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Abstract. Every lower bound for treewidth can be extended by taking the maximum of
the lower bound over all subgraphs or minors. This extension is shown to be a very vital idea
for improving treewidth lower bounds. In this paper, we investigate a total of nine graph
parameters, providing lower bounds for treewidth. The parameters have in common that
they all are the vertex-degree of some vertex in a subgraph or minor of the input graph. We
show relations between these graph parameters and study their computational complexity.

To allow a practical comparison of the bounds, we developed heuristic algorithms for those
parameters that are NP -hard to compute. Computational experiments show that combining
the treewidth lower bounds with minors can considerably improve the lower bounds.

1 Introduction

Many combinatorial optimisation problems take a graph as part of the input. If this graph belongs
to a specific class of graphs, typically more efficient algorithms are available to solve the problem,
compared to the general case. In case of trees for example, many NP -hard optimisation problems
can be solved in polynomial time. Over the last decades, it has been shown that many NP -hard
combinatorial problems can be solved in polynomial time for graphs with treewidth bounded by
a constant. Until recently, it was assumed that these results were of theoretical interest only. By
means of the computation of so-called exact inference in probabilistic networks [18] as well as the
frequency assignment problem [17] in cellular wireless networks, it has been shown that such an
algorithm to compute the optimal solution can be used in practice as well.

Polynomial time algorithms for solving combinatorial problems on a graph of bounded treewidth
consist of two steps: (i) the construction of a tree decomposition of the graph with width as small
as possible, and (ii) the application of dynamic programming on the tree decomposition to find
the optimal solution of the combinatorial problem. Whereas the first step can be applied without
knowledge of the application, the second step requires the development of an algorithm tailor-made
for the specific application.

To exploit the full potential of tree decomposition approaches for as many combinatorial prob-
lems as possible, the first step is of fundamental importance. The smallest possible width of a
tree decomposition is known as the treewidth of the graph. Computing the treewidth is however
NP -hard. To advance towards tree decompositions with close-to-optimal width, research in re-
cent years has been carried out on practical algorithms for reduction and decomposition of the
input graph [6, 7, 26], upper bounds [11, 10, 16], lower bounds [5, 8, 11, 19, 22], and exact algorithms
(e.g. [14]).

In this paper, we research treewidth lower bounds that are based on the degree of specific
vertices. Good treewidth lower bounds can be utilised to decrease the running time of branch-and-
bound algorithms (see e.g. [14]). The better the lower bounds, the bigger the branches that can be
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pruned in a branch-and-bound method. Furthermore, treewidth lower bounds are useful to esti-
mate the running times of dynamic programming methods that are based on tree decompositions.
Such methods have running times that are typically exponential in the treewidth. Therefore, a
large lower bound on the treewidth of a graph implies only little hope for an efficient dynamic
programming algorithm based on a tree decomposition of that graph. In addition, lower bounds
in connection with upper bounds help to assess the quality of these bounds.

Every lower bound for treewidth can be modified by taking the maximum of the lower bound
over all subgraphs or minors. In [8, 9] this idea was used to obtain considerable improvements on
two lower bounds: the minimum degree of a graph and the MCSLB lower bound by Lucena [19].

In this paper, we continue our research efforts to improve the quality of further known lower
bounds in this way. One lower bound for treewidth is given by the second smallest degree, another
one by the minimum over all non-adjacent pairs of vertices of the maximum degree of the vertices
(cf. Ramachandramurthi [22]). Altogether, we examine nine parameters (defined in Section 2) and
determine some relationships between them (see Section 3.1). We show that the second smallest
degree over all subgraphs is computable in polynomial time, whereas the parameters for other
combinations are NP -hard to compute (see Section 3.2). For the parameters that are NP -hard to
compute, we develop several algorithms in Section 4.2 to obtain treewidth lower bounds heuristi-
cally. A computational evaluation (Section 4.3 and 4.4) of the algorithms shows that the heuristics
where we combine a lower bound with edge contraction outperforms other strategies; i.e. taking
the maximum of a treewidth lower bound over all minors of the graph is a very valid approach for
improving this lower bound.

2 Preliminaries and Graph Parameters

Throughout the paper G = (V,E) denotes a simple undirected graph. Unless otherwise stated,
n(G) (or simply n) denotes the number of vertices in G, i.e. n := |V |, and m(G) (or simply m)
denotes the number of edgesm := |E|. Most of our terminology is standard graph theory/algorithm
terminology. The open neighbourhood NG(v) or simply N(v) of a vertex v ∈ V is the set of vertices
adjacent to v in G. As usual, the degree in G of vertex v is dG(v) or simply d(v), and we have
d(v) = |N(v)|. N(S) for S ⊆ V denotes the open neighbourhood of S, i.e. N(S) =

⋃
s∈S N(s) \S.

Edge Contraction. A more formal approach to edge contractions as well as basic lemmas can
be found in [27]. Contracting edge e = {u, v} in the graph G = (V,E), denoted as G/e, is the
operation that introduces a new vertex ae and new edges such that ae is adjacent to all the
neighbours of u and v, and deletes vertices u and v and all edges incident to u or v:

G/e := (V ′, E′), where

V ′ = {ae} ∪ V \ {u, v}
E′ = { {ae, x} | x ∈ N({u, v})} ∪ E \ {e′ ∈ E | e′ ∩ e 6= ∅}

Subgraphs and Minors. After deleting vertices of a graph and their incident edges, we get
an induced subgraph. A subgraph is obtained, if we additionally allow deletion of edges. (We use
G′ ⊆ G to denote that G′ is a subgraph of G.) If we furthermore allow edge-contractions, we get
a minor (denoted as G′ � G, if G′ is a minor of G). We explicitely exclude the null graph (the
empty graph on 0 vertices), as a subgraph or minor of a graph.

Treewidth. The notions treewidth and tree decomposition were introduced by Robertson and
Seymour in [23]. A tree decomposition of G = (V,E) is a pair

({Xi | i ∈ I}, T = (I, F ))

with {Xi | i ∈ I} a family of subsets of V and T a tree, such that each of the following holds:

–
⋃
i∈I Xi = V ,
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– for all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi,
– for all i0, i1, i2 ∈ I : if i1 is on the path from i0 to i2 in T , then Xi0 ∩Xi2 ⊆ Xi1 .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1. The treewidth tw(G)
of G is the minimum width among all tree decompositions of G.

Lemma 1 (see e.g. [4]). If G′ is a minor of G, then tw(G′) ≤ tw(G).

This is a well known result and an important fact for proving the parameters, considered in this
paper, to be treewidth lower bounds.

Graph Parameters. We consider a number of graph parameters in this paper, all lower bounds
on the treewidth of a graph, cf. Section 3. The minimum degree δ of a graph G is defined as usual:

δ(G) := min
v∈V

d(v)

The δ-degeneracy or simply the degeneracy δD of a graph G is defined in [3] to be the minimum
number s such that G can be reduced to an empty graph by the successive deletion of vertices
with degree at most s. It is interesting that this definition reflects an algorithm to compute the
degeneracy: Successively deleting a vertex of minimum degree and returning the maximum of the
encountered minimum degrees. Furthermore, it is easy to see that this definition of the degeneracy
is equivalent (see [28]) to the following definition:

δD(G) := max
G′
{δ(G′) | G′ ⊆ G ∧ n(G′) ≥ 1}

The treewidth of G is at least its degeneracy (see also [16]). The δ-contraction degeneracy or simply
the contraction degeneracy δC of a graph G was first defined in [8]. Instead of deleting a vertex
v of minimum degree, we contract it to a neighbour u, i.e. we contract the edge {u, v}. This has
been proven to be a very vital idea for obtaining treewidth lower bounds [8, 9]. The contraction
degeneracy is defined as the maximum over all minors G′ of G of the minimum degree:

δC(G) := max
G′
{δ(G′) | G′ � G ∧ n(G′) ≥ 1}

Let be given an ordering v1, ..., vn of the vertices of G with n ≥ 2, such that d(vi) ≤ d(vi+1), for
all i ∈ {1, ..., n− 1}. The second smallest degree δ2 of a graph G is defined as:

δ2(G) := d(v2)

Note that it is possible that δ(G) = δ2(G). Similar to the δ-degeneracy and δ-contraction-
degeneracy we define the δ2-degeneracy and δ2-contraction-degeneracy. The δ2-degeneracy δ2D
of a graph G = (V,E) with n ≥ 2 is defined as follows:

δ2D(G) := max
G′
{δ2(G′) | G′ ⊆ G ∧ n(G′) ≥ 2}

The δ2-contraction degeneracy δ2C of a graph G = (V,E) with n ≥ 2 is:

δ2C(G) := max
G′
{δ2(G′) | G′ � G ∧ n(G′) ≥ 2}

In [21, 22], Ramachandramurthi introduced the parameter γR(G) of a graph G and proved that
this is a lower bound on the treewidth of G.

γR(G) := min(n− 1, min
v,w∈V,v 6=w,{v,w}6∈E

max(d(v), d(w)))

Note that γR(G) = n − 1 if and only if G is a complete graph on n vertices. Furthermore, note
that γR(G) is determined by a pair {v, w} 6∈ E with max(d(v), d(w)) is as small as possible. We
say that {v, w} is a non-edge determining γR(G), and if d(v) ≤ d(w) then we say that w is a
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vertex determining γR(G). Once again, we define the ‘degeneracy’ and ‘contraction degeneracy’
versions also for the parameter γR. The γR-degeneracy γRD(G) of a graph G = (V,E) with n ≥ 2
is defined as follows:

γRD(G) := max
G′
{γR(G′) | G′ ⊆ G ∧ n(G′) ≥ 2}

The γR-contraction degeneracy γRC(G) of a graph G = (V,E) with n ≥ 2 is defined as:

γRC(G) := max
G′
{γR(G′) | G′ � G ∧ n(G′) ≥ 2}

3 Theoretical Results

3.1 Relationships Between the Parameters

Lemma 2. For a graph G = (V,E) with |V | ≥ 2, it holds:

δ(G) ≤ δ2(G) ≤ γR(G) ≤ tw(G)

Proof. The first two inequalities follow directly from the definitions of the according parameters.
The last one was proven by Ramachandramurthi in [21]. ut

Lemma 3. For a graph G and x ∈ {δ, δ2, γR}, it holds:

x(G) ≤ xD(G) ≤ xC(G) ≤ tw(G)

Proof. Note that G is a subgraph of G, and any subgraph of G is also a minor of G. Therefore, the
first two inequalities are easy to see. Furthermore, taking minors does not increase the treewidth
(see Lemma 1). We also have that x(G′) ≤ tw(G′) (which follows from Lemma 2) for G′ a
minor of G. Hence, it follows that x(G′) ≤ tw(G′) ≤ tw(G) for any minor G′ of G, and therfore
xC(G) ≤ tw(G). ut

Lemma 4. For a graph G = (V,E) with |V | ≥ 2 and X ∈ {D,C}, it holds:

δX(G) ≤ δ2X(G) ≤ γRX(G) ≤ tw(G)

Proof. Lemma 2 holds for every subgraph or minor G′ of G, unless G′ has only one vertex.
However, in that case the minimum degree is zero, and since G has at least two vertices it is
obvious that δ2X(G) ≥ 0 and γRX(G) ≥ 0. Therefore, the first two inequalities follow. Note that
γRX(G) ≤ γRC(G) ≤ tw(G) (see Lemma 3), and hence γRX(G) ≤ tw(G). ut

Lemma 5. For a graph G = (V,E) with |V | ≥ 2 and X ∈ {D,C}, it holds:

δ2X(G) ≤ δX(G) + 1

Proof. Let G′ = (V ′, E′) be a subgraph (if X = D) or minor (if X = C) of G with δ2(G′) =
δ2X(G), and let v1 and v2 be vertices in G′ with smallest and second smallest degree in G′,
respectively, i.e. dG′(v1) = δ(G′) and dG′(v2) = δ2(G′). We consider the graph G′′ := G′[V ′ \{v1}].
Note that G′′ is also a subgraph (X = D) or minor (X = C) of G. It is clear that we have:

∀v ∈ V (G′′) : dG′(v)− 1 ≤ dG′′(v) ≤ dG′(v)

Let w ∈ V (G′′) be a vertex with minimum degree in G′′, i.e. δ(G′′) = dG′′(w). Due to the definition
of v2, it holds that:

δ2X(G) = dG′(v2) ≤ dG′(w)

Otherwise v2 was not a vertex of second smallest degree in G′. Altogether, we have:

δ2X(G)− 1 = dG′(v2)− 1 ≤ dG′(w) − 1 ≤ dG′′(w) = δ(G′′) ≤ δX(G)

ut
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The next lemma shows some interesting properties of the parameter γR, when given a vertex
sequence sorted according to non-decreasing degree. It is needed in the proof of a subsequent
lemma.

Lemma 6. Let be given a graph G on n vertices with G 6= Kn. Furthermore, let be given an
ordering v1, ..., vn of V (G), such that d(vi) ≤ d(vi+1), for all i ∈ {1, ..., n − 1}. We define j :=
min{i ∈ {1, ..., n} | ∃l ∈ {1, ..., i− 1} : {vi, vl} 6∈ E(G)}. Then we have:

1. d(vj) = γR(G)
2. v1, ..., vj−1 form a clique in G

Proof. (1.) Since d(vl) ≤ d(vj) and {vi, vl} 6∈ E(G), we clearly have max{d(vl), d(vj)} = d(vj) ≥
γR(G), and because there is no vj′ with d(vj′ ) ≤ d(vj) and j′ < j, such that there is a vl′ ∈
{v1, ..., vj′ − 1}, with {vl′ , vj′} 6∈ E(G), the equality follows.

(2.) This follows because if vj is the left most vertex in the given sequence that is not adjacent
to all the vertices v1, ..., vj−1 to its left, then the vertices v1, ..., vj−1 must form a clique. ut
Lemma 7. For a graph G = (V,E) with |V | ≥ 2 and X ∈ {D,C}, it holds:

γRX(G) ≤ 2 · δ2X(G)

Proof. Let G′ = (V ′, E′) be a minimal subgraph (in case X = D) or a minimal minor (in case
X = C) of G with γR(G′) = γRX(G), i.e. there is no subgraph or minor G∗ of G′ with γR(G∗) ≥
γR(G′). If G′ is a complete graph on n′ := |V ′| vertices, then the lemma follows easily. For technical
reasons, we assume in the following w.l.o.g. that G′ 6= Kn′ . Let be given an ordering v1, ..., vn′ of
V ′, such that dG′(vi) ≤ dG′(vi+1), for all i ∈ {1, ..., n′−1}. We define j := min{i ∈ {1, ..., n′} | ∃l ∈
{1, ..., i−1} : {vi, vl} 6∈ E′}. From Lemma 6, we know that dG′(vj) = γR(G′) and that v1, ..., vj−1

form a clique in G′. Thus, these vertices have degree at least j − 2. To show the lemma, we need
a slightly higher degree as stated by the following claim.

Claim. δ2(G′) = dG′(v2) ≥ j − 1.

Proof. Assume the opposite, namely that dG′(v1) = dG′(v2) = j − 2. Hence, v1 and v2 are only
adjacent to the vertices in the clique formed by v1, ..., vj−1, and therefore, both v1 and v2 are
not adjacent to vj . Note that max{dG′(v1), dG′(vj)} = max{dG′(v2), dG′(vj)} = γR(G′). Now, we
consider G′[V ′ \ {v1}]. The deletion of v1 decreases the degree of the vertices v2, ..., vj−1 by one.
However, v2, ..., vj−1 still form a clique in G′[V ′ \{v1}]. Furthermore, note that due to the deletion
of v1, we only deleted non-edges {v1, vi}, i.e. pairs of vertices {v1, vi} 6∈ E′. Deleting elements of a
set over which a minimum is taken can never decrease the value of that minimum. Therefore, we
can conclude that {v2, vj} is a non-edge in G′[V ′ \ {v1}], determining γR(G′[V ′ \ {v1}]). Since the
degree of vj did not change when deleting v1, we have that max{dG′[V ′\{v1}](v2), dG′[V ′\{v1}](vj)} =
γR(G′[V ′ \ {v1}]) = max{dG′(v2), dG′(vj)} = γR(G′). Hence, γR(G′[V ′ \ {v1}]) ≥ γR(G′), which
contradicts the choice of G′. �
Hence, we have that j − 1 ≤ dG′(vj) = γRX(G). Note that the following holds:

δ2X(G) ≥ δ2X(G′) ≥ δ2(G′) = dG′(v2) ≥ j − 1

We consider now the graph G′′ := G′[V ′ \ {v1, ..., vj−1}], which is also a subgraph (X = D) or
minor (X = C) of G. It is clear that deleting j − 1 vertices in a graph can decrease the degree of
any vertex at most by j − 1. Therefore, we have:

δ2X(G) ≥ δX(G) ≥ δ(G′′) ≥ dG′(vj)− (j − 1)

Hence, altogether, we have:

δ2X(G) ≥ max(j − 1, dG′(vj)− (j − 1))

≥ dG′(vj)

2
=
γR(G′)

2
=
γRX(G)

2

ut
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It follows directly from Lemma 2, Lemma 3 and Lemma 4 that all the parameters defined in
Section 2 are lower bounds for treewidth. Furthermore, we see that the gap between the parameters
δD and δ2D, and between δC and δ2C can be at most one (see Lemma 5). In Section 3.2, we will
see that δ2D can be computed in polynomial time. Therefore, Lemma 7 gives us a 2-approximation
algorithm for computing the parameter γRD. Also in Section 3.2, we will see that γRD is NP -hard
to compute.

3.2 Computational Complexity of the Parameters

A Bucket Data Structure.

In this section, we briefly describe a data structure that can be used in many of our algorithms.
A more detailed description can be found in [28]. We extend the standard-adjacency-list data
structure of a graph G = (V,E) in the following way. We store in doubly linked lists the adjacent
vertices for every vertex of the graph, and we also use cross pointers for each edge {vi, vj} (i.e.
a pointer between vertex vi in the adjacency-list for vertex vj and vertex vj in the adjacency-list
for vertex vi). In addition to this advanced-adjacency-list, we create n = |V | buckets that can
be implemented by doubly-linked lists B0, ..., Bn−1. List Bd contains exactly those vertices with
degree d. We maintain a pointer p(v) for every vertex v that points to the exact position in the
list Bd that contains v for the appropriate d.

Lemma 8 (see [28]). Let be given a graph G = (V,E) with n = |V | and m = |E|. An algorithm
performing a sequence of O(n) vertex deletions and searches for a vertex with smallest or second
smallest degree can be implemented to use O(n+m) time.

Known Results.

It is easy to see that δ(G) and δ2(G) can be computed in O(n + m) time. Also the parameter
γR(G) can be computed in O(n+m) time, see [21] or Section 4.1. The definition of the degeneracy
as in [3] reflects an algorithm to compute this parameter: Successively delete a vertex of minimum
degree and return the maximum of the encountered minimum degrees. Using the data structure
described in this section, δD(G) can be computed in time O(n +m). Computing δC is NP -hard
as is shown in [8].

δ2D Is Computable in Polynomial Time.

First, we note that δ2D cannot be computed using the strategy of the algorithm for computing
the degeneracy δD of a graph G. This becomes evident when considering the example graph in
Figure 1. There, we see that successively deleting a vertex of smallest degree (in the example in

u

w

v

Fig. 1. Graph G as an example that deleting vertices of smallest degree does not lead to a correct algorithm
for computing δ2D

Figure 1 the vertex of smallest degree is v) does not lead to a subgraph where δ2 is maximal, i.e.
δ2D(G\{v}) = 3. Instead, we must delete vertex u (a vertex with second smallest degree), and we
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obtain δ2D(G\{u}) = δ2D(G) = 4. This gives the clue that deleting a vertex with second smallest
degree might be a correct approach, but it is easy to find a counter-example for this strategy as
well.

A strategy to compute δ2D is as follows. We can fix a vertex v of which we suppose it will
be the vertex of minimum degree in a subgraph G′ of G with δ2(G′) = δ2D(G). Starting with
the original graph, we successively delete a vertex in V (H) \ {v} of smallest degree, where H
is the current considered subgraph of G (initially: H = G). Since we do not know whether our
choice of v was optimal, doing this for all vertices v ∈ V leads to a correct algorithm to compute
δ2D(G). Using the bucket data structure, described above, this method can be implemented to
take O(n ·m) time. The following pseudo-code makes this algorithm more precise.

Algorithm Delta2D

1 delta2D := 0
2 for each v ∈ V do

3 H := G
4 repeat

5 if δ2(H) > delta2D then delta2D := δ2(H) endif
6 V ∗ := V (H) \ {v}
7 let be u ∈ {w ∈ V ∗ | 6 ∃w′ ∈ V ∗ : dH(w′) < dH(w)}
8 H := H [V (H) \ {u}]
9 until |V (H)| = 1
10 endfor

11 return delta2D

Lemma 9. Algorithm Delta2D computes δ2D(G) and can be implemented to run in O(n · m)
time, for a given connected graph G = (V,E) with |V | ≥ 2.

Proof. First, we will show that delta2D = δ2D(G). Note that every H considered in the algorithm
is a subgraph of G. Therefore, it is easy to see that delta2D ≤ δ2D(G), since:

delta2D = max
H
{δ2(H) | H occurs during the run of the algorithm}

Now, we show that there is a subgraph H ⊆ G considered during the algorithm with δ2(H) =
δ2D(G). Let be given G′ = (V ′, E′) ⊆ G with δ2(G′) = δ2D(G). Furthermore, let v ∈ V ′ be a
vertex of minimum degree in G′. We consider the run of the for-loop of algorithm Delta2D where v
was chosen (in Line 2) to always remain in the graph. Note that the algorithm selects and deletes
successively a vertex u 6= v whose degree is as small as possible. Now, consider the first time
when in the repeat-loop, i.e. in the current graph H , a vertex u ∈ V ′ is selected to be deleted.
Because u is the first such vertex, we have G′ ⊆ H . Therefore, for all w ∈ V ′ \ {v}, we have
δ2(G′) ≤ dG′(w) ≤ dH(w). Hence, since u ∈ V ′ \ {v}, it holds that δ2(G′) ≤ dH(u). Because u is
a vertex in V ∗ = V (H) \ {v} with degree in H as small as possible, all vertices in V ∗ have degree
at least dH(u) ≥ δ2(G′). Therefore, we have δ2(H) ≥ δ2(G′) = δ2D(G). Hence, the algorithm
considers a graph H ⊆ G with δ2(H) = δ2D(G). This proves our initial claim delta2D = δ2D(G).

If we use the data structure as described at the beginning of this section, it is not difficult to
see the claimed running time of the algorithm. ut

γRD Is Hard to Compute.

In this section, we formulate the decision problem corresponding to the parameter γRD, and we
show itsNP -completeness. We will give a proof, that is similar to the proof of theNP -completeness
of Contraction Degeneracy in [8]. However, before that, we show that considering only in-
duced subgraphs when computing γRD is sufficient.
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Lemma 10. For all graphs G, there exists an induced subgraph G′ of G such that γR(G′) =
γRD(G).

Proof. Let be given a subgraph G′ = (V ′, E′) of G with γR(G′) = γRD(G). Let be e ∈ E(G[V ′]) \
E′. If no such edge exists, then G′ is an induced subgraph. Adding edge e to G′ has two effects.
First, note that the degree of two vertices is increased by one. We have that ∀v ∈ V ′ : dG′(v) ≤
d(V ′,E′∪{e})(v) ≤ dG′(v) + 1. Furthermore, note that adding an edge deletes one of the non-edges
{vi, vj} with vi 6= vj ; vi, vj ∈ V ′, over which the minimum of max(dG′(vi), dG′(vj)) is taken.
However, deleting an element of a set over which a minimum is taken can never decrease the
value of that minimum. Therefore, we have γR(G′) ≤ γR((V ′, E′ ∪ {e})). The lemma is shown by
applying this argumentation successively until an induced subgraph is obtained. ut

Now, we define the decision problem for the γR-degeneracy and prove its NP -completeness.

Problem: γR-Degeneracy
Instance: Graph G = (V,E) with |V | ≥ 2 and integer k ≥ 0.
Question: Is γRD(G) ≥ k?

Theorem 1. The problem γR-Degeneracy is NP -complete.

Proof. Membership in NP is easy to see, since we only have to guess a subgraph and then compute
γR of that subgraph in polynomial time. The hardness proof is a transformation of the known NP -
complete problem Vertex Cover, see [13]. In the Vertex Cover problem, we are given a graph
G = (V,E) and an integer l, and look for a vertex cover of size at most l, i.e. a set W ⊆ V with
|W | ≤ l, such that each edge in E has at least one endpoint in W .

Let be given a Vertex Cover instance (G, l), with G = (V,E) and V = {v1, ..., vn}. We
assume that 1 ≤ l ≤ n − 1, which is not a restriction, since l = 0 and l = n are trivial instances
for Vertex Cover. We will construct a γR-Degeneracy instance.

Construction: We take a clique with vertex set U = {u1, ..., un+l}, an independent set W =
{w1, ..., wn+l−1}, and we take the complement Ḡ of G. We add all edges between vertices in U and
W , and all edges between vertices in W and V . The resulting graph G′ (see Figure 2) is formally

G

w1

w2

wn−l+1

u

u

v

v

1 1

nn+l

2u 2v

clique independent set complement of G

Fig. 2. Graph G′ constructed in the proof of Theorem 1

defined as follows:

G′ := (V ′, E′) where

V ′ = U ∪W ∪ V
E′ = { {ui, uj} | ui 6= uj ∧ ui, uj ∈ U }

∪{ {u,w} | u ∈ U ∧ w ∈ W }
∪{ {w, v} | w ∈ W ∧ v ∈ V }
∪{ {vi, vj} 6∈ E | vi, vj ∈ V, vi 6= vj }
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Our constructed γR-Degeneracy instance is (G′, 2 ·n). Now, we show that there is a vertex cover
for G of size at most k if, and only if γRD(G′) ≥ 2 · n.

Claim. If there is a vertex cover V1 of G of size at most l, then γRD(G′) = 2 · n, i.e. then there is
a subgraph G′′ of G′ with γR(G′′) = 2 · n.

Proof. Assume V1 is a vertex cover of G with |V1| = l. Note that Ḡ[V \ V1] is a clique of size
n − l, since a non-edge {vi, vj} in Ḡ[V \ V1] (vi 6= vj), would be an edge in G and therefore,
vi ∈ V1 or vj ∈ V1. We consider G′′ := G′[V ′ \V1]. Since the remaining vertices of G form a clique
in G′′, the only non-edges are {wi, wj} with i 6= j;wi, wj ∈ W , and {ui, vj} with ui ∈ U ; vj ∈
V . Furthermore, note that max(dG′′(wi), dG′′(wj)) = 2 · n, and max(dG′′ (ui), dG′′(vj)) = 2 · n.
Therefore, γR(G′′) = 2 · n. �

Claim. If γRD(G′) ≥ 2 · n, i.e. if there is a subgraph G′′ of G′ with γR(G′′) ≥ 2 · n, then there is
a vertex cover V1 of G of size at most l.

Proof. Let be given G′′ = (V ′′, E′′) as an induced subgraph of G′ (see Lemma 10), such that
γRD(G′) = γR(G′′) ≥ 2 · n. Note that the only non-edges are {wi, wj} with i 6= j;wi, wj ∈ W ,
{ui, vj} with ui ∈ U ; vj ∈ V , and {vi, vj} ∈ E(G). The degree in G′ (and also in G′′) of a vertex
in V is at most (n− 1) + (n− l+ 1) = 2 · n− l < 2 · n. Hence, all pairs of vertices in V remaining
in G′′ are joined by an edge. Therefore, V ′′ ∩ V is a (perhaps empty) clique in G′′.

Fact: V ′′ ∩ V is a clique of size at least n− l. This can be seen by assuming |V ′′ ∩ V | < n− l.
Note that every vertex in W has degree in G′′ at most (n + l) + |V ′′ ∩ V | < 2 · n. If there are
at least two vertices in W , then we have γR(G′′) < 2 · n. On the other hand, if there is at most
one vertex of W left in G′′, then every vertex in V ′′ ∩ U has degree at most n + l < 2 · n. If
|V ′′ ∩ V | = 0, then there are at most n+ l+ 1 ≤ 2 · n vertices left in G′′, rendering γR(G′′) = 2 · n
impossible. If |V ′′ ∩V | > 0, then the only non-edges are {ui, vj} with ui ∈ U, vj ∈ V . But then we
have max(dG′′(ui), dG′′(vj)) < 2 · n. Hence, V ′′ ∩ V is a clique of size at least n− l.

Now we define V1 := V \ (V ′′ ∩ V ), i.e. V1 contains exactly those vertices of V that are not
present in G′′. We will show that V1 is a vertex cover of G of size at most l. We clearly have that
|V1| ≤ l. Assume there is an edge {vi, vj} ∈ E with {vi, vj} ∩ V1 = ∅. Then {vi, vj} is a non-edge
in G′, and by definition of V1, it is also a non-edge in G′′. This is a contradiction to the fact that
all pairs of vertices in V remaining in G′′ are joined by an edge. Hence, V1 is a vertex cover of G.
�

Since the construction described above is a polynomial time construction, the NP -completeness
of γR-Degeneracy follows. 2

γRC Is Hard to Compute

We formulate the decision problem corresponding to γRC and prove its NP -completeness. The
proof is very similar to the proof of the NP -completeness of Contraction Degeneracy in [8].

Problem: γR-Contraction Degeneracy
Instance: Graph G = (V,E) with |V | ≥ 2 and integer k ≥ 0.
Question: Is γRC(G) ≥ k?

Theorem 2. The problem γR-Contraction Degeneracy is NP -complete.

Proof. It is easy to see that the problem belongs to NP , since we only have to guess a minor and
then compute γR of that minor in polynomial time. We prove the hardness by transforming the
known NP -complete problem Vertex Cover, see [13]. Let be given a Vertex Cover instance
(G, l), with G = (V,E), V = {v1, ..., vn} and n ≥ 2 (note that n < 2 implies a trivial Ver-
tex Cover instance). From this instance, we will construct a γR-Contraction Degeneracy
instance.
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Construction: We take l vertices u1, ..., ul, the complement Ḡ of G, a C4 which is a cycle with
vertices w1, ..., w4, and we take a vertex x. We add all edges between vertices ui and vj , between
vj and wp and we connect vertex x to all vertices wp, for i ∈ {1, ..., l}, j ∈ {1, ..., n}, p ∈ {1, ..., 4}.
We call the resulting graph G′, formally defined as follows (see Figure 3):

G′ := (V ′, E′) where

V ′ = {u1, . . . , ul} ∪ V ∪ {w1, . . . , w4} ∪ {x}
E′ = { {u, v} | u ∈ {u1, . . . ul} ∧ v ∈ V }

∪{ {vi, vj} 6∈ E | vi, vj ∈ V, vi 6= vj }
∪{ {v, w} | v ∈ V ∧ w ∈ {w1, . . . , w4} }
∪{ {w1, w2}, {w2, w3}, {w3, w4}, {w4, w1} }
∪{ {w, x} | w ∈ {w1, . . . , w4} }

G C4

w3

w2

w4

w1

ul

u

u1

2 x

Fig. 3. Graph G′ constructed in the proof of Theorem 2

The constructed instance of the γR-Contraction Degeneracy problem is (G′, n + 3). So,
we have to show that there is a vertex cover for G of size at most l if, and only if γRC(G′) ≥ n+3.

Claim. If there is a vertex cover of G of size at most l, then there is a E∗ ⊆ E′, such that
γR(G′/E∗) ≥ n+ 3.

Proof. Suppose there is a vertex cover of size at most l. Now, take a vertex cover V1 = {y1, . . . , yl}
of G of size exactly l. (If we add vertices to a vertex cover, we obtain again a vertex cover.) In G′,
we contract edge set E∗ defined as follows: E∗ := { {ui, yi} | i = 1, . . . , l}; i.e. each vertex yi in the
vertex cover V1 has the vertex ui contracted to it. We claim that for the resulting graph G′/E∗

holds: γR(G′/E∗) ≥ n + 3. Therefore, we claim that all vertices in G′/E∗, apart from x, have
degree n+ 3. Note that each vertex w in {w1, ..., w4} is adjacent to vertex x, to all vertices in V
and to exactly two other vertices from {w1, ..., w4}. Hence, all vertices in {w1, ..., w4} are adjacent
to n+ 3 vertices. Now, we claim that the vertices of V form a clique in G′/E∗. Assume there are
two vertices z1 and z2 in V with z1 6= z2 and {z1, z2} 6∈ E(G′/E∗). Therefore, {z1, z2} ∈ E, and
hence z1 or z2 has to be in V1. We assume w.l.o.g. z1 ∈ V1, i.e. ∃i ∈ {1, ..., l}, such that yi = z1.
Since we contracted {ui, yi} and {ui, z2} ∈ E(G′), we have yi = z1 is adjacent to z2 in G′/E∗,
which is a contradiction. Hence, V forms an n-clique and therefore, the degree in G′/E∗ of a vertex
in V is n + 3 (since every vertex in V is also adjacent to w1, ..., w4). Thus, γR(G′/E∗) = n + 3,
since x is not adjacent to a vertex in V . �
Claim. If there is an E∗ ⊆ E′, such that γR(G′/E∗) ≥ n+ 3, then there is a vertex cover V1 ⊆ V
of G of size at most l.

Proof. Assume, there is a E∗ ⊆ E, such that γR(G′/E∗) ≥ n+3. First, we state some observations
about E∗ and the structure of G′/E∗. After that, we construct a set V1 ⊆ V and show that this
is a vertex cover of G.



12 Arie M. C. A. Koster, Thomas Wolle, and Hans L. Bodlaender

Fact: l ≤ |E∗| ≤ l + 1. This is because, if |E∗| < l, then there are at least two vertices in
{u1, ...ul, x} left in G′/E∗, and hence, γR(G′/E∗) ≤ n. On the other hand, if l + 1 < |E∗|, then
G′/E∗ has at most n+ 3 vertices, and thus, γR(G′/E∗) ≤ n+ 2.

Fact: |E∗| 6= l + 1. To see this, we assume |E∗| = l + 1. From the previous fact, we already
know that at least l vertices from {u1, ...ul, x} have to be contracted to a neighbour. Depending
on which of these vertices were contracted, we distinguish two cases to show |E∗| 6= l + 1.
Case ‘u1, ..., ul were contracted, and one more edge e was contracted in G′/E∗.’ If e ∈ V × V
then the remaining vertices in V have degree at most n + 2, and hence, γR(G′/E∗) ≤ n + 2. If
e ∈ V ×{w1, ..., w4}, then one vertex in V is adjacent to x, and all other vertices in V have degree
at most n+ 2; hence, γR(G′/E∗) ≤ n+ 2. If e ∈ {w1, ..., w4}× {w1, ..., w4} then the vertices in V
have degree at most n+ 2, and therefore, γR(G′/E∗) ≤ n+ 2. If e ∈ {x} × {w1, ..., w4} then two
vertices in {w1, ..., w4} will have degree at most n+2 and are not adjacent; thus γR(G′/E∗) ≤ n+2.
Case ‘u1, ..., ui−1, ui+1, ..., ul were contracted, x was contracted w.l.o.g. to w1 and one more edge
e was contracted.’ If e ∈ {ui}× V then this case was already considered above. If e ∈ V × V then
w2 and w4 have degree at most n + 1, and hence, γR(G′/E∗) ≤ n + 1. If e ∈ V × {w1, ..., w4}
then the vertices in {w1, ..., w4} \ e have degree at most n + 2; thus γR(G′/E∗) ≤ n + 2. If
e ∈ {w1, ..., w4} × {w1, ..., w4} then the remaining vertices in {w1, ..., w4} have degree at most
n+ 2; therefore, γR(G′/E∗) ≤ n+ 2.
In all cases and subcases, we concluded γR(G′/E∗) ≤ n+2, which contradicts our initial assumption
that γR(G′/E∗) ≥ n+ 3. Hence, |E∗| = l + 1 is not possible.

Fact: All vertices in {u1, ..., ul} were contracted, and x was not contracted. We know that
exactly l vertices in {u1, ..., ul, x} were contracted. If a ui ∈ {u1, ..., ul} was not contracted, then x
was contracted w.l.o.g. to w1. Thus, w2 and w4 have degree at most n+2 and are non-adjacent; we
conclude γR(G′/E∗) ≤ n+ 2, which is a contradiction. Hence, after all the considerations above,
the only possibility is that u1, ..., ul were contracted to a neighbour, and x was not contracted.

Fact: The vertices of V form a clique in G′/E∗. Since x is not adjacent to any vertex in V , all
vertices in V must have degree n+ 3. This is only possible if V forms a clique.

Now, we know that G′/E∗ has the following structure. We have a clique on n vertices, all
of which are adjacent to the vertices of a C4. Furthermore, we have a vertex x adjacent to all
vertices of the C4. Hence, E∗ contains exactly l edges, one for each ui, i ∈ {1, ..., l}, with the
other endpoint in V . We will now define V1 ⊆ V and show that this is a vertex cover of G. Let
be V1 :=

⋃
e∈E∗ e \

⋃
i=1,...l ui. Clearly, |V1| = l, and we claim that V1 is a vertex cover of G.

Assume, there is an edge f = {z1, z2} in G with V1 ∩ f = ∅. Hence, f is not an edge in Ḡ and
also not in G′. Since V forms an n-clique in G′/E∗, edge f exists in G′/E∗, which means: f was
created by contracting another edge {ui, vj} ∈ E∗, since ui is adjacent to all vertices in V . This
can only be the case if vj = z1 or vj = z2. According to the definition of V1, we have: vj ∈ V1,
which contradicts V1 ∩ f = ∅. Hence, V1 is a vertex cover of size l. �
As G′ can be constructed in polynomial time, the NP -completeness of the γR-Contraction
Degeneracy problem now follows. ut
Theorem 3. It is NP -complete to decide whether γRC(G) ≥ k for a given bipartite graph G and
an integer k.

Proof. Already in [9], we observed that δC(G) ≥ 3 ⇔ tw(G) ≥ 3. Since δC(G) ≤ γRC(G) ≤
tw(G), we also have γRC(G) ≥ 3 ⇔ tw(G) ≥ 3. It is known that graphs of treewidth at most
two can be recognised in polynomial time, e.g. with preprocessing rules (see [1, 2, 4, 7]) or with
Robertson and Seymour graph minor theory (see e.g. [12, 20]) as used in the proofs of the fixed
parameter results in [9]. Therfore, it is no restriction that we assume for technical reasons that
γRC(G) ≥ 3 (and hence, also k ≥ 3).

The membership inNP is obvious. We use a polynomial transformation from γR-Contraction
Degeneracy on general graphs, which is known to be NP -complete (see Theorem 2). Let be given
an instance (G, k) of the γR-Contraction Degeneracy problem. We subdivide any edge in G,
i.e. we place a new vertex on each edge, and obtain G′, formally defined in the following way:

G′ := (V ′, E′) where
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V ′ = V ∪ { se | e ∈ E }
E′ = { {a, se}, {se, b} | e = {a, b} ∈ E }

The new constructed instance is (G′, k). G′ is a bipartite graph, as all edges in E ′ are between a
vertex in V and a vertex in { se | e ∈ E }. Now, we have to show that γRC(G) ≥ k if, and only if
γRC(G′) ≥ k.

Claim. If γRC(G) ≥ k then γRC(G′) ≥ k.

Proof. Note that G is a minor of G′, since G = G′/E∗, where E∗ is set of edges to undo the
subdivisions. Therefore, any minor of G is also a minor of G′. Hence, the claim follows. �
Claim. If γRC(G′) ≥ k then γRC(G) ≥ k.

Proof. Let G1 � G′ be a minor of G such that γR(G1) ≥ k. If all vertices in { se | e ∈ E }
were contracted in G1 to a neighbour, then G1 is also a minor of G, and hence γRC(G) ≥ k.
Furthermore, if G1 contains two vertices of { se | e ∈ E }, then γR(G1) = 2, since all vertices in
{ se | e ∈ E } are pairwise nonadjacent and have degree two. Therefore, we have to consider the
case that exactly one vertex s ∈ { se | e ∈ E } is present in G1. This vertex s subdivides an edge
{u, v} ∈ E. We distinguish the following cases.
Case 1: {u, v} 6∈ E(G1). Contracting edge {s, u} does not change the degree of any vertex in
V (G1) (apart from s). However, s cannot be the vertex determining γR(G1), since dG1(s) = 2.
This contraction decreases the number of pairs over which the minimum is taken when computing
γR(G1). Such a decrease can only increase the value of that minimum. Therefore, k ≤ γR(G1) ≤
γR(G1/{s, u}) ≤ γRC(G), since G1/{s, u} � G.
Case 2: {u, v} ∈ E(G1). In this case u, v and s form a triangle. We define G2 := G1 − s =
G1/{s, u} = G1/{s, v}. Let {x, y} be a nonedge in G2 that determines γR(G2), with dG2(x) ≤
dG2(y). Since {u, v} ∈ E(G2), {x, y} 6= {u, v}. If {x, y} ∩ {u, v} = ∅, then dG2(x) = dG1(x) and
dG2(y) = dG1(y). Hence, we have that γR(G1) ≤ max(dG1(x), dG1(y)) = max(dG2(x), dG2(y)) =
γR(G2). We consider the case where {x, y} ∩ {u, v} 6= ∅ in two subcases.
Subcase 1: x ∈ {u, v}. We have dG1(x) ≥ dG2(x) and dG1(y) = dG2(y), and {s, y} is a nonedge in
G1. Therefore, we have that γR(G1) ≤ max(dG1(s), dG1(y)) ≤ max(dG2(x), dG2(y)) = γR(G2).
Subcase 2: y ∈ {u, v}. In this case, we have that dG1(x) = dG2(x) and dG1(y) ≥ dG2(y), and {s, x}
is a nonedge in G1. Hence, γR(G1) ≤ max(dG1(s), dG1(x)) ≤ max(dG2(x), dG2(y)) = γR(G2).
Hence, we can conclude that γR(G1) ≤ γR(G2). Furthermore, note that G2 is also a minor of G,
and thus, we have that k ≤ γR(G1) ≤ γR(G2) ≤ γRC(G). �
Because the transformation described above is a polynomial one, the theorem follows. ut

δ2C Is Hard to Compute

We formulate the decision problem corresponding to δ2C and state its NP -completeness.

Problem: δ2-Contraction Degeneracy
Instance: Graph G = (V,E) with |V | ≥ 2 and integer k ≥ 0.
Question: Is δ2C(G) ≥ k?

Theorem 4. The problem δ2-Contraction Degeneracy is NP -complete.

To prove this, we can use an easier variant of the proof for Theorem 2. When computing γR, we
consider non-adjacent vertices. However, we can observe that the proof of Theorem 2 also holds
when computing δ2.

4 Experimental Results

In this section, we describe exact and heuristic algorithms, which we used in our experiments to
compute the corresponding parameters.
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4.1 Exact Algorithms.

An implementation of algorithms to compute δ and δ2 is straightforward. It is obvious that both
parameters can be exactly computed in linear time. The parameters δD and δ2D were computed as
described in Section 3.2. Ramachandramurthi shows in [21] that γR can be computed in O(n+m)
time. In our experiments, we use a different algorithm that does not use an adjacency matrix. Our
algorithm appears to be simpler and is easy to implement. Let be given a sequence v1, ..., vn of
the vertices of the graph, such that d(vi) ≤ d(vi+1), ∀i ∈ {1, ..., n− 1}. Our algorithm as well as
the algorithm in [21] are based on the fact that γR is determined by the leftmost vertex in this
sequence that is not adjacent to all vertices to the left of it (see Lemma 6). As an invariant in
our algorithm we have that counter c(vi) counts the number of neighbours of vi to the left of vi.
Therefore, it is easy to find the first vertex with i 6= c(vi) + 1.

Algorithm GammaR

1 obtain sequence v1, ..., vn by bucket sorting

the vertices according to nondecreasing degree

2 initialise counter c(vj) := 0, ∀j ∈ {1, ..., n}
3 i := 1
4 while i = c(vi) + 1 and i < n do

5 for all u ∈ N(vi) do

6 c(u) := c(u) + 1
7 endfor

8 i := i+ 1
9 endwhile

10 return d(vi)

It is easy to see that our algorithm runs in time O(n+m), since for at most every vertex (line
4 to 9), we walk along its list of neighbours (line 5 to 7), and sorting and initialising (line 1 to 3)
can be done in that time as well.

4.2 Heuristics.

For the parameters that are NP -hard to compute, we have developed heuristics some of which are
based on the polynomial counterparts.

γR-degeneracy: For the γRD, we developed three heuristics based on the following observation:
Let v1, ..., vn be a sorted sequence of the vertices according to non-decreasing degree in G, and let
γR(G) be determined by vj for some j > 1 (see Lemma 6 and the description of the algorithm to
compute γR). Thus, vj is not adjacent to some vertex vk with k < j, whereas v1, ..., vj−1 induce a
clique in G. Let V ′ be the set of all vertices vi with i < j and {vi, vj} 6∈ E. Now, for any subgraph
G′ ⊂ G with ({vj} ∪ V ′) ⊆ V (G′), we have that γR(G′) ≤ γR(G). Hence, only subgraphs without
either vj or V ′ are of further interest. Based on this observation, we implemented three heuristics.
In the heuristic γRD-left, we remove the vertices in V ′ (the vertices that are more to the left in the
sequence) from the graph and continue. Whereas in the heuristic γRD-right, we delete the vertex
vj (the vertex that is more to the right in the sequence) and go to the next iteration. The heuristic
γRD-min-e (minimum number of edges) chooses to remove either V ′ or vj depending on which of
the two deletes fewer edges to obtain an induced subgraph with as many edges as possible.

δ-contraction degeneracy: For computing lower bounds for δC, we have examined various strategies
for contraction in [8]. The most promising one has been to recursively contract a vertex of minimum
degree with a neighbour that has the least number of common neighbours (denoted as the least-c
strategy).
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δ2-contraction degeneracy: For δ2C we implemented three heuristic algorithms. The first one, all-v
is based on the polynomial time implementation for δ2D. We fix all vertices once at a time and
perform the δC heuristic (with least-c strategy) on the rest of the graph. The best second smallest
degree recorded provides a lower bound on δ2C. The other two δ2C-heuristics are based on the
algorithms for δC. Instead of recording the minimum degree we also can record the second smallest
degree (Maximum Second Degree with contraction, abbreviated as MSD+). If we contract a vertex
of minimum degree with one of its neighbours (according to the least-c strategy), we obtain the
algorithm MSD+1. If the vertex of second smallest degree is contracted with one of its neighbours
(also according to the least-c strategy), we obtain the algorithm MSD+2.

γR-contraction degeneracy: For γRC the same strategies as for γRD have been implemented. The
only difference is that instead of removing all vertices in V ′ or vj , we contract each of the vertices
with a neighbour that is selected according to the least-c strategy. Inspired by the good results of
the ‘δ2C all-v’ heuristic, we furthermore implemented the all-v strategy as described above also
for the γR-contraction degeneracy. The difference is that instead of computing δ2 of each obtained
minor, we now compute γR.

4.3 Experiments.

The algorithms and heuristics described above have been tested on a large number of graphs
from various application areas such as probabilistic networks, frequency assignment, travelling
salesman problem and vertex colouring (see e.g. [8, 9] for details). All algorithms have been written
in C++, and the computations have been carried out on a Linux operated PC with a 3.0 GHz
Intel Pentium 4 processor. Many of the tested graphs as well as most of the experimental results
on their treewidth (from, among others, [8, 9] and this article) can be obtained from [25].

In the tables below, we present the results for some selected instances only. The result of these
representative instances reflect typical behaviour for the whole set of instances. The best known
upper bound for treewidth (see [16]) is reported in the column with title UB. Columns headed by
LB give treewidth lower bounds in the terms of the according parameter or a lower bound for the
parameter. Values in columns headed by CPU are running times in seconds.

Table 1 shows the sizes of the graphs, and the results obtained for the treewidth lower bounds
without contraction. These bounds are the exact parameters apart from the values for the three
γRD-heuristics. As the computation times for δ, δ2 and γR are negligible, we omit them in the
table. Also the δD can be computed within a fraction of a second. The computational complexity
of δ2D is O(n) larger than the one of δD which is reflected in the CPU times for this parameter.

instance size δ δ2 γR δD δ2D γRD
left right min-e

|V | |E| UB LB LB LB LB CPU LB CPU LB CPU LB CPU LB CPU

link 724 1738 13 0 0 0 4 0.01 4 3.67 4 0.01 4 0.01 4 0.01
munin1 189 366 11 1 1 1 4 0.00 4 0.23 4 0.00 4 0.00 4 0.00
munin3 1044 1745 7 1 1 1 3 0.01 3 6.70 3 0.02 3 0.01 4 0.01
pignet2 3032 7264 135 2 2 2 4 0.04 4 69.87 4 0.04 4 0.05 4 0.04
celar06 100 350 11 1 1 1 10 0.01 11 0.08 11 0.00 10 0.00 10 0.00
celar07pp 162 764 18 3 3 3 11 0.01 12 0.27 12 0.00 11 0.01 11 0.00
graph04 200 734 55 3 3 3 6 0.01 6 0.36 6 0.00 6 0.00 6 0.01
rl5934-pp 904 1800 23 3 3 3 3 0.01 3 5.33 3 0.01 3 0.01 3 0.01
school1 385 19095 188 1 1 1 73 0.04 74 7.89 75 0.03 73 0.03 73 0.03
school1-nsh 352 14612 162 1 1 1 61 0.02 62 5.69 62 0.03 61 0.02 61 0.03
zeroin.i.1 126 4100 50 28 29 32 48 0.00 48 0.58 50 0.01 50 0.01 50 0.01

Table 1. Graph sizes, upper bounds and lower bounds without contractions
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Table 2 shows the results for the same graphs as in Table 1. Furthermore, in Table 2, we give
the treewidth lower bounds according to the parameters that involve contraction. For δC, we only
give the results of the least-c strategy, as this seems to be the most promising one (see [8]). For
δ2C and γRC, the results of the heuristics as described in Section 4.2 are shown.

instance δC δ2C γRC
least-c all-v MSD+1 MSD+2 left right min-e all-v

LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

link 11 0.02 12 17.27 11 0.02 11 0.03 11 0.02 12 0.02 11 0.02 12 150.13
munin1 10 0.01 10 0.58 10 0.00 10 0.00 9 0.01 10 0.00 10 0.00 10 3.07
munin3 7 0.01 7 13.20 7 0.01 7 0.02 7 0.01 7 0.02 7 0.01 7 312.92
pignet2 38 0.11 40 369.00 39 0.12 39 0.14 38 0.12 39 0.12 39 0.11 40 11525.15
celar06 11 0.00 11 0.16 11 0.01 11 0.00 11 0.00 11 0.00 11 0.01 11 0.30
celar07pp 15 0.00 15 0.77 15 0.01 15 0.01 15 0.00 15 0.01 15 0.00 15 2.08
graph04 20 0.01 20 2.72 20 0.01 19 0.01 20 0.02 19 0.01 20 0.01 21 4.78
rl5934-pp 5 0.02 6 36.12 5 0.02 5 0.03 5 0.03 6 0.02 5 0.03 6 221.72
school1 122 0.48 124 180.30 123 0.48 122 0.51 122 0.45 122 0.49 122 0.45 125 215.35
school1-nsh 106 0.37 108 173.51 106 0.35 107 0.38 104 0.34 106 0.36 106 0.32 108 146.19
zeroin.i.1 50 0.03 50 6.25 50 0.03 50 0.03 50 0.03 50 0.03 50 0.03 50 5.43

Table 2. Treewidth lower bounds with contraction

4.4 Discussion.

The results of algorithms and heuristics that do not involve edge-contractions (Table 1) show that
the degeneracy lower bounds (i.e. the lower bounds involving subgraphs) are significantly better
than the simple lower bounds, as could be expected. Comparing the results for δD and δ2D, we
see that in four cases we have that δ2D = δD + 1. In the other seven cases δ2D = δD. Bigger
gaps than one between δD and δ2D are not possible (confirm Lemma 5). In some cases other
small improvements (compared to δD and δ2D) could be obtained by the heuristics for γRD.
The three γRD-heuristics are all comparable in value and running times. Apart from the running
times for computing δ2D, the computation times are in all cases marginal, which is desirable for
methods involving computing lower bounds many times (e.g. branch & bound). Even though the
δ2D algorithm has much higher running times than the other algorithms in Table 1, it is still
much faster than some heuristics with contraction. Furthermore, we expect that its running time
could be improved by a more efficient implementation. No further investigations about parameters
without contraction have been carried out as the parameters with contraction are of considerably
more interest.

We can see that when using edge-contractions, the treewidth lower bounds can be significantly
improved (compare Table 2 with Table 1). The results show that values for δ2C are typically equal
or only marginal better than the value for δC. The same is true for γRC with respect to δ2C.
The best results are obtained by the most time consuming algorithms: δ2C and γRC with all-v
strategy. By construction of the heuristic for γRC with all-v strategy, it is clear that it is at least
as good as the heuristic for δ2C with all-v strategy. Sometimes, it is even a little bit better. As in
the case of the δ2D algorithm, the computation times of the δ2C and γRC heuristics with all-v
strategy could probably be improved by more efficient implementations. The other strategies for
δ2C and γRC are comparable in value and running times. No clear trend between them could be
identified. In a few cases, we can observe that the gap between δC and δ2C is more than one. This
does not contradict Lemma 5, because the considered values are not the exact values. Different
strategies for heuristics can result in different values with larger gaps between them. With the
same argument, we can explain that in a few cases lower bounds of one parameter that in theory
is bigger than another parameter can be smaller than lower bounds of the other parameter.
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As said above, using γR instead of δ2 in the degeneracy and contraction degeneracy heuristics,
gives only small improvements in some cases. Therefore, the ratio of two between those parameters
as stated in Lemma 7 is far from the ratios observed in our experiments.

It was already remarked in [8] that the δ-contraction degeneracy of a planar graph can never be
larger than 5. In fact, we have that δC(G) ≤ δ2C(G) ≤ γ(G) + 5, where γ denotes the genus of a
graph (see [28]). This behaviour can be observed in our experiments, e.g. for the graph rl5934-pp,
which is expected to be nearly planar. However, the γR-contraction degeneracy might be larger
than γ(G) + 5.

5 Conclusions

In this article, we continued our research in [8] on degree-based treewidth lower bounds, where we
combined the minimum degree lower bound with subgraphs and edge-contraction/minors. Here,
we applied this combination to two other treewidth lower bounds, namely the second smallest
degree lower bound and the Ramachandramurthi lower bound [21].

We obtained theoretical results showing how the parameters are related to each other. We also
examined the computational complexity of the parameters. Here, it is interesting to note that all
contraction degeneracy problems are NP -hard, while the degeneracy problems are polynomial.
However, an exception is the computation of the γR-degeneracy, which has been shown to be
NP -hard. Figure 4 represents some of the theoretical results. A thick line between two parameters
indicates that the parameter below is smaller or equal to the parameter above, as stated by
Lemmas 2, 3 and 4. The thin line marks the border between polynomial computability and NP -
hardness of the corresponding parameters.

In our experiments, we could observe (as in [8]) potent improvements when comparing the
simple parameters with their degeneracy counterparts. An even bigger improvement was achieved
when edge-contractions (i.e. minors) were involved. Therefore, we can conclude that the incorpo-
ration of contraction improves the lower bounds for treewidth considerably. However, the added
value of δ2C and γRC in comparison to δC is from a practical perspective marginal. The best lower
bounds for δ2C and γRC were obtained by heuristics with considerably long running times. Hence,
if the lower bound has to be computed frequently, e.g. within a branch-and-bound algorithm, it
is advisable to first compute a lower bound for δC, and only in tight cases using a slower but
hopefully better lower bound.

It remains an interesting topic to research other treewidth lower bounds that can be combined
with minors, in the hope to obtain large improvements. Furthermore, good lower bounds for graphs
with bounded genus are desirable, because lower bounds based on δ, δ2 or γR do not perform very
well on such graphs (see [28]). However, treewidth lower bounds for planar graphs (i.e. graphs
with genus zero) can be obtained e.g. by computing the branchwidth of the graph (see [15, 24]).
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