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Synopsis 

In a previous paper we derived an expression for the retarded Van der Waals 
interaction energy at zero temperature in an arbitrary system of atoms, where an atom 
was represented by an isotropic harmonic oscillator with one resonance frequency. 
Starting from this expression we evaluate in this paper the interaction energy between 
an atom and a semi-infinite dielectric medium, consisting of the same kind of atoms, 
and that between two dielectric halfspaces. The expressions for the interaction energy 
can be given in terms of the dielectric constant of the medium, and in this way for- 
mulae, earlier derived by Lifshitz from macroscopic considerations are recovered. 
Limiting formulae for both systems are obtained in the case of small and large separa- 
tion of the two bodies; furthermore, the first correction (3-particle contribution) to 
the additive result (Zparticle contribution) is given in these limiting cases for both 
systems. 

1. Intro&&on. The presence of attractive Van der Waals forces between 
neutral atoms suggests that forces of this type do exist between macroscopic 
bodies too. The attractive force between two semi-infinite dielectric media, 
separated by a gap, was calculated by Lifshitzi) some years ago by means 
of macroscopic considerations. This calculation started from the idea that 
in the Maxwell equations for the macroscopic electromagnetic field inside 
a dielectric nonmagnetic medium a term should be inserted, accounting for 
a fluctuating electric field, the time average of which vanishes. Due to the 
special form of the spatial correlation functions for the components of the 
fluctuating field Lifshitz was able to calculate Maxwell’s stress tensor at the 
boundaries of the bodies and from these he finally arrived at an expression 
for the attractive force between these bodies. This result could be simplified 
for the case of small, respectively large separations of the halfspaces (small 
and large with respect to the principal absorption wavelength of the medium), 
and in the limit of sufficiently rarefied media the expressions for the force 
between two individual atoms, as given by Eisenschitz and Londons) and 
Casimir and Polder 9, respectively, were recovered. 

12.5 



126 M. J. RENNE 

In later years some of the results, explicitly or implicitly contained in the 
original paper by Lifschitz, have been rederived by several authors, who 
avoided the introduction of a fluctuating field. McLachlan4) has shown that 

Lifshitz’s results can be obtained by using the concept of field susceptibility; 

Mavroyanniss) has given approximate expressions (by means of S-matrix 
perturbation theory) for the interaction of an atom with a conducting wall 

and with a dielectric halfspace. Dzyaloshinskii et al. 6), applying Green- 

function techniques, have extended the theory to include the case where 
the gap is filled by another dielectric medium. This latter problem has also 

been treated in a very simple way, valid for small distance between the 
bodies, by Van Kampen et al. 7)) by calculating the energy shift of the zero- 

point vibrations of the electromagnetic field. Very recently Langbeins) has 

given an approximate calculation for the retarded interaction between 

spheres by means of perturbation theory. 
In earlier work9pn-J) we have calculated the non-retarded interaction 

between an isolated harmonic oscillator and a semi-infinite medium con- 
sisting of the same kind of oscillators,.starting from a formula for the non- 

retarded interaction in an arbitrary system of oscillators; this latter formula 
was obtained by calculating the shift in zero-point energy of the oscillators 

as a consequence of electrostatic dipole-dipole interaction. Furthermore, in 
this way Lifshitz’s formula for the non-retarded interaction between two 
semi-infinite dielectric media was rederived from microscopic considerations. 

In both cases the expression for the interaction energy was expanded in 

terms of many-particle interactions and the relative contributions of these 

interactions were discussed. 
The present paper is an extension of the work just mentioned to include 

retarded interactions. Starting from an expression for the retarded interac- 
tion energy in a system of identical isotropic harmonic oscillators, which 

has been derived in a recent paperrl), we calculate in section 2 the retarded 
interaction between an isolated oscillator and a semi-infinite dielectric 

medium? and in section 3 the retarded interaction between two semi- 
infinite dielectric media. Although the complete results can be given in a 

microscopic form in terms of the atomic positions, we shall introduce at 

some point in the calculation the macroscopic concept of the dielectric con- 
stant in order to derive the macroscopic formulae of Lifshitz. The three- 
particle correction to the additive result for the interaction energy will be 
discussed for the system atom-halfspace as well as for that of two halfspaces. 

2. Interaction of an atom with a semi-infinite dielectric medium. a. In this 
section the retarded interaction energy between an isolated atom and a 
dielectric halfspace consisting of the same kind of atoms will be evaluated 

t The interaction of an oscillator with a conducting wall has already been treated 
in ref. 11. 
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for arbitrary distance d between the atom and the surface of the medium 
(the only restriction is that d should be large compared to the interatomic 
distances in the medium). Some formulae to be derived in this section will 
prove very useful also in section 3, where the interaction energy between 
two semi-infinite media will be calculated. 

Throughout this paper an atom will be represented by an isotropic 
harmonic oscillator with one resonance frequency ws. In a previous paperrr) 
we derived an expression for the interaction energy AEo of an arbitrary 
number of such oscillators by calculating the difference in zero-point energy 
of the coupled system of oscillators and radiation field for a given con- 
figuration and a configuration where all the oscillators are infinitely far 
apart. The result could be written as [cf. (18) of ref. 1 I]: 

00 

AEo=& 
J 
‘d[ In det[I + c@) F(i5)], 

0 

where I is the 3N x 3N unit matrix (N is the number of atoms), a(i[) is 
the dynamical polarizability of an atom taken at an imaginary frequency: 

e2 
01(z) = y (Of - 22 - iq-1, 

2e2 
r= - mt, 

3Mc3 

and F(iE) is a 3N x 3N matrix, built up from the 3 x 3 matrices Fab(i[), 
defined by : 

where &b = /R, - Rat is the distance between atoms a and b (the result 
of ref. 11 was originally expressed in terms of a matrix G(i[) ; however, 
F(z) = G(z) if z is in the upper half of complex plane [cf. (13), ref. 111). 

We now consider the configuration of one atom (labelled 0) at the position 
RO outside a semi-infinite medium consisting of the same kind of atoms (at 
positions Ra, a = 1, . . . . N; N + co) (see fig. 1) and we apply (1) to this 

Fig. 1. One atom opposite a dielectric halfspace. 
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situation and to the situation where the distance d tends to infinity. The 
difference in interaction energy between these two configurations will then 

be interpreted as the interaction energy Ui(d) of the isolated atom with the 
semi-infinite medium : 

Uijd) = dEa(d) - lim d&(d). 
d-%-m 

If we decompose the 3(N + 1) x 3(N + 1) matrix F(it) into two parts, 

F(i5) = F(i)(iE) + F(z)($), w h ere F(i)@) describes the interaction between 

the atoms inside the medium only, and F(s)@) that between the isolated 
atom and the atoms in the medium, then it will be clear from the definition 

(3) of F(iE) that F(s)(it) goes to zero as d tends to infinity. Therefore, we can 

write for the interaction energy Ur(d) : 

00 

Ul(d) = & 
s 

dE{ln det[I + a(iE) F(r) (it) + ol(i5) F(s) (iE)] 

- In de& + a($) F(i) (it)]), 

which alternatively may be written as 

(4.a) 

Ul(d) = -$ dE In det{I + ol(iS)[I + c@) F(i) (it)]-r.F(s) (if)). 
s 

(4.b) 

0 

We now use (4.a) and the expansion: 

lndet(1 + R) = - E - m (--l)% Tr R” 
, 

n=l n 

to obtain an expansion of Ul(d) in terms of many-particle interactions: 
CC. 

Ui(d) = - &n!2 (-l)% 
s 
dS[4E)P 

x 21jTr[FaIaB(iE) .Faza12J . . . Fa,_.a,_I(iS) *FaR-IO(it) .Fo,,Wl, (6) 

where the summation over the at extends over the atoms in the medium 
only. The terms omitted in the expansion contain higher powers in F(s)($) ; 

they may be neglected since they are of higher order in a/d, where a is a 
characteristic interatomic distance in the medium. (6) should be compared 
to (14) of ref. 9, which is the corresponding formula for the non-retarded 
case. (6) can be visualized by means of diagrams in which every factor F,a is 
represented by a line connecting atoms a and b; the terms written down 
correspond to diagrams where the isolated atom is connected by two lines 
with the medium, whereas the terms which have been omitted correspond 
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to diagrams with four and more lines between the isolated atom and the 
medium. 

The a-particle contribution Ui2)(d) to Ur(d) is given by the n = 2 term 
in (6): 

co 

Ui2)(d) = - & 
s 

dE[a(iE)12 C Tr[Fao(iE) - h&)1 ; 
a 

it is simply the sum of all pair interactions between the isolated atom and 
atoms in the medium. If we replace the summation over particles by an 
integration this contribution can be written as: 

-25 s e-p 

c o $) + 2(5d,c) @ 

1 
e-2(M’c)* (7) 

where p is the particle density in the medium. 
b. In order to be able to express Ur(d) in terms of the dielectric constant 

E (or equivalently in terms of the index of refraction n = ,/E) we shall now 
investigate the response of the semi-infinite medium to the electromagnetic 
field of an oscillating dipole ,ue(t) at the position Ra. If we assume for this 
dipole a harmonic time dependence +0(t) = ,UO esiot, the equations for the 
induced dipole moments of the atoms in the medium read: 

h(t) = -z(m) Fao(w) *PO(~) - a(co) I; Faa .,~*(t), 
b#a 

a = 1, . . ..N. (8) 

where E(o) = lim,,, Z(W + ie) has been defined in ref. 11, eq. (16) ; we 
notice that G(o) can be obtained from (2), the expression for 01(o), by 
replacing r by f(w) E (2$/3Mcs) m2. (8) may be solved formally by putting: 

,W) = -a(m) 5 {[I + a(w) F(w)l-l),b.Fbo(~).ro(t). (9) 

On the other hand the induced atomic dipoles are related to the macros- 
copic polarization P(R, t) and the macroscopic electric field E(R, t) inside the 
medium by the equations: 

PP&) = P(R,,t) = +;, ’ Wa, 4, (10) 

where p is the particle density and E(O) the dynamical dielectric constant 
for the (isotropic) medium. Since the macroscopic electric field is a linear 
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function of the dipole pa(t), we can write: 

E(& 4 = - Mao(u) -PO(~), 

where M&w) is a 3 x 3 matrix to be 

with (10) and (11) yields the equality: 

a(m) ?{[I + a(o) b.W)adbo(4 

(11) 

calculated below. Comparison of (9) 

- “(;;; ’ Mao(w). (12) 

The matrix Mae(o) can be calculated using the macroscopic Maxwell 
equations and the requirement that near the dipole ~0 the field behaves as: 

E(R, t) 

We describe the electromagnetic field outside the medium by the super- 
position of an outgoing wave from the dipole ,ue, and a wave reflected by 

the medium; inside the medium the field will be described by a refracted 
wave. We then decompose each wave into plane waves, using the repre- 

sentation 12) : 

exp i: IR - Rol /IR - Rol 
> 

i O” O” dki dkz 
=- 

x ss 2k3 

eikl(z--zd eik&-v~) eika Iz-ml 
> 

-co --co 

> 

t 
, Im k3 2 0, (13) 

which is valid if Im o > 0 (Im LO = 0 is allowed if Re o 2 0). The usual 
boundary conditions for the electromagnetic field at the surface of a die- 
lectric medium now give a relation for the amplitudes of every plane wave 
inside and outside the medium. From this relation the following expression 
for Mao(o) can be derived (the magnetic permeability of the medium has 
been taken equal to unity) : 

Mao@) = _ ; - SJ ;3k;d; eik&r-m) eWw-_yo) 

-co --m 

x eik’aza e-iksm 
co2 

,2aa+ 
h + kh 

~(4 ka + kh 

b(2) b(l) 1 ) (14 
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where 

Q = (# + @-* (k2, --Kl, O), 

b(l) = k(l) x a, k(l) = (h, k2, h), 

b(2) = k(2) x a, k(z) = (kl, kz, kh). 

k& = $ E(U)) 
> 

t 
- k; - k; , Im kg 2 0, 

If w = 0 we find that 

Mao(O) = 2 Tuo, 
E(O) + 1 

where Tao = ~JoR;~ ; this result can be obtained directly by applying 
the Maxwell equations to the case of an electrostatic dipole, as was done in 

the calculation of the non-retarded Van der Waals interactiongp la). It is 
easily verified from the propertiesrs) of E(O) = E’(W) + ie”(Co), where E’(O) 

and E”(W) are real, that both k3 and kj have no branch points if o is situated 
in the first quadrant of the complex plane, and that there they have a 

positive imaginary part. Furthermore, it can be shown that the integrand 

has no poles if cc) is in the first quadrant, since k3 + k$ # 0 and E(O) ks + ki # 0 
in this case. 

We wish to point out here that C(W) may have an imaginary part for real 
o because of the imaginary part of the polarizability accounting for radiation 

damping; this is different from the treatment of the electrostatic problem 
in earlier papers99 10 ), where E(W) was real for real o. 

The above result for M&o) allows us to extend (12) to the positive 

imaginary axis where, however, we have to replace Z by a! in order to avoid 

poles of the left-hand side of (12) on the imaginary axis (cf. the appendix of 
ref. 11): 

45) F {[I + a(G) F(i5)l-1},b.FbO(iE) 

Expansion of the matrix between curly brackets yields: 

E(Z) - 1 
4X,, M~40 = 46) F,lo(iS) + mgZ (- l)~-r[~(i~)I~ 

x ar, T, a, Fal&) * F,,,,(it) . . . Fan_lan(it) - F,,, (i6). 

(15) 

(16) 

c. The formulae derived in b will now be used to express the interaction 
energy Ur(d) of the isolated atom and the medium in terms of the dielectric 
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constant (for imaginary frequencies) of the medium. We might start either 
from (4b) and substitute (15) or, equivalently, from (6) and then substitute 

(16) ; to keep a close analogy to the non-retarded case we choose the latter 
way. Comparison of (6) with (16) shows that Ui(d) can be written as: 

Ul(d) = - -& d5 ol(iE) “iyXT ’ 
s 

C Tr M,,o(iS) . I%,(iE). (17) 
a1 

0 

It is obvious from the definition (3) of F(z) that we can use the representa- 

tion (13) to express Fe&) as : 

i 
Fe&) = - 

O3 O” dki dks 

n ss 2ks 
-co --co 

x eikl(r.--r~) eiks(uo--llo) eiks(z.-m) k(l)k(l) + $ > . (18) 

We now introduce in (17) for M,,e(iS) and Fea,(iS) the expressions (14) and 
(18), respectively, and we replace the summation over the atoms in the 

medium by an integration; this yields: 

E2 :dx 22 Tr M,,o(iE) .Fea,(it) = -4x&- 
s 

e--likm 

a1 C2 kdh + Q2 

0 

I 

E2 h + G 

x F- 
42) k3 + kh 

tc2 + kskh + 2 $ K2k3(k3 + k;) 

where ~~ = k: + ki, and where the integration over the direction of (kl, k2) 

has already been performed. The integration over K will now be transformed 
into an integration over the variable p where p2 = 1 + C2K2/t2; with the 
abbreviation s = (&(iE) - 1 + p2)* the expression (17) for Ui(d) can finally 
be written as: 

(19) 

This result for the interaction energy has been derived before byMcLachlan4) 
in a completely different way; the expression for the force, which may be 
found from this result by differentiation with respect to d, is in agreement 
with the expression for the force as it can be extracted from Lifshitz’s 
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formula. It should be noticed that this force is always attractive due to the 
fact that on the imaginary axis E(i5) 2 1. 

In the following we shall investigate the properties of (19) in somewhat 
more detail. Let us first consider the case o&/c < 1, where cr)a is the resonance 
frequency of the atom. If 5 is replaced by WOX, we see that the exponential 
function in (19) decreases slowly with increasing 9 for not too large x, while 
on the other hand the term within square brackets behaves as 2p2 (E- l)/(~+ 1) 
for large fi. Therefore, we may approximate the integrand for the integration 
over p by 

2P2 $$-exp(--2$x*), 

which yields for the interaction 
interaction obtained beforeg) : 

co 

f 
d5 4%) 

0 

energy the expression for the non-retarded 

e(i[) - 1 

E(C) + 1 ’ 
wad/c < 1. 

In ref. 10 the expansion of Ui(d) in 2-, 3-, etc. particle contributions has been 
given; here we only quote the result for the first two contributions under 
the simplifying assumption that the relation between 01 and E is given by the 
relation of Clausius-Mossotti: (E - l)/(& + 2) = +xp(~: 

Ul(d) 23 - ~liw;;~(o)12 (1 - &tpol(O) + . . .), ood/c -g 1. 

(In taking over this result from ref. 10 we have put I’ = 0). In the opposite 
case where wed/c > 1 the exponential decreases very rapidly with increasing 
x, so that we may replace the arguments of 01 and E by 0. The expression for 
the interaction energy can then be written as 

s(O) - P 40) P - s(O) 
s(o) + p + (2p2 - ‘) E(0) p + S(0) 1 ’ 

coo+ > 1. 

1 

Performing the integration over p, we obtain Ul(d) in the form given by 
Dzyaloshinskii et al. r(4.38) of ref. 61. If again we assume the validity of the 
relation of Clausius-Mossotti the expansion of Ul(d) in terms of many-parti- 
cle contributions is found to be: 

Ul(d) M - mod 
9 T> 1. 
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Fig. 2. Configuration of two halfspaces. 

3. Interaction between two semi-infinite dielectric media. We shall use some 
of the formulae of section 2 to calculate the interaction energy of two 
identical dielectric halfspaces A and B, separated by a gap of width d. To 
keep the calculations symmetric with respect to A and B we choose the 
origin of the coordinate system halfway in the gap (see fig. 2). The matrix 
specifying the interaction between the atoms in A will be denoted by FAA(S), 
etc. The interaction energy per unit area, Uz(d), is then given by (Q is the 
surface area) : 

- &[cl:lndet (I+ a(z)FAA(iEi I+ o(i.Faa(iE)) 

00 

-;:r ( 
dt In det 

I &)[I+ a(il) FAA(iE)]-'* F&t) 

ol(i5)[I+ar(iE)FBB(i~)l-l.FBA(iS) I >. 

0 

(20) 

With the aid of (14) and (15) we arrive at the following equalities: 

a(%)[1 + a(@ F&it)]-l* FAB(it) = E’i~x~ l MA&E), 

#) [I + +) b(it)]-’ * hiA(it) = 
&(iE) - 1 

4XP 
MB&). (21) 

Here the 3N x 3N matrix MA&) is built up from the 3 X 3 matrices 
M&iE)(a E A, b E B), defined by [cf. (14)] : 
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0300 

Mcs#) = i 
dki dkz 

k3 + kh 

ei(ka-k’a)d eik&.-za) $kr(~.-t/a) 

x eik'szo -ikm, 52 k3 + k; 
e - aa - b(2) b(l) 

c2 E(iE) h + kh 1 , 

and the 3N x 3N matrix MB&[) from the 3 x 3 matrices Mb&) (b E B, 
CZEA): 

coca 

i 
Mb&E) = - 

ss 

dki dks ei(kr-k’a)d eikl(zb-za) eikr(m-_y.) 

x k3 + kh 
-co --oo 

--iks’a eikae. t2 k3 + 6 
xe -aa- 

c3 E(Z) k3 + ki 

b(4)6(3) ) 1 
where 

b(3) = k(3) x a, k(3) = (kl, kz, -k3) 

and 

b(4) = k(4) x a, k(4) = (kl, kz, -kj). 

On substitution of the equalities (21) in (20) this expression becomes: 

co 

OUs(d) = & 
s 

I 

dllndet 

e(i:XL ’ MA&E) 

0 “(i:xi ’ MBA($) I 

-$- 
s 

dElndet(1 + R). 

0 

We now use again the expansion (5); since the trace of an odd power of R 
equals zero we only have to calculate the trace of the even powers. The first 
step in the calculation is then the evaluation of the matrix elements of 

M AB * MBA and of MBA * MAB. We shall only mention the following result which 
can be obtained by replacing the summation over particles by an integration : 

Tr[MAB(it) - Mm(it)]n = Tr[MBA(%) * M_m(iE)]” 

’ 

4xp(k; + k; - k3k$ 

(b + kh)[+E) k3 + kh] 

e2iksd 
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J-2 5‘2 O3 
2iT c2 s {C dPP 

4XP =-- (s + p)2 e--(Spd’c) ) 
2n 

+ 
( 

+P(sb+ PZ - 1) 2n 
(s + P)(s + EP) 

e_(&d/c) 
)I 

, 

where the same substitutions have been made as in section 2.~: 

p2 = 1 + C2K2/t2 and s = (E(i5) - 1 + p2)h. 

The calculation of Uz(d) is now straightforward: 

X Tr[Mm(it). b&)ln 

= &jdtC’[dp pbn[ 1 - (zr e-(2EP’/cj 

+ ln[ 1 O(+)’ e-(2tpaIc)]}. (22) 

Differentiation with respect to d yields an expression for the force per unit 

area, which agrees with Lifshitz’s result. 
We shall now consider the two limiting cases of small and large separation 

of the two bodies, and we shall evaluate the first correction to the additive 
interaction. For small distance, mod/c < 1, we first integrate (22) by parts 

with respect to the p variable. There is one term in the expression, obtained 

in this way, which gives a dominant contribution for small distance. Retain- 
ing this term only and introducing a new variable x = 2@dlc, we may 
write for Uz(d) : 

This result was obtained in ref. 10, where also the expansion of Us(d) in 
terms of many-particle contributions has been given. In the case that the 
relation of Clausius-Mossotti holds the first two terms of this expansion 
read : 

Uz(d) SW - rfimo;$@)‘2 (1 - xpa(0) + . ..), 

We observe that for large distance, mod/c > 1, only small 5 values give 
an appreciable contribution to (22) ; therefore, we replace E(iE) by E(O) and 
integrate the resulting expression by parts with respect to the 5 variable. 
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(22) can then be written in the following form: 

If we now expand Us(d) in many-particle interactions we find: 

Uz(d) w - 
ood 

> c> 1, 

where again the validity of Clausius-Mossotti has been assumed. One 

notices that both for small and large distance the relative 3-particle contri- 

bution to the interaction energy of two half-spaces is twice the relative 
3-particle contribution in the case of an atom opposite a semi-infinite 

medium (cf. section 2.~). 
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