The Vibrational Spectrum of Ni₃TeO₆ and Mg₃TeO₆ #### G. BLASSE AND W. HORDIJK Solid State Chemistry Department, Physical Laboratory, University of Utrecht, Utrecht, The Netherlands Received March 10, 1972 The infrared and Raman spectra of Ni₃TeO₆ and Mg₃TeO₆ are reported. The TeO₆ groups can be considered in good approximation as independently vibrating groups. Using crystallographic data a complete assignment is possible. The frequencies of the TeO₆ vibrations in Mg₃TeO₆ are at higher wavenumbers than in Ni₃TeO₆. ### 1. Introduction Recently the vibrational spectra of some ordered perovskites $Ba_2CaM^{6+}O_6$ have been reported by Corsmit, Hoefdraad and Blasse (1). In this crystal structure the MO₆ group has cubic symmetry. The vibrational bands of the MoO₆, WO₆, and TeO₆ groups in this structure could in fact be assigned to the octahedral vibrational modes ν_1 , ν_2 , and ν_5 (all Raman-active), and ν_3 and ν_4 (infrared-active). This paper describes the vibrational spectra of Ni₃TeO₆ and Mg₃TeO₆. In these compounds the TeO₆ octahedra have lower symmetry than cubic symmetry. It was our aim to investigate the influence of this symmetry on the vibrational spectrum of the tellurate octahedron. ### 2. Experimental Methods Samples were prepared by firing high-purity NiCO₃ (or MgCO₃) and TeO₂ in the required proportion in O₂. The final firing was carried out at 800°C. Samples were checked on a Philips X ray diffractometer using $CuK\alpha$ -radiation. Infrared spectra were recorded on a Hitachi EPI-G3 grating spectrometer (down to 400 cm⁻¹, KBr pellets) and a Grubb-Parsons DM 4 spectrometer with a CsI prism (down to 200 cm⁻¹, CsI pellets). Raman spectra were recorded on a Spectra Physics 700 Raman spectrometer using an argon ion laser (488 or 514.5 nm). All measurements were carried out at room temperature. The accuracy of the peak positions is typically 3-5 cm⁻¹. #### 3. Results The spectra obtained contain a large number of absorption bands. Those situated above 300 cm⁻¹ are presented in column 3 and 4 of the Tables I and II for Ni₃TeO₆ and Mg₃TeO₆, respectively. In addition the infrared spectrum of Ni₃TeO₆ shows two other bands, one at about 300 cm⁻¹ and the other one at about 210 cm⁻¹. Both are split. The infrared spectrum of Mg₃TeO₆ shows similar bands at 280, 245, and 220 cm⁻¹. The Raman spectra of both tellurates show strong peaks below 200 cm⁻¹. The Raman spectrum of Ni₃TeO₆ above 200 cm⁻¹ has a weak intensity, probably because the exciting radiation is partly absorbed by the green-colored sample. # 4. Discussion 4.1. Ni_3TeO_6 The crystal structure of Ni_3TeO_6 has been determined by Newnham and Meagher (2). The space group is R3. The rhombohedral unit cell contains one formula unit, and the Te^{6+} ions occupy the I(a) position with site symmetry C_3 . This symmetry implies a trigonal field at the site of the TeO_6 octahedron. As a consequence the octahedral ν_3 , ν_4 , and ν_5 vibrations with threefold degeneracy are expected to split into two. In addition the exclusion principle is no longer valid, since the inversion center is not present in symmetry C_3 . As a consequence all vibrational modes may be found in the Raman, as well as in the infrared spectrum. Columns one and two of | | Symmetry O _h | Symmetry C ₃ | Experimental (cm ⁻¹) | | |----------------|-------------------------|----------------------------------|----------------------------------|--------------------| | | | | Raman | Infrared | | ν_1 | $A_{1g}(\mathbf{R})$ | A (R, IR) | 680 (s) | ~690 (m, sh) | | ν_2 | $E_{a}(\mathbf{R})$ | $E(\mathbf{R}, \mathbf{IR})$ | 590 (m) | 590 (m) | | ν ₅ | $T_{2q}(\mathbf{R})$ | $A + E(\mathbf{R}, \mathbf{IR})$ | 430 (w) | ~430 (w, sh) | | | | | 370 (w) | \sim 375 (m, sh) | | ν_3 | T_{1u} (IR) | $A+E(\mathbf{R},\mathbf{IR})$ | \sim 665 (w, sh) | 665 (s) | | | | | | 535 (s) | | ν_4 | $T_{1u}(IR)$ | A + E(R, IR) | ~470 (w) | 460 (s) | | | *** * | | ~360 (w, sh) | 365 (s) | TABLE I VIBRATIONAL SPECTRUM OF TeO₆ OCTAHEDRON IN Ni₃TeO₆ ^a Table I show the correlation between O_h and C_3 symmetry, and the selection rules. An assignment of the vibrational absorption bands observed experimentally to the vibrational modes expected was made possible starting from the results for Ba₂CaTeO₆ where the TeO₆ octahedron occupies a site with cubic symmetry. From Ref. (I) we find: Raman-active: ν_1 (752 cm⁻¹), ν_2 (618 cm⁻¹), and ν_5 (412 cm⁻¹). Infrared-active: ν_3 (685 cm⁻¹), ν_4 (400 cm⁻¹). The mode v_6 is always inactive. If we take into account that the infrared intensity of the ν_1 , ν_2 , and ν_5 vibration, and the Raman intensity of the ν_3 and ν_4 vibration will be relatively low in the case of C_3 symmetry, the assignment is straightforward. Results are given in Table I. It seems justified to consider the TeO₆ group in Ni₃TeO₆ as a more or less isolated group in the lattice. The exclusion principle is in fact violated as required by C_3 symmetry. It is also seen that the trigonal field splits the threefold-degenerate vibrations ν_3 , ν_4 , and ν_5 considerably. This is not surprising, since from structural considerations this field is expected to be strong. The crystal structure of Ni₃TeO₆ is a superstructure of α -Al₂O₃ (corundum). The cation octahedra form pairs by sharing octahedral faces. In Ni₃TeO₆ these pairs are Ni-Ni pairs and Ni-Te pairs (2). TABLE II VIBRATIONAL SPECTRUM OF TeO₆ OCTAHEDRON IN Mg_3TeO_6 ⁴ | | Symmetry O _h | Symmetry S_6 | Experimental (cm ⁻¹) | | |---------|-------------------------|-------------------------|----------------------------------|------------------| | | | | Raman | Infrared | | ν_1 | $A_{1g}(\mathbf{R})$ | $A_{q}(\mathbf{R})$ | 790 (s) | _ | | ν_2 | $E_q(\mathbf{R})$ | $E_{q}(\mathbf{R})$ | 695 (w) | | | ν_5 | $T_{2g}(\mathbb{R})$ | $A_a + E_a(\mathbf{R})$ | 500 (w) | | | • | -3 . , | | 475 (w) | | | ν_3 | $T_{1u}(IR)$ | $A_u + E_u$ (IR) | _ | 750 (s), 725 (s) | | • | , | , | | 702 (s), 670 (m) | | ν_4 | $T_{1\mu}(IR)$ | $A_u + E_u$ (IR) | | 520 (m), 465 (s) | | • | 1- \ / | , | | 380 (m), 340 (s) | ^a For abbreviations see Table I. ^{*}Abbreviations: R = Raman-active; IR = infrared-active; s = strong; m = medium; w = weak; sh = observed as a shoulder. It is obvious that in such a Ni-Te pair the field at the Te-site is strongly trigonal. In this connection the recent results of Zupan, Kolar and Urbanc (3) become doubtful. They estimated the trigonal-field component at the Ni²⁺ site to be very small. They do not differentiate between the Ni²⁺ ions in the Ni-Ni pairs and those in the Ni-Te pairs. It seems to us that at least the Ni²⁺ ions in the Ni-Te pairs will endure a strong trigonal field. Finally we assign the infrared bands at 300 and 210 cm⁻¹ to Ni-O vibrations without further specification. The ν_6 vibration of the TeO₆ octahedron is Raman- as well as infrared-active in C_3 symmetry. Using Wilson's rule [$\nu_5 = \sqrt{2} \cdot \nu_6$, see Ref. (4)] the ν_6 vibration is expected in the region around 280 cm⁻¹. This region is dominated by the 300 cm⁻¹ band mentioned above, so that direct observation of ν_6 is not possible. # $4.2. Mg_3TeO_6$ The crystal structure of Mg₃TeO₆ has been refined by Schulz and Bayer (5). The space group is $R\overline{3}$. The rhombohedral unit cell contains two different Te^{6+} ions both with site symmetry S_6 . This implies that also in Mg₃TeO₆ the TeO₆ octahedron endures a trigonal field. In this lattice, however, the inversion center remains present so that the exclusion principle is expected to be valid. The first and second column of Table II show the correlation between O_h and S_6 symmetry and the selection rules. It must be kept in mind that we should expect twice as many absorption bands in the spectra as follows from this table, since the unit cell contains two different Te⁶⁺ ions both with S₆ site symmetry and the space group is $R\bar{3}$. Taking into consideration the results for Ba₂CaTeO₆ and Ni₃TeO₆ the assignment of the vibrational bands observed experimentally is straightforward (Table II). In the Raman spectrum we do not observe a doubling of the number of bands. In fact the difference between the two types of TeO₆ octahedra is small: The interatomic distances differ 0.01 Å or less, the bond angles less than 1° (5). Further, the interaction between different TeO₆ octahedra is expected to be weak, since they do not have oxygen ions in common. In the infrared spectrum, however, a doubling is observed. The ν_3 , as well as the ν_4 vibration show four bands in the spectra as expected. The trigonal field is considerably weaker than in the case of Ni₃TeO₆. We do not find any indication that the exclusion principle is violated. The hypothesis of an isolated TeO_6 octahedron is also in this case very helpful for the assignment of the vibrational spectrum at not too low energies. The infrared bands at 280, 245, and 220 cm⁻¹ are ascribed to the Mg-O octahedra in the lattice. It can, however, not be excluded that the ν_4 vibration mode is not a pure tellurate vibration. It seems even rather probable that it corresponds to complex vibrations involving the simultaneous participation of the TeO_6 and the MgO_6 octahedra. ## 4.3. Comparison with Other Tellurates If one compares the last columns of Tables I and II, it is clear that the vibrational spectrum of the TeO₆ group in Mg₃TeO₆ is situated at considerably higher wavenumbers than that of the TeO₆ group in Ni₃TeO₆. The values for Ba₂CaTeO₆ (see Sect. 4.1) are in between these extremes. In the literature we also found some data for the trirutiles Me₂³⁺TeO₆ (6). These give information on ν_3 only. Since the site symmetry of the TeO₆ octahedron in trirutile is D_{2h} , the v_3 vibration is expected to consist of three subbands as has been observed experimentally. The average value is about 650 cm⁻¹. We are, therefore, led to the conclusion that the stretching force constant of the TeO₆ group in Mg₃TeO₆ is relatively high and in Ni₃TeO₆ relatively low. An obvious explanation seems to be that in Mg₃TeO₆ the Mg-O bond is highly ionic so that the covalent character of the Te-O bond is high. In Ni₃TeO₆, however, the Ni-O bond will also have a certain covalent character due to the presence of dorbitals. As a consequence the covalent character of the Te-O bond is lower than in Mg₃TeO₆. This problem is now investigated further. #### Acknowledgment The authors are indebted to Dr. J. H. van der Maas of this University for the performance of the Raman spectra. # References - A. F. CORSMIT, H. E. HOEFDRAAD, AND G. BLASSE, J. Inorg. Nucl. Chem., in press. - R. E. NEWNHAM AND E. P. MEAGHER, *Mat. Res. Bull.* 549 (1967). - J. ZUPAN, D. KOLAR, AND V. URBANC, Mat. Res. Bull. 6, 1353 (1971). - 4. J. GAUNT, Trans. Faraday Soc. 49, 1122 (1953). - H. SCHULZ AND G. BAYER, Acta Crystallogr., Sect. B 27, 815 (1971). - 6. G. BAYER, thesis, E.T.H., Zurich, 1962.