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Toer (T O ;4\ ne o Gn:rn marmatamis moactire ernnea (Y LY canarahla Ranacrh ¢cnare and
~EL UL, v, 4} Do A G HURAatUIHIL [ficasulv opatc, (A, j{7[[) @ abpalauiv Lsaldvii opravie, aiild
(V.]-]) a separable reflexive Banach space, whose dual we denote by V'. Let

FiTXXXV—(—%, —=] be a given T x B(X x V)-measurable function. The associated
integral functional [;: L} X L, — [—=, +=] is defined by

e )= [ fex, 0,0 0) u,
T

where we use the convention [2, VII-7] regarding the possibly infinite values of the integral
(this convention is compatible with the usual definition of outer integrals). We equip L% with
the L,-norm | - ||, and L with the weak topology ¢ (L1{,, L}-), and are interested in necessary
and sufficient conditions for strong-weak lower semicontinuity of /ron L% x L. The purpose
of this note is to show how the seminormality approach of Balder [1f to the combined
question of formulating necessary and sufficient conditions for lower semicontinuity of integral

functionals extends to the present settine. For some detatls ahont cpmrnr\rmahtv we refer the
ncuonais exter e pr 1 seting. ror som seminormalt

reader to the Appendix and to [1]. The seminormality approach of [1] is based on the novel
insight that, under quite general conditions, seminormality of the functions f(r, -, - ) on X X V
y-a.e. and seminormality of /;on the Cartesian product of decomposable subspaces of LY and
L} are equwalent Here L% denotes the set of all (equivalence classes of) (7, fB(X))
measurable functions from 7 into X, equippeu with the essential supremun norm. Now LX
is certainly a decomposable subspace of L%, but, in the context of [1], it still inherits the
essential supremum topology (which is essential for the central equivalence result of [1] to
hold). Moreover, the lower bounds for the integrand f required in [1] are rather strict.
Nevertheless, it will be made clear below that the equivalent seminormality results of 1]
implies the main result of this note in a direct way.

2. MAIN RESULT
The main result of this note is as follows.
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THEOREM 2.1. The following three conditions
f(¢, -, -) issequentially l.s.c.on X X V u-a.e., (2.1
ft.x, -) isconvexon V forevery x € X y-a.e., (2.2)
there exist M >0 and y € L} such that
flt, x, 0) = () — M(|x|| + |v|) forallx € X,v € Vyu-a.e. (2.3)

are sufficient for sequential strong-weak lower semicontinuity of /- on L} X L}. Moreover,
they are also necessary, provided that /X, 0) < + = for some ¥ € Ly, 0 € L}.

To prove this result, we shall use the main result theorem 3.6 of [1]. Specialized to the
framework of this note, it runs as follows (note in particular that X is a Suslin space and that
L} is a decomposable subspace of L%; see also example 4.2 of [1]).

THEOREM (EQUIVALENT SEMINORMALITY). Suppose that ! TX X X V— (==, + =] is a
I X B(X X V)-measurable function for which there exist p € L} and ¢ € L} such that

(t,x,0) =, p(t))y + ¢(t) forall xEX veE Vyu-a.e.
Then the condition

(¢, -, ) is seminormal on X X V y-a.e.

is sufficient for the seminormality of /, on Lk X L},. Moreover, it is also necessary, provided
that [(%, 0) <+ > forsome x € LY, 0 € L.

The proof of this equivalence resultin [1] strongly depends upon the possibility to reformulate
seminormality—which is a generalized convexity property—in terms of Fenchel-like conju-
gation. After this, one can use the measurable selection apparatus developed for the con-
jugation of integral functionals, which is mainly due to R. T. Rockafellar [8], [2, VII].

Proof of theorem 2.1. The proof of sufficiency of (2.1)-(2.3) by means of the equivalence
theorem is not new; it can be found in [1, Section 4], where e.g. corollary 4.11 immediately
implies this result. Nevertheless, for the sake of coherence we also describe a proof of
sufficiency here; cf. [1, Section 4] for some details.

Suppose that {x,}5 C L% and {v,}§ C L}, are sequences with x;, — x, strongly and v, — vg
weakly. Rather than selecting suitable sequences and invoking Egorov’s theorem, we can
suppose without loss of generality that x,— x, in the essential supremum norm. Since {v;}5
is relatively sequentially compact, it follows by the Dunford-Pettis theorem [4, IV.2.1] that
{lv (I} is uniformly integrable. Hence, by the theorem of de la Vallée Poussin, there exists
a nondecreasing continuous convex function A’: [0, 4+ =) — [0, + =) such that

lim,_. W' (y)/y = + =, (2.4)

o= sups [ K (lou®l) u(dn) < + (2.5)
T

Define h: V— [0, + =) by setting 4(v) = &'(|v]); then 4 is inf-compact for every slope (by
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(2.4) and reflexivity of V) and convex on V. For £ > 0 we define f,: T X X X V— (- =, + *]
by
fe(t.x, v) = f(t, x, v) + Mllx|| + $eh(v).
By (2.3)-(2.4) and nonnegativity of &', there exists for every > 0 a constant C, such that
feleox, v) = () + C,.
Note also that for every ¢ >0
fe(t, -, ) issequentially l.s.c.on X X Vyu-a.e.,

fe(t,x,-)isconvexon Vforeveryx € X u-a.e.

As a consequence of the above, by the proposition of the Appendix, the function
[ TX XX V— (=%, + x|, defined by

[(t,x,0) = f(t, x, v) + 3 h(v),

is such that
[(¢, -, )isseminormalon X X V u-a.e.
for every £ > 0. In view of (2.6), the sufficiency part of the equivalence theorem now gives
that for every ¢ >0
I, =1+ M|-||, +el,
is seminormal on L% x L}. Since clearly by virtue of (2.5)
SUP,»q (£, (xx. 0g) = €0) = L(xy, vi) + Mlxy,,

it now follows immediately that

liminf, . [i(xe, vi) = I(xg, vg),

which finishes the proof of the sufficiency part.

For reasons explained in the introduction, the proof of necessity does not directly follow
from any result in [1]; however, we shall give an argument here that closely resembles the
proof of theorem 4.12 in [1].

As for necessity of (2.3), we can repeat the simple argument given in [6]: if (2.3) does not
hold for any M > 0, there exist for every M € N a set Ay, in J and a function ¢ in L such
that Mu(A,) =1 and

P (n) u(dn) = —1,

Apm
0= ¢py(t) =infex,ev (ft, x, v) + Ml + Mlo]) + 2,

where the nonatomicity of u has been used. By the von Neumann-Aumann measurable
selection theorem, there exist for every M € N functions xy, € LY, vy € LY such that

F( xm(0), 3 () + M(Jear O + [om (D)) < P (8) p-ae. (2.6)
For every M € N there exist A,, € T, Ay C Ay, such that
M| (el + o0l ) = 1. )

We define £, € LY and i, € L}, by setting (£, 04) = (Xa, Uy) ON Ay and (£y, 5y) = (X, 5)
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on T\Ay. By (2.7) x4 — £ strongly in L% and vy — & strongly in LY. By (2.6). (2.7) we
have
llm inf‘w_,x [f('f‘\/l’ l}A\,() = If(.f. 6) - 11

so a contradiction with the sequential lower semicontinuity of /; at (¥, &) has been reached.
We conclude that (2.3) holds.

We now prove (2.1) and (2.2) by means of the necessity part of the equivalent seminormality
theorem. Since {¢} is compact in L}, it follows by the Dunford-Pettis theorem and the de la
Vallée Poussin theorem that there exists A”: [0, + =) — [0, + =) having the same properties
as stated in the sufficiency proof, with (2.4) and

[,(0) < + =, (2.3")

where A corresponds to /" just as above. By the Dunford—Pettis theorem /, is inf-compact on
L} for every slope; of course, it is also l.s.c. and convex on L}. For every ¢ > 0 we define f.
just as above; evidently,

Iy is sequentially l.s.c.on Ly X L.

Also, for every x € L the functional /;,(x, -) is sequentially l.s.c. on L}. Since it is minorized
by the integral functional

1.(0) = [ (e (o) = Mlo(0)) ().
T

whose level sets are relatively compact by the Dunford-Pettis theorem, it follows from the
Eberlein-Smulian theorem that for every ¢ >0

I;,(x.-)isls.c.on Ly foreveryx € L.
A well-known consequence of this is that for every >0

I; (x,-)isconvex on L foreveryx € L,
by Lyapunov’s theorem (e.g., see the proof of [1, theorem 4.12] for details). Since (2.3) and

(2.4) have been established, (2.6) holds again for f,. Thus, for every ¢ >0

I (x,0)= | wdu+ C, u(D).
fe
T

We may now apply the proposition of the Appendix. This gives that for every € >0
I,, =1, +%el, isseminormalon Lk x L},.

Here [, corresponds to f and 4 as before: I, = f + M|| - | + eh. We can now apply the necessity
part of the equivalent seminormality theorem, since also

[[E(X_', 5) <+ %
(valid by (2.5")). This gives that for every ¢ >0
{.(¢, -, )isseminormalon X X V u-a.e.

Letting e — 0 it is now easy to establish that (2.1)-(2.2) must hold. H
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Theorem 2.1 extends the main result of Olech [6], where X and V were finite-dimensional. As
is the case in all approaches by others that are known to the author, the proofs of necessity
and sufficiency in [6] differ widely. While it is not unusual to see the use of seminormality in
the sufficiency part of similar theorems (the work of Tonelli [9] and Cesari [3] shows this in
abundance), seminormality has not played a role (before [1]) in the proofs of necessary
conditions for lower semicontinuity. An earlier necessity result is due to Polyak [7]: we refer
to [3, 10.9] and [5] for details.

It is well-known that the nice, clean characterization of sequential strong-weak lower
semicontinuity of [6] and the present note no longer hold for L,-spaces with p > 1. Some
counterexamples can be found in [35, pp. 525-526]. In terms of our proof this failure can be
understood by realizing that, while the lower bounds for the integrand would necessarily be
of the type w(¢) — M (x|P + |v[P), the functions A’ of our proof would have to be of the type
h'(y)=y?. Hence, such instrumental functions as f,=f+ M| [P +3ch and [ =
f+ M| -|P + eh would no longer satisfy the boundedness and growth conditions needed to
obtain seminormality, unless additional assumptions were introduced.
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APPENDIX
Let (Y, d) be a metric space and (W, P) a pair of Hausdorff locally convex topological vector spaces. paired by a
duality (-, -). According to [1], a function a: ¥ X W— [— =, + =] is said to be simple seminormal on Y x W if
a(y, w) = g(y) +{w, p)

for some 1.s.c. function g: ¥ — [~ =, + x] and some p € P. Further, a is said to be seminormal on Y x Wif a is the
pointwise supremum of a collection of simple seminormal functions on Y x M. This definition goes back to Tonelli
{9] and is strongly related to Cesari’s property (@) for multifunctions; cf. {1]. Recall that a function /1: W— (==,
+ =] is said to be inf-compact on W for every slope if for every p € P the set {w € W: A(w) — {w, p) < f} is compact
for every B € R. The following criterion for seminormality goes back to Tonelli; cf. [1, corollary 2.9].

PROPOSITION. Suppose that sequential compactness and compactness on W are equivalent. Suppose that the function
a: Y x W— [— =, + =] satisfies the following conditions:

ais sequentiallyL.s.c.onY x W,

a(y,-)isconvex on Wioreveryy € Y;
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there exist p € Pand B € R such that
a(v.w)yz={w,p)+p forall yeY . wew.
Then for every h: W— (— », + =] which is convex and inf-compact on W for every slope, the function a,. defined by
a.(v,w)=a(y.w) + eh(w),
is seminormal on Y x W for every ¢ > 0.

For the applications of this result in this note we observe that both on V and L}, equipped with their weak
topologies, sequential and topological compactness are equivalent by the Eberlein-Smulian theorem.



