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ABSTRACT 

A new calculation of the relation between the electrophoretic mobility and the/-- 
potential of a spherical colloid particle is presented. The model consists of a rigid, 
electrically insulating sphere surrounded by a Gouy-Chapman double layer. The ap- 
propriate differential equations (which account for both electrophoretic retardation 
and relaxation effect) have been solved without approximations on an IBM 704 com- 
puter. 

The theoretical assumptions and the basic equations ~re stated. A detailed account 
of the solutions of the equations is pub]ished elsewhere. The present paper contains 
the complete results. Comparison of these results with those of Overbeek ~nd of 
Booth shows that, %r high ~--potential ~nd 0.2 < ~a < 50, their approximations gen- 
erally overestimate the relaxation effect. The application to practical cases (espe- 
cially colloid particles in solutions of 1-1 electrolytes) is discussed extensively. 
Finally, the theoretical results are compared with experimental data published by 
others. 

INTRODUCTION 

The calculation of the ~-potential from 
measurements of the electrophoretic mobil- 
i ty (E.M.) requires a theoretical relation 
between the two quantities. The oldest 
relation of this kind, which was derived by 
yon Helmholtz (1) and improved by yon 
Smoluchowski (2), reads 

U e~ 
- [ 1 ]  X 4 ~ "  

In this equation, U is the electrophoretie 
velocity, X is the strength of the applied 
d.-c. field ( U / X  is the electrophoretic 
mobility); e and ~ represent the dielectric 
constant and the viscosity coefficient, 
respectively, of the solution surrounding 
the colloid particles. 

More recent work by Hiiokel (3), Henry 
(4), Overbeek (5), and Booth (6) has shown 
that  the validity of Eq. [1] is rather re- 
stricted. In the case of a spherical colloid 

particle, it is valid only when ~a }> 1, 
where a is the radius of the particle and 
is the reciprocal thickness of the surround- 
ing ionic atmosphere. For moderate values 
of ~a (say, 0.2 < ~a < 50), the so-called 
relaxation effect leads to important  correc- 
tions, which increase with increasing /'- 
potential. This was found by Overbeek (5) 
and, independently, by Booth (6). Both 
authors expressed the E.M. as a power series 
in the ~-potential; however, because of 
mathematical complications they were able 
to calculate only a few terms of the series. 
Quantitative validity of their results could 
therefore be claimed only for small ~'-poten- 
rials (~ < 25 my.). 

The results of a more general calculation, 
which was carried out by means of an IBM 
704 digital computer, will be presented in 
this paper. The physical assumptions, which 
are the same as those used in the work of 
Overbeek (5), are as follows: 

a. The interaction between colloid par- 
78 
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FIa. 1. Forces in eleetrophoresis. The dotted line represents the ionic atmosphere. 

tides is neglected and only a single particle 
is considered. 

b. This particle (plus the adjacent layer 
of liquid that remains stationary with re- 
spect to it) is treated as a rigid sphere. 

c. The dielectric constant is supposed to 
be the same everywhere in the sphere. 

d. The electric conductivity of the sphere 
is assumed to be zero. This implies that the 
charge within the surface of shear does not 
move with respect to the particle when the 
d.c. field is applied. 

e. The charge of the sphere is supposed 
to be uniformly distributed on the surface. 

f. The mobile part of the electric double 
layer is described by the classical Gouy- 
Chapman theory. 

g. The dielectric constant of the liquid 
surrounding the sphere is assumed to be in- 
dependent of position. 

h. Only one type of positive and one type 
of negative ions are considered to be present 
in the ionic atmosphere. 

i. The viscosity coefficient of the liquid 
surrounding the sphere is supposed to be 
independent of position. 

j. Because colloidal solutions follow 
Ohm's law at the moderate field strengths (a 
few volts per centimeter) that are employed 
in electrophoresis experiments, only terms 
that are linear in the field are taken into 
account in the computation. 

/~. The Brownian motion of the colloid 

particle is neglected. (The order of magni- 
tude of this effect has been estimated by 
means of a calculation that was published 
elsewhere (Ta)). 

This paper is written for readers who are 
primarily interested in results and applica- 
tions. Therefore, the mathematical problem 
will just be stated here. The analytical and 
numerical methods that were used in solv- 
ing the problem can be found elsewhere 
(7a-9). 

STATEMENT OF THE PROBLEM 

In the remainder of this paper, the col- 
loid particle plus the adjacent layer of liquid 
is called "the sphere." The electric charge 
of the sphere is assumed positive; consistent 
sign reversal makes the results applicable 
to a negatively charged particle. 

Let us first consider the forces acting on 
the sphere when it is in uniform electro- 
phoretic motion (Fig. 1). The force exerted 
by the d.c. field, X, on the charge, Q, of the 
sphere is 

kl = QX. [2] 
The second force is the Stokes friction, 

ks = --6v~aU, [3] 

where ~ is the viscosity coefficient of the 
liquid surrounding the sphere, U is the elec- 
trophoretic velocity, and a is the radius of 
the sphere (i.e., the distance from the center 
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of the colloid particle to the surface of 
shear). 

The two remaining forces are caused by 
the "ionic atmosphere." The d.c. field exerts 
on the ions in this atmosphere a force which 
is transferred to the solvent molecules. 
The resulting flow of solvent causes a re- 
tarding force, ks, on the sphere (electro- 
phoretic retardation). Furthermore, in the 
stationary state which is present shortly 
after the application of the d.c. field, the 
center of the ionic atmosphere lags behind 
the center of the particle. This causes an 
electrical force, k4, on the particle, which is, 
in most cases, also a retarding one (relaxa- 
tion effect). 

The two effects symbolized by k8 and k4 
are the same as those defined in the Debye- 
Hiickel theory of the conductivity of strong 
electrolytes (10). In the latter theory, no 
important error results when the two effects 
are superimposed linearly; for colloidal 
particles the mutual interactions between 
the effects are considerable. In this case, 
ks must be calculated for an asymmetric 
atmosphere and in the evaluation of k4 
the velocity distribution in the liquid must 
be taken into account explicitly. 

In the stationary state the sum of all 
forces acting on the particle is zero: 

k l + k 2 +  k ~ +  k4 = 0. [4] 

Equations [2]-[4] can be combined to give 

U - 1 (QX + k~ -~ k~). [5] 
67rya 

The forces k~ and k4 are functions of the 
~-potential and of several other parameters, 
such as the radius of the sphere and the 
charges, concentrations, and mobilities of 
the ions in the double layer. Because these 
other parameters are known in most cases, 
the relation between U and f can be found 
by calculation of the forces ka and k4. 

As a starting point, we shall write down 
expressions for the total electrical force, 
kl + k~, and for the total hydrodynamic 
force, k2 + k3. The first expression reads: 

h~ ÷ k~ = f f  ~(--VA)o~ dA, [6] 

where dA is an element of the surface of 
shear; ~ is the surface charge density de- 
fined by 4¢a2~ = Q (where Q includes both 
the particle charge and other charges that 
may be bound within the surface of shear); 
and h is the total electric potential caused 
by the charges on the sphere and in the 
liquid and by the external field. Hence, 
--VA is the total electric force on a unit 
charge. In Eq. [6], the subscript a denotes 
that we take the force at the surface of 
shear, and x specifies the component of this 
force in the direction of the d.c. field. 

The total hydrodynamic force can be ex- 
pressed as 

+ = f f  p ~  dA, [7] 

where p~ is the stress on an element of the 
surface of shear in the direction of the d.c. 
field. This stress is a rather complicated 
function of u, the velocity of the liquid 
with respect to the center of the sphere, and 
of p, the hydrostatic pressure in the liquid. 

I t  appears that more explicit expressions 
for the forces (and hence, for U) can be found 
when A, u, and p are known as functions 
of position. The functions are governed by a 
set of differential equations that will be 
given here without derivations, l~ore de- 
tails concerning these equations can be 
found in the publications of Henry (4), 
Overbeek (5), and Booth (6), and in refer- 
ences 7a and 8. 

In the formulation of the differential 
equations and boundary conditions, the 
center of the sphere is considered as the 
origin of the coordinate system. 

The total electric potential, A, which in- 
cludes the external d.c. field, is governed 
by Poisson's equation: 

V2A = 4~__pp = 4 ~ e  (z+~+ -- z-v-) [8] 

where p is the space-charge density in the 
liquid, e is the dielectric constant of the 
liquid, e is the elementary charge, z=~ are 
the valences of the ions, and ~ are their 
local concentrations (number/era)). I t  is 
essential that ~+ and v_ are not bulk concen- 
trations and not equilibrium concentrations, 
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but ion concentrations in the distorted at- 
mosphere; by the introduction of these 
quantities, the relaxation effect enters into 
the differential equations. 

For a complete description of the electric 
potential, we Mso need an equation for 
A~, the potential within the sphere. This is 
the Laplace equation, 

v~a~ = 0, [9] 

which expresses that there is no space- 
charge within the sphere. 

The unknown concentrations ,+ and v_ 
are governed by two transport equations 
that can be written in combined form as 
follows 

[ v.z±e t~T ] 
V. ~ - - ~  VA--~-V~. - t -v±u  =0[10] 

where f± are the friction coefficients of the 
ions, lc is Boltzmann's constant, and T is 
the absolute temperature. The first term 
between the brackets represents the migra- 
tion of the ions in the electric field. The 
second term is a diffusion term in which the 
diffusion coefficients of the ions are written 
as kf / f±,  according to a theorem of Ein- 
stein (11). The last term expresses that the 
flow of the liquid gives an extra velocity to 
the ions. The sum of the three gives the 
total flow of the ions (concentration times 
velocity). In the stationary state, the ionic 
distribution around the sphere remains 
constant in time; hence, the divergence of 
the flow is zero. 

We observe that the so-called surface 
conduct±nee, insofar as it occurs outside the 
surface of shear, is implicitly taken into 
account by the transport equations. This 
is so because the insertion of local, not bulk, 
concentrations into the first term implies 
that the ionic conductivity in the double 
layer differs from the bulk conductivity. 

Next we come to the hydrodynamic 
equations, which govern the functions u 
and p. First, we have 

~V X V X u-l- Vp-t- oVA = 0, [11] 

where v is the viscosity coefficient of the 
liquid; Eq. [11] is a Navier-Stokes equation 
in which the acceleration terms were put 
equal to zero (cf. references 5 and 7a); 

the left-hand side is the sum of the forces 
acting on a volume element of the liquid. 
The first term represents the friction be- 
tween this volume element and surrounding 
portions of the liquid; the second term ex- 
presses that the volume element tends to 
move towards regions of low hydrostatic 
pressure; the third term is the electrical 
force on the ions in the volume element; 
this force is transferred to the liquid. The 
third term corresponds to the electrophore- 
tic retardation (ha); if only the first two 
terms were considered, the solution of Eq. 
[11], combined with the integral of the 
right-hand side of Eq. [7], would give just 
the Stokes friction (h2). Finally, we have 
Eq. [12], expressing that the fluid is incom- 
pressible: 

v . u  = 0. [12] 

We now have eight differential equations 
(Eqs. [8] and [9], the two equations [10], 
the three components of Eq. [11], and Eq. 
[12]) for the eight unknown functions A, 
Ai, v+, v_, the three components of u, 
and p. Hence, the problem is determinate 
except for the boundary conditions. Be- 
cause all equations, except for Eq. [12], 
are of second order, we need fifteen condi- 
tions. 

Far from the particle, the electric field 
equals the external d.c. field. Hence, 

lira A = - Xx, [13] 
r ~ o o  

where r is the distance from the center of 
the particle and x is the value of the Car- 
tesian coordinate in the direction of the 
external field. At the surface of shear, r - a, 
the potential obeys the following relations: 

h = Ai at r = a; [14] 

0A 0Ai 
e0r ~ i ~ - -  47r~ at r = a; [15] 

where e~ is the dielectric constant of the 
sphere. Furthermore, everywhere within 
the sphere 

Ai is finite or zero. [16] 

In the solution far from the particle, the 
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ion concentrations are equal to n±,  the 
bulk concentrations: 

lim v_+ = nj: .  [17] 

where 
Because the sphere is nonconducting, and, 
in the stationary state there is no accumu- 
lation of ions at the surface of shear, the 
r-components of the flow vectors of the 
ions vanish at r = a: 

Vq=v±z±e kT 1 and 
r .  1_ ~ vA - ~ w ±  + ~:~u [18] 

= 0  a t  r = a .  

Far  from the particle, the velocity of the 
liquid with respect to the particle equals 
minus the electrophoretic velocity: 

lira u = - U. [19] 
r ~ o o  

At the surface of shear, the fluid velocity 
is zero: 

u = 0 a t  r = a .  [ 2 0 ]  

Finally, because the effect of gravity is 
neglected, 

lira p = constant. [21] 

Taking into account that  Eqs. [17] and 
[18] each represent two equations, and that  
Eqs. [19] and [20] each have three com- 
ponents, we have indeed fifteen boundary 
conditions. 

RESULTS AND DISCUSSION 

A. DIMENSIONLESS VARIABLES 

The results will be reported in terms of 
dimensionless variables in order to make the 
tables and graphs applicable to various ex- 
perimental situations (e.g., different tem- 
peratures or solvents). 

First, we define the function E by 

E -- 6~r~e U [22] 
&T X '  

where U / X  is the electrophoretic mobility 
(E.M.). 

The parameters involved in the eompu- 
tation are z+, z_,  q0, Y0, m+, and m_ ; 
z+ and z_ are the valences of the small 

ions in the solution. The parameter q0 
is defined by 

qo =- ~a/x ,  [2a] 

2 4~re2(n+z+ 2 + n--zff) 
ekT 

2 4reN~c(z+ + z - )  
IO00&T 

[24] 

x ~ -- (z+ + z _ ) / 2 z _ .  [25] 

Here Na is Avogadro's number, c is the 
average electrolyte concentration in equiv- 
alents per 1000 cm. 3. The factor X, which is 
unusual, has been included for the following 
reason. From Eqs. [23]-[25] we find 

~ 87re2cz_ N ~  I/2 
q0 = \ 1 0 0 0 aT  ] a. [26] 

This shows that  at constant equivalent con- 
centration, q0 is independent of z+, the 
valence of the co-ions. The effect of z+ on the 
properties of the double layer (including the 
E.M.) is small. Using the parameter q0, we 
may compare numerical results for cases 
with the same c and z_, but  different z+, 
without having to account for trivial changes 
of q0 • 

Furthermore, 

yo =- e~/kT, [27] 

and 

J~T f±. [28] 
m-4- ~ 6~_~7e 2 

The friction coefficients, f+ and f_ ,  of the 
small ions can be expressed as 

f± = N~e ~ z~ [29] ~ 0  ' 

where X0 are the limiting equivalent con- 
ductances of the ions. Hence, 

Na&T z~= [30] 
~t=t= ---- 6~-~- ~ 0 "  

At this point we wish to mention that,  in our 
calculation, the eleetrophoretic mobility 
turns out to be independent of e~, the dielec- 
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tric constant of the particle (cf. references 
7a and 8). 

B. ANALYTICAL APPROXI~ATIONS 

In the discussion of the numerical results, 
these results will be compared with analyt- 
ical approximations derived by previous 
authors. In order to facilitate this, we shall 
now write these approximations in terms of 
dimensionless variables. 

By combining Eq. [1] (the approximation 
of yon Smoluchowski) with Eqs. [22] and 
[27], we obtain 

E -- 3/~y0. [31] 

In the same notation, the result of Hiickel 
(3) reads 

E = yo. [32] 

The approximation of Henry (4) for a non- 
conducting particle can be expressed as 

E = yof~(~a). [33] 

A graph of the function f (xa)  =- (2/~)f~(~a), 
as well as analytical expressions for this 
function, can be found in Henry's paper (4). 

In the present notation, Overbeek's re- 
sult (5) for symmetrical electrolytes is 
written as 

E = yorl(xa) - yo3[z2f3@a) 
[34] 

4- 1/~(m+ + m_)f4(xa)], 

where z is the valence of both ions. For un- 
symmetrical electrolytes, Overbeek found: 

E = yofl(~a) ' - yo ( z -  - z+)f~(~a) 

3 z+m+ + [35] 
- yo z - m - f 4 ( ~ a ) .  

z+ -l- z -  

Tables and graphs of the functions f~(~a) 
were given by Overbeek (5). 

The calculation of Booth (6b) is limited to 
symmetrical electrolytes. His result can be 
written a s :  

E = yoXl*(xa)  -}- yo 3 

• [z ~ { x~* (,~a) + Y?( ,~a)  } 
• [36] 

-t- 3(m+ + ~*v-)Za (na)] 

-t- Yo4{3z(m+ -}- ~w-)Z~*(na) }. 

The function Xl*@a) is identical with 
fl@a) in Eqs. [33]-[35]. Graphs of the func- 
tions X3*(~a), Y3*(za), Z3*@a), and Z4*(xa) 
are given in Fig. 2 of Booth's paper (6b). 

In a recent paper (12), Pickard arrives at 
a result which is essentially that  of Htiekel 
(Eq. [32]). A more detailed discussion of 
Piekard's calculation is given in reference 8. 

C. NUMERICAL RESULTS FOR 
1-1 ELECTr~OLYTES 

The differential equations given in Part  A 
were solved by means of an IBM 704 com- 
puter for a number of combinations of the 
parameters z+, z_, q0, Y0, m+, and m_.  In 
this Part  we shall give the computer results 
for z+ = z_ -- 1. We shall first consider how 
the electrophoretic mobility depends on 
q0 and Y0 ; the effect of m+ and m_ (which is 
relatively small) will be discussed later. 

In Table I, E is given as a function of 
q0 and Y0. In all computations reported in 
this table, m+ and m_ were chosen equal to 
0.184. In aqueous solutions at 25°C., this 
corresponds to limiting mobilities of 70 
ohm -1 cm. 2 eq. -~. In Table I, the actual 
computer results (given in 4 digits) are 
combined with interpolated values (given 
in 3 digits). No data were obtained for 
y0 > 6, because in this region the computer 
program tailed to give convergent results. 
The values for q0 ( 0.1 and for q0 > 50 were 
found by extrapolation, taking into account 
that  Overbeek's equation [34] is valid in the 
limiting eases q0 ~ 0 and q0--~ ~ .  In the 
region q0 < 0.1, this extrapolatoin can be 
done easily, for, at q0 = 0.1, the computer 
results already coincide with those of Over- 
beck (cf. Fig. 4). In the region q~ > 50, the 
extrapolations are less accurate, but it is un- 
likely that  the errors exceed a few per cent. 
The data of Table I are graphically repre- 
sented in Fig. 2. 

In Figs. 3 and 4, some values of E, taken 
from Table I, are compared with the analyt- 
ical approximations [33], [34], and [36]. For 
all cases involved here, m+ = m_,  with the 
result that  the last term of Booth's equation 
[36] vanishes. Therefore, the discrepancies 
between the curves labeled I I I  and IV, repre- 
senting Eqs. [34] and [36], are caused only by 
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Fro. 2. E as a function of qo for different values of y0, z+ = z_ = 1, m+ = m_ = 0.184. For correspond- 

ing numerical data see Table I. 

the differences between the coefficients of 
y0 ~ in both equations. 

The curves labeled I I  in Figs. 3 and 4 have 
been included for the following reason. The 
numerical computations were carried out by 
means of successive approximations; the 
first approximation, in which the relaxation 
effect is neglected, is actually a numerical 
calculation of the electrophoretic retarda- 
tion (this point is discussed more extensively 
in references 7a and 8). I t  is therefore of 
interest to compare this first approximation 
with the result of Henry  (Eq. [33]), who 
also neglected the relaxation effect. The  
differences between the curves I and I I  are 
caused by the fact that  I-Ienry (4) had used 
a Iinearized Poisson-BoRzmann equation, 
whereas we included the nonlinear terms of 
this equation. Figures 3 and ~ show that  the 
contribution of these nonlinear terms to the 

electrophoretic retardation is remarkably 
small. This is confirmed by the calculation of 
Booth (6b) ; the function X~*@a) in Eq. [36], 
which (to his approximation) represents the 
nonlinear terms of the electrophoretic re- 
tardation, is small compared to the other 
terms in the coefficient of y03. 

The conclusions of Overbeek (5) and of 
Booth (6) concerning the relaxation effect 
are at least qualitatively confirmed by the 
numerical computations. The relaxation 
correction is appreciable and increases 
sharply with increasing ~-potential. The  
correction is largest for moderate values of 
q0 and is negligible when q0 is very snlall or 
very large. 

Figure 3 shows that,  for moderately low 
values (up to y0 = 2.5) of the ~'-potential, 
our numerical results are in quantitative 
agreement with the approximations of 
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FIG. 3. E as a funct ion  of y0 for z+ = z_ = 1, q0 = 5, m+ = m_ = 0.184. I: Eq .  [33] (Henry);  II :  first 

approx imat ion  of numerical  computat ions ;  III :  Eq .  [34] (Overbeek) ; IV: Eq.  [36] (Booth);  V: numerica l  
computat ions .  

Overbeek and of Booth. The same is true 
for other values of q0 • This provides a check 
on the numerical computations. 

For higher values of the f-potential, it ap- 
pears tha t  the relaxation effect is overesti- 
mated by the analytical approximations [34] 
and [36]. For q0 = 5, the difference between 
the approximations and the numerical re- 
sults becomes appreciable for Y0 > 3. How- 
ever, this difference has a maximum at 
qo = 5 (cf. Fig. 4); therefore, the approxi- 
mations are more useful in cases when q0 is 
smaller or larger than 5. 

I t  is also of interest to know whether the 
curve of E vs. Y0 passes through a maximum, 
for, if this is the case, two different values of 
the f-potential correspond to a given value 
of the E.M. Such a maximum is implied by 
the equations of Overbeek and of Booth. 
According to the numerical results (Table 
I), E increases steadily with Yo,  except for 
q0 -- 20 and q0 = 50, where a maximum is 
observed. Therefore, when E is given, the 
value of y0 is unambiguously determined by  

the data of Table I in most cases. However, 
the accuracy will be low in regions where the 
slope of the (E, y0) curve is small. 

In order to find out how the E.5~. de- 
pends on the mobilities of the small ions, 
we carried out a few calculations with 
m+ ~ 0.184 and/or  m_ # 0.184 (cf. Eq. [28]). 
Most of the results are given in Table II.  
The values m± = 0.0655 and m± = 0.0368 
correspond to limiting equivalent conduct- 
antes of 196 and 350 ohm -1 era. 2 eq. -1, re- 
spectively, in aqueous solutions at 25°C. 
(under these circumstances, the values for 
O H -  and H + are 197 and 350, respectively). 
Relevant data for m~= = 0.184, taken from 
Table I, are given in the third column of 
Table II.  

From inspection of these results it follows 
that  E depends linearly on m+ and m_,  and 
that,  when both m+ and m_ differ from 0.184, 
the corrections may be linearly superim- 
posed. These conclusions are valid for the 
intervals 0.0368 -<_ m± =< 0.184. They  are 
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TABLE I I  
VARIATION OF E WITH 7/2,+ AND ~ _  FOR 

A F]~W COM]31NATIONS OF Y0 AND qo 

(1-1 ELECTROLYTES) 

E 

q~ 

0.1 
0.1 
1 
1 
2 
5 
5 

10 
20 
50 
50 

0.194 

0.184 

3 2.904 
5 4.58~ 
3 2.625 
5 3.436 
5 3.199 
3 2.742 
5 3.169 
5 3.470 
5 4.098 
3 3.921 
5 5.250 

0.0655 0.0368 

0.184 0.184 

2. 921 2. 926 
4.6521 4.66~ 
2.6571 2.662 
3. 506 3. 523 

i 3.225 

3.932 3.937 
5.270 5.275 

0.184 

0.0655 

2.927 
4.693 
2.693 
3.648 

2.833 
3.402 

3.976 
5.531 

0.184 

0.0368 

2.936 
4.719 
2.710 
3.704 
3.463 
2.857, 
3.463 i 
3.813 I 
4.4761 
3.99¢ 
5.591 

0.0368 

0.0368 

4. 807 
2.746 
3.792 

2.890 
3.533 

4.004 
5.622 

s u p p o r t e d  b y  the  ana ly t i c a l  app rox ima t ions  
[34] and  [36]. 

A more  de t a i l ed  calculat ion,  inc luding  
higher  va lues  of m+ and  m _ ,  was carr ied  ou t  

for on ly  one combina t ion  of q0 a n d  y0,  viz.,  
q0 = 10, y0 = 5. T h e  resul ts  are  shown in 
Fig .  5. T h e  h ighes t  va lues  of m+ and  
m_ (m~ = 0.74) cor respond to the  l imi t ing  
equ iva len t  conduc tance  of t he  l au ry l  su l fa te  
ion (17 ohm -1 c m ?  eq. -~) in aqueous  solu- 
t ion  a t  25°C, I n  the  larger  region considered 
here, E depends  l inear ly  on m + ,  b u t  n o t  on 
m _ .  W h e n  b o t h  m+ and  m_ differ f rom 
0.184, t he  two correct ions m a y  be super im-  
posed even for larger  values  of m+ and m _ .  
F u r t h e r  de ta i l ed  compu ta t i ons  on the  re la-  
t ion be tween  E and m_ (i.e., for o the r  coin- 
b ina t ions  of q0 and  y0) would  have  consumed 
too much  compute r  t ime.  E x t r a p o l a t i o n  of 
t he  d a t a  of T a b l e  I I  will  lead to s ignif icant  
errors on ly  when the  counter - ion  is v e r y  
slow. W e  shall  r e tu rn  to  th is  m a t t e r  in P a r t  
E. 

Values  of OE/am+, c o m p u t e d  f rom T a b l e  
I I  wi th  t h e  a s sumpt ion  of l inear  dependence ,  
are  g iven in Tab le  I I I .  These  resul ts  show 
t h a t  E a lways  decreases wi th  increas ing 
m+ and  m _ ,  i.e., wi th  increas ing f r ic t ion 
fac tors  of the  small  ions. This  can also be  
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expressed by stating tha t  the slower ions 
give the larger relaxation effect. This could 
be expected, because the t ime of relaxation 
increases with decreasing ionic mobility. 

The  application of mobili ty corrections to 
practical cases will be discussed in Par t  E. 

D. TIIE EI~FECT OF BROWNIAN 
MOVEMENT 

The more recent theories (13, 14) of elec- 
trolytic conductance take into account that 
the so-called central ion, by its own thermal 
motion, takes part in the relaxation of its 
ionic atmosphere. When the central ion is a 
colloid particle, the Brown]an motion of this 
particle has a similar effect, which was not 
considered in the computations reported in 
Tables I and II. However, for 1-1 electro- 
lytes the upper limit of the Brownian mo- 
tion correction was calculated approximately 
(7a); in these special calculations, the values 
of m+ and m_ were chosen equal to 0.184. 
The numerical results, which are given in 
reference 7b, will not be repeated here in de- 
tail; they can be represented with good ac- 
curacy by  Eq. [37]: 

0 < hE'  < ayo ~ f* [37] 
f-~ -F  6~r~/a" 

4.0 

In  this equation, AE r is the Brownian mo- 
tion correction to the E.M.,  expressed in 
dimensionless units (cf. Eq. [22]); f~ are the 
friction coefficients of the small ions (these 
coefficients were assumed to be equal); 
6v ,a  is the friction coefficient of the colloid 
particle; a is a function of q0, of which the 
following values are known: q0 = 0, a = 0; 
q0 = 0.1, a = 0.004; q0 = 1, a = 0.01~; 
q0 = 5, a = 0.030. I t  follows tha t  the cor- 
rection is positive, as was to be expected. I t  
should be observed tha t  a large value of 
q0 ( - -xa /k )  implies either a large value of a 
or a large ionic strength. In  the first case, 
the correction is small because of the a in 
the denominator of Eq. [37]; the lat ter  case 
is unlikely to occur in stable colloid systems, 
or is, at  any rate, inconsistent with a high 
~-potential (i.e., a high value of y0). This 
argument  explains why the region q0 > 5 
was not considered in these computations;  
it also leads to the conclusion that  AE' is 
negligible in most practical cases. In  addi- 
tion, there is another small effect which 
leads to a negative correction to the E.M. 
At finite concentrations of the small ions, 
these ions themselves are retarded by  their 
own atmospheres (electrophoretic retarda- 
tion + relaxation effect). In  recent t reat-  

5.5 

E 

5 .0  

2 .5  i i t i 
0 0 . 2  0.4 0 .6  0 .8  

m+ 

FIO. 5. O :Evs .  m+ (m_ = 0.184); Q : E v s .  m_ (m+ = 0.184);/k:m+ = m_ = 0.3; yl:m+ = m_ = 0.74. 
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TABLE III 

OE/Offt+ AND OE/Ofrb_ ~kS ~q'~UNCTIONS OF q0 AND Yo FOR UNIVALENT ELECTROLYTES 

89 

-OE/Om+ --OE/Om- 
yo 

qo = 0.I 1 5 50 qo = 0.1 1 2 5 10 20 50 

0.15 0.27 0.26 0.10 

0.56 0.59 0.38 0.17 
0.21 0.58 0.78 0.47 
0.91 1.80 1.98 2.34 1.79 2.33 2.57 

TABLE IV 
E AS A FUNCTION OF q0 AND yo FOR 2--2 ELECTROLYTES AND FOR FOUR TYPES OF 

UNSYMMETRICAL ELECTROLYTES 

yo qo = 0.1 0.2 1 5 20 50 

z+ = z - =  2 1 0.991 0.984 0.968 1.059 1.267 1.402 

m+ = m_ = 0.368 1 .5  1.417 

2 1.924 1.865 1.637 1.619 2.056 2.456 

2 .5  2.246 1.826 1.693 2.176 2.737 

2.75 2.164 

3 2.798 2.601 1.943 2.124 2.800 

z+ = 2; z_ = 1 1 1.191 
m+ = 0.368 2 2.011 2.009 2.021 2.222 2.604 2.802 

m_ = 0.184 2.75 2.79 
3 2.971 2.933 2.78 3.58 4.009 

4 3.835 

z+ = 3; z_ -- 1 1 1.022 1.032 1.088 1.231 1.385 1.445 

m+ = 0.552 1.75 2.064 2.352 

m_ = 0.184 2 2.042 2.049 2.09 2.824 

z+ = 1; z_ = 2 1 0.979 0.970 0.931 1.004 1.224 1.356 

m+ = 0.184 2 1.887 1.821 1.547 1.495 1.948 2.377 

m_ = 0.368 2 .5  2.177 1.719 1.545 2.034 2.628 
2.75 1.541 

3 2.738 2.479 1.824 1.951 2.656 

z+ = 1; z_ = 3 1 0.961 0.941 0.849 0.870 1.104 1.281 

m+ = 0.184 12/~ 1.139 1.011 1.339 1.744 

m_ = 0.552 2 1.827 1.661 1.208 0.992 1.278 1.772 

ments of electrolytic conductance (14), this 
effect is accounted for; it is n@ected if one 
computes the parameters m~ (cf. Eq. [30]) 
from the limiting equivalent conductances, 
X~ °, of the small ions. This effect can be in- 
eluded by using X±(c) (the equivalent con- 
duetances at the given small ion concentra- 
tion) instead of X± °. A few calculations (7a) 
which were carried out using the data of 
Tables II  and I I I  have shown that  this ef- 
fect cancels the Brownian motion correction 
to a large extent. Therefore, in practical 
applications, the best one can do at present 
is to neglect zXE' (because only an upper 

limit of this correction is known) and to use 
~=~0, not X+(c), in Eq. [30]. 

E. OTHER TYPES OF ELECTROLYTE 

Additional types of electrolyte that have 
been considered are: 2-2, 2-I, 3-i, I-2, and 
1-3 (2-1 indicates that  the positive ion is 
bivalent and the negative ion is monovalent, 
etc.). The results are given in Table IV. In 
all these computations, the values of m+ and 
m_ were chosen equal to 0.184 z+ and 0.184 
z_, respectively. Therefore, all data apply 
to ionic mobilities of 70 ohm -1 cm? eq. -1 at 
25°C. in aqueous solutions (cf. Eq. [30]). 



90 WIERSEMA, LOEB, AND OVERBEEK 

I t  should be noted tha t  the data apply to 
a positive colloid particle. In  practical cases 
where the colloid is negative, the numerical 
data  for 1-2 electrolytes should be used when 
the actual electrolyte is Ba(NOa)2, etc. 

Because of convergence problems, the 
results reported in this section are limited 
to rather low values of y0 • The  variat ion of 
E with m+ and m_ ,  and the Brownian mo- 
tion correction, have not been considered, 
because only a limited amount  of computer 
t ime was available. 

For 2-2 electrolytes, the numerical results 
and the differences between numerical and 
approximated values follow the same pat-  
tern as those for univalent electrolytes. 

In  Figs. 6 and 7, some data for different 
valence types of electrolytes are compared. 
The  effect of z_ ,  the valence of the counter- 
ions, is represented in Fig. 6. The values of 

E are plotted against qo' =- qo(z+/z_)U~ in- 
stead of against q0. This is done because 
q0 is proportional to (cz_) ~j2 (cf. Eq. [26]), 
with the result tha t  variation of z_ produces 
a trivial variat ion of the coordinate q0 • The  
variable q0' is proportional to (cz+) ~12. There- 
fore, all data  for a given q0' and different 
values of z_ (e.g., KC1 and K2SO4) corre- 
spond to the same equivalent concentration, 
c, and can be conveniently compared. In  
Fig. 7, which represents the effect of z+, 
q0 is used because in this case q0 is constant 
for constant c, even if z+ changes. 

Comparison of Figs. 6 and 7 shows tha t  
the valence of the counter-ions has much 
more effect on the E.M. than  has the valence 
of the co-ions. The  curves labeled IV in 
Figs. 6 and 7 correspond to zero relaxation 
effect. I t  follows tha t  multivalent counter- 
ions give a negative relaxation effect which 
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FIG. 6. Effect of valence of counter-ions on the E.M.; Yo = 2. Drawn lines: numerical values (I: z+ = 
z_ = 1; II:  z+ = 1, z_ = 2; III :  z+ = 1, z_ = 3). Dotted lines: approximations for z+ = 1, z_ = 3 (IV: 
first approximation of numerical computations; V: Eq. [35] (Overbeek)). 
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FIG. 7. Ef fec t  of va l enc e  of co- ions  on t h e  E . M . ;  Y0 = 2. D r a w n  l ines :  n u m e r i c a l  v a l u e s  (I: z+ = z_ = 
1; I I :  z+ = 2, z_ = 1; I I I :  z+ = 3, z_ = 1). D o t t e d  l ines :  a p p r o x i m a t i o n s  for  z+ = 3, z_ = 1 (IV: f irst  
a p p r o x i m a t i o n  of n u m e r i c a l  c o m p u t a t i o n s ;  V:  E q .  [35] (Overbeek) ) .  

increases in absolute value with the valence 
of the counter-ions. For multivalent co-ions, 
most of the data show a negative relaxation 
effect which decreases in absolute value with 
increasing valence of these ions; the relaxa- 
tion effect is positive for 3-1 electrolytes 
and 0.01 < q0 < 1. A positive relaxation 
effect was also predicted by Overbeek, but 
according to the computer results it is less 
pronounced. Finally, we recall that,  for 
univalent electrolytes and y0 = 2, Over- 
beek's equation [34] gives practically the 
same results as do our computations. I t  
follows that  Eq. [34] is a much better  ap- 
proximation than is Eq. [35]. This was to be 
expected, because the coefficient of y0 s in 
Eq. [35] is incomplete, as was mentioned by 
Overbeek (Ab). 

F .  APPLICATIONS TO PRACTICAL 
CASES 

We shall now discuss the calculation of 
/'-potentials from E.M. measurements. The 
discussion applies especially to univalent 
electrolytes; at the end of this Par t  we shall 
indicate to what extent it can be generalized 
to other valence types. 

Suppose that  a set of experimental values 

of the electrophoretic mobility, U/X, has 
been obtained and that  the radius, a, of the 
particles is known. Then the mobility values 
should be converted to the dimensionless 
quanti ty E (Eq. [22]). We shall give two 
examples (aqueous solutions at 20°C. and 
25°C.), using the following numerical values: 

e = 4.803 X 10 -1° e.s.u. 
v20 = 0.01005 poise. 
v25 = 0.008937 poise. 
E20 = 80.36. 
e25 = 78.54. 

k = 1.3805 ) 10 -z6 erg deg. -~. 
0 ° = 273.16°K. 

When the mobility, U/X, is expressed in 
era .  2 v o l t  -1 See. -1, 

E = 0.8387 X 104(U/X) at 20°0. [38] 

E = 0.7503 X 104(U/X) at 25°C. [39] 

Next, the value of q0 should be computed 
from the particle radius and the properties 
of the surrounding electrolyte. From Eq. 
[26], if we use Na = 6.0226 X 1023 and the 
numerical values already listed: 

q0 = (0.3279 X lOS)(cz-)l/2a at 20°C.; [40] 

q0 = ( 0 . 3 2 8 6 )  lOS)(cz_)I/~a at 25°C,. [41] 



92 WIERSEMA, LOEB, AND OVERBEEK 

Here c = concentration in equivalents per 
1000 cm2 aqueous solution. 

At this stage it is advisable to decide 
whether some analytical approximation can 
be used. First, one should inspect Fig. 2 and 
check whether the experimental combina- 
tion (E, qo) lies within a region where E does 
not depend on q0 • If this is the case, one may 
use either Eq. [31] (q0 >> ]) or [32] (q0 << 1). 
If not, the next step is to find out whether 
Henry 's  approximation (Eq. [33]) is valid. 
This can be done by inspection of Fig. 8. 
For combinations of E and q0 which lie 
above the drawn line (labeled I), Eq. [33] 
will lead to an error of more than 1 Inv. in 
the ~-potential; for combinations (E, q0) 
lying above the dotted line (II), the error 
will exceed 2.5 InV. In this context, an error 
means a difference between two values of 
~" calculated by means of Eq. [33] and by 
means of the computer results. The lines of 
Fig. 8 apply to m+ = m_ = 0.184 (k± ° = 
70 ohm -i  cm. 2 eq.-0;  for slower ions (espe- 
cially slower counter-ions), the lines would 
shift to slightly lower values of E. 

If it is found that  Eq. [33] is not suffi- 
ciently accurate, the values of m+ and m_ 

must be calculated from the limiting mobili- 
ties, ~,±0, of the small ions. Using Ec 1. [30] 
and the listed numerical values, we find: 

m~ = 11.51 z_~ at 20°C.; [42] 

m~ = 12.86 z_~ at 25°C. [43] 
k± ° 

Here k± ° are given in ohm -1 cm. 2 eq. -i.  When 
a mixture of univalent electrolytes is pres- 
ent, m+ and m_ may be calculated from the 
number averages of k+ ° and k_°; this ap- 
proximation is not based upon the theory, 
but  the error will be small because of the 
small effect of m± on the E.M. 

The next step is to decide whether Over- 
beek's approximation (Eq. [34]) can be 
used. This can be done by means of Fig. 8. 
The drawn line (III) corresponds to an error 
of 1 Inv. in the ~-potential, the dotted line 
(IV) to an error of 2.5 inv. These lines do 
not shift appreciably when k+ ° and/or  
) ,0  differ from 70 ohm -1 cm. 2 eq. -1, because 
the effect of k~ ° is included in Eq. [34] as 
well as in our computation. If it is found 
that  Eq. [34] can be used, it is preferable to 

6 
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FIG. 8. Errors of analytical approximations. I and II: Eq. [33] (Henry); III and IV: Eq. [34] (Over- 
beck); V: limitations of computer results. For further explanation see text. 
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do so, because the calculation of ~ by means 
of the present numerical data is somewhat 
more time-consuming. 

When our numerical data must be used, 
one may proceed as follows. First, several 
curves of E vs. q0 are constructed from the 
data of Table I (cf. Fig. 2). Next, from these 
curves a set of values of E is derived for the 
value of q0 which follows from the experi- 
mental data. These values of E apply to 
m+ = m_ = 0.184 and must be corrected if 
necessary. 

This correction can be found from the 
data of Part C; it should be observed that 
these data apply to a positive colloid par- 
ticle. It is best to assume that E varies 
linearly with m+ and m_ and to use the data 
of Table III, because no detailed curves of 
E vs. m+ and m_ are available. As was men- 
tioned in Part C, this will lead to significant 
errors only when the counter-ion is very 
slow. (An additional correction for that case 
will be suggested below.) The required 
values of OE/Om. can be found by inter- 
polation from Table III .  First, OE/Om+ and 
OE/Om_ are plotted against qo for yo = 3 
and Y0 = 5. From these plots one obtains 
the differential quotients for the proper 
value of q0 and for two values of y0. Next, 
OE/Om+ and OE/Om- are plotted against 
Yo. In constructing these plots it should be 
observed that  OE/Om:~ = 0 for y0 = 0, and 
that  O/Oyo(OE/Om~:) = 0 for Yo = 0, as can 
be concluded from Eqs. [34] and [361. Even 
then, these graphs will not be very accurate, 
but this is not serious, because we are deal- 
ing with small corrections. From these plots 
one obtains, for every value of yo, the total 
correction, zXE, according to the equation 

AE = (m+ -- 0.184) - -  
aE 
Om+ 

OE 
-1- (~v- -- 0.184) am-~" 

[44] 

The algebraic values of AE must be added 
to the values of E that  were obtained for 
m± = 0.184. For ve ry  slow counter-ions, it 
is advisable to correct the value of OE/Om_ ; 
the correction can be estimated by assuming 
that,  for all combinations of q0 and y0, the 

curvature of the (E, m_)-plot is the same as 
in Fig. 5. 

Finally, the corrected values of E are 
plotted against y0. From this graph one 
finds y0, using the value of E that  follows 
from experiment. Because Yo = e~/kT, ~ is 
found from the equations 

~" = 25.26 Y0 my. at 20°C. [45] 

/- = 25.69 y0 my. at 25°C. [46] 

At this point we wish to mention that  the 
upper drawn line in Fig. 8 shows the limita- 
tions of the computer results for 1-1 elec- 
trolytes. If  an electrophoresis experiment 
implies a combination of E and q0 (e.g., 
q0 = 5, E = 4) which lies above this line, it 
is not possible to calculate a ~-potential from 
the computer data, either because the com- 
putations were not carried through far 
enough (i.e., for y0 =< 6 only) or because the 
E, y0 curve shows a maximum. 

The surface charge density, ~, can be ob- 
rained using the data given in references 7 
and 9, where the relation between ¢ and ~" is 
given in tabulated form. In the context of 
electrophoresis, ¢ is defined by  observing 
that  4~a2¢ is the charge contained within a 
sphere of radius a, where a is the distance 
between the center of the particle and the 
slipping plane. 

We shall now indicate briefly how much 
of the preceding discussion can be applied to 
nonunivMent electrolytes. Tim numerical 
data for these valence types are rather in- 
complete and are therefore less suitable for 
accurate calculations of/~. 

The equations of this Par t  (except for Eq. 
[44]) are valid for any valence type. Hence, 
the calculations of E and q0 are straight- 
forward. However, in comparing computer 
data with analytical approximations, one 
should remember that  q0 equals ~a/h not ~a. 

For 2-2 electrolytes, the approximations 
of Henry and of Overbeek break down at  
much lower values of ya (and of E) than 
they do for 1-1 electrolytes. This also ap- 
plies to unsymmetrical electrolytes when the 
counter-ions are multivalent (cf. Fig. 6). 
When the co-ions are multivalent, the situa- 
tion is different (Fig. 7). In  this case, 
Henry 's  approximation is better  for 2-1 
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and 3-1 electrolytes than it is for the 1-1 
type, and it also happens to be more ac- 
curate than Eq. [35] of Overbeek. 

Because the variation of E with m+ and 
m_ was not computed for nonunivalent 
types, it can only be estimated with the aid 
of the analytical approximations. According 
to Overbeek's equation [34] for symmetrical 
electrolytes, OE/Om+ and OE/Om_ do not 
depend on z+ and z_ (the valences enter into 
the relations between m~ and X~ °, Eqs. [42] 
and [43]). Hence, for 2-2 electrolytes it 
seems reasonable to calculate OE/Om=e from 
Table III  and to compute the mobility cor- 
rection from Eq. [44], replacing 0.184 by 
0.368. This correction can then be applied to 
the values of E found from Table IV. 

A similar procedure can be applied to 
unsymmetrical electrolytes, taking into ac- 
count that, for this case, Overbeek's Eq. 
[35] predicts that OE/Om~= is proportional to 
z~=/(z+ + z_). For example, for a 1-3 elec- 
trolyte (positive colloid), the value of 
OE/Om_, computed from Table III, should 
be multiplied by a factor of (3~)/(1/~) = 3/~; 
the result should be inserted into Eq. [44], 
replacing (m_ - 0.184) by (m_ -- 0.552). 

Numerical data concerning the relation 
between z and ~ for unsymmetrical elec- 
trolytes can be found in reference 9. 

G. COMPARISON OF T~EORY AND 
EXPERIMENT 

The theoretical computations predict a 
relation between the E.M. and the f-po- 
tential. Of these two, the E.M. can be 
measured directly, whereas the ~-potential 
(or changes of f) cannot. This makes it 
rather difficult to find a really quantitative 
experimental test. 

Following an indirect approach, one may 
try to find the ~-potential from other experi- 
ments, such as eleetroosmosis, streaming 
potential, determination of electrocapillary 
curves, and titration. Although it is possible 
to obtain additional information in this way, 
this discussion will be limited to measure- 
ments of the E.M. itself. 

Before quoting examples from the litera- 
ture, we shall discuss some requirements 
that should preferably be met by a suitable 
experiment. Some of the assumptions under- 

lying the present computations can be satis- 
fied by the choice of the experimental sys- 
tem. It is desirable that the colloid particles 
be rigid, impenetrable to the surrounding 
solution, spherical, and nonconducting. The 
colloid concentration should be sufficiently 
low to avoid overlapping of ionic atmos- 
pheres. Mixtures of different valence types 
should be avoided. Important parameters, 
such as ~a, must be well defined; this ex- 
cludes experiments with particles of un- 
known size or a wide size distribution. 

Furthermore, it is desirable that certain 
parameters can be varied independently. 
This requirement causes a few problems. 
When the surface potential of the particle is 
changed by varying the concentration of the 
potential-determining ions, the value of ~a 
may also change. This problem is not serious 
because it can either be avoided (by using a 
relatively high concentration of indifferent 
electrolyte) or be taken into account in the 
calculation of ~a. The variation of xa is more 
difficult. When this is done by changing the 
ionic strength, the f-potential may also 
change and a correction for this important 
side effect requires additional theoretical as- 
sumptions. Therefore, a better way of vary- 
ing ~a is to work with different monodisperse 
colloidal solutions of varying particle size. 

Of the many electrophoresis experiments 
that were reported in the literature, very 
few (15-17) were carried out systematically 
with the purpose of testing the more recent 
theories. The other examples that will be 
quoted were chosen according to the points 
of view given above, with a preference for 
cases in which the relaxation effect is ap- 
preciable. Only examples with 1-1 elec- 
trolytes were considered because the present 
theory for other valence types is rather in- 
complete. The E.M. values were converted 
to the dimensionless variable E, in order to 
account for differences in temperature and 
to facilitate the use of data (such as Fig. 8) 
given previously in this paper. 

The more important parameters in the 
theory are f and ~a. We shall first consider 
measurements of the E.M. as a function of 
the concentration of potential-determining 
ions. This method of testing the theory is 
rather limited because it is not known quan- 
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TABLE V 

COMPARISON OF EXPERIMENTAL AND THEORETICAL 
MAXIMUM VALUES OF THE ELECTROPHORETIC. 

MOBILITY OF SILVER HALIDE SOLS 

Sol Ref. I Added electrolyte 

AgBr 20 2.5 mmoles 
{ KNOa 

AgI 21 12 mmoles 
KNOs 

AgI 22 - -  

Agl 23 - -  

Ka 

3 

~ . 5  

t 

i - 5  

1 . 2 3  

(expt.) (theor.) 

-}-3.41 3.72 
~3.23[ 3.92 
--3.60 
+3.6 I 3.60 

--3.14 
9+3.4 3.6 

t i tat ively how f changes with the surface 
potential, ¢0. However,  one important  
feature of the theory can be tested rather  
effectively in this way. The data  of Table I 
predict that ,  for intermediate values of xa, 
the E.M. does not exceed certain maximum 
(or limiting) values, whatever  the value of 

may  be. Hence, it is of interest to find out 
whether mobi]ities have been observed tha t  
do exceed these theoretical limits. 

Most inorganic colloids do not show very 
high mobilities. Holliday (18) reports a 
value for a stable gold sol, which gives E = 
3.26 at va = 0.833. A number  of experiments 
on silver halide sols are summarized in 
Table V. In  all these experiments, the E.M. 
was measured as a function of pAg. 0n ly  
maximum values are quoted; the theoretical 
results apply to m+ = m_ = 0.184, but  the 
mobili ty corrections are small, especially 
when most of the ions are K + and NOa-. 
The  value E = - 4 . 5  found by Troelstra 
(21) exceeds the maximum (1El = 3.6) 
tha t  follows from the present theory. The 
data  for va = 4-5 are par t  of a complete 
curve of the E.M. vs. pAg, which was meas- 
ured by  Parfi t t  and Smith (22). The E.M. 
values, which were kindly sent to the authors 
by  Dr. Parfitt,  show a maximum (E = 
-3 .14 )  tha t  exceeds the theoretical limit 
for ~a = 4 and just coincides with the limit 
for ~a = 5. (The values of ~, computed from 
this curve by means of the present, theory, 
definitely pass through a maximum as pi de- 
creases. This detail is mentioned here be- 
cause a max imum in the f-potentiM is 

considered by Levine and Bell (24) as a 
support of the theory of the discreteness-of- 
charge effect.) 

The silver halide sols are not entirely 
suitable for testing, because the particles 
are not spherical. This condition is more 
nearly satisfied by certain soap micelles. 
Stigter and Myse]s (25) measured the E.M. 
of sodium lauryl sulfate micelles as a func- 
tion of soap concentration and ionic strength. 
They  extrapolated to the CMC as the EiM. 
was found to decrease with increasing 
micelle concentration. The extrapolated 
values, converted to E, are given in Table  
VI  as a function of xa. The third colunm of 
this table gives the corresponding maxima 
predicted by the theory of Overbeek. The  
next column shows the values of E (for Y0 = 
6, i.e., f = 150 my.) tha t  follow from the 
present theory. The lat ter  data  are not 
maxima or limits, but the end points of 
ascending theoretical curves (no computa- 
tions for Y0 > 6). The values in columns 3 
and 4 were corrected for the small ion mo- 
bilities of the Na  + and ]auryl sulfate ions 
tha t  are present in the system. All experi- 

TABLE VI 

MOBILITY AND ~'-POTENTIAL OF SOAP 
MICELLES 

t 

ga [E (expt.) (OvEer~ek) 

0.61 3.41 2.53 
0.86 3.20 2.80 
1.32 2.88 2.64 
1.69 2.72 2.56 
2.40 2.57 2.50 

E (present 
theory, 
yo = 6) 

3.37 
3.46 
3.27 
3.15 
3.01 

~(mV) 

Stigter and Present 
Mysels theory 

101 162 
92.3 116 
80.9 97.4 
75.0 90.5 
68.3 80.7 

TABLE VII 

MOBILITY OF POLYSTYRENE LATICES 

Latex 
I E [ (expt. limiting 

values) 

Dialyzed Undialyzed 

J /~max. l 
(theor.) 

A 2.22 2.13 2.40 3.09 
B 3.80 2.22 3.01 
C 8.93 2.59 3.08 3.28 
D 13.6 3.56 3.55 
E 15.6 3.80 4.11 3.68 
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mental values exceed the maxima predicted 
by Overbeek and by Booth. In the last two 
columns of Table VI, the values of f pub- 
lished by Stigter and Mysels (25) are com- 
pared with those computed from the present 
theory (the first value in the last column 
was found by a short extrapolation of the 
theoretical curve). The differences between 
the two sets of values are appreciable, but 
they do not seem to invalidate the conclu- 
sions drawn by Stigter and 3/iysels from 
their experiments. The interpretation of 
these experiments has been recently dis- 
cussed again by Stigter (26). 

Rather high mobilities are also found in 
polymer latices. This can be concluded from 
papers by March and co-workers (27), 
Voyutsky and Panich (28), and Sieglaff and 
Mazur (29). These data are not suitable for 
a quantitative comparison with theory, be- 
cause 1-2 electrolytes (Na2HPO4-buffer) are 
present in the system (27), temperature and 
~a-value are not reported (28), or the values 
of ~a are too high (29) to obtain an appreci- 
able relaxation effect. Recently, systematic 
E.M. measurements on monodisperse poly- 
styrene latices of five different particle sizes 
were carried out by Shaw and Ottewill (30), 
who very kindly permitted us to quote from 
their results. The polystyrene particles are 
charged by built-in COOH groups and by 
adsorbed laurie acid. The E.M. of the par- 
ticles increases with increasing pH until a 
limiting value is reached at a pH of about 7. 
The limiting values, measured at pK = 7.6 
and 25°C. in 5 X 10 -4 M NaC1, are given 
in Table VII (dimensionless units). The 
values given in the third column of this 
table were measured after the latices had 
been dialyzed exhaustively; in these cases, 
no laurie acid was present in the system. 
The last column of Table VII gives the 
maximum values of E predicted by the 
present theory (corrections for the mobilities 
of the small ions have been included). The 
values of the E.M. measured in latex E are 
significantly higher than the predicted 
maximum. 

From the preceding discussion it follows 
that experimental mobifities exceeding the 
theoretical limits are rather exceptional, and 
that the differences are relatively small. 

Next, we shall consider some experiments 
in which the E.M. was measured as a func- 
tion of particle size, at constant composition 
of the medium surrounding the particles. As 
indicated above, this is the best way of 
checking the theoretical relation between 
the E.M. and ~a. 

Systematic measurements of this type 
were carried out by Kemp (16) on sols of 
gamboge and silica, with the purpose to test 
the theory of Henry (4). Because the mobili- 
ties are rather low, the results are not suit- 
able for testing the present theory. Next, we 
come to experiments of Mooney (15), 
Jordan and Taylor (31), and yon Stackelberg 
and Heindze (17). All these authors have 
used emulsions; there is some doubt as to 
whether emulsion droplets behave as rigid 
particles, but recent publications are reas- 
suring on this point. Anderson (32) meas- 
ured the E.M. of n-octadecane dispersions 
at a series of temperatures above and below 
its melting point and did not find any dis- 
continuity. From experiments on drops 
rising or falling in water, Linton and Suther- 
land (33) conclude that inside circulation 
occurs only in large droplets consisting of 
polar oils, and that small impurities (sur- 
factants) at the interface are sufficient to 
stop this circulation. Mooney (15) has 
reported some very high mobilities; e.g., in 
his Fig. 4, E -- 7.5 at ~a = 33, assuming a 
temperature of 25°C. This value of E is much 
higher than the theoretical maximum for this 
na (c/. Fig. 8), but this might be due to inner 
circulation, for the oils used by Mooney are 
polar and no stabilizers are mentioned. For 
this reason, and because no temperatures 
are reported, no quantitative conclusions 
will be drawn from this work; qualitatively, 
the dependence of the E.M. on particle size 
is consistent with the theory of the relaxa- 
tion effect. Jordan and Taylor (31) measured 
the mobifities of deealine drops for two dif- 
ferent sizes (xa -- 2.7 and xa = 136). The 
mobility ratio was found to be in reasonable 
quantitative agreement with Overbeek's 
theory. Because ~ is not large in this case 
(ca. 100 my.) the difference between Over- 
beek's theory and the computer results does 
not exceed 10 % at xa -= 2.7 and is negligible 
at ×a = 136. The detailed investigation by 
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yon Stackelberg and Heindze (17) was 
carried out with the purpose of testing the 
theories of Overbeek and of Booth. The 
authors conclude that theory and experi- 
ment are in good qualitative agreement. 
Because f < 100 my. and xa > 10 in these 
experiments, they also confirm the present 
theory, which gives about the same results 
for these parameter combinations. Similar 
conclusions can be drawn from the measure- 
ments of Shaw and Ottewill (30) on poly- 
styrene latices. These authors report that 
the E.M. values for latices A, B, and C, 
measured in 5 X 10 -s M NaC1, exhibit a 
minimum when plotted against xa; this 
minimum occurs in the region 1 < xa < 2, 
in agreement with the theoretical prediction. 

It. COS~CL~SmNS 

From the preceding literature review it can 
be safely concluded that the theory pre- 
sented in this paper is qualitatively correct. 
Furthermore, some critical experiments 
(silver halide sols, soap micelles) show that 
the present theory explains more facts 
than do the preceding theories. However, a 
few experiments on AgI sols (21, 23) and, 
especially, certain high mobilities by Shaw 
and Ottewill (30) in polystyrene latices in- 
dicate that our calculated mobilities are 
probably somewhat low. This implies that 
one or more assumptions used in the theory 
are not quite correct. A few possibilities will 
now be considered briefly. 

In the present model it is assumed that 
e and v have bulk values in the region out- 
side the slipping plane. These assumptions 
were examined by Lyklema and Overbeek 
(34). The authors found that the correction 
for decreased values of e in the double layer 
is mostly negligible. I t  was estimated that 
the correction for increased viscosity (the 
viscoelectric effect) might be appreciable 
(i.e., 20 % at high ~" and high ionic concen- 
tration). However, there are indications 
that the viscoelectric effect is overestimated 
by Lyklema and Overbeek, as has been 
pointed out recently by Stigter (35). 

It has already been mentioned that, as 
far as the region outside the slipping plane 
is concerned, surface conductance is in- 
eluded in our model. A surface conductance 

within the slipping plane was not accounted 
for, but this is not likely to occur, because 
the ions in this region are probably at least 
as firmly bound to the surface as are the 
molecules of the solvent. 

If the corrections mentioned so far were 
taken into account, they would lead to 
lower theoretical mobilities. Since our model, 
as it is~ already leads to low theoretical 
values, we still need a positive correction in 
order to explain the discrepancies between 
theory and experiment. The Brownian mo- 
tion correction is positive indeed, but it is 
far too small to account for the differences. 

Another source of error might be the as- 
sumption of a continuous surface charge. 
The discreteness-of-charge effect certainly 
changes the relation between ~0 and/' ,  and 
therefore the mobility at a given ¢J0. From 
a recent paper by Levine and Bell (24), 
however, it seems correct to conclude that 
this effect is mostly confined to the inner 
regions of the double layer, with the result 
that the relation between ~" and the E.M. 
is not affected. 

Finally, there are several objections 
against the use of the classical Gouy-Chap- 
man theory. La Mer (36) recently expressed 
the view that the use of the complete 
Poisson-Boltzmann equation is fundament- 
ally incorrect for laNe colloidal particles, 
and that a more advanced statistical treat- 
ment is to be preferred. Levine (37) con- 
eludes that the uncorrected Poisson-Boltz- 
mann equation can be applied at moderate 
potentials (< 100 inv.) and small electrolyte 
concentrations (<0.01 M for a univalent 
electrolyte). At these limits, the various 
corrections may already add up to 10 %- 
20%. In our treatment of the relaxation 
effect, we have assumed the validity of the 
Poisson-Boltzmann equation in the mobile 
part of the double layer, up to f-potentials 
of 150 my. It  is quite possible that this as- 
sumption has led to a slight overestimation 
of the relaxation effect, but no definite con- 
clusion can be drawn as long as the various 
corrections have not been applied to specific 
calculations of this effect. 

For a better understanding of electro- 
phoresis, more systematic experiments, of 
the type we have indicated, seem to be most 
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needed  a t  th is  stage. I f  t he  t heo ry  is to  be  
deve loped  much  fur ther ,  i t  will  p r o b a b l y  be 
necessary  to  use an  improved  Poisson-  
B o l t z m a n n  equa t ion  or a new s ta t i s t i ca l  
t r e a t m e n t  of t he  double  layer .  I n  th is  con- 
nec t ion  we wish to  men t ion  the  work  of 
F r i e d m a n  on cluster  expansions,  which  has  
been  app l ied  to  equi l ib r ium proper t ies  of 
s t rong e lec t ro ly tes  (38) and to  e lect rolyt ic  
conduc tance  (39), and  a pape r  b y  Buff and  
St i l l inger  (40), who have  given a new t r ea t -  
meri t  of t he  ion and po ten t i a l  d i s t r i bu t ion  
in t he  double  layer .  I t  seems possible  t h a t  
this  t y p e  of a p p r o a c h  will  be a d a p t e d  to  t h e  
s t u d y  of nonequ i l ib r ium p h e n o m e n a  in col- 
loidal  systems.  
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