For N=2, we have f�i�=f�i ,0 ,0�+b�i ,1 ,0��th�1�+b�i ,0 ,1��th�2�
+f�i ,1 ,1��th�1��th�2�, b�i�=b�i ,0 ,0�+f�i ,1 ,0��th�1�+f�i ,0 ,1��th�2�
+b�i ,1 ,1��th�1��th�2� as the splitting convention. The reduction �2� is achieved by setting
b(i,0,1), b(i,1,0), f(j,0,1�, and f(j,1,0) to zero for all i� �1,nb� and j� �1,nf�.
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