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Abstract

A key problem in computational geometry is the identification of subsets of a point set having
particular properties. We study this problem for the properties of convexity and emptiness. We
show that finding empty triangles is related to the problem of determining pairs of vertices that
see each other in a star-shaped polygon. A linear time algorithm for this problem which is of
independent interest yields an optimal algorithm for finding all empty triangles. This result is
then extended to an algorithm for finding empty convex r-gons (r > 3) and for determining a
largest empty convex subset. Finally, extensions to higher dimensions are mentioned. '
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kernel. For this input there is a simpler algorithm with the same asymptotic running time. This
algorithm is presented in the next section.

Step 3 will be split into two steps. In the first step, to be described in section 4 we will determine
the longest convex chain in the visibility graph. In fact, we determine for each edge of the visibility
graph the longest convex chain that starts there. In the second step we use this information to
determine all the chains of length » — 2. Both parts will run in time the size of the visibility graph.

3 The visibility graph of a star-shaped polygon.

We are now given a star-shaped polygon P of N vertices with one vertex p that lies in the kernel.
We are interested in obtaining the visibility graph inside P, denoted as VG. For a pair of vertices of
P we say that they are visible within P if the line segment joining them lies entirely in P (including
its boundary). Note that, because of our assumption that the points lie in general position, the line
segment will either intersect the boundary of P in its two endpoints or is an edge of P. The visibility
graph inside P consists of all pairs of vertices of P that are visible within P. .

The vertices of P are ordered counter-clockwise around p. We number them in this way p1,...,PN-1-
Because of the requirements we have later we will compute the visibility graph as a directed graph
in which edges run from lower indexed to higher indexed vertices. (Moreover, we will not include
the visibility edges involving p.) The edge (in the visibility graph) between p; and p; (i < j) will be
denoted by 17.

We will construct the visibility graph V' G during one counter-clockwise scan around the polygon.
When we visit p; we construct all incoming edges of p;. With each vertex pi we maintain a queue
Qi that stores the starting points of some of the incoming edges of p; in counter-clockwise order. It
contains those points p; such that i is an edge of the visibility graph and we have not yet reached
another point py with k > i such that jk is an edge of the visibility graph. Hence, Q; is a kind of
waiting list. It contains those points that could be seen by p; but could not be seen since, because p;
blocks their view. The required operations that can be performed in constant time are the following:

1. ADD(7): it creates an edge from ¢ to j. This edge will be stored at both p; and p; for later
use.

2. TURN(#7,7K): it returns left or right depending on whether p, lies to the left or to the right of
the directed line passing through p; and p; in this order. (Note that it cannot lie on the line.)

3. FRONT(Q): it returns the index of the first point in queue Q.
4. DEQUEUE(Q): it removes the first point from queue Q.
5. ENQUEUE(k,Q): it adds the point py to queue Q.

The algorithm now looks as follows:

procedure VISIBILITY;
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fori:=1to N -1do Q; :=0 end;
for i := 1to N - 2:do PROCEED(i,i + 1) end.

procedure PROCEED(s,j);
while Q; #  and TURN(FRONT(Q;)s,i7)=left do
PROCEED(FRONT(Q;),5);
DEQUEUE(Q;);
end;
ADD(i3);
ENQUEUE(:,Q;).

PROCEED adds an edge from point p; to pj. It also checks whether any of the points in the
waiting queue of p; are visible from p; and, if so, recursively calls PROCEED. Because the points in
the queue are sorted counter-clockwise only a first portion of the queue needs to be checked.

Note that the new edge is added after all the recursive calls. This guarantees that the points in
the queues are indeed sorted counter-clockwise. Also, for each node we will collect the incoming and
outgoing edges sorted counter-clockwise.

The correctness of the method follows from the following lemma: )

Lemma 3.1 Letj > i. i € VG if and only if j =i+ 1 or there is a vertez py, i < k < 7, such that
tke VG, kj € VG, and TURN(ik, k7) = left.

Proof. First note that because p lies inside the kernel, 17 € VG if and only if triangle pp;p;
empty. Now the proof goes as follows:

if: If j # i+ 1 take the point p, between p; and p; that lies nearest to the line ¢7. As the triangle
ppip; is empty, TURN(GE, k7) = left. Moreover, obviously ik € V.G and kfeva.

only if: If j =i +117 clearly is in VG. If J > i+1 both the triangles pp;p, and PPip; are empty.
Moreover, p; lies beyond ¢7 since p;, pi, p; form a left turn. Hence, the triangle Pp;ip; must be empty
and 17 € VG. O

Lemma 3.2 Finding the visibility graph takes time o(lva)).

Proof. This follows immediately from the fact that with every call of PROCEED an edge will
be added to the visibility graph. a

4 Finding the longest convex chain.

Given the visibility gfaph as a directed graph in which edges run from lower indexed vertices to
higher indexed vertices (as produced by the algorithm described above), we will now determine a
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longest convex chain. This is equivalent to finding a largest empty convex subset with a fixed leftmost
vertex. In fact, we will determine for each edge e of the visibility graph L, being the length of the
longest convex chain starting with e,

To this end we will treat the vertices clockwise, starting at the highest indexed vertex. We will
take care that after treating some vertex p; all incoming edges of p; have their L field set to the right
value. o

The method works as follows: Assume we are at some vertex p. Let the incoming edges of p be
11, .., fimas and the outgoing edges oy, ...,00mas both ordered counter-clockwise by angle. Note that
the algorithm for computing the visibility graph inside P gives us the edges in this order. For all
outgoing edges we know the length of the longest convex chain that starts there.

We will treat the incoming edges in the reversed order, starting at ¢;mas. For this first incoming
edge we look at all outgoing edges that form a convex angle with it. Let these edges be o, ..., 0,maz-
If they don’t exist, we set L;,_,, to 1. Otherwise, let m be the maximal value of the L fields of them.
Then L;,,,, = m + 1. Clearly, all edges that form a convex angle with i; form a convex angle with
ij-1. But we don’t have to check these edges again. We already know that m is the maximal length
among them. Hence, for the next edge we know that the length of the chain is either m + 1 or there
is an edge with index smaller than [ with larger L field. Hence, starting at / — 1 we look at preceding
edges that form a convex angle with the incoming edge. { will become the new minimal index, m
the new maximal L field (if any). In this way we continue. -

The following procedures state the algorithm precisely:

procedure MAXCHAIN;
for i := N — 1 downto 1 do TREAT(p;) end.

procedure TREAT(p); ,

Let 1}, ...,%imas be the incoming edges of p, and let
01,...,00mas be the outgoing edges of p, both ordered counter-clockwise.
| := omaz;m :=0;
for j := imaz downto 1 do

L; ,=m+ 1

while / > 0 and TURN(s;,0;)=left do

if L,, > m then

m:= L,;
L,',. =m+1
end;
l=1-1
end
end

The correctness of the method easily follows from the above discussion. (Note that in the algo-
rithm the function of { is slightly different than described. Rather that being the minimal index that



