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MAINTENANCE OF CONFIGURATIONS IN THE PLANE*

Mark H. Overmars and Jan van Leeuwen

Abstract. For a number of common configurations of points (lines)

in the plane, we develop datastructures in which insertions and
deletions of points (or lines, respectively) can be processed rapidly
without sacrificing much of the efficiency of query answering which
known static structures for these configurations permit. As a main
result we establish a fully dynamic maintenance algorithm for convex
hulls that can process insertions and deletions of single points in
only O(log3 n) steps or less per transaction, where n is the number

of points currently in the set. The algorithm has several intriguing
applications, including the fact that the "trimmed" meén of a set

of n points in the plane can be determined in only O(n log3 n) steps.
‘Likewise, efficient algorithms are obtained for dynamically maintaining
the common intersection of a set of half-spaces and for dynamically
maintaining the maximal elements of a set of points. The results are
all derived by means of one master technique, which is applied
repeatedly and which captures an appropriate notion of "decomposability"

for configurations.

1. Introduction

Computational geometry (cf. Shamos [23, 25]) concerns itself with
the design and analysis of algorithms for dealing with sets of points,
lines, polygons and other objects in 2- and higher dimensional space.
The sets considered are usually static and the datastructures used
are nearly always inadequate for efficiently accommodating insertions
and deletions. In this paper we shall attempt to remedy the lack of
sufficiently fast dynamic maintenance algorithms for a variety of

common configurations in the plane, some of immediate practical interest.

*Authors' addresses: Dept. of Computer Science, University of Utrecht,

P.O. Box 80.002, 3508 TA Utrecht, the Netherlands.



The problem to convert the intrinsically static datastructures of
searching problems into dynamic ones (henceforth referred to as "dynam-~
ization") was recently put forward in very general terms by Bentley [3].

He characterized a large class of problems (which he termed "decomposable
searching problems") which are particularly amenable to dynamization.

In Bentley [3] and in Saxe & Bentley {22] a number of surprisingly power-
ful techniques were presented, which can be called into action on any
decomposable searching problem and which may drastically reduce the
update times needed, without the search or query times thereby rising
beyond tolerable limits.

While the theory as it stands is applicable to a wide variety of
"point problems", Saxe & Bentley [22, appendix] observed already that
their techniques were apparently insufficient to handle entire configu-
rations (such as convex hulls) dynamically as well. Yet many of the
geometric configurations commonly considered intuitively are "decomposable”,
We shall prove for a number of different types of geometric configurations
that efficient dynamizations can be achieved and identify the concept
of decomposability which all these configurations seem to share.

In the sections to follow we shall present efficient algorithms to
dynamically maintain the convex hull of a set of points, the common inter-—
section of a collection of halfspaces and the contour of maximal elements
of a set of points. The results are often of the sort that insertions and
deletions of objects can be performed in only O(log2 n) or O(log3 n) steps
each, where n is the current number of objects in the set, In several
instances no better bounds than O(n) or worse were known before, in some
the problem to support deletions too has never been discussed before. An
extensive list of applications is discussed in various intermittent sections,
some of immediate interest to such areas as computational statistics (cf.
Shamos [24]). For example, we shall present a method to maintain two sets
of points in the plane at a cost of only O(log3 n) time for each insertion
or deletion, such that the question of whether the two sets are separable by
a straight line can be answered in only O(log2 n) time.

An interesting feature of the algorithms we present is that they all
follow (more or less) by applying one and the same technique, which can
be taken as additional evidence that the configurations we consider have
a common type of decomposability. Some of the searching problems we consider,
such as containment in the common intersection of a set of halfspaces, even
are decomposable in Bentley's sense. It will appear that the efficiency of
algorithms derived by applying any of the standard dynamizations (as they

are known) to the currently best static solutions of these problems does



not even come near the efficiency attained by the especially engineered
maintenance algorithms we develop here. On the other hand, we have no
proof that the bounds and methods we use are anywhere near optimality

and further improvements remain open.

2. Dynamically maintaining a convex hull (prelude)

In the past many different algorithms have been proposed to determine
the convex hull of a set of n points Pyr «ee1 P in the plane [4, 9,
10, 12, 15, 20]. The algorithms usually operate on a static set and have
a worst case running time of O(n log n) or O(nh), where h is the number
of points appearing on the hull.
An early algorithm of Graham [10], for example, operates by locating
an interior point S of the convex hull first and ordering all points
P, to P by polar angle around S. In this order the points span the contour
of a simple, star-shaped polygon and it only takes a single walk around
the polygon to "draw in" the convex hull (figure 1), Since it always

has to sort, Graham's

INSERT FIGURE 1 ABOUT HERE

algorithm will be tied to an Q(n log n) worst case lowerbound. On the
other hand, the very fact that we normally want to obtain the ordered
contour of the convex hull implies that sorting must be implicit in any
algorithm and the Q(n log n) worst case lowerbound applies to all of them
which deliver a convex hull in such terms [25]. Even if we merely want

to mark which of the p, are hull-points (duplicates allowed) and don't
care about the actual contour at all, then an Q(n log n) worst case
lowerbound can still be shown [28], even in a quadratic decision tree
model [30].

Nearly all convex hull algorithms known today (like Graham's) require
that all inputs are read and stored before any processing can begin. Such
algorithms are said to operate "off-line". Shamos [24] apparently first
noted that in certain applications one might want to have an efficient
"on-line" algorithm instead, which will have the convex hull of p1 to pi
complete and ready before pi+1 is added to the set. Because of the n log n

lowerbound, updates of the convex hull due to the addition of a single



point will cost at least Q(log n) on the average. Preparata [19] recently
showed an algorithm to insert a point and update the convex hull in a

way which never exceeds the O(log n) even as a worst case bound. Briefly,
his technique amounts to the following. Suppose the extreme points among

Py to p, are kept ordered by polar angle around an interior point S of

the current hull and are stored in a proper, concatenable queue (see [1] ).
When Pii1 is presented we first determine whether it lies inside or out-
side the current hull, by inspecting the sector it belongs to (which can

be found by binary search, see figure Z2a). When pi+1 lies in the interior

no update is needed. When pi+ lies in the exterior (see figure 2b),

1

and ;5: to the

ine t ents xp
determine the tangents xpi+1 i+1

INSERT FIGURE 2 ABOUT HERE

current hull, omit the points on the arc between x and y "illuminated"

by pi+1 and insert pi+ for them instead. The non-easy part concerns

1
the design of a proper queue structure (a geared-up AVL-tree will do),
such that binary search on the hull can be performed in only O(log n)
steps in worst case (e.g. to find the tangents needed) in addition to the
ordinary O(log n) insertion, deletion and splitting behaviour.

It is clear that none of the previous algorithms are fully dynamic,
since at best they support insertions only. Yet there are a number of
practical problems (cf. section 5) in which it is required to have an
efficient algorithm to restore the convex hull when points are deleted
from the set. This creates a tremendous problem for all existing algorithms,
even for Preparata's [19]. They virtually all go by the principle that
points found to be in the interior of the (current) convex hull will not
be needed ever and can be thrown away, and some are even especially
designed to eliminate as many points from further consideration as they can
to cut down on the ultimate running time. This can no longer be maintained
if we allow deletions to occur. It is most easily demonstrated by the fact
that, when an extreme point of the current convex hull is deleted, the
hull can "snap back" (see figure 3) and tighten itself around some old
points of the interior ... which suddenly find themselves to be part of the

new convex hull! Observe also (figure 3) that the number



INSERT FIGURE 3 ABOUT HERE

of points added to the hull after deleting a point can be rather large.
We will show that, despite these apparent complications, the set of n
points can be structured and its convex hull maintained at a cost of

only O(log3 n) or less for each insertion and deletion. The time required
for insertions can even be kept within an O(log2 n) bound, by a judicious

choice of datastructures.

3. Dynamically maintaining a convex hull (representation)

Given the task to maintain it dynamically, an immediate problem is
how to actually represent the convex hull of a set. The usual way to keep
points ordered "around a fixed interior point S" is no longer feasible,
because repeated insertions and deletions can cause the set to wander off
and put S in its exterior. It is avoided by adopting a new representation
of the convex hull (see figure 4), consisting of its separate left and

right faces. Thus, the convex hull is represented by

INSERT FIGURE 4 ABOUT HERE

means of two very special, convex arcs.

Let P be a set of points in the plane, let wL=(- o,0) and mh=(+ ,0).

Definition. The lc-hull of P is the convex hull of P u {“h}, the rc-hull

of P is the convex hull of P y {“i}.

The lc- and rc-hull of a set are illustrated in figure 5a and 5b,

INSERT FIGURE 5 ABOUT HERE



respectively. We will concentrate on the lc-hull of a set, as its rc-hull
is treated in completely the same way. Note that the lc-hull is a convex
arc which begins at the rightmost point of highest y-coordinate and ends
at the rightmost point of lowest y-coordinate and tightly bounds the

set from the left. Points along the 1lc-hull appear in sorted order by
y~coordinate! It will be necessary for later purposes to store the points
along the lc-hull in this order (i.e., by ordered y-coordinates) in a

concatenable queue QL (figure 6). The

INSERT FIGURE 6 ABOUT HERE

contour of the rc-hull is stored likewise in a concatenable queue QR.

We want QL and QR to be balanced search trees.

Lemma 3.1. Given the lc- and rc-hull of a set of n points, one can
determine whether an arbitrary point p lies inside, outside or on the

convex hull in only O(log n) steps.

We will only consider the question whether p lies inside, outside or
on the lc~hull. From this and the response to the same query w.r.t. the
rc-hull the required answer can be derived immediately. Let p = (Xp, yp).
By means of an O(log n) search down QL one can determine two consecutive

hull-points pi and pj such that yp = yp =y . If no two such points
i ]
exists, then p lies above or below the lc-hull. Otherwise (see figure 7)

it only takes a trivial

INSERT FIGURE 7 ABOUT HERE

test to determine where p is located w.r.t. the lc-hull.



The lc-hull (and likewise the rc-hull) of a set P is a decomposable
configuration in the foliowing sense. Split P (with its points ordered
by y-coordinate) by a horizontal line into two parts A and C, as in
figure 8. The lc-hull of P is composed of portions of the lc-hulls of

A and C, and a bridge B connecting the two parts.

INSERT FIGURE 8 ABOUT HERE

o i o . St o i M o o o o o o o o o i i Sl b B o T o S T e AV i o S o e o S S o S o P, T P S . . T e

The following result is crucial for much of the entire construction and
shows that, once the representation of the lc-hulls of A and C is known,
the representation of the lc-hull of P = A y C can be determined in an
efficient (but tedious) manner. In the proof we shall encounter some

specific requirements on the Q-structures, very similar to Preparata's

[19].

Theorem 3.2. Let Pl' ceer Po be n arbitrary points in the plane, ordered by
y-coordinate. If the representations of the lc-hull of Pyr eees pi and
of Piyqr --+r P are known (any 1 £ i < n), then the lc-hull of the entire

set can be built in O(log2 n) steps.

Let P = {pl, e pn}. Think of {pl, ey pi} as A and of {pi+1’ cens pn}
as C (ref. figure 8). Let the lc-hulls of A and C be given in terms of
concatenable queues QA and QC respectively, representing the ordered contours

as suggested in figure 9. Since P, to p are sorted

INSERT FIGURE 9 ABOUT HERE

by y-coordinate, the sets A and C indeed are separated by a horizontal line
and, to find the lc-hull of P, all we have to do is to determine the bridge
B. For, let the bridge (which is the common tangent of A and C) "touch"

A at u and C at d. Then we can build QL (the representation of P's lc-hull)



as follows: split QA at u (u included in the "first" part), split QC at

d (d included in the "last” part) and concatenate the first part of QA and
the last part of QC' (Hence u and d have now become consecutive, correctly
representing the joining edge.) It is clear that this construction takes
only O(log n) steps by the usual results for concatenable queues ....
provided we know what u and d are.

Efficient tangent determination (cf. Preparata [19]) requires that one
can perform binary search on the lc-hulls. Ordinarily concatenable queues
do not permit one to do so, because they provide no random access to their
leaves. It would require O(log n) search down the Q-structure for every
next point to be visited and a total of O(log2 n) steps to do binary search.
If we relax our searching policy only slightly,'then the undesirable over-
head in "halving" search segments can be avoided. Let us augment each node
of a Q-structure with pointers to its descendants with highest and smallest
y-coordinate, respectively (see figure 10a). It is easily verified that
the usual concatenable queue structures (AVL-trees, 2-3 trees, BB[a]-trees)
have update, split and concatenation routines in which this sort of infor-
mation can be maintained at no significant extra cost. A "binary search"

now merely descends down a path

INSERT FIGURE 10 ABOUT HERE

of the tree and whenever a node is reached representing a search segment

[p, r] (on an lc-hull, see figure 10b), then we only need to inspect the
two inner leaves (q1 and q2 in figure 10b) pointed to by its sons to
determine on what segment ([p, ql] or [qz, r]) the search must be continued.
We shall assume from now on that QA and QC and all later Q-structures are
augmented with the extra pointers at each node as indicated.

Let p be an arbitrary point of A. (Important is only the fact that p
lies above C.) The one-and-only tangent to C's lc-hull can be determined
in O0(log n) steps by "binary search" down QC in the following way. Let
tp be the point to be found on C's lc-hull where the tangent through p
"touches" it. All we need is a simple criterion to tell in what direction
tp is located whenever the search leads us to inspect yet another point
q of the lc-hull of C. Only a limited number of cases can occur, when we

consider how the line EE-intersects with the contour of the lc-hull:



case (i) f In this situation, g is the point

! we searched for and we can stop

case (ii) r In this situation, g is located
/ past tP and the search must continue

/ on the first part of the segment
/ considered

case (iii) P In this situation, g is located
| before tp and the search must
L// continue on the second (last) part

of the segment considered

All these cases can be distinguished at only O(1) cost. Hence the search
down QC can be performed and guided at a cost of only O(1) total for each
node visited and will correctly turn up tp in O(log n) steps at most. This
routine for tangent determination will be used in the final part of our
proof, now to come.

The bridge B is easily recognized as the one common tangent of the
lc~hulls of A and C. Observe that d = tu and the routine for tangent
determination can be used to find 4 (hence B) ... provided we know the
location of u. We will show how u can be located by "binary search” on
A's lc-hull, in one search down the proper path in QA. To guide the search
at each node and to decide on what subsegment the search must continue,
all we need is an easy criterion to tell in what direction (backward or
forward) u is located whenever we probe at a next point p on A's lc-hull.
We can tell by inspecting the line EE;, the tangent through p to C's
lc-hull (which can be determined by the routine sketched earlier). Only
a limited number of cases can occur, when we consider how this tangent

intersects with A's lc-hull:
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case (1) /

case (ii) !

case (iii)

//
o
f

e

tp/o
/

In this situation, p is the point

u we searched for and we can stop

In this situation, p must be past
u and the search must continue on
the first part of the segment

considered

In this situation, p is located
before u and the search must continue

on the second "half" of the segment

considered

These cases can all be easily distinguished. Hence each step of the search

down QA really takes only O(log n), the amount of work to determine the

tangent needed to decide on what sub-segment to continue the search for u.

: . 2
In this way, u is found after at most O(log n) steps total.
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Once u is known we get B in only O(log n) steps and the construction

of QL can proceed as indicated in another O(log n) steps.

Theorem 3.2. suggests an interesting algorithm to construct the lc- and
rc-hulls, hence the entire convex hull, of a static set of n points in the
plane. Let us assume for simplicity that n = 2k for some k. First sort
the points by y-coordinate in O(n log n) steps. Next, for i from 1 to k,
repeatedly determine the lc- and rc-hulls of horizontally separated groups
of 2i points each by "composition" (as suggested in 3.2.) from the lc- and
rc-hulls of their constituent, and likewise horizontally separated halves
of Zi_l points (which were just constructed at the previous iteration). The

number of steps needed to build the hulls amounts to about

n

+
nTy

2 n 2 k 2 i
logm 2+ —log” 4 + ... = X 2 log” 27 = 0O(n)
4 . i
i=1 2
and the composition of the lc-~ and rc-hull to obtain the complete convex

hull is a near trivial matter afterwards.

Corollary 3.3. The convex hull of a static set of n points in the plane

can be found in only O(n) steps after all points have been sorted by

y~-coordinate.

We note that the given algorithm for convex hull determination is similar
in many ways to one of Preparata & Hong [20], although the latter still
requires O(n log n) steps after the initial sorting to complete.

We have no indication that the algorithm of theorem 3.2. is best
possible and it is conceivable that the O(log2 n) bound can be improved.
The actual bound on "bridge" determination will be crucial in the analysis
of later algorithms, a sufficient reason to symbolize the best run-time

possible by a special function.

Definition. Let Jl(n) be the best run-time achievable by any algorithm
that finds the one common tangent of two horizontally separated lc-hulls

of n points (represented as concatenable queues).

We shall assume that Jl(n) = Q(log n).



4. Dynamically maintaining a convex hull (structure and algorithms)

From now on we shall assume that the convex hull of a set of points
in the plane is represented by the junction of its lc- and rc-hull. It
will appear that the lc-~hull of a set (and likewise, its rc-hull) is
easier to maintain dynamically than the convex hull itself is directly.
Yet the results derived for lc-hull maintenance will hold ipso facto
for the convex hull as well.

As we must accommodate both insertions and deletions, it is conceivable
that some information must be maintained about the arrangement of the
points currently in the interior of the lc-hull of the set.

Let the points of the set be sorted by y-coordinate and let they be
stored by this attribute in a binary search tree T. We usually assume
that no two points have the same y-coordinate, but it is in no way essential
for the constructions to follow. It is natural to augment T and to associate
with each node & a concatenable queue Qa representing the lc-hull of the
set of points stored at the leaves of its subtree. By theorem 3.2. one can
obtain QG from the structures Q7 and Q6 assoclated with the sons ¥ and &
of o (see figure 11) in only O(Jl(n)) steps, but there is a slight compli-
cation as far as the efficiency is concerned. Observe that Q7 and Q6 must
be split to yield the pieces for Qa and that they are "destroyed" for
further use if we do so. If we want to build Qa from QY and Q6 and retain
Q

Y
time just to copy the segments of Q7 and Q6 which need to be joined to

and Q6 as they are, then we would have to spend much more than Jl(n)

form Qa. Fortunately, as can be seen from

INSERT FIGURE 11 ABOUT HERE

figure 8 and is suggested by figure 11, Q_ is built in a very regular

(0
way and is obtained by concatenating the proper head segment of Q7 and

tail segment of Qé with the "bridge" in between. It is clear that we might
as well cut the required segments off from Q7 and Q6 and pass them on to «,
leaving ¥ and & with only a fragment of their original associated structure.

If we remember at node & where the bridge connecting the two segments was

put when we built Qa, then we only have to split it at this very spot to

obtain the two "pieces" again and concatenate them to the left-over pieces

at 7 and 6 to fully reconstruct Qy and Qé.
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In the structure so obtained we can go down in the tree and reassemble
the Q-structures at the nodes bordering a path from the pieces reclaimed
by the continued splitting of the QY or Q(5 on our way down, and later climb
back along the same path, meanwhile rebuilding the Qa—structure for each
node & visited and passing on the part we need as we proceed to its father.
Going down can be done rather fast and only requires a few O(log n) routines
for splitting and (re)concatening Q-structures per node visited, but going
up normally requires Jl(n) steps per node (unless old information can be
used) . We shall see how this intriguing structure functions below.

As it stands we have obtained an intriguing augmented search tree
structure T*, in which with each interior node O is associated the fragment
Qa of the lc-hull of the set of points it covers that was not used in

building the lc-hull of its father. The lc-hull of the entire set will

normally be available at the root, as this characterization implies.

Proposition 4.1. After sorting points by y-coordinate (i.e., after building

T), the augmented tree T* can be obtained in only O(n) additional steps.

This follows essentially from the argument given to prove corollary 3.3.
The amount of work to construct the information at any of the n/2i nodes
in the ith level from below of T is still bounded by O(log2 2i), as the
cost for bridge determination is dominant over the costs for splitting and

concatenating the information needed from their sons.

We will show that T* can be maintained efficiently at all times. Let the

following information be associated with each internal node O:

(1) f(x) = a pointer to the father of o (if any),

(ii) lson(a) = a pointer to the left son of «,

(1i1) rson(&) = a pointer to the right son of «,

(iv) max (&) = the largest y-value in the subtree of lson(a),

(v) Q* () = the segment of Qa (head or tail) which did not
contribute to Qf(a)’

(vi) B(a) = the number of points on the segment of Qa (tail or

head) which does belong to Qf(a)
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Clearly (i) to (iv) are needed to let T* function as a search tree, (v)
is the "piece" of Qa left after sending the other half up to f(&) and
(vi) enables us to reconstruct the position of the bridge used in building

Q

£ () from its "left" and "right" components.

Notation. For a concatenable queue @, let 0[k ...l1] denote the concatenable
th th

queue consisting of the k up to 1 elements of Q. For concatenable

queues Q1 and Q, of horizontally separated sets of points, let Q1 u Q2

2
denote their concatenation as a single queue.

For queues Q, Q1 and Q2 of O(n) elements each, the queues Q[k ...l1] and

Q1 U Q2 (when defined) can be obtained in only O(log n) steps when properly
implemented (cf. [1]) ... although the original queues may be destroyed
when we build them.

Given the search structure T* for a set of points (with the complete
lc-hull of the set at the root), we shall first devise an important routine
(DOWN) to reconstruct the full QB at an arbitrary node B where it is needed.
There will be some additional sidebenefits from DOWN as well, as will soon
be apparent. The construction begins at the root and descends down the
search path towards B node after node, meanwhile disassembling the full
O-structure just build (or rather, reconstruct) at a father and reassem-
bling the complete Q-structure at its two sons before continuing in a parti-

cular direction. Later B will be the father of a (suspected) leaf and the

search for it will be quided by the usual decision criterion (involving max) in

binary search trees. We omit this detail from the specification of DOWN given

here.

procedure DOWN (&, B);
{0 is the internal node which was just reached in the
search towards B. 0*(Q) contains the complete lc-hull
of the set of points covered.}

begin

Il
™

if o then goal reached

else
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begin
{We split Q*(®) and reconstruct the Q-
structures at its two sons}

{cut 0*(a) at the bridge ... }

Q, := o*(a) [1 .. B(lson(a))];
0, := 9*() [B(lson(a) + 1 .. *I;
{... and glue the pieces back onto the queues

left at the two sons}

0*(lson(®)) := Q*(lson(a)) U Qi

Q2 U 0*(rson(®));

O* (rson(a))
{continue the search in the right direction}
if B below lson(Q)
then
DOWN (1son (@), B)
DOWN (rson (&) , B)
end

end of DOWN;

Note the precise order in which the pieces of Q*(Q®) are glued onto the
queues at the sons of . The routine is called as DOWN(root, B). Let T*

currently have n leaves (i.e. # P = n).

Lemma 4.2. DOWN always reaches its goal after O(log2 n) steps.

Since T is balanced, no node B can be deeper than O(log n). It follows
that DOWN will visit at most O(log n) nodes & on its way, no matter what
B is. The amount of work DOWN spends at each node is certainly bounded by
O(log n) per node, as it only involves some standard operations for concaten-

able queues of size O(n) at the node.

In addition to QB, the call of DOWN(root, B) produces the full Q-structure
(and thus the complete lc-hull of all points below it) at each node & whose
father is on the search path towards B but which isn't on it itself (see
figure 12). These full structures are kept for later use, the Q*—fields of

nodes on the search path itself (except B) have temporarily become vacuous.
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DOWN will normally be called because we want to update the set of
points below B and thus ... the lc-hull QB at this node. After having
done so we can climb back up the search tree again node after node,
each time reassembling the (new) lc-hull at a next higher node by taking
pieces from the Q-structure at its sons in a way which should now be
familiar. The necessary Q-structures are available, at one son (the one
on the search path) because we just built it and at the other son because
DOWN conveniently put it there (and left it there) on its way to B.

There is just one catch to this all. Because we updated the set below

B, presumably by inserting or deleting a point, the tree T* may have
gotten out of balance. We shall see later that there is a way to perform
local rebalancings in T* efficiently, despite the fact that the associated
structures at the nodes involved in a rebalancing may have to be re-
distributed completely. We delégate the task to a routine BALANCE. The
procedure UP given below will be the counterpart to DOWN. It starts at

B and gradually works its way up, restoring both the Q*-structures and

the balance of the tree along the search path.

procedure UP (Q);
{o¢ is the node most recently reached on the way back to
the root. 0¥ (lson(®)) and Q*(rson(a®)) contain the complete
lc=hulls of the sets below lson(a) and rson(Q), respec-
tively.}
determine the bridge connecting Q*(lson(®)) and
0¥ (rson{®)) and thus the numbers of points B1 and
B, which they must each contribute into Q¥ (&) ;
{record these numbers}

B(lson(Q))

Il
™

B(rson{Qa))

li
w
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{Cut the necessary pieces off from the queues ...}
Q1 := Q*(lson(a)) [1 .. Bl];
Q, := Q*(rson(®)) [*-B, .. *];

{effectively leaving the remaining parts at the sons}
{... and put them together to form the lc-hull of

the joint set}
% . U .

Q¥ (o) Q1 Q2’

if out of balance then BALANCE(Q) ;

if & = root then goal reached else UP(f (X))

end of UP;

Note what pieces from Q* (lson(a)) and Q*(rson(®)) together form O*(a).
After the subtree below B has been updated (and balanced, if necessary),
the given routine is called as UP(f£(B)) ... provided B wasn't the root

already.

Lemma 4.3. UP always reaches its goal after O{log n.Jl(n) + R) steps,
where R is the cost of all rebalancings required along the search path

during the particular action.

Starting at any B in a balanced tree, UP will need to visit no more
than O{log n) nodes before it terminates at the root. At each node visited,
UP spends Jl(n) steps finding the bridge it needs and another 0O(log n)
steps to perform some standard operations on concatenable queues. The

costs for rebalancing T* as we go up along the search path add up to R

by definition.

To get an impression of R, we shall delve into the necessary actions
for rebalancing a single node &. It is not obvious that one can always
rebalance T and restore the associated information at the nodes, without
the need for costly restructuring operations. We shall restrict ourselves
to familiar types of balanced trees like AVL-trees and BB[a]-trees (see
e.g. [1, 21]), which can be rebalanced by means of local rotations. Let
us examine the case in which a single rotation must be carried out at a
node & (see figure 13). The case in which a double rotation must be carried
out is very similar and will not be discussed in detail. The necessary

actions at node O are initiated by the procedure BALANCE, referred to in UP.
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INSERT FIGURE 13 ABOUT HERE

BALANCE is called just after Qa was reconstructed. It appears that we have

to undo this step, using one iteration of DOWN, to obtain the complete

leon(a) rson (&)
same Qa' It follows that we better decide the need to rebalance at & before

and Q again and prepare for a different construction of the
we construct Qa, i.e., at the beginning of UP instead of at the end. We

leave this modification for the reader to implement.

Lemma 4.4. Each call of BALANCE requires only O(log n + Jl(n)) steps.

Referring to figure 13, let the sons of lson{(&) be B and %Y. Given leon(a)'
we can reconstruct the complete QB and Q7 in just O(log n) steps by performing
ore iteration of DOWN. Let & be the new "right son" of & as a result of the
rotation. Observing that the complete Q-structures are available at B, 7 and
(the old) rson(®), it is clear that we can restore the proper information at
the nodes involved and climb back to & (where we were) by restarting UP at
node 6. It follows that a single rotation can be carried out at the expense

of at most O(log n + Jl(n)) extra steps. The analysis for double rotations

proceeds in very much the same way and yields the same estimate.

We now have all ingredients available to prove a first version of our result

on convex hull maintenance.

Theorem 4.5. The convex hull of a set of n points in the plane can be main-

2
tained at a cost of O(log n + log n.Jl(n)) per insertion and deletion.

Using T* as the underlying datastructure, we would proceed as follows
to insert or delete a point p. Remember that we have to update both the lc-
and the rc-hull of the set. We shall only describe the necessary actions

for the lc-hull.
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First we search down T¥, using p's y-coordinate, to find out in what
leaf p is (or must be) stored. We do so by means of the procedure DOWN,
which at the same time will restore the complete lc-hulls at all nodes
directly bordering the search path towards p at a cost of O(log2 n) . After
p is inserted or deleted as a leaf at the bottom of the tree, we must climb
back to rebalance the tree in accordance with the normal routines for the
type of balanced tree chosen and to reconfigure (update) the associated
information at all nodes on the search path. This we do by means of the
procedure UP, which takes care of any rebalancings required and repeats
putting a new Q-structure together at a node and cutting it again to build
the new Q-structure at the next higher node, until the root is reached.

By lemmas 4.3. and 4.4., UP takes O(log n.Jl(n)) in basic costs and an
additional O(log n + Jl(n)) for each rebalancing required. Since the number
of rebalancings will not exceed O{(log n), the total time required to execute

UP is certainly bounded by O(log2 n + log n.Jl(n)).

As Jl(n) 2 log n, theorem 4.5. essentially tells us that updates of the
convex hull take O(log n.Jl(n)). Since Jl(n) = O(log2 n), it follows that
the convex hull of a set of n points in the plane can be maintained at a
cost of only O(log3 n) per insertion and deletion. We can improve the result
somewhat, by more carefully examining the cost of UP's actions after an
insertion. It appears that, as the result of an insertion, the location of
the bridge between the two constituent halves of the lc-hull (or ... the
rc-hull) at a node & on the search path cannot shift too drastically. Rather
than spending a full O(Jl(n)) for bridge construction using theorem 3.2.,

we shall employ a simpler method which takes only O(log n) to limit the

overall costs.

Theorem 4.5%. The convex hull of a set of n points in the plane can be
. i 2
maintained at a cost of O(log n + log n.Jl(n)) per deletion and a cost of
2
O(log n + r.Jl(n)) per insertion, where r is the number of rebalancings

required in performing the insertion.

The global action of DOWN and UP is left unchanged. In particular, the
time bound for processing a deletion is left what it was. Only when an
insertion has taken place, UP will call on a different technique to determine

bridges as it climbs up the search path. Remember that when DOWN passed a
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node &, it reconstructed the complete Q-structures at lson(0) and rson(Q).
Let the set of points below lson(&) be C and below rson{®) be A, and let
the bridge be the line-segment (tangent) connecting u € A and d € C. See

figure 14. We shall assume that, when DOWN passes O and splits Qa, it

INSERT FIGURE 14 ABOUT HERE

stores the current location of the bridge (i.e. the nodes 4 and u) for
later reference.

Suppose that the insertion of a new point p took place in the subtree
of rson(a), i.e., in the set A. Imagine that UP is coming back and has just

completed building a new Q Its first action at & will be to determine

rson (&) ~
i . It i hi
the (new) bridge between leon(a) and the updated Qrson(a) is at this
stage that we recall 4 and u. When p has not become part of Q 's

rson (&)

contour, then Q and hence the bridge ... has in fact remained

rson (&)
entirely the same as it was. When p has, it must have been exterior to

the old Q and the new contour is obtained by taking the tangents

rson (&)
through p to the old contour and the continuation of the old contour from

the two tangent points onward. To find the new bridge between and

Q
“lson (&)
only three different situations can arise.

Qrson(O()’

Case(i): p is completely to the right of ud.

In this situation u has remained part
of A's lc-hull and ud still is the common
tangent of @

and .
1 son () rson (a)
mine the relative position of u on the new

To deter-—

contour of Q will take an easy O(log n),

rson (&)
but nothing further needs to be done.

Case(ii): p lies completely to the left of ud.
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In this situation, obviously u can no
no longer be the right tangent point. The
other points from the old contour cannot
serve as tangent point for the bridge either,
otherwise they would have served for it even
before p got inserted (contradicting the
status of u). It follows that the new bridge

must necessarily touch Q at p. The

rson (&)
bridge itself is now completely determined

as the tangent through p to Ql which,

son (&)
by the technique explained in the proof of

3.2., requires only O(log n) steps to compute.

Case(iii): p lies on ud.

In this situation the bridge will remain
the same "line", but its tangent point on
Qrson may change. If p does not lie between
u and 4, then it will become the 'new u"
and Ea'is the new bridge. If p lies between
u and 4 then, by the ordinary convention

for convex hulls, ud remains the bridge

between the two lc-hulls.

It follows that in all cases finding the new bridge takes at most O(log n)
steps, at each node UP encounters on its way towards the root after an in-
sertion. The remaining basic actions UP performs at each node require no
more than O(log n) also, which means that the total costs of all basic actions
UP performs along the search path add up to a mere O(log2 n) . When BALANCE
calls for a rotation at a node, we follow its original actions to "reshuffle"

a few lc-hulls immediately below it at a cost of O(log n + Jl(n)). After a

rotation is carried out, UP can continue the way we described. Hence we only

need to add O(r.log n + r.Jl(n)) = O(log2 n + r.Jl(n)) in extra costs, where



r is the total number of rebalancings required. Thus insertions can be

2
processed in O(log n + r.Jl(n)) steps total.

We conclude

Theorem 4.6. The convex hull of a set of n points in the plane can be

2 3
maintained at a cost of O(log  n) per insertion and a cost of O(log n)

per deletion.

Using that Jl(n) = O(log2 n), the time bound for deletions is immediate
from theorem 4.5%, Let us choose to represent T as an AVL-tree. It is well-
known that processing an insertion in an AVL-tree will lead to at most one
rebalancing along the search path (see e.g. [21] p.243 or [29] p.226). It
follows from 4.5%. that insertions will cost no more than O(log2 n) steps

in this case.

Note that theorem 4.6. has become rather dependent on the type of balanced
tree we use for T. When it can be shown that Jl(n) = 0(log n), theorem 4.6.
can be improved to read that both insertions and deletions of points can be
processed in O(log2 n) steps, regardless of the type of tree chosen (provided
it can be kept in balance by means of local rotations). An improvement of
this sort will change many O(n log3 n) bounds in the next section into

2
O(n log n) bounds.

5. Applications of the dynamic convex hull algorithm.

There are numerous problems in computational geometry and more applied
fields, which can be solved by using convex hull determination as a tool
(cf. Shamos [24]). The algorithm we devised for dynamically maintaining a
convex hull in the plane will enable us to tackle a few inherently dynamic
problems, for which good bounds were lacking until now.

In statistics considerable attention has been given to finding estimators
which identify the center of a population. For 1-dim data it has given rise
to the concept of an "O-trimmed mean", obtained by taking the mean value

of the points remaining after discarding the upper- and lower G-tiles of
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the set. (See Huber [14] for a historical account of the concept.) Since
the G-tiles can be determined in only O(n) time no matter how the set of
n points is given (Blum et.al. [6]), the trimmed mean follows in only O(n)
steps all together. In 2 dimensions a similar idea has given rise to the
concept of "peeling" a convex hull (Tukey [27]), again to remove some fixed
percentage of outlying points from the set. Each time a point is removed,
the convex hull must be updated accordingly. Green [11] has indicated what
statistical information can be obtained through peeling in 2- and more
dimensions, but the computational complexity of it definitely is no longer
linear.

Shamos [25] reported an O(n2) algorithm for peeling a set of n points
in the plane, based on an iterated version of Jarvis' convex hull algorithm
(Jarvis [15])). Green and Silverman [12] gave an algorithm to peel a set
using Eddy's convex hull algorithm (Eddy [9]), that isn't any better in worst
case but seems to perform well in practice. Shamos [25] argued that any
algorithm for peeling a set must take (n log n) steps in worst case, but
he gave it as an open problem to actually beat the existing O(n2) algorithms.

We can apply theorem 4.6. to show

Theorem 5.1. One can peel a set of n points in the plane in only O(n log3 n)

steps.

Given a set of n points, first build the data structure T* for the entire
set as described in Section 4. By proposition 4.1. this can be done in only
O(n log n) steps total. Next one can do any n deletions one likes, at a
cost of O(log3 n) steps per deletion. Hence the peeling of the set can be
completed within O(n log3 n) steps. (It is noted that this does not take any

time into account that may be required to decide what point to peel off next.

A closely related problem concerns finding the convex layers of a set of

points in the plane. Starting with the convex hull as the 1St layexr, the

th
i layer is defined as the convex hull of the set of points remaining after

peeling all previous layers off (see figure 15). The statistical significance

INSERT FIGURE 15 ABOUT HERE



was recognized by Barnett [2], who defined the c-order of a point as being
the rank-number of the convex layer to which it belongs. Intuitively, points
of low rank correspond to extreme observations that should be treated sepa-
rately or even be discarded (cf. Huber [14]). Points of highest rank can be
viewed as medians of the set.

Shamos [25] argued once again that determining the c-order of all points
(which he called their "depth") requires Q(n log n) steps in worst case,
but only had his O(n2) algorithm for peeling to determine these values. We

can show

Theorem 5.2. One can determine the joint convex layers of a set of n points

in the plane (hence Barnett's c-order groups) in only O{(n log3 n) steps.

th .
Assume that the i convex layer has cy points, with ¥ ¢, = n. We begin
i1
by building the structure T* as described in Section 4 (viz. proposition 4.1.)

at a total cost of O(n log n). It immediately yields the first convex layer
of the set, its convex hull, at the root of the structure. In general the
concatenable queue Q associated with the root will contain the representation
of the ith convex layer, for some i 2 1. It will take only O(ci) time to
traverse Q and to list which points constitute the current layer. To obtain
the next layer, delete each of the c, points of the current layer from the
set. It will cost O(ci log3 n) steps. The total time needed to "peel" off

all convex layers will thus be in the order of

nlogn+ 2 c, +Z c, log3 n
izt boi»p t

3
which is O(n log n).

Note that the convex layers can actually be output in the form of internally
linked data-structures, just like any convex hull representation. This will
be handy for the next observation (see figure 16).

Given the convex layers of a set, one may traverse the points in clockwise

order layer after layer, beginning with the outer layer and each time using

a "forward" tangent to step over onto the next inner layer.
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The path so obtained (a "spiral") connects all points of the set, does not
intersect itself and has the property that all corners in traversal order
are convex. As the required tangents can be determined in only O(log n)

steps each (cf. Shamos [25]), the following result is immediate.

Theorem 5.3. Given n points in the plane, one can determine a connecting

spiral in only O(n log3 n) steps.

If meaningful at all, spirals give a systematic enumeration of the points
of a population by "significance". Spirals are by no means unique, but are
completely determined by the starting point on the outermost convex layer
(i.e., the convex hull) and their "direction".

Returning to convex hulls, we can now apply theorem 4.6. to answer a
basic question posed in Saxe and Bentley [22]. It concerns a dynamic variant
of the simplest type of convex hull searching ("does x belong to the interior

of the convex hull of F"), which they left open.

Theorem 5.4. One can maintain a set F of n points in the plane at a cost

: 2 . . . 3 . .
of O(log n) time per insertion and of 0(log™ n) time per deletion, such that
queries of the form "does x belong to the interior of the current convex hull

of F" can still be answered in O(log n) time.

It is immediate from theorem 4.6. The concatenable gueue available at the
root of the data-structure is a full-fledged representation of the convex
hull at all times, and by lemma 3.1. queries of the form stated can be answered

in O(log n) time whenever needed.

A last and intriguing application of dynamic hull maintenance relates
to the separability of discrete pointsets in the plane ({(see e.g. Shamos [23]).
Two sets are said to be separable if one can draw a straight line such that
one set is entirely to its left, the other one entirely to its right. It

is well-known that two sets are separable if and only if their convex hulls
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are disjoint. See Hadwiger and Debrunner ([13], sect. 3) for some classical
facts concerning separability of sets. Efficient algorithms for deciding
static separability would compute the convex hulls of the two sets and

see if they are disjoint., Unfortunately the best previously known algorithms
for deciding whether two convex k-gons are disjoint do not sufficiently take
advantage of any preprocessing and run in O(k) steps, which is too much in

a dynamic environment when k is large. But we can show

Proposition 5.5. With suitable preprocessing, one can determine whether

2
two convex k-gons in the plane are disjoint or not in only O(log k) steps.

We shall assume that convex k-gons are preprocessed into a concatenable
queue which allows for "binary search along the contour", such that tangents
and line-intersections can be determined in O(log k) steps (as in Shamos [25],
also Preparata [19]).

Consider two convex k-gons A and B. By spending at most log k steps, one

can search down A's representation and determine two points a1 and a, on the

~~ ~ k . ;
contour such that the arcs aja, and aja, have E-p01nts each. Draw the line

aa, (which effectively cuts A in half) and determine the points b1 and b2

of intersection with B, in another O(log k) steps. If aa, does not intersect

B (implying that no b1 and b2 are found), then B must lie entirely above or

entirely below this line. We need only test the location of a single point

of B with respect to ala2 to find out which is the case. If B lies entirely

above a1a2, then we can effectively eliminate the "lower" half of A, as it

can impossibly contain an intersection. Otherwise we eliminate the "upper"
half of A (we will indicate how momentarily).

Assume that a,a, does intersect B. If the intervals [alaz] and [ble] on

the line are not disjoint, then neither are A and B and our procedure can
terminate. If the intervals are disjoint, then we proceed as follows (see

figure 17). Assume that b2 and a1 are adjacent. (A similar development applies

when b] and a, are adjacent.) Draw a tangent lB to B through b

1 toAt .
A o hrough a1 If lB and lA

5 and a tangent

INSERT FIGURE 17 ABOUT HERE
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meet below the line, then A and B cannot intersect above it and we may as
well eliminate the "upper" half of A. We do so by splitting the preprocessed
form of A (while keeping a record of where we split), at a cost of only
O(log k), effectively throwing half of its number of points away. If lB and
lA meet above the line, then we proceed similarly. In each case we apply the
same procedure recursively and continue unless lB 1 lA (implying that A and
B are disjoint) or A has been reduced to 1 or 2 points (and separability can
be decided "by hand").

Note that each step takes O(log k) time and we either reach a decision or
can eliminate another half of A. Thus no more than log k steps of this sort
can be taken, accounting for the O(log2 k) total time bound. After the answer
is reached, the splitting of A must be "undone". Using the record of past
splits, one can put the pieces back together in the right order within the

same time-pbound and bring A into its original shape as if nothing happened.

It so happens that the structure implicit in theorem 4.6. maintains
convex hulls in a form suitable for proposition 5.5. (cf. section 2).

Thus we conclude

Theorem 5.6. One can maintain two sets A and B of points in the plane such

2 3
that insertions take O(log n) time and deletions take O(log n) time each
(where n is the current size of the set on which they operate) and, whenever

needed, separability can be decided in only O(log2 n) time.

Note in theorem 5.6. that we could as well precompute the answer to a
separability query after every insertion or deletion, thus effectively
hiding the "query time" in the given bounds for the update times and resulting
in a query time of O(1). Recently, Chazelle and Dobkin [8] have shown that
the bound in proposition 5.5. can be improved to O(log n) by a process that
eliminates parts of both A and B. It gives a corresponding improvement of

theorem 5.6., when properly implemented.

©. Dynamically maintaining the common intersection of a set of halfspaces

(representation, structure and on-line maintenance)

A problem remotely similar to convex hull determination concerns the
computation of the common intersection of a set of n halfspaces in the plane.
A halfspace is a part of the plane entirely to the left or to the right of

a specified straight line. The common intersection of a set of n such half-



spaces is a convex polygon with at most n edges, where the polygon could

very well be empty or have an "open" side (see figure 18). If we interprete

a halfspace

INSERT FIGURE 18 ABOUT HERE

as the set of points satisfying some inequality ax + by < ¢, then the problem
we consider is easily motivated as that of determining the region of all
points which satisfy a system of such inequalities simultaneously.

Shamos and Hoey [26] have shown that the common intersection of a set of
n halfspaces in the plane can be found in O{n log n) steps. There is more
than one way to actually achieve this bound, but all techniques used until
now do not apply to an on-line environment and work for static sets only.
Even partial results apparently are lacking concerning the dynamic version
of this problem, in which we would randomly insert or delete halfspaces.
We will show that a suitable notion of decomposability can again be identified
and exploited in this problem, to obtain a dynamic maintenance algorithm
along very much the same lines of reasoning as in the case of convex hulls.
In this section we shall consider some of the necessary representational
details, which are somewhat more technical and tedious than for convex hulls
(largely because halfspaces are harder to deal with than points, compare
Brown [71]).

A halfspace is bounded by a straight line, which is determined once we
know its slope and a point. The slope of the bounding line will be called
the slope of the halfspace in question. If we orient lines such that they
always point "upwards", then we can fully determine a halfspace by specifying
a line and indicating whether to take the "left" of the "right" part of the

space (see figure 19). In this way

INSERT FIGURE 19 ABOUT HERE
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we can refer to the "left" and "right" halfspaces of a set, respectively.
As for convex hulls it will be advantageous to distinguish between the
left and right halfspaces of a set and to maintain their common intersections

separately.

Definition. The l-intersection of a given set of halfspaces is the common
intersection of the "left" halfspaces of the set. The r-intersection is the

common intersection of the "right" halfspaces of the set.

Let us consider what representation we must choose for the l-intersection
of a set of halfspaces. An l-intersection is an open convex domain, bounded
to the right by a convex arc made up of connected segments of the bounding
lines of the contributing left halfspaces (see figure 20). Considering the

boundary, it is important

INSERT FIGURE 20 ABOUT HERE

to observe that the halfspaces which "contribute" to it do so in increasing
order by slope. It clearly suggests that the l-intersection of a set of
halfspaces must be represented by the subset of contributing halfspaces

sorted by slope. With the representation for lc-hulls in mind, we will assume

that the contributing halfspaces are stored in sorted order at the leaves

of some binary search tree QL (see figure 21), which supports the repertoire

of a concatenable queue

INSERT FIGURE 21 ABOUT HERE

and which keeps its leaves chained in a doubly linked list as well. If it
is required to determine an edge of the boundary (viz. a corner point),
then it is sufficient to just intersect the bounding line of a halfspace in

QL with the bounding lines of the neighboring leaves. Because this takes
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only O(1), we can for all practical purposes identify the leaves of QL with
the edges of the boundary of the l-intersection in traversal order (figure 21).
We also assume that QL is "internally" linked in a way as described in section
2, to allow for binary searches over the boundary. It will enable us to detect
whether a point lies to the left or to the right and to compute the point(s)
of intersection with a straight line on the boundary in only O(log n) steps,
using a search procedure almost identical to the one for closed convex n-gons.
The r-intersection of a set of halfspaces will be represented in a concaten-
able queue QR in completely the same fashion. Notice that QL and QR always
consist of disjoint sets of halfspaces, because they are synthesized from the
disjoint subsets of left and right halfspaces respectively. The idea is to
dynamize the common intersection of a set by separately maintaining the 1-
and r-intersection of the set as represented in QL and QR. The following

analog of lemma 3.1. shows why this may be promising.

Lemma 6.1. Given the 1- and r-intersection of a set of n halfspaces, one can
determine whether an arbitrary point p lies inside, outside or on the boundary

of the common intersection of the set in only O(log n) steps.

Just observe e.g. that p lies inside the common intersection of the set
if and only if it lies "left" of the boundary of the l-intersection and "right"
of the boundary of the r-intersection. In this way the required answers can
be obtained by knowing p's location with respect to the 1- and r-intersection,

respectively, which one can determine in O(log n) each from QL and QR'

To simplify later formulations, we introduce the following terminology.

Definition. The l-boundary is the boundary of the l-intersection of a set
of halfspaces (as it is represented in QL), the r-boundary is the boundary

of the r-intersection of the set (represented in QR)'

Separately maintaining the 1- and r-intersection of a set apparently
fails to keep track of what the common intersection really is, although one
can answer queries about it. To solve our problem one must be able to compute

the common intersection (i.e., the convex boundary of it) with only little

extra effort. It should be clear
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that, in order to determine the "contour" of the common intersection, one
must compute the intersection of the 1- and r-boundaries as "open" n-gons.

See figure 22 for some conceivable cases.

Theorem 6.2. The point(s) where the 1- and r-boundaries intersect can be

found in O(log2 n) steps.

Let the 1- and r-boundary be called L and R, respectively. We assume that
L and R are given by means of the concatenable gueues QL and QR introduced
earlier. It is important to note that we make no assumptions about any relation
that might exist between L and R. All we use is that L is "open" to the left
and R is "open" to the right.

Computing the intersection of L and R proceeds in two phases. First we try
to locate some point p on R that lies to the left of L. (If there is no such
p, then the intersection is empty.) Once such a p has been found, L and R
must intersect (except in some degenerate cases) and there is at most one
point of intersection "above" and "below” p respectively. The next phase will

locate these points of intersection, whenever they exist.

Phase 1.

Our goal is to find a point p on R that lies to the left of L or to

establish the fact no such point exists.
When L consists of one straight line only, it takes no more than O(log n)
steps to determine whether it intersects R at all (using binary search over

R) and, if so, to pick a point p as desired (see figure 23 a, b, ¢, d). When L

INSERT FIGURE 23 ABOUT HERE

consists of 2 halflines intersecting at some point g, the location of g

with respect to R and the points of intersection of L and R can be found



in O(log n) steps by considering the "lines" of L as if they were separate.
Many cases can occur (see figure 24 a-h), but all are easily detected and
a point p can be chosen with no extra effort. It shows that when QL is

"down" to 1 or 2 leaves

INSERT FIGURE 24 ABOUT HERE

the choice can be decided. For larger L (i.e., when QL has more than 2
lzaves) we will attempt to split off a part at most half as large repeatedly
to reduce the problem, while narrowing down the search for some p if one
exists. It is important now that QL was chosen to be a splittable data-
structure, so a proper invariant can be maintained. In particular we will
guarantee that, after splitting, the "end-most" elements of the subset of

L on which the algorithm continues are extended to infinity (even though
they may contribute only a segment to the original QL). It should not be
mysterious, as it will follow from the algorithm that in this way only

useless parts of the boundaries are shielded off (figure 25).

INSERT FIGURE 25 ABROUT HERE

We shall now argue how the recursive algorithm operates on L {(i.e., on QL)
and narrows down the search by repeated halving.

Consider the "middle" segment of L. From the information at the root
of QL we know which segment it is at no special charge (figure 26). Let the
end-points of the segment be q, and d5- Let us now consider the horizontal
lines 11 and 12 through q and 9, (respectively). Because of the nature of I,
the lines 11 and 12 do not intersect L anywhere else. And because l1 and
1, are horizontal, they also intersect R in at most one

INSERT FIGURE 26 ABOUT HERE
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point each. It takes at most O(log n) steps to find these points of inter-
section r, and Lo if they exist, using a binary search over R. We shall

distinguish a number of cases that can now occur.

Case(i): there are no points of intersection (i.e., r1 and r, do not
exist).
This forces R to be in very specific parts of the plane. The different

cases are shown in figure 27 a-d and are very easy

INSERT FIGURE 27 ABOUT HERE

to distinguish. In cases (a) and (b) we only need to intersect R with &;a;

(in another O(log n) steps) to determine the precise location of R. In case
(a) a point p can be selected, in case (b) it can not be. Cases (¢) and (d)
are fully symmetric and we need only determine for a single point of R
whether it lies above or below l1 to distinguish the two. Let us just consider
case (c). In this case it is conceivable that there is an intersection of

L and R above line ll’ but there definitely is none below it. It means we

may as well confine the search to the "upper" half of L (see figure 28),

which is stored in the subtree of QL below the left-son of its root.

INSERT FIGURE 28 ABOUT HERE

After redefining the parameters, the search procedure can continue with an

"L" of half the original size.

Case(ii): there is a point of intersection on either l1 or 12 that lies

to the left of L.

It should be clear that such a point of intersection can be taken as a

point "p" for our purposes.

Case(iii): there is one point of intersection and it lies to the right

of L.



We omit a detailed discussion of this case, becuase the considerations

needed here are very similar to the next case.

Case(iv) : there are two points of intersection and both lie to the right
of L (i.e., r, and r, exist and both are located to the right of q1 and q2).
The different situations that can arise are shown in figure 29 a-d and

can be distinguished easily. Case (b) is

INSERT FIGURE 29 ABOUT HERE

detected by intersecting R with 9,49, in O0(log n) steps. If it occurs a point
p can be chosen. Otherwise a decision can not immediately be made. The cases
(a), (¢} and (d) can be distinguished completely by comparing the slope of

R's segments at r, and r, with the slope of q49,- Only in cases (c¢) and (d)
there is hope that an intersection may still exist. Just considering case (c)
(case (d) is similar), it is clear that an intersection can only occur above
ll' Thus the proper action is to split off the lower portion of L again and
to repeat the procedure on the resulting subproblem.

It should be clear that all possible cases have been dealt with and that
each case takes O(log n) steps to detect and to handle. Because in each case
either a decision is reached or the size of the part of L on which the procedure
is repeated is about cut in half, the entire process cannot continue for more
than O(log n) times. Hence phase 1 terminates after O(log2 n) steps. If any

datastructures (Q_ or QR) were split for greater efficiency, then they should

L
be put back together. But it is clear that this stays within the O(log2 n)
bound as well.

Phase 2

If no point p was found in phase 1, then L and R do not intersect. We
assume that a p was found and now aim for the construction of the intersection.
Observe that in some cases considered in phase 1 the actual points of inter-
csection were found already. Also, the case in which L consists of just 1 or 2
contributing halfspaces was dealt with in the introduction of phase 1. We shall
consider what to do for larger L and devise a halving procedure to search for
the points of intersection.

Phase 1 gave us a horizontal line that intersects R in p and L in some

point g, with p to the right of g (figure 30). It means that R and L have at
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most one point of intersection above and below 1 respectively. We shall
search for these points separately. Because both searches proceed in very
much the same way, we only discuss how to find the intersection above 1 (if
one exists). Note that we can split off the part of L (i.e., of QL) below 1
and eliminate it from the current process.

From the root of the datastructure for the current L, we can obtain the
middle segment in only O(1) steps (see figure 31). As before, we draw the

horizontal lines 11 and

INSERT FIGURE 31 ABOUT HERE

12 through the end-points q1 and q2 of the segment, and determine their

intersections rl and r2 with R (if these intersections exist) in the usual

O(log n) steps. The six

INSERT FIGURE 32 ABOUT HERE

different situations, depending on the form of R, are displayed in figure 32

and can usually be distinguished based on whether r, and/or r_, exist and,

2
if they do, where they are located. We consider the following cases.

Case(i): there is at most one point of intersection to the left of L

(figure 32 a-d).
It covers the situations in which rl either does not exist or lies to

the right of L (i.e., right of q, on ll)' If r, exists and lies to the left

2
of L, then the intersection of R and L can be located by just intersecting

R with q1q2 in another O(log n) steps. In all other cases we must conclude
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that the intersection of R and L lies "below" the current segment and we
can can cut off and eliminate the upper half of the current L from further
consideration. The same search procedure is now repeated, on a "new" L

that is half the size of before.

Case(ii): both r, and r, exist and lie to the left of L (figure 32 e-f).
Now we are still not sure that R and L actually intersect (above 1) but,

if they do, we know the intersection must lie "above" the current segment

on L. Thus we can split the datastructure again and confine the search to

the upper half of L.

It should be clear that all possible cases have been dealt with. Each
case takes O(log n) work and if no intersection is found yet, the search
continues with "L" cut in half. Obviously this cannot go on for more than
O(log n) times. Hence phase 2 terminates in a total number of O(log2 n)
steps as well. Any splittings {(of QL and QR) that were made must be un-done,
but this will take no more than O(log n) either.

Phases 1 and 2 together solve the problem of intersecting L and R within

the time-bound stated.

Thus, glueing the "left" and "right" constituents of the common inter-
section is not as easy as it was for the left and right sides of a convex
hull, but the upperbound is not discouraging. It is conceivable that a better

algorithm for theorem 6.2. exists.

Definition. Let J2(n) be the best bound achievable for computing the point(s)
of intersection of an 1- and r-boundary consisting of at most n segments each,

represented in a concatenable queue with "log n" characteristics.

Proposition 6.3. Given representations of the 1- and r-boundaries as concaten-
able queues, one can compute (a datastructure containing) the boundary of

the common intersection of a set of n halfspaces in O(J2(n)) steps.

It takes J2(n) steps to find the intersection of the 1- and r-boundaries.

In an additional O(log n) steps, one can split off the parts of these boundaries

which enclose the common intersection of the domains (see figure 22) and join

them in a single representation of the resulting convex (open) n-gon.
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We assume that Jz(n) = Q(log n) and take J2(n) = O(log2 n) for all concrete
upperbounds. The results support our earlier decision to separately maintain
the 1- and r-intersection of a set of halfspaces. The common intersection can
be determined when needed with relatively little computational effort. In the
remainder we shall consider how the l-intersection of a set of halfspaces can
be dynamically maintained.

It appears to be fairly easy to maintain the l-intersection of a set of
halfspaces when only insertions occur. The following result can be obtained,
of interest for an on-line construction of the l-intersection of a set (in the

spirit of Preparata [19]).

Theorem 6.4. One can compute the l-intersection of a set of n halfsvaces in
the plane by adding its elements into the structure one after the other, such

that each time it takes only O(log n) steps to fully update the current 1-

boundary after an insertion.

Maintaining the current l-boundary L as a concatenable queue O, let us see
what happens when an other halfspace h is inserted in the set. We assume, as
we may, that h is indeed a left halfspace.

The key to updating Q is to consider in what way h intersects L. Only a
limited number of cases can occur (figure 33 a-e), which can all be distin-
guished easily after running the O(log n) algorithm to determine the actual
point (s) where h cuts through L. We shall only explain how to proceed when
h intersects L at two points (figure 33 e), as the necessary actions in all

other cases are very similar and can be left to the reader.

INSERT FIGURE 33 ABOUT HERE

Hence let h intersect L in the points p and g, which are located on the
bounding lines of halfspaces hl and h2 (respectively) currently in the set.
To update Q one must delete all halfspaces currently "between" h1 and h2 (by
slope) and insert h for them instead. It is clear that the structure chosen
for Q allows one to perform this in only O(log n) steps.

The total time to update Q, hence the current l-intersection, after each

insertion remains within the 0(log n) bound.
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Theorem 6.4. shows that, as for convex hulls, there is a "real-time" algorithm
for building l-intersections. In a very similar way one can, in fact, obtain a
realtime algorithm to build the common intersection of a set of halfspaces
itself.

When both insertions and deletions must be processed, a more involved
procedure must be followed. Regardless of whether they contribute to the boun-
dary of the common intersection or not, it is important to keep all halfspaces
in a datastructure T. Because halfspaces contribute to common intersections
in increasing order of slope, we choose for T a balanced binary search tree

in which halfspaces are kept sorted by slope (figure 34) . Ideally we now want

to augment T and associate with each

internal node & of T a concatenable queue Qa containing (the l-boundary of)

the l-intersection of the halfspaces in its subtree! Before we do so, we

need to establish one more basic fact for l-intersections (viz. l-boundaries) .
The l-intersection of a set of halfspaces H is a decomposable configuration

in the following sense. Sort the elements of H by slope and split H at some

arbitrary point, to obtain two subsets A and C of halfspaces which have slope

less than or greater than a certain halfspace h, respectively. It turns out

that, as in the case of convex hulls, -the l-intersection of H can be determined

with relatively little computational effort from the l-intersections of A and

of C separately.

Theorem 6.5. Let H = {hl' ey hn} be a set of halfspaces, sorted by slope.

Given the l-intersections of A = {hl' ey hi} and of C = {hi ey hn} as

+17
concatenable queues (any 1 < i < n), the l-intersection of H can be computed

in O(log n + Jz(n)) steps (represented in a concatenable queue again) .

By the earlier remarks it is sufficient to consider the l-boundaries of
the sets in question. Let the l-boundaries of A and C be given. Using that
A and C are "separated" by slope, there must exist a halfspace h (i.e., a
bounding line) whose slope is just in between. Draw an arbitrary halfspace h
of such a slope. The different situations that can arise are displayed in

figure 35 a-b (where h can be of any slope), for the sake of clarity.
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INSERT FIGURE 35 ABOUT HERE

The main observation should be that the l-boundaries of A and C intersect in
precisely one point g. Clearly the l-boundary of H is obtained by taking C's
boundary up to q and continuing on A's boundary from q onwards.

It is not very hard to compute g, because the same algorithm as explained
in theorem 6.2. will apply. This is most easily seen when we tilt figure 34 a-b
and put h in the position of the x-axis, by a simple change of coordinates.
The halfspaces comprising the set A still face leftwards, but the halfspaces
in C now face "the other way". Thus for all practical purposes the "boundary"
of C has become an r-boundary and theorem 6.2. applies litterally. It should
be noted that the representations of A and C are still valid as they were,
as long as the change of coordinates is carried through in all manipulations
After finding g in O(J2(n)) steps, we split the queues representing A and C's
l-boundaries and glue them together in the right order, to obtain the 1-

boundary of H in only O(log n) additional steps.

We shall exploit theorem 6.5. in a dynamic algorithm for maintaining the
l-intersection of a set in the next section.
We observe that, as a bonus, theorem 6.5. gives us a method to construct

the common intersection of a set of halfspaces in a very special way.

Theorem 6.6. There is an algorithm to compute the common intersection of a
set of n halfspaces that, after sorting the halfspaces by slope in Q(n log n)

steps, takes only O(n) additional steps to complete.

It is sufficient (by 6.2.) to consider the computation of the l-intersection
only. Sort the given set and proceed as follows. For simplicity we assume that
n = 2k, some k. For 1 from 1 to k repeat computing the l-intersection of a next
group of 2i halfspaces from the l-intersection of each of the two constituent
"halves" as computed in the previous round. Using theorem 6.5. this procedure

takes
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n + E.log2 24+ ...+ 2 log2 2+ ... = O{n)
2 ?i

steps after the initial sort.

7. Dynamically maintaining the common intersection of a set of halfspaces

(algorithms and applications)

From now on we shall assume that the common intersection of a set of half-
spaces is represented as the "junction" of its 1- and r-intersection. We
shall concentrate on the dynamic maintenance of the l-intersection of a set,
because the results will carry over ipso facto to the common intersection as
such. The reason for it is clear: the l-intersection is decomposable in a
way similar to lc-hulls and the hope is justified that a full dynamization
can be obtained along the same lines.

Assume that all (left-) halfspaces presently in the set are stored at the
leaves of a balanced binary tree T, using their slope as the sorting key (see
figure 34). It is tempting to associate with each internal node & of T the
concatenable queue Qa representing the l-intersection of the set of halfspaces
in its subtree, but the development in Section 4 has taught us to try and be
more clever. From the decomposability of l-intersections as expressed in
theorem 6.5. it is clear that Qa can be computed efficiently from the queues
"stored" at the two sons Y and 6 of &. From the proof of theorem 6.5. it is
clear also that QG is obtained in a very regular way from Qy and Qé, generally
by taking a front piece of the first and a tail piece of the second. Thus a
situation completely similar to that for lc-hulls has been created (see e.q.,
figure 11).

We conclude that we must augment T to a tree T* in which the internal
nodes O have associated with it the left- or right portion of Qa that was not
used to form the l-intersection (as a concatenable queue) at its father node!
The l-intersection of the complete set will be available at the root of T*,
The further details concerning T* are completely the same as they were in

Section 4. In particular one can immediately obtain the following analog to

theorem 4.5.:

Theorem 7.1. The common intersection of a set of halfspaces in the plane can
. . 2 . .
ke maintained at a cost of only O(log n + log n.J2(n)) steps per insertion

and deletion, where n is number of halfspaces currently in the set.

The procedures DOWN and UP as they were developed in Section 4 carry over
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without any change (except terminology). Insertions and deletions are
processed in the same way as described in the proof of theorem 4.5. for
Note

convex hulls. The time analysis carries over with J, replaced by J

1 2°
that by proposition 6.3. it would take no more than O(J2(n)) extra steps to
maintain the common intersection of the set from the 1- and r-intersections

as they are kept up-to-date, which is well within the bound stated.

As we have (as yet) no better bound for J2 than log2 n, theorem 7.1. tells

us that the common intersection of a set of n halfspaces can be maintained at

a cost of only O(log3 n) steps per insertion and deletion. When J2 is improved
to e.g. log n, a log-factor can be saved in this result and its subsequent
applications. A slight improvement can be obtained by more carefully examining
the cost of UP's action after an insertion, completely in the spirit of theorem
4.5%, The idea is that, when a halfspace h is added, it cannot change the
current l-boundary of a set too drastically (as it can only cut off an existing
segment of it by a straight line) and enables one to "connect"™ the boundaries
of neighboring sets of halfspaces separated by slope by merely looking for

2 .
the effect of h, without the need for a fresh O(log n) search for their one

point of intersection.

Theorem 7.2. The common intersection of a set of halfspaces in the plane
can be maintained at a cost of O(log2 n) per insertion and a cost of O(log3 n)

per deletion, where n is the number of halfspaces currently in the set.

The procedures DOWN and UP are essentially left as they are, except that
we will change the way UP computes the l-boundary of a set H = AU C from the
l-boundaries of "separated" sets of halfspaces A and C after an insertion. For
the procedure below to work, it is necessary that at each node o of T* it is
remembered what the point of intersection Ay is of the l-boundaries of the
halfspaces below O's sons (because it is the point where these boundaries
were glued together).

Let h be the halfspace to be inserted. After performing DOWN and creating
a leaf for h, let us consider the necessary actions when UP has reached a

node & (see figure 36). Let the sons of O be ¥ and 6, and let the l-boundaries



42

INSERT FIGURE 36 ABOUT HERE

of the sets of halfspaces they cover (before h is inserted) be L7 and Lé.

When UP reaches it, the point 9y stored at node O is the (unique) point where

L7 and Lé intersect. Let us assume that h got inserted in the subtree below

Y. (If h got inserted below &, then a very similar argument would apply.)
Because h got inserted, the l-boundary L7 may have changed. Let us consider

what possible changes h can cause to the original L7 and what it means if

we want to compute the new point of intersection between (the new) L7 and

L

8 After all, this computation would be required to determine the new 1-

boundary La. Only three different situations can occur.
Case(i): h does not contribute to L

It means that h lies "to the right" of

/ /La Ly' The situation is easy enough to recognize,
by testing whether h occurs in the concatenable
queue currently representing Ly' If indeed h
does not contribute to L7, then UP does not
have to recompute anything (except perhaps to

restore balance) as it proceeds upwards.

ggge(ii): h does contribute to L7 but the current qa lies above or

to the left of it.

This situation again is easy to detect.
The "contour" of LY has now changed and con-
tains a segment of h. But when Ay lies above
or to the left of h, the part of L7 that
intersects L6 has not changed. In particular
it means that the new LY and L6 still inter-

sect at the same point qa.
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Case(iii): h does contribute to L7 and the current qu lies below

or to the right of it.

Again the contour of L7 has been changed
because of h and this time a new point of
, intersection with L6 must be computed. But
w; 1, a moment's reflection shows that the new
- /,/'6 point of intersection must be the point where
new q 7/ 7 h and L6 intersect! By means of the represen-
\\'/' P tation chosen for the l-boundaries like Lé,
;

- 2;' X it takes only O(log n) steps to compute the
/‘4 o intersection with a straight line.
(4

It follows that in all cases the "new" point of intersection between L
and L6 can be computed in only O(log n) steps, at each node UP encounters as
it works its way towards the root after an insertion. The remaining actions
performed at each node are simple O(log n) operations on concatenable queues,
except when a rebalancing is called for. The total cost to process an insertion
in the way we described will be O(log2 n + r.J2(n)),
rebalancings (rotations) required because of the insertion.

where r is the number of

Choosing T to be an AVL-tree (compare theorem 4.6.), the number r referred
to need never be larger than 1. It follows that the costs for processing an

. . o 2 . .
insertion can be kept to within O(log™ n). The costs for processing a deletion

3
remains at O(log™ n).

Halfspaces come up in a number of interesting problems in the plane and
theorem 7.2. will help us to obtain dynamizations of an unexpected efficiency.
A first application concerns the simplest type of intersection query: "does
the point x belong to the common intersection of the set of halfspaces H".
This is a particularly interesting type of query, because it is an example
of a decomposable searching problem in the sense of Bentley [3] to which
previously only very general dynamization methods were believed applicable
(which yield only average or worse bounds than we can now obtain). Combining

7.2. and 6.1. we conclude



Theorem 7.3. One can dynamically maintain the common intersection of a set

of halfspaces in the plane such that insertions and deletions can be processed
in O(log2 n) and O(log3 n) steps, respectively, and queries of the form "does
x belong to the current common intersection" can be answered in only O(log n)

steps at any moment, where n denotes the number of halfspaces in the set.

The same result holds for queries of the form "is the common intersection
currently empty".

The common intersection of a set of halfspaces plays a role, for instance,
in finding the kernel of a simple polygon (i.e., a closed polygon with no
intersecting edges). The kernel of a simple polygon is most easily described
as the set of points in its interior from which all sides of the polygon are
completely visible (i.e., from endpoint to endpoint). It is the common inter-
section of the halfspaces facing the interior, obtained by extending the sides
of the polygon to become bounding lines. Shamos and Hoey [26] first reported
an O(n log n) algorithm for determining the kernel of a simple n-gon. Later
Lee and Preparata [17] showed that when the contour of the n-gon is given in
traversal order an O(n) algorithm suffices. We can efficiently maintain the
kernel of a dynamically changing polygon, assuming that the changes merely

involve the insertion and deletion of edges which keep the polygon simple.

Theorem 7.4. One can dynamically maintain the kernel of a simple n-gon at
3 .

a cost of only O(log n) steps per transaction, assuming that transactions

merely involve the insertion and/or deletion of some edges that keep the

polygon simple.

A last but perhaps most interesting application involves some elementary
notions from linear programming. A linear program in n variables consists
of a set of linear inequalities and a linear object function F, which must
be minimized (or maximized) over the feasible region of points which satisfy
all inequalities simultaneously. It is well-known that the feasible region
is polyhedral and that (except in degenerate cases) F assumes its extreme
values at the extreme points of the polyhedron. We observe that the feasible
region is nothing but the common intersection of the set of halfspaces deter-

mined by the linear inequalities of the linear program.

Theorem 7.5. One can dynamically maintain the feasible region of a linear
2
program in 2 variables at a cost of only O(log” n) steps for each inequality

added and O(log3 n) for each inequality deleted.
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8. Dynamically maintaining the maximal elements of a plane set (on-line

construction and representation)

Another problem commonly considered in computational geometry concerns
the computation of the maximal elements of a set (in the plane). Let points

be partially ordered in the usual manner by coordinates. Thus for x = (x X,.)

1" 72
and y = (yl, y2) we write x = y if and only if Xy < Yy and X, < Yo A point
X 1s called maximal in a set P when x € P and no y € P exists with y > x.

It is customary to draw horizontal and vertical lines from each of the

maximal elements of a set (see figure 37), until they

INSERT FIGURE 37 ABOUT HERE

cross. It connects the maximal elements of a set by a contour of horizontal
and vertical line-segments, creating a "staircase" going up in leftward
direction. Having the entire set to its left, the contour of maximal elements
in not unlike an rc-~hull as introduced in Section 3. We shall discover that
the analogy can be carried a long way through, to obtain a dynamization of

the problem once again by very much the same line of reasoning.

Definition. The contour spanned by the maximal elements of a set of points

in the plane will be called its m-contour.

Computing the maximal elements of a set is equivalent to computing its m-
contour. The representations normally allow us to identify the two without
any considerable overhead.

For a static set of n points in the plane Kung, Luccio and Preparata [16]
have shown how the maximal elements can be computed in QO(n log n) steps and
supplied an argument of why this bound is essentially optimal (see also
van Emde Boas [28]). From a more general viewpoint, maximal element deter-
mination is but a special case of the ECDF searching problem which requests
that for each x € P the number A(x) = # {y € P | x < y} be computed. (Maximal
elements are precisely those points x which have A(x) = 0.) Using a recursive
splitting strategy, Bentley and Shamos [5] showed that ECDF searching in d-
dimensional space can be solved in only O(n logd—1 n) time. For d = 2 it
yields yet another O(n log n) solution which is completely unadaptive in a

dynamic environment. We will show how the "m-contour" can be maintained

dynamically.
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Clearly the m-contour of a set is only a way to visualize the arrangement
of its maximal elements more easily. Observe (when viewed from left to right)
that the maximal elements occur along the contour in increasing order by
x-coordinate and, at the same time, in decreasing order by y-coordinate. This
property is a very useful invariant and makes it possible to store the maximal
elements in an efficient concatenable queue Q (figure 38) which, when properly
managed, can be used for binary searching both on x- and on y-coordinate

along the contour. It enables us to make

INSERT FIGURE 38 ABOUT HERE

the following claim.

Lemma 8.1. Given the m-contour of a set of n points in the plane (as a
concatenable gqueue), one can compute its intersection with any horizontal

or vertical line in only O(log n) steps.

Let the maximal elements of the set be numbered as mO, ml, ... 1in the
(sorted) order in which they appear along the m—-contour. We will only show
the argument for computing the intersection of the contour with a horizontal
line y = c.

It is crucial to note that Q can be used for binary searching on the

y-coordinates of the maximal elements in the set,

INSERT FIGURE 39 ABOUT HERE

merely by disregarding their x-coordinates (the elements appear sorted on

either coordinate). Assuming that c = ym (which is required for there to
0
pe any intersection at all), it takes only O(log n) steps to find an i such

that ¢ = y or y <c <y . The cases are illustrated in figure 39 a and
m my i+

b respectively (the case in which m, is the "last" element on the contour is
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easily handled). In the first case the intersection is a line~segment of

known location and size on the line, in the second case it is the point

The result of lemma 8.1. can be shown for all straight lines of slope between
0 and 90 degrees.

Before we tackle a general dynamic version of our problem, we shall prove
that the contour of maximal elements of a set can be updated efficiently
whenever a new point is added to the set. It yields a result very similar in

spirit to Preparata's real-time algorithm [19] for convex hull construction.

Theorem 8.2. One can compute the maximal elements of a set of n points in
the plane (as a queue) by adding its points one after the other and updating

a current contour completely in O(log n) steps after each insertion.

Assume that a current m-contour is stored in Q as described and let a next
point p of the set be coming in. By considering the horizontal line through
p and intersecting it with the m-contour one can determine whether p lies
to the left of (or on) the contour or not. If it does, then it can not be
maximal and can be discarded forever. Otherwise any one of the cases shown

in figure 40 a-c can happen (m_ denotes the "last" element

k

on the contour). By inspecting the x- and y-coordinates of the end-points
of the current contour and comparing with those of p, one can easily distin-
guish between these three cases.

We shall consider case b (figure 41) only, as the argument for the remaining
cases is completely similar. From the previous stage we know at what point q1
the horizontal line through p intersects the contour. (If p is on one line
with a current maximal element, then we let it be ql.) In the same way we now

compute the point q2 on the
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INSERT FIGURE 41 ABOUT HERE

contour where the vertical line through p intersects (see figure 41). To
update the m-contour correctly one must delete the "segment" from ql to
q2 (i.e., delete the maximal elements on this stretch) and insert p for it.
As Q is a concatenable queue, this can be accomplished in O(log n) steps by
ordinary datastructure manipulation.

Because the necessary intersections can be computed in O(log n) steps as
well by lemma 8.1., the bound of O(log n) applies to the entire construction

for each point added.

As in the case of convex hulls (cf. Preparata [19]), theorem 8.2. is the best
uniform result one can hope for. Yet the structure that is maintained will
not be adequate for supporting deletions as well, because it ignores the need
to keep track of the "interior" of the hull of current maximal elements (com-
pare Section 2). This we shall now patch.

To do so we shall follow a very similar approach as for convex hulls and

halfspaces. Let us store all points of

INSERT FIGURE 42 ABOUT HERE

the set in a data-structure T that can be dynamically maintained. As the
maximal elements we wish to select will eventually appear in sorted order by
y-coordinate along the contour, it is reasonable to choose for T a balanced
binary search tree in which points are entered with their y-coordinate as

a key (figure 42). For the very same reason we could have chosen to maintain
points in sorted order by x-coordinate, but we have not done so to preserve
the similarity of our approach with the approach in Section 3 (for lc-hulls).
Ideally we would now augment T and associate with every internal node o con-

catenable queue Qa containing the maximal elements (in order) of the set of
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points covered by its subtree (see figure 43). While this has always been

INSERT FIGURE 43 ABOUT HERE

the first step in previous problems, we also know that we must look for an
additional property that enables us to "glue" neighboring m-contours when
neighboring subsets are taken together.

The m-contour of a set of points in the plane is a decomposable configura-
tion in the following sense. Let the points be sorted by y-coordinate (as
they are) and split the set by drawing an arbitrary horizontal line in two
disjoint subsets A and C (see figure 43). It turns out that the m-contours
of two horizontally separated subsets can be combined with relatively little

computational effort, to obtain the m-contour of the original set.

Theorem 8.3. Let P = {pl, ey pn} be a set of points in the plane, ordered
by y-coordinate. Given the m-contours of A = {pl, cees pi} and of C =
{pi+1, e ey pn} as concatenable queues (any 1 £ i < n), the m-contour of P

can be computed in only O(log n) steps.

Let the contours of A and C be given in concatenable queues Q. and QC'
respectively. Note that A and C are separated by an (imaginary) horizontal

line and that A lies above C. Let p be the "last" maximal element, i.e., the

rightmost (and lowest) point on A's contour.

Considering the set P as the union of A and C, it should be clear that
the maximal elements of A are also maximal in P but that this is not neces-
sarily true for the maximal elements of C. Draw the vertical line through

p (the "last" edge of A's contour) and compute

the point q (if it exists ...) where it intersects C's contour. The different

cases that can arise are shown in figure 44 a-b.
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When no intersection exists (figure 44 a), the m-contour of A will "pass"”
entirely in front of the set C and no element of C can be maximal in P. It
follows that the m-contour of P is identical to the m-contour of A.

When there is an intersection g (figure 44 b), the m-contour of P is
obtained by concatenating the contour of A with the contour of maximal elements
of C after g. The representation as a concatenable queue is obtained by split-
ting the front end up to g off from Qc and appending the remaining part to
QA. This can be accomplished in only O(log n) steps by standard routines on
the given concatenable queues.

As the computation of g costs no more than O(log n) either by lemma 8.1.,

the entire construction terminates within O(log n) steps.

Observe the similarly of theorem 8.3. with theorem 3.2. (for lc-hulls)
and theorem 6.5. (for l-intersections of halfspaces). But note that the
"composition" of the separated contours can now be constructed a factor of
log n faster than in these previous cases. It will have a succinct effect
on the later results, in which theorem 8.3. will be applied.

From theorem 8.3. one may derive yet another algorithm to compute the
maximal elements of a set of n points. It will have the interesting property
that, after sorting the points by y-coordinate, only O(n) steps are needed

to complete the construction.

Theorem 8.4. There is an algorithm to compute the maximal elements of a set
of n points in the plane that, after sorting the points by y-coordinate,
takes only O(n) steps to complete.

The proof is completely analogous to that of e.g. theorem 6.6.

9. Dynamically maintaining the maximal elements of a plane set (algorithm and

applications)

In the previous section we have developed a number of tools that will
now be applied. We shall follew the same line of reasoning as before to obtain
a fully dynamic maintenance procedure for the maximal elements of a set.

Let us assume that all points currently in the set are stored at the leaves
of a balanced binary search tree T, using their y-coordinate as the sorting
key. It is tempting again to associate with every internal node & a concatenable
queue QG containing the maximal elements (in their natural ordering) of the

set of points "covered" by &. In Qa we do keep track of the x-coordinates too,
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because of the simultaneous ordering by x- and y-coordinate which maximal
elements exhibit. From past experiences we know that the associated information
at the nodes must be altered a bit, to obtain a truly efficient dynamic data-
structure.

From the decomposability of m-contours as expressed in theorem 8.3. it
follows that a structure Qa as intended can be computed efficiently from the
queues associated with the sons Y and 6 of & (cf. figure 43). From the proof
of theorem 8.3. it is also clear that QG is obtained in a very regular fashion
from Q7 and Qé, generally by concatenating Q7 {(rather than a portion of it)
with a tail part of Qé. This yields a situation very much like that for e.qg.
lc-hulls as developed in Section 3.

It follows that we must augment T to obtain a tree T* in which with every
node & is associated the portion of Qa (kept as a gqueue) that was not used
in building the m~contour associated with its father. Because of the very
special properties of this problem, it implies that at least at one of the
sons an empty structure remains (compare the proof of 8.3.). The m-contour
of the complete set will be available in one piece at the root of T*. The
maintenance of T* is programmed in very much the same way as indicated in

Section 4.

Theorem 9.1. The maximal elements of a set of points in the plane can be
. . 2 . . .
maintained at a cost of only O(log™ n) steps per insertion and deletion,

where n denotes the current number of elements in the set.

Given the structure of T*, procedures DOWN and UP can be defined for it as
we did in Section 4. Insertions and deletions are processed using these
routines in completely the same way as described in the proof of theorem 4.4.
The time analysis carries over too, with J1 replaced by the "log n" bound
implied by theorem 8.3. We conclude that the necessary updates of the structure

, , , , 2
after each insertion or deletion can be made in O(log n) steps total.

Hence the paradigm of "decomposability" has led us to an efficient dynamic
structure for yet another problem. We mention a number of applications of
theorem 9.1. which are usually easy to derive.

A fundamental problem in this context is that one would like to maintain
a set in the plane and be able to answer queries of the sort "is x a maximal

element of the current set" efficiently. It so happens that such queries are



decomposable in the sense of Bentley [3], yvet none of the standard dynamiza-

tions of static solutions will result in the low bounds we obtain here.

Theorem 9.2. One can dynamically maintain a set of n points in the plane
2 . . .

at a cost of only Q(log n) per insertion and deletion, such that queries

of the form "is X a maximal element of the set" can be answered in only

O(log n) time.

Use the structure implied by theorem 9.1. To find out whether a point x
belongs to the current contour of maximal elements one merely needs to search

down the concatenable queue associated with the root.

A number of other applications are best formulated in terms of the concept

of "dominance'".

Definition. Given a set of points B, a point x is dominated "in" B if and only
if there is a yv € B such that x < y. A set A is said to be dominated by B if

every x € A is dominated in B.

Clearly a point x is dominated in B if and only if it is not maximal in B.
Thus the (decomposable!) searching problem of whether an arbitrary point is
dominated in the current set can be dynamized within the same bounds as given
in theorem 9.2. A set of points A is dominated by a similar set B just when

no point of A is maximal in A U B. It takes a little work, but the information

can be maintained along with the two sets.

Theorem 9.3. One can maintain two sets A and B in the plane such that insertions
2 .

and deletions take at most O(log n) steps each (where n is the total number

of points) and the information of whether A is dominated by B is maintained

at no extra charge.

Do not maintain A and B separately, but maintain the maximal elements
of A U B according to the method of theorem 9.1. and keep track of the elements
of A in it (if any) by a double-linked sub-list of the current contour. To
manage it, one must keep track of these sublists in all queues Qa associated

with nodes & in T, i.e., in the contiguous pieces of these queues kept around.
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The internal nodes of these queues must also keep a flag indicating whether
they are any elements of A in the subtree below. It will enable us to modify
the algorithms for splitting a queue in O(log n) steps, such that with little
extra effort the embedded sub-list of elements of A can be split too. The
ordinary algorithms for concatenating or updating queues can be modified also,
such that the extra information is correctly maintained at the nodes.

It is easily verified that in the construction in the proof of theorem
8.3. and in the algorithms implied by DOWN and UP for processing insertions
and deletions the embedded lists can be managed within the same time-bounds.
To determine whether A is dominated by B it suffices to see whether the em-
bedded list of A-elements in the m-contour of A U B, as it is available at
the root of T*, contains at least one element. This obviously takes only 0O(1)

time.

It should be noted that the proof of theorem 9.3. shows more than is stated.
It indicates that one can keep track of the "contribution" of a particular
subset to the maximal elements of the entire set and even list the contributed

elements, when required, in the exact order in which they occur on the contour.

10. Conclusion

We have presented efficient data structures and algorithms for processing
insertions and deletions in sets in the plane, while maintaining the correct
shape of some derived configuration at the same time. We have obtained fully
dynamic structures and algorithms for the convex hull of a set of points, for
the common intersection of a set of halfspaces and for the maximal elements
of a set of points again. In all these problems we have followed a very similar
line of reasoning and have obtained dynamizations based on one technique, that
happens to apply in all these instances.

The main ingredient in all problems is a suitable notion of "decomposabil-
ity" of the configuration that must be maintained. Having identified it and
observing that "neighboring" configurations contribute localized portions to
the configuration for the union, a same technique of cutting configurations
and only maintaining the left-over portions at internal nodes of a covering
balanced tree is applied to achieve the high efficiency for updating algorithms.
The efficiency of "composing" configurations after a decomposition of the set
determines much of the efficiency of the dynamizations.

We expect that the same techniques we have developed here will be of use

to obtain a good number of very efficient dynamic solutions to other problems
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in computational geometry, viz. in maintaining configurations. But the proper

notion of decomposability may have to be invented time and again for every

different problem, as it seems very difficult to capture it adequately. Yet

we hope to have made a step in the right direction to let dynamizations of

any sort desired be available by acts of standard "engineering".
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