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Synopsis 
The time-independent perturbation theory of quantum mechanics is studied for the 

case of very large systems, i.e. systems with large spatial dimensions (large volume 
£2), and a large number of degrees of freedom. Examples of such systems are met with 
in the quantum theory of fields, solid state physics, the theory of imperfect gases and 
in the theory of nuclear matter. Only systems at or near the ground state (i.e., systems 
at zero temperature) are treated in this paper. In the application of the conventional 
perturbation theory to sucl~ large quantum systems one encounters difficulties which 
are connected with the fact that even small perturbations produce large changes of 
the energy and wave function of the whole system. These difficulties manifest "them- 
selves through the occurrence of terms containing arbitrarily high powers of the volume 
£2 in the perturbation expansion of physical quantities. An extremely bad convergence 
of the perturbation expansion is the result. 

For the analysis of the £2-dependence of the terms in the expansion a new formulation 
of the time-independent perturbation theory is used, which was introduced by Van 
Hove.  Making extensive use of diagrams to represent the different contributions to 
matrix elements it is possible to locate and separate the £2-dependent terms, and to 
carry out partial summations in the original expansion. These separations and sum- 
mations solve the above difficulties completely. Improved perturbation theoretical 
expressions are obtained for energies and wave functions of stationary states, as well 
as for the life-times of metastable states. All terms in these expressions are, in the 
limit of large £2, either independent of £2 or proportional to £2, corresponding to in- 
tensive or extensive physical quantities. The convergence of the improved perturbation 
expansions is no longer affected by the large magnitude of £2. 

CHAPTER I. INTRODUCTION 

1. The problem. This paper  is devoted  to the per tu rba t ion  theory  of 

large q u a n t u m  sys tems i.e., q u a n t u m  systems which have large spatial 

dimensions and a large number  of degrees of freedom. The sys tems met  with 

in the q u a n t u m  theo ry  oi fields are, as is well known, of this type.  Also in 

o ther  branches  of physics, such as q u a n t u m  statist ics and the Fermi  gas 
model  of h e a v y  nuclei, one has to deal with such large systems. We shall in this 

paper  only be interested in systems at or near the g round  state. Our results 

are, therefore, only  applicable to q u a n t u m  systems at zero temperature .  

- -  4 8 1  - -  
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The separation of the hamiltonian into an unperturbed part  and a pertur- 
bation is not unique, but  in most problems of interest there is a separation 
which presents itself in a most natural  way. In quantum electrodynamics 
for example, the unperturbed system consists of the electron-positron field 
and the photon field without interaction. In the theory of an imperfect gas 
the unperturbed system will be taken as the ideal gas obtained by neglecting 
interparticle interactions. 

In the application of perturbation theory to large quantum systems one 
encounters problems not met  with in the usual perturbation theory of 
systems with a finite number of degrees of freedom. These problems are 
related to the following phenomena: 

1. Self-energy and cloud effects of individual particles in excited states. 
2. The perturbation of the system as a whole. 
We shall discuss briefly the first point. The eifects mentioned are well 

known in field theory.  A state of one single electron is changed by the 
perturbation into a superposition of many  different unperturbed states, 
where the one:electron-state is admixed with states containing one or 
more photons and electron-positron pairs. One usual.ly says that  the electron 
is surrounded by a cloud of photons and pairs. The self-energy of the electron 
manifests itself by a change of its mass. Also for a scattering state of two 
or more particles the interaction gives rise to the self-energy and cloud 
effects just mentioned, in addition to the directly observable scattering 
effects. While the latter are transient, i .e. take place (for general wave 
packets) within a finite time interval, the former are persistent effects 
which cause a permanent change of wave function and energy. Effects of this 
type are not limited to field theory, but occu~ also in m a n y  other systems. 

Recently V a n  H o v e  1) made an extensive s tudy of these phenomena. 
He developed a time-independent perturbation formalism which is adapted 
to the t reatment  of perturbations causing persistent effects. The develop- 
ments in this paper are largely based on his work. 

The effects just discussed concern the motion of one or more particles of 
the system, which is itself in a quantum state distinct from the ground 
state (the vacuum state of field theory). The self-energy is a shift caused by 
the perturbation in the distance between the energy level of the system in 
the state at hand and the ground state level. It  is to be expected that  such 
effects are independent of the volume ~2of the system, in the limit of O~oo .  
For instance the self-energy of an electron is not appreciably changed if the 
fields are enclosed in a box of vaxiable volume, at least for sufficiently large 
values of the volume. 

The problems of the second type mentioned above, which form the subject 
of the present investigation, are connected with the overall shift of the 
energy levels, both of the ground state and of excited states. For large 
systems, as considered in this paper, one must expect that  even weak 
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perturbations give rise to large changes of the wave function and energy 
of the system. Such effects occur in field theory whenever virtual pair 
production from the ground state is possible. Disregarding surface effects 
one must  expect on physical grounds that  the energy of the ground state, both 
in the unperturbed and in the perturbed system, is proportional to the 
volume ~2 of the system. This implies that  t h e  energy shift ~E0 caused by 
the perturbation is also proportional to Q. One often uses the words ex- 
tensive and intensive for quantities which are respectively proportional to 
and independent of the volume of the system. Using this terminology one 
can say that  the energy shift AEo of the ground state is an extensive effect. 

In studying states distinct from the ground state we have to deal with 
both types of phenomena mentioned above. For example, the total energy 
shift of a one-electron-state is the sum of the vacuum energy shift and the 
self-energy. Generally, the energy of an excited state can be written as the 
sum of two terms, one being the energy of the ground state, the other the 
excitation energy. In the limit ~2 -~ c~ the excitation energy is independent 
of ~2. Both terms are affected by the perturbation; hence the energy shift of 
an excited state must be the sum of an extensive and an intensive term. 
This expectation will be confirmed by our results. A separation of the same 
kind will be shown to exist for the change of the wave function of an excited 
state. This change is partly a consequence of the change of the ground state 
wave function, and involves in addition effects due to  the excitation. The 
latter have an intensive character, while the change in the ground state 
wave function will be found extensive. I t  is a shortcoming of the conventional 
perturbation theory that  these effects are not separated. I t  will be seen 
that  this leads to serious difficulties. The expansion of matrix elements in 
powers of the perturbation contains terms with arbitrarily high powers 
of the volume ~2 of the system, and this gives rise to an extremely bad 
convergence in the case of large systems. 

It  is the object of the present investigation to make a clear and complet 9 
separation between extensive and intensive effects. The hamiltonian of the 
system is written in the occupation number representation for the one- 
particle plane wave states, and we use diagrams to represent the different 
contributions to matrix elements, as is conventionally done in field theory. 
This appears to be a valuable tool for the analysis. Although the method 
and the developments of the following chapters are of a r a the r  general 
nature and can be applied generally to field theoretical problems and to 
problems in quantum statistics, especially in solid state physics, the method 
will be illustrated mainly by considering the example of a Fermi gas with 
two-body interaction between the particles. This example is described in 
the next section. In a forthcoming paper our methods will be used for a 
discussion of the Fermi ga s model of nuclear matter.  The example adopted 
here will become there the main object of study. Chapter II contains an 
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exposition of the perturbation formalism of V a n  H o v e ,  which is based on 
a systematic use of the resolvent operator. Our exposition differs from the 
original presentation only in that  extensive use is made of diagrams. In 
chapter I I I  we investigate how the contributions to the resolvent, repre- 
sented by different kinds of diagrams, depend on the volume ~O. This ana- 
lysis shows that  a separation is possible between ~J-dependent and ~J-inde- 
pendent quantities. The separation is carried through in chapters IV and V, 
for the energies and the wave functions of stationary states respectively. 
Explicit expressions in the form of improved perturbation expansions are 
derived. In the series expansions for intensive quantities all terms are in- 
dependent of ~J, whereas all terms are proportional to ~O for extensive 
quantities. 

In the last section of chapter V another phenomenon occurring in large 
systems is investigated. There are systems where no perturbed stationary 
states correspond in any simple way to the unperturbed excited states. Such 
systems are well known from statistical mechanics. Their most striking pro- 
per ty  is the occurrence of dissipative processes. In the case of small dissipa- 
tion one can show the existence of metastable states. We shall derive explicit 
expressions for the life-time, energy and wave function of such states. The 
life-time will be found independent of ~,  in accordance with physical ex- 
pectations. A very interesting example of such metastable states is en- 
countered in the optical model description for the scattering of nucleons 
on heavy nuclei 2) where a complex potential is introduced to account for 
±he finite mean free path of nucleons in nuclear matter .  This will be further 
ahalysed in the forthcoming paper already announced, where the present 
~ormalism will be applied to a system of interacting nucleons. I t  will be seen 
tha t  the theory of B r u e c k n e r  8) for the structure of nuclear mat ter  can be 
considered as a special approximation to our general formalism. The latter 
will be helpful for getting new insight into the significance and limits of validi- 
t y  of Brueckner's method. 

2. The Fermi gas. In this section we shall give a formulation of the 
N-particle problem, which is adapted to the t rea tment  of a Fermi gas where 
both the number N and the volume fJ are large. This system will be used as a 
working example in the rest of the paper. For the interaction between the 
particles we take central two-body forces, and we shall neglect the spin of 
the particles. We enclose the whole  system in a large cubic box with side L 
and volume fJ ---- L 3, and we impose periodic boundary conditions. We have 
chosen these boundary conditions for matheroatical convenience. Because 
we are particularly interested in large systems, the influence of surface 
effects is comparatively small. 

The wave functions 
~?~(x) = ~Q-t exp (ikx) (2.1) 
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where the three components of k can have the values 2.~nlL(n=O, ::t:: l, 4- 2 .... ), 
describing the motion of a single particle with momentum k *), form a 
complete orthonormal set of single particle states. A state of N identical 
particles moving independently of each other is determined by a series of 
occupation numbers N~, each giving the number of particles in the one- 
particle state (2. l) with momentum k. These states form the basic set of the 
unperturbed system. In order to obtain a simple expression of the hamiltonian 
in this representation, we introduce the annihilation and creation operators 
~/k and ~ which obey in the case of Fermi particles the anti-commutation 
laws 

{~/k, ~} = {~/7,, ~ }  = 0 and {~/~, ~ }  = ~ .  (2.2) 

Using these operators the hamiltonian can be written 

H = H o +  V, 

where 

and 

Ho Z~  ½(Ik{2/M) * = ~k~k (2.3) 

V = ½ f2 -1 Z~lmn ~Kr (k + l m n) v(k n * * 

Here v(k) is the Fourier-transform of the central two-body potential v(r): 

• v(k) - - - f d 3 x  v(r) exp (-- ikx), (2.4) 

and depends only on the modulus [kl of k. The Kronecker symbol ~Kr is 
equal to one if the argument is zero and vanishes otherwise. It  expresses 
the fact that  momentum is conserved in the interaction. 

The creation operators ~/~ can be used to obtain simple expressions for 
the states of our basic set of unperturbed states. By 10) we denote the 
normalized state without any particles. It  is determined by the condition 
that  ~Tk }0> ---- 0 for all k. A state of N particles with momenta kl, k2 . . . . .  k~v 
can be writ ten 

7*k, . . .  10>. (2.s) 

The commutation rules (2.2) imply that this state vector is normalized to 
one and is antisymmetric in the N particles. 

The formulation given thus far is not very suitable for our case. Of 
physical interest is the case where ~9 and N are very large for a given value 
of the density e = N/S2. In the limit Q -~ oo one has a continuous spectrum 
and summations are replaced by integrations. The normalization of states 
must be changed as can be seen from (2.1) where VJk(x) vanishes in the limit 

*) We use no special notation to indicate vectors. The letters k, l, m, n are used for momenta, 

whereas in (2.1) and (2.4) x is a vector in configuration space. We put Jt = I throughout this paper. 
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Z2 -+ oo. I t  seems therefore appropriate for a finite but  large ~2 to adopt 
another normalization of the wave vectors. We introduce the following 
new notations (L is the side of the cubic volume ~2) 

~ = (L/2u) 8/a ~ and ~(k --  l) = (L/2~)a ¢SKr(k --  l). (2.6) 

The function (~(k) of the discrete variable k goes over into the 3-dimensional 
delta-function of Dirac in the limit of T2 -+ oo. 

The commutation relations of ~g and ~ read 

{~, ~} = {~,  ~t} = 0 and {*k, ~t} = (~(k -- l). 

Introducing the notation 

f~ ---- (Xu/L) 3 Zk 

the hamiltonian (2.3) reads 

H =fk( lk]2 /2M)  ~ * ~ +  ½(2~)-sfkzmn~i(k+l m - -  n ) v ( k - -  n) ~*~*~ ~ (2.7) 

With this notation it is extremely simple to pass over to the limit of Q -+ oo, 
the only change being that  the summation symbol f~ is replaced by the 
integration sign f da k .  The states of the unperturbed system will now also 
be expressed by means of the operators ~* For a N-particle state one gets k "  

10>, (2.s) k2 " ' "  k~  

whicb only differs from (2.5) by the normalization. 
Obviously (2.8) is not very,suitable for the case of a very large number of 

i)articles. Therefore we shall proceed in a different way. We draw in mo- 
mentum space a sphere with centre in the origin and radius kF and consider 
a normalized unperturbed N-particle state I90>, such that  all one-particle 
states with momenta  within the sphere are occupied, whereas there are no 
particles with momenta  outside the sphere. This state [90) is obviously the 
ground state of the unperturbed system of N particles. The sphere is often 
called the Fermi  sphere and the set of particles occupying the states within 
this sphere we shall call the Fermi  sea, in analogy with the Dirac sea of 
Dirac's hole ,theory for electrons and positrons. 

The number N is a discontinuous function of the Fermi momentum kF 
which we keep fixed and consider as a substitute for the density parameter. 
In the limit of Q -+ oo we have however asymptotically 

N = kaF~/6u 9", (2.9) 

as follows from the fact that  each one-particle state in momentum space 
occupies a volume (2~)a/~9, 2~/L being the distance of the lattice points. 
The number of states within a sphere with the volume ~ uk~ is then given by 
(2.9). Also the total kinetic energy e0 of 190) is strictly speaking a discontinu- 
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ous function of k~. Again neglecting terms that vanish in the limit of ~2 -+ co 
one has however 

~o = k ~ / X O z ~ 2 M .  (2.10) 

We shall now characterize the states of the unperturbed system by com- 
paring them with [90). An arbitrary state of the basic system can be ob- 
tained from [9o) by  removing a number of particles from the Fermi sea and 
adding some others with momenta outside the Fermi sphere. In other words 
one can get any state of the basic system by  the application to the state 
[90) of a number of annihilation operators 2m, with [m[ < kF, and of a 
number of creation operators 2" with ik] > kv. We introduce the notation k 

[klk2 k~ " m l m 2  .. mq  > = 2" 2" .. 2" . . . . .  4x k~ • k ,2,~12m . . .  2~,1 90>,  (2 .11)  

where 
[k,[ > kF and [mj[ < kF. 

The conjugate wave function shall be denoted by  

( m q  ... m 2 m l  ; k~ ... k2kl[. 

The state (2.1 1) differs from [9o> by  the absence of q particles, with momenta 
ml, m2 . . . . .  mq, from the Fermi sea while there are p additional particles, 
with momenta  kl, k2 . . . . .  k~, outside the Fermi sphere. 

An unoccupied one-particle state will often be called a hole. By the energy 
and momentum of a hole we shall mean the energy and momentum of the 
missing particle, taken both with the opposite sign. Hence the energy 
carried by  a hole is negative. In this terminology, which is selected in 
analogy to the hole theory of Dirac, the additional particles with momenta 
outside the Fermi sphere are briefly called particles. Thus the state (2.11) 
contains q holes and p particles. In this way we are led to a reinterpretation 
of the operators 2 and 2*. 

For [k[ > kv, 2k annihilates a particle and 2" creates a particle. k 
For [m t < kv, 2m creates a hole and 2" annihilates a hole. 
Finally we shall s tudy some different types of transitions which can be 

brought about  by  the interaction V. It  is often convenient to have a more 
symmetrical expression for V than in (2.7). 

One can write 
V = ~fzlhz3z, V(lllzlal4) 2h2~2z,21,,* * (2.12) 

where 
V(lll21314) = ( 2 ~ ) - a ( v ( l l  - -  14) - -  V ( l l  - -  13)) ~ ( l l  + 12 - -  l a  - -  14) .  

The function V(lll21314) has the following symmetry  properties 

v(lll21314) = - -  v ( 1 2 l l l a l 4 )  = v ( l a l 4 l l l g . ) .  

In (2.12) the summation is extended over all momenta  11121314, both 
inside and outside the  Fermi sphere. 
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We make the following convention. The letters m and k will be used for 
momenta inside and outside the Fermi sphere respectively. 

Hence the expression 
f k  V(klk2k3k4) ~,~2~ks~k, 

differs from (2.12) by  restricting the summation to momenta  k such that 
[k[ > kg. This term describes the absorption of two particles and the 
emission of two other particles, a process which can be interpreted as the 
scattering of two particles. In exactly the same way the term 

gives rise to the scattering of two holes. Let us finally consider 

¼ f~tk,k3,,, v(klk2k3m) ~x~2~k3~,n, 

where one particle is absorbed and two particles and a hole are emitted. 
This process can also be described in another way. A particle interacts 
with a particle in the Fermi sea, thereby removing it to a state outside the 
Fermi sphere. This leads to a state of two particles and one hole. 

CHAPTER II.  F O R M U L A T I O N  OF T H E  T I M E - I N D E P E N D E N T  P E R T U R B A T I O N  

M E T HOD B Y MEANS OF DIAGRAMS 

3. Diagrams.. We consider a large but  finite quantum system with a 
hamiltonian H = H0 + V. The basic set of unperturbed states [c¢> are 
eigenstates of H0 with the eigenvalue e~. If the system is a gas of Fermi 
particles as was studied in section 2, the states [c¢) are to be identified with 
the states [klk2 ... k~ ; mira2 ... mq> defined in (2.11), with arbitrary p 
and q. The unperturbed energy e~ is then given by 

e~ = eo + Y, Ikjl2/2M --  Y~ Tm,I2/2M. (3.1) 

If [~o) is some time-independent wave function then the wave function 
[~p(t)) = U(t)[ ~)  with U(t) = exp (-- iHt) solves the SchrSdinger equation. 
Instead of the operator U(t), we investigate, following V an  H o v e, a related 
time-independent operator, the resolvent R(z), which depends on the complex 
number z. R(z) is defined by  

R(z) = (H - -  z) -1 = (H0 + V -- z) -1, (3.2) 

and, because H is hermitian, 
connection between R(z) and 

u ( t )  = - 

The path of integration is a 
the real axis of the z-plane. I t  
we are only interested in the 
real axis. 

R(z) is a bounded operator for non-real z. The 
U(t) is given by  the formula 

(2.~i) -1 J; dz R(z) exp (- -  izt). (3.3) 

contour around a sufficiently large portion of 
is to be described counterclockwise. Therefore 
behaviour of R(z) in the neighbourhood of the 
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From (3.2) follows 

R(z )  : (H0 -- z) -1 -- (Ho -- z)-! V R ( z )  : (H0 -- z) -1 - - R ( z )  V ( H o  - -  z) -1. (3.4) 

Iterating this formula one finds the series expansion: 

R(z )  = (Ho - -  z) -1 --  (H0 -- z) -1 V ( H o  - -  z) -1 + 

-q- (Ho - -  z) -1  V ( H o  - -  z) -1 V ( H o  - -  z) - t  - -  ... (3.5) 

In this paper the convergence of this series for z away from the real axis 
will be assumed. Whether this assumption is legitimate has to be investi- 
gated in each case. 

For the calculation of matrix elements of R(z )  we represent the contri- 
butions to the various terms in (3.5) by  diagrams. To be more specific, we 
shall turn to the case of the Fermi gas. Let us, as a simple example, consider 
the matrix element (fl JR(z)[ c¢> between the initial state [,¢> = [kl ; > and 
the final state [fl> = [k2k3 ; m ) ,  and see how one calculates the second 
order term in the expansion (3.5). Using (2.11), and (2.12) we get the ex- 
pression 

4 -3 fztz,zsz, f%%%% v(11121314) v(nln2nsn4). 

* z - l * *  z 1 "  * 1 "  • (90[$m~e/¢3$/c2( H 0 -  ) Szx$~$laSZ,( n 0 -  )-  Snx¢,~$.3¢,*,(Ho--Z) - (3.6) 
with the summation symbols./zlz~zsz * introduced in section 2. The summation 
is extended over all momenta  both inside and outside the Fermi sphere. 
The ground state to ground state matrix element in the integrand will only 
have a value different from zero provided (when reading from right to left) 
each particle or hole created in a virtual transition is reabsorbed in a later 
transition. In each non-vanishing contribution there must exist a one-to-one 
correspondence between creation and annihilation operators. Each associated 
pair consists of a creation operator and an annihilation operator belonging 
to the same particle or hole. Reading always from right to left the creation 
operator comes first. 

We shall now see how one can represent such a contribution by  a d i a g r a m  t ) .  

Each interaction operator V is represented by  a point (also called vertex).  

The operators ~ and ~* are represented by  directed lines joining at this point. 
The direction is indicated by  an arrow. If the direction of a line is pointing 
to the vertex, the line represents a ~ operator in this point, in the other case 
a ~* operator. The distinction between holes and particles is made in the 
following way. Lines directed to the left correspond to particles, lines 
directed to the right to holes. This results in the four possibilities shown 

t)  The use of diagrams is well known in field theory, where they were first introduced by Feyn -  
m a n  4). G o l d s t o n e  5) introduced them for the many particle problem. His diagrams are slightly 
different from the diagrams used here. 
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in the following table (the convention IkI > kv, Oral < kF should be kept 
in mind) 

Operator Represented by 

~/¢ o--<--- 

~* . _~_ 

k < • 
~ l  -'->'-- • 

One sees that  creation operators ~ ,  ~m (annihilation operators ~ ,  ~*) are 
represented by lines reaching the vertex from the left (right). Of the four 
lines joining at one point two and only two are directed towards that  point. 

Some diagrams representing different contributions to (3.6) are drawn in 
figure 1. Each diagram contains two points, the order from right to left 

k2 

ID 

G 

:kl 

d kl 

C 
Fig. 1. Some second order diagrams contributing to the matrix element 

<m; ksk~ [R(z)l kl;>. 

corresponding to the order of the V's in (3.6). A line joining two points 
corresponds to an associated pair of a creation and an annihilation operator. 
We call this an internal line. Lines running from a point towards the right 
or left edge of the diagram or from one edge of the diagram to the other 
correspond to associated pairs of which one or both belong to the initial or 
final state. Such lines are called external lines. All diagrams of figure 1 have 
two internal lines and four external lines. 

Diagrams give a schematic picture of the transition process that  takes 
place. In the diagram of fig. l a the particle of the initial state interacts with 
the Fermi sea giving a hole and two particles. In the second transition these 
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two particles are scattered on each other. The process represented by fig. l b 
is different. The first interaction gives rise to the formation of two particles 
and two holes. In the second transition one particle and one hole are anni- 
hilated together with the particle of the initial state. Another particle is 
created. 

Some remarks must be made regarding the diagrams of fig. l, c and d. 
These give contributions to equation (3.6) with associated pairs of creation 
and annihilation operators belonging to the same interaction V. In V, 
reading from right to left, the ~'s precede the ~*'s. Therefore such.associated 
pairs are possible for holes. In the diagrams they are represented by  closed 
loops through a vertex point, the lines that  represent the ~* and the ~r~ 
at the same point being the continuation of each other. 

Before proceeding we introduce some definitions to be used frequently 
in the following. Diagrams that  can be divided into two or more partial 
diagrams without cutting any lines are called disconnected. All other dia- 
grams are connected. The diagrams shown in fig. l a, b and c are obviously 
connected, whereas the diagram in d is disconnected. The connected parts, 
a disconnected diagram is composed of, will be called the components of the 
diagram. Diagrams without external lines will often be referred to as 
ground state diagrams and diagram components without external lines 
as ground state components. The diagram of fig. l d has two components of 
which one is a ground state component. 

We shall now show how one calculates the contribution of a given diagram. 
Let us take the diagram of fig. la. Putt ing in (3.6) ll = k2, 12 = ks, 13 = 
-= n2 = k4, 14 = nl = ks, n s . =  m and n4 = kl we find the expression 

1/18 f~,k~ v(k2ksk4k5i v(ksk4mkl) . 

• <9ol~*~k,~k,(Ho--Z)-l~z,~8~z,~ks(Ho--z)-l~2,~2,~m~kl(Ho--z)-l~,l~o>. (3.7) 

The unperturbed energies of the initial, final and intermediate state can be 
obtained from (3.1). The last factor in (3.7) (without the energy denomi- 
nators) is i 1, the sign depending on the order of the operators ~ and ~*. 
Here the number of permutations necessary to bring the operators of 
associated pairs next to each other is even, hence we get a plus sign. One 
obtains identical contributions if one interchanges the role of the two ~'s 
or of the two ~*'s belonging to the same V. Hence a factor 4 must  be added 
for each point, which gives a factor 16 in this example, exactly canceling 
the factor i/is. However each pair of equivalent lines, i.e. lines between the 
same two points and with the same direction, is counted twice, so that  a 
factor ½ must be added for each such pair. In our example the lines k4 and 
k5 are equivalent and the total factor is ½. For the total contribution of the 
diagram of fig. l a to 

(m ; ksk2 IR(z)J kl ; > 
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one finds 
v(kg.k3k4ks) v(ksk4mkl) 

{f~,*5 (t0 + k[/2M + k~/2M -- mg"/2M -- z) (co + k•/2M + 
+ k ] / 2 M  - -  m 2 / 2 M  - -  z) (~o + k~/2M - -  z) 

This example suffices to indicate how one calculates matr ix elements of 
the resolvent (3.5) to any order in the perturbation. One draws all possible 
diagrams of the given order and one adds their contributions, each of which 
is calculated in the way shown. 

A remark must still be made concerning the Pauli principle for inter- 
mediate states. The various particles must have different momenta  and the 
same must hold for holes. Thus, for the example treated above, the term 
with k4 = k5 should be excluded in the summation. However v(kskok4ks) 
and v(ksk4klm) are antisymmetric in k4 and k5 so that  the term with k4 = k5 
would automatically give no contribution and we are justified in dropping 
the restriction on the summation. I t  has been remarked by W i c k  6) that  
this holds quite generally for Fermi particles and that  for Bose particles 
one is similarly allowed to forget the modifications in the production and 
absorption matrix elements which occur when more than one boson is in a 
given state. Quite generally, the errors made if one does not take into 
account the influence of the Fermi or Bose statistics on intermediate states 
with particles of equal momenta,  cancel each other exactly. 

We shall now introduce the important concept of diagonal diagrams. In 
fig. 2 different diagrams are drawn describing the interaction of two particles. 
Momentum is conserved in each elementary interaction. One will therefore 
have the relation kl + ks = k3 + k4 in all diagrams. In the diagrams c and 
d however one has kl = k3 and ks ---- k4. These diagrams are called diagonal 
because their contributions contain the factors 0~(kl --  ks) 08(kz --  k4). We 
shall in general call a diagram of the matr ix element (fl ]R(z)[ a)  diagonal if 
the states ]a) and Jr> contain the same numbers of particles and holes, and 
if the contribution of the diagram to (fl [R(z)[ ~> contains the factor 0(~--fl), 
where 0 ( x -  r) is the product of the 3-dimensional d-functions for the 
momenta  of all particles and holes, as defined by (2.6). 

Diagonal diagrams play a very important  part  in the theory of large 
systems. This is shown by the following consideration. Diagonal diagrams 
give contributions only to diagonal matrix elements of the resolvent R(z), 
whereas non-diagonal diagrams contribute both to its diagonal and non- 
diagonal matr ix elements. Comparing now the contributions of a diagonal 
and a non-diagonal diagram to some diagonal element (¢¢ [R(z)[ ~>, one 
finds that  the contribution of the first diagrkm is larger than that  of the 
second by at least one factor ~2. This is an immediate consequence of the 
fact that  the contribution of a diagonal diagram contains more d-factors 
than the contribution of a non-diagonal one. According to (2.6) each d-factor 
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gives rise to a factor/2/8~ 8. The origin of this extra factor ~9 mus t  be sought 
in the much  larger number  of intermediate states occurring in the contri- 
butions of diagonal diagrams. 

There exist essentially three types of diagonal diagrams. In the first place 
diagrams without  external lines, the so-called ground state diagrams, are 
diagonal. They contribute to the diagonal element <90 IR(z) l 90>. Secondly 
all diagrams contributing to matr ix  elements < ; kz IR(z)l kl ; > between 
one-particle states are diagonal. Each contribution contains the factor 
83(kl --  kz) which results from conservation of momentum.  The  diagrams 
of this type have one external particle line at each end. Also the diagrams 
with one external hole line at each end are diagonal. These three types of 
diagrams correspond in field theory with vacuum diagrams and self-energy 
diagrams. We have learned from the examples of fig. 2 tha t  disconnected 
diagrams, the components  of which belong to the categories just mentioned, 
are also diagonal. I t  is easily established tha t  no other diagonal diagrams exist. 

k 3 kl 
k ~  k3 kl - ~ ~  

a b 

r 

~ . ~ , . ~ . j ~  " k 4 ~ k2 
c d 

Fig. 2. Some diagonal and non-diagonal diagrams of the matrix element 
< ; k4k8 IR(a)l kxk~;> 

Each matr ix  element <8 JR(z)J x> can unambiguously be writ ten as 

<~ IR(z)l ~> = O~(z) ~(~ --  ~) + Fp~(z), (3.8) 

where the first term is the sum of the contributions of all diagonal diagrams. 
I t  is of course only present when the states Ira>, I/~> involve the same numbers 
of particles and holes. The operator D (z), with matr ix  elements </~ [D(z) I m > = 
D~(z) . ~(~ - -  ~), is called the diagonal part of R(z). 
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4. The reduction o[ diagrams. Let us consider as an example the non- 
diagonal diagram shown in fig. 3. I t  is of the 6th order, so that  there are 
five intermediate states, indicated in the figure. These intermediate states 
cannot all be varied independently. According to the arguments which were 
used in section 3 in connection with the diagonal diagrams, it is seen t h a t  
the intermediate state lY4> is related to J~) by  the factor 8([3 --  y4). Also 
the states lyl> and ]73> are connected by a factor 8(yl -- 78). When cut at 
the intermediate states 171>, Jys>, and ly4>, the diagram falls apart into four 
parts, two of which are diagonal. Removing the diagonal parts, to be called 
diagonal subdiagrams, and joining the remaining pieces, one gets exactly the 
diagram a of fig. 1. The process of elimination of diagonal subdiagrams is 
called the reduction of a diagram. If a diagram cannot be reduced, as for 
example diagram a of fig. 1, we call it irreducible. 

Fig. 3. 

t t t t t t t 

A non-diagonal  d iagram which can be reduced to the  d iagram a of fig. 1. 

Convers.ely, one can obtain any non-diagonal diagram in a unique way 
by inserting suitable diagonal subdiagrams in an irreducible non-diagonal 
diagram. In other words, in order to calculate the contribution of a reducible 
diagram, one should take the expression for the Corresponding reduced 
diagram, and substitute for the factors (e~ -- z) -1, (,~ -- z) -1, (e~ -- z) -1 
belonging to initial, intermediate and final states the contributions of the 
appropriate diagonal diagrams, wi thout  the 8-factor. T h e  s.um-of the 
contributions of all non-diagonal diagrams :of <~ [R(z)l *¢> is obtained by  
taking the sum of the contributions of all irreducible non-diagonal diagrams 
and substituting for the factors (s~ --  z) -z, (e r --  z) -z and (,~ -- z) -1 the 
functions D~(z), Dr(z), and D~(z) defined by (3.8). We can express this 
simply by the formula 

{R(z)}na-= [--O(z) V O(z) + D(z)V O(z) V O(z) - - .  ..... ],,,a. 

The subscript nd indicates the non-diagonal part  of R(z), whereas ind means 
restriction to the contributions of all irreducible non-diagonal diagrams. 
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For R(z) itself we find 

R(z) = D(z) + [-- D(z) V D(z) + D(z) V D(z) V D(z) --  . . . . . .  ]*na. (4.1) 

Having discussed the reduction of non-diagonal diagrams, we now go 
over to an analysis of the diagonal ones. We want to derive a formula which 
expresses D(z) in terms of irreducible diagrams. To that  end we give a 
unique prescription how to reduce'a diagonal diagram. We make the follow- 
ing convention. The reduced diagonal diagram is obtained by removing all 
diagonal subdiagrams not containing the first vertex (from the right) of the 
original diagram. The contribution of any diagonal diagram of (fl [R(z)[ a)  
can now again be derived unambiguously from the reduced diagram by 
replacing the factors (e/3- z) -1, ( e v -  z) -1 by the contributions of the 
appropriate diagonal diagrams, the factor (e~ -- z) -1 being left unaltered. 
This leads to the following formula for D(z): 

D(z) = (Ho --  z) -1 + D(z) [ - - V  + V D(z) V --  

- - V  D(z) V D(z) V + ...]~a(H0 --  z)-l. (4.2) 

The subscript id means that  only contributions of-irreducible diagonal 
diagrams should be taken. 

The second term in the right-hand side of (4.2) contains only diagonal 
factors. The order of factors is therefore immaterial and the result is in- 
dependent of the way we defined the reduction of diagonal diagrams. 

Let us define a diagonal operator G(z) by 

G(z) = [-- V + V D(z) V --  V D(z) V D(z) V + ...],a. (4.3) 

Substituting (4.3) in (4.2) one gets 

D(z) = (Ho --  z ) - i  + D(z) G(z) (Ho --  z) -1 

o r  

D(z) = (go --  z --  G(z)) -1. (4.4) 

This is one of the basic equations of V an  H o v e (compare formulae (3.12), 
(3.15) of H I). It  was derived here by an alternative method. For the sake 
of comparison a remark must be made on the fact that  in H I (section 2) 
an assumption h a d t o  be made on the occurrence of O(y, -- ~k) factors for 
the intermediate states. It  was assumed that, whenever one has two pairs of 
intermediate states I~t>, ]~k) and ]y~>, [Tm) related by the factors ~(yj -- 7~) 
and ~(~ --  ~m), the order, in which these four intermediate states occur in 
the matrix element, is never such that  the states of one pair are separated 
by  only one state of the other pair. In the present work, where diagonal 
parts of operators are described by  means of diagrams, the assumption is 
automatically satisfied. It  is an immediate consequence of the structure of 
the diagrams. 
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5. Energies and wave/unct ions  o /s ta t ionary  states. From (4.4), the oper- 
ators G(z) and D(z) being diagonal in the [0¢) representation, their eigen- 
values G~,(z) and Do,(z) for some state ]~) are related by  the equation 

De,(z ) = (eo, - -  z - -  G~(z)) -1. (5.1) 

I t  has been shown in H I that  the numerical functions G~(z), D,,(z) are both 
holomorphic for non-real z and satisfy the inequalities 

I m  Do,(z) > 0 and I m  G~,(z) > 0 for I m  z > 0. (5.2) 

The fact that  the hamiltonian H is a hermitian operator implies the relations 

R(z*) -~ R*(z),  DoL(z* ) ---- D*(z), Gc,(z* ) = a*~(z). (5.3) 

G~,(z) and Do,(z) have singularities only on the real axis, where for a finite 
system they have a large number of poles. The analytical behaviour in the 
neighbourhood of the real axis becomes however very simple in the asymp- 
totic limit of large #2, i.e. if one neglects all effects which tend to zero for 
~ --->- C:XD. 

We shall s tudy the functions G~(z) and D~,(z) in this approximation. 
From the definition (4.3) of G(z), where in our approximation all sums over 
intermediate states are replaced by  integrals, one can conclude that  Go,(z) 
has no poles but  has finite discontinuities for z crossing the real axis in all 
points of certain intervals which usually depend on ,¢. In most cases these 
points of discontinuity cover a portion of the real axis from a finite number 
on up to + oo. 

Let x be a point on the real axis, and ~/> 0, then the real functions K~,(x) 
and J,,(x) are defined by  

lim,r+ 0 G~(x + iT) = K¢,(x) + iJ~(x). (5.4) 

According to (5.3) a similar equation holds with i replaced by  -- i. Equation 
(5.2) implies 

j (x) > o. (5.5) 

I t  is clear that  J~(x) = 0 in those points of the real axis where G~,(z) is regular. 
The points x where J~(x) > 0 are the points where G~,(z) has a finite discon- 
t inuity foi z crossing the real axis. In these points D~(z) has also a finite 
discontinuity for z crossing the real axis. 

In contrast to G,,(z), the function D~,(z) may have poles even in the limit 
of ~2 --+ oo. This will be the case if the equation ~ - -  z - -  G~(z) ~ 0 has a 
solution. This solution must necessarily be real and hence we consider the 
equation 

e~, - -  x - -  K ~ , ( x )  = 0. (5.6) 

Equation (5.6) has at least one root, and in most applications only one. We 
suppose such to be the case and call this root E~. A necessary and sufficient 
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condition for E~ to be a pole of D~(z) is that  J~(x) = 0 for x in the neigh- 
bourhood of E~. In section 14 we shall investigate the case J~(E~,) :# O, but  
for the time being we shall suppose that  J~(x) = 0 for x near E~. 

An important  difference between D~(z) and the corresponding function 
in the unperturbed system, (e~ -- z) -1, is the shift of the pole from e~ to E~, 
i.e. by  an amount G~(E~,) = K~,(E~). It  was shown in H I and we shall 
derive again that  E~ is the energy of a stationary state which arises from 
[,¢> through the influence of the perturbation. As we have seen the pole E~ 
is not the only singularity of D~,(z) ; D~(z) has the same interval (o.r intervals) 
of discontinuity as G~(z), formed of all points x where J~(x) > 0. I t  is evident 
that  E~ is not such a point. 

I t  might be of interest to compare the situation just described with what 
would be found if one took into account all corrections which vanish for 
9 ~ oo. In an exact t reatment  of a large but  finite system one would find 
a very dense but  discrete energy spectrum. D~(z) would have a large number 
of poles and no other singularities. All these poles except one, which becomes 
E~ in the limiting case of large f2, would be very densely distributed on the 
real axis, with a separation less than k~,M-l~2 -~. The behaviour of Do,(z) at 
a distance from the real axis large compared to the separation of the poles 
would be approximately the same as in the limit of ~2 -+ co, when the po l e s  
merge together into a line of discontinuity. One can say that  the function 
D~(z) in the limit of ~2 -+ co gives a good description of the corresponding 
quant i ty  in the finite case if one is interested in a kind of average behaviour 
over energy intervals large compared to kFM-1S2-}, or in the motion of the 
system over time intervals short compared to MD~/kF. 

Returning to the-limiting case ~2 ~ co we shall now derive a formula for 
the wave function of a stationary state, on the basis of our assumption that  
D~,(z) has a pole at z = E~. Calculating the matrix element </~ ]R(z)[ ~> by  
means of (4.1) one finds 

<fl IR(z)l ~> = <~l[1 + O(z) {-- V + VO(z )V  -- ...},n$] I~> Oo,(z). (5.7) 

Of the two factors on the right-hand side the second one has a pole in E=, 
while in general the first factor has a finite discontinuity if z crosses the real 
axis at E=. Hence one can define two residues of </5 [R(z)[ =¢> in E=, one for 
the upper half plane and one for the lower half plane, by  

~R~ [</~ [R(z)[ ~>] = lim~E~ (z --  E~) </~ JR(z)[ ~>, 

where the plus sign must be chosen if Z approaches E~ from above, and the 
minus sign ii z approaches E~ from below. Taking the residue of both sides 
of equation (5.7) one finds 

~ [</~ IR(z)l ~>3 = 
= - -  g ~  </5 1[1 + D(E~, ~: i 0 ) { - -  V + VD(E~ 4- iO) V - - ' - . . } , . e ] l  ~>, 

where N~ = (1 + G~(E~)) -1. The quant i ty  --  N~ is the resid~le of'D~(z) in E~. 

Physica xxnI  32 
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We shall now prove that  the states defined by 

fd/~ I/~> • ~E% [</~ [R(z)[ ~>] = ~L[R(z)  I~>] 

are stationary states with the energy E , .From the definition (3.2) of R(z) 
one derives easily 

R ( z )  - -  R ( z ' )  : (z  - -  z ' )  R ( z )  . R ( z ' ) .  (5.8) 

By application of this operator relation to the state Im>, an equation is 
obtained where both sides, as functions of z', have a pole of the type just 
considered. Equating the residues ~R+ or ~R~= of both sides and dividing by 
z -- E~ one finds 

1 
R(z) m L  [R(z ' )  = - -  z [R(z ' )  

Substituting in (3t.3) one concludes immediately 

U(t) m~,[R(z)1¢¢>] = exp (-- lent) . mE~ JR(z)Ira>]. 

The states ~ ,  [R(z) Ira>] are not yet properly normalized. In H II  the nor- 
malization constant is shown to be N~-J. The stationary states are therefore 
given by 

[~o~> + ---- - -  N~-~ ~E~ JR(z) tin>] = 

= N~ [1 + D(E~, -4- i0 ) { - -  Y + V D(E~, ± iO) V --  ...}~na] jc¢>. (5.9) 

In the case that  the states J~>+ and J~>-  are different, they  describe 
gcattering with outgoing and ingoing waves respectively. More details are 
given in H II, where it is moreover proved that, provided J~,(E~)= 0 
for all states Jm>, the set of states J~0~>+ form a complete orthonormal set, 
and the states J~>-  as well. This is not necessarily the case if there exist 
states la¢> for which J~,(E~) • O, i.e. for which the only singularities of D~(z) 
are finite discontinuities. 

CHAPTER III.  SEPARATION METHOD FOR THE ~'~-DEPENDENT PARTS OF 

THE DIAGRAMS 

6. ~-dependence o/the diagram contributions. As explained in the intro- 
duction, one is often interested in the way the different physical quantities 
vary with the volume g2 of the system, at least asymptotically for large ~2. 
In the last chapter a method was studied to calculate energies and wave 
functions for the case of large g2. However the formulae derived there are 
not very suitable for analysing the dependence on ~9 of observable quantities. 
Although for example we expect on physical grounds that  the energy differ- 
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ence E~,-  E~,, between two low-lying states must become independent of 
/2 for large J2 (intensive quantity), it will not be easy to derive such a con- 
clusion from the fact that  the perturbed energy is the root of (5.6). The 
origin of this difficulty must be found in the rather complicated Q-depend- 
ence of D~(z) and G~(z), which we shall investigate presently. We restrict 
ourselves throughout to states I~> differing from the unperturbed ground 
state by the presence of a finite number of excited particles and holes. 

We go back to the series expansion (3.5) for R(z) and see how the contri- 
butions of the different diagrams of <fl [R(z)l ~> depend on/2.  All energy 
denominators contain a term proportional to/2, for the unperturlSed energy 
~ can be written as the sum of two terms ~ = ~0 + ~,  where the ground 
state energy e0 is proportional to /2  according to (2.10) and e~, the sum of the 
unperturbed energies of the additional particles and holes, is independent of 
/2. Henceforth we shall consider (fl JR(e0 + z)] ~) instead ot (fl JR(z)] ~>; 
the denominators of this new expression do not depend on/2. 

We consider now the contributions to (fl JR(e0 + z)] m> of different types 
of diagrams and study their ~2-dependence. Let us take first a connected 
diagram with external lines. As remarked before, the conservation of 
momentum is expressed by a factor 6(K~ -- Kfl) in the contribution of the 
diagram, where K~ and Kfl are the total momenta  of the states ]~) and Jr). 
If we now replace the summation by an integration we get an expression 
independent o f /2  (see section 3). The terms one should add to correct for 
the replacement of the summation by an integration tend to zero for t2 -+ oo. 
Such terms will be neglected as before. 

Next we take a connected ground state diagram, i.e. a connected diagram 
without external lines. As always there is a ~-function for each point, 
expressing the conservation of momentum in each elementary transition. 
In the present case, however, through the absence of external lines, one of 
these 6-functions is dependent on the others. This gives rise to a factor ~(0), 
which by (2.6) leads to a factor/2/8~ a. If, in the remaining expression, we 
replace the sums by integrals we get again an expression independent of/2, 
except for correction terms which vanish for/2 -+ oo. However we have the 
fac tor /2  multiplying not only the integral but also the correction terms, 
which cannot be all neglected in this case. Hence we conclude that  a con- 
nected ground state diagram gives a contribution containing a main term 
proportional to/2 and possibly other terms which, although not all negligible, 
are small compared to the main term for large/2. 

These considerations are easily extended to more complex diagrams 
containing one or more ground state components: they exhibit a Q-depend- 
ence such that  the highest power of/2 is equal to the number of ground state 
components. Consequently it is clear that  all matrix elements ot R(e0 + z) 
contain terms with arbitrarily high powers of t2. 
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7. Decompositio~z o/ diagrams. After having located the D-dependence in the 
contributions of the diagrams our next task is to make a separation between 
the D-dependent and the D-independent parts of a diagram. We must 
clearly base such a separation on the distinction between the different 
components of the diagram. We shall derive a formula which makes it possible 
to express the contribution of each disconnected diagram in terms of the 
contributions of its components. 

Consider two diagrams A and B with or without external lines and denote 
their contributions to R(z) by (~.' IA(z)l ~> and (/5' iB(z)t/5>. The states 
I~), Ic~'), I/5), and 1/5') contain certain numbers (possibly zero) of particles 
and holes. They can be obtained from the state }5oo), which describes the 

A 

k 7 k6 ~ k  
B - ~5 

Ci 

21><2 

b 

4 

C 
Fig. 4. Th i s  f igure shows t he  t h r ee  ways  in wh ich  two  d i a g r a m s  of t he  f i rs t  a n d  second 

order  in V can  be  c o m b i n e d  to fo rm a d i a g r a m  of o rder  three .  

unperturbed Fermi sea, by  applying to [5o0) products of creation operators ~* 
and ~m for particles and holes respectively. We suppose that  I~) and I/3) 
do not contain particles or holes with identical momenta. It is then possible 
to define a state Icq~) containing all the particles and holes of leo and I/5> 
together. We define 1~/5) as the state obtained, when one applies to I/5) all 
the creation operators which must be applied to 15o0> in order to give lc~), 
and in the same order. The notation 4/5c~ I is used for the conjugate of Ic~/5). 
For the states L~.') and LP') we make the same assumption as for IcO, I/5), 
and we define lot'~5'> in exactly the same way. 

The two given diagrams can be combined in various ways to form a 
composite diagram. If ~ and m are the numbers of vertices of A and B, the 
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composite diagrams have m + n vertices. The various composite diagrams 
differ by the order in which the points of the two original diagrams A and B 
occur from right to left, the number  of possibilities being (n + m) ! /n !m! .  
Figure 4 shows the three possible ways in which two diagrams A and B 
of order one and two in V respectively can be  t a k e n  together to form a 
composite diagram. The sum of the contributions to (,~'~' ]R(z)l.x~> of all 
composite diagrams found in this way we shall denote by (,~'od [C(z)J mE>. 

The impor tant  point  is now tha t  a simple relation exists between 
IC(z)l and the contributions <~'[ A(z)[ ~> and </~' [B(z)l/~> of the 

original diagrams A and B to the resolvent, i t  is expressed by the equation 

<~'~' IC(z)l ~ >  = - (2~i)-x ~d¢ <m' I A ( z  - -  ¢)1 ~> <#' IB(e0 + ¢)1/~>. (7.1) 

The pa th  of integration is a contour  encircling all singular points of the 
integrand on the real axis, bu t  not  encircling the singular points Situated 
on the straight line through z parallel to the real axis. I t  is to be described 
counterclockwise. 

Before deriving (7.1), we note tha t  the integral in the r ight-hand side is 
a type of convolution integral, taken in the complex plane. We shall en- 
counter  such cofivohitions very often and it is therefore convenient to 
introduce a spedial notat ion for them.  Let / (z )  and g(z) be two functions, 
holomorphic for non-real z, for which zf(z) and zg(z) are bounded for [zl ~ oo. 
The symbol/(z)  ~ g(z) indicates another function of z, defined by 

/(z) * g(z) = -- (2~i) -1 ~ d¢ /(z - -  ¢) g(¢), (7.2) 

with a pa th  of integration as defined above. Using the property tha t  z/(z) 
and zg(z) are bounded for large lzl, one can deform the pa th  of integration 
into a contour encircling the straight line through z parallel to the real axis. 
This leads to the equation 

/(z) ~ g(z) = g(z) ~ [(z). (7.3) 

With our new notat ion (7.1) reads 

<fl'~' IC (e0 + z)l ~fl> ---- <m' IA(e0 + z)l ~> ~ <fl' IB(e0 + z)l fl>. (7.4) 

We start  now the proof of the relation (7. I) which constitutes the basic,tool 
for all the derivations in the following sections. 

We first establish the validity of (7. I) for the simple diagrams of fig. 4. 
The states I~>, I~'>, 187, and [fl') are denoted by Iklkg. ; 7, [ksk4 ; 7, Iks ; ); 
and Ike ; > respectively. 

According to the rules of section 3 one finds 

. t 1 t ( ; k4ks IA(z + e0)l klk2 , ) = - -  v(k4k3klk2)(e~, - -  z ) -  (e~ - -  z) -1, (7.5) 

< ; ks IB(z + e0)l k5 ; > = ½fk,esmv(ksmkTks) V(kTksksm). 
t t • • (e#, - -  z ) - X  (e/~ a - ~  z)  - 1  (e# - -  z)  - 1 .  ( 7 . 6 )  
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The energies in the denominators are the excitation energies of the states 
as compared with the energy ~o of [9o>. Diagram a of fig. 4 gives the con- 
tribution 

- -  ½ f+..,+,,+.,, v ( k e m k T k s )  v ( k 4 k s k l k 2 )  v ( k ~ k s k s m )  . 

t I t t t t t t 

(,~, + s a. - z ) - i  (,~, + *al - z ) - i  (,~, + *al - z ) - I  (,,, + *a - 2)-1. 

In writing down this equation we made essential use of the remark in 
section 3 concerning intermediate states with two or more particles in the 
same plane wave state. The diagrams b and c give the same expression 
except for the energy denominators. The sum of the products of energy 
factors in the expressions for a, b and c is easily calculated. After some 
simple algebraic manipulations one gets 
( e ~  t 1 t t , t _ _  r t 

' - *~')- (*~' + *a' - z ) - i  (,~. + *a, z ) - I  (,~. + *a - z ) - I  + 

t i 1 i t t t I t + (*~' - ~ ) -  (*~ + *a' - z)-I  (*a + *a, - z)- i  (,~ + *a - z ) - I  

which again is equal to 
; t t t l (~, - z ) - i  ( %  _ z ) - I  (e~ - z ) - I  . . ( ~  - z ) - i  (~+, - z ) - i  

as follows immediately from our definition (7.2) of convolution. 
For the sum of the contributions of the diagrams a, b, and c of fig. 4 we find 
using (7.5) and (7.6) 

( ; k e k 4 k 3  IC(eo + z)l k l k 2 k 5  ; ) = - -  ½fkT~sm v ( k e m k T k s )  . 

. . v ( k4kak l k2 )  o ( k ~ k s k s m )  ' 1 ' 1 ' ' ' [ ( ~ , - z ) -  ( ~ - z ) -  * ( ~ , - z ) - I  (~  - z } - I  ( ~ - z ) - l ]  = 

= ( ; k4k3  [ A ( z  + e0)l k l k 2  ; ) * ( ; k s  IB ( z  + eo)l k5 ; ), 

which proves equation (7. l) for the special case considered. 
This simple example shows that  to prove equation (7.1) it is sufficient to 

establish the corresponding equation for the products of energy factors only. 
In the case of our example this equation could be proved by a direct cal- 
culation, which however cannot easily be extended to the general case. 
I t  is more convenient to proceed by induction. The products of energy 
factors corresponding to the two diagrams A and B can be writ ten in the 
form 

II~=0 (a~ -- z)-i and 1-I~=0 (b~ -- z) -1 
where 

l t I i 

ao = e~, a .  = e~,, bo = ep, bm = ~,, 

while a k ( k  = 1, 2 . . . . .  n - -  1) and b~(l = 1, 2 ,  . . . .  m - -  1) are the excitation 
energies of the intermediate states of A, and B relative to the ground state 
energy to. We introduce ordered products of n + m + 1 factors 

( a ~ + b z - - z )  - l ( k = 0  . . . . .  n ; l = 0  . . . . .  m)  
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with  the following proper ty :  if (ak + bz --  z)-I and (ak, + by --  z)-i  are 
consecutive factors, the first being to t.he left, one has either k ----- k', l -~ l' + 1 
or k ---- k' + 1, l = l'. The number  of products  which can be constructed 
according to this rule is (n + m) [ /n lm!  and we shall denote their  sum by  
#(an  ... ala0; bm ... blbo). The first factor  from the left of each ordered 
product  will always be (an + b , n -  z) -1, the last one to the right 
(ao + b o -  z)-l .  The second factor  will be either (an + b i n - 1 -  z) -1 or 
.(an-1 + b m  --  z)-l .  In  the first case the product  can be wri t ten as 
( a n + b m - - z ) - i  multipl ied b y  an ordered product  of factors ( a ~ + b z - - z ) - i  
(k = 0 . . . . .  n ; l = 0, ..., m --  l). For  the sum of all products  of this kind, 
we find therefore (an + b m  -- z)-I . ¢ (an  ... alaO ; bin-1 ... blbo). In exact ly  
the same way  we get for the sum of all products  wi th  ( a n - l . +  b,n --  z) -1 
as the second factor  the expression (an + b • -  z) -1 . #(an-1 ... a l a o ;  
bm ... blbo). These results taken  together  give the reduction fornmla 

• ( a . . . .  a0 ; bm .. .  bo) = ( a .  + - -  z ) - I  [ ¢ ( a . - 1  . . .  ao ; bo) + 

+ ~(an . . .  a o  ; b i n - 1  . . .  b0)]. (7.7) 

Let  us define the quan t i t y  ~(an  ... ao ; bm ... bo) by  the formula 

~.g(an . . .  ao  ; br~ . . .  bo) = 1-I~=o (a~  - -  z ) -X ~- I I~=o(b l  - -  z ) - L  

The equat ion we want  to prove is then  s imply 

= ~.  (7 .8 )  

We show first t ha t  (7.7) is satisfied by  ~ as well as by  4.  Indeed 

(an + bm -- z) -1 [W(an-1 ... ao ; bm ... bo) + bY(an ... ao ; bin-1 ... bo)] = 

= _ _ ( 2 ~ i ) _ l ~ d ,  1 ( 1 ~  1 )  1 
a n  + b ~  z b . ,  ( + "'" 

1 1 1 
. . . . . . . . .  ~ = ~g (an  . . .  ao  ; b,~ . . .  bo).  

ao  - -  z + ~ b ~ - i  - -  ~ bo - -  

On the other hand  the definitions of ¢ and ~ imply  immedia te ly  

tP(ao ; bz.. .  bo) = ~(ao ; b~ ... bo), 

¢(ak ... ao ; bo) = k~(a~ ... ao ; b0). 

By  induct ion we can now conclude to the val id i ty  of (7.8), thus  completing 
the proof of equat ion (7.1). 

In  the appendix A1 another  derivat ion of (7.1) will be discussed. I t  is 
based on a comparison with a sys tem consisting of two completely uncoupled 
subsystems,  a s i tuat ion for which equat ion (7.1) is a direct consequence of 
the  addi [ iv i ty  of the energies. 



~0.4 N.M.  HUGENHOLTZ 

CHAPTER IV.  THE SEPARATION OF GROUND STATE DIAGRAMS. 

CALCULATION OF ENERGIES 

8. The integral equation/or Do(z). We consider a matr ix  element <~' JR(z)i¢¢> 
of R(z) and suppose tha t  I~> and am'> are not both identical with Jg0>. 
This means tha t  the contributing diagrams contain external lines. Each 
diagram consists of one or more components  (i.e. connected parts) with 
external lines and possibly some components  without  external lines. The 
sum of the contr ibutions to <~' JR(z)] cO of all diagrams 21 which do not 
contain ground s ta te  components,  will be denoted by <~' I/~(z)l ~>. Each 
diagram of <c¢' JR(z)] ~> can be obtained in an unambiguous way from a 
diagram 21 .of <~' J/~(z)J x> by the addit ion of a grouaxd state diagram Ao. 
The contribution to <~' lR(eo +. z)l a.> of all diagrams one can form from 2i 
and Ao is, according to (7.4), expressed by 

<~' 121(~o + z)l ~> * Ao(e0 + z), 

where <~' 121(z)1 ~> is the contribution of 21 to <~' I/t(z)] ~> and Ao(z) is the 
contribution of Ao to <9o JR(z)] 9o> =--- Do(z). 

One clearly gets the total  valile of (~' IR(so + z)]~) by summing over all 
possible diagrams 21 and Ao. This gives the formula 

<~' IR(eo + z) l x> -~ <m' i/t(eo + z) l ~> 0e Do(e0 + z). (8.1) 

We have seen in section 6 tha t  diagrams not  containing ground state 
components  give contributions which, for large volume ~2, are independent  
of/2,  whereas ground state diagrams are/2-dependent .  The importance of 
(8.1) is due to the fact tha t  it gives in the resolvent a complete separation 
between 12-dependent and S2-independent quantities. 

We shall s tudy now the dependence on ~2 of the ground state expectation 
value Do(z) of the resolvent. Do(z) is, by definition, the sum of the contri- 
butions of all ground state diagrams. As discussed in section 6 these contri- 
butions contain arbitrarily high powers of ~2. In order to investigate the ex- 
plicit D-dependence of Do(z), we derive for this function a simple integral 
equation which will enable us to calculate it using only connected ground 
state diagrams: 

In the second of the operator equations (3.4) we take on both  sides the 
diagonal element for the state Jg0> and replace z by so + z. We find 

Do(so + z) = -- 1/z + <9or R(e0 + z) V] 9o>. l/z, 

or, summing over intermediate states, 

Do(so + z) = - - r / z  + Do(so + ~) <90 IV] 9o>/z + 

+ 1/zf'  <90 IR(so + z)i ~> <~ iVI 90>. 

The summation is extended over all states J~> :# Jgo>. This  equation can be 
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t ransformed by applying (8.1) to the matr ix  e l emen t  (~00 IR(so + z)l at). 
One finds after elementary manipulat ions 

Do(eo + z) ----- --  z-l[1 + Do(eo + z) -~ (z-1 (q~o IVI 90> - 

- f '  IR(,o + z) I Vl 0>)] - -  

= --  z-1 [1 -- D0(eo + z) * z-1 Go(co + z)]. (8.2) 

The function Go(z) is defined by 

Go(z) = <r0t [-- V + V(Ho --  z) -1 V -- .  ..... ]cl~o>, (8.3) 

where the subscript C means that  only connected ground state diagrams 
contribute to G0(z). Equat ion (8.2) is an integral equation for Do(z) which, 
by (7.2), can be writ ten in the more explicit form 

zDo(eo + z) = - -  1 - -  (2hi)-1 ~ d~ ~-lGo(eo + ~) Do(eo + z - -  ~). (8.4) 

The pa th  of integration is, according to (7.2), a contour around tha t  portion 
of the real axis, which contains all the singularities of the first factor in the 
integrand. I t  is described counterclockwise and it is chosen in such a way 
tha t  it does not cross the line through the point z parallel to the real axis. 

As we shall see below, (8.4) can be solved explicitly. I t  expresses Do(e0 + z) 
in terms of the function G0(eo + z), which is much simpler since it involves 
connected diagrams only. In particular the definition (8.3) implies tha t  
Go(so + z) contains a main term proportional to the volume $2 of the system, 
and other terms which, for large ~2, are small compared to the first. 

The connected g round  state diagrams contributing to (8.3) contain in 
general diagonal subdiagrams. With the methods of section 4 we derive an 
expression for Go(z) in terms of irreducible diagrams only. Start ing from 
irreducible ground state diagrams one can construct  all diagrams occurring 
in (8.3) in an unambiguous way by inserting suitable diagonal subdiagrams 
between any pair of successive points. These diagonal subdiagrams should 
not  contain any ground state components.  This suggests considering for 
each state fc¢> :# ]9o> the sum D~(z) of the contributions to D~(z) of all 
diagonal diagrams which do not contain ground state components.  Using 
this definition we obtain the following expression for G0(z): 

 o(z) = < ol [ -  v + V (z) v - V (z) v v + I 0>. (8.5) 

The subscript idC means that ,  in calculating the r ight-hand side, one should 
limit oneself to irreducible connected ground state diagrams. 

9. Solution o / the  integral equation. It  is our aim to solve explicitly the 
integral equation (8.4) for Do(eo + z) in the limiting case of large systems. 
To tha t  end we shall first discuss briefly some properties of the function 
G0(*o + z) for this l imiting case. 

All terms in Go(*o + z) except the term proportional to ~2 will be neglected. 
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This means in particular that  we replace in (8.5) all sums over intermediate 
states by  integrals. In this approximation, from (8.5), the function G0(so+z) 
has no poles. I ts  only singularities are the points oi a cut along the real axis 
from a point B up to + oo. In each point of this cut the function has a finite 
discontinuity for z crossing the real axis. The function can, in most practical 
cases, be continued analytically across the cut, from above and from below. 
B plays then the role of a branch point. 

We shall assume, as is consistent with the fact that  [9o) is the ground 
state and has an energy s0, that  B lies on the positive real axis or at the 
origin. In the latter case a further assumption will be made, concerning the 
real function 

Jo(x) = --  ½i lim,~ 0 [Go(x + i~) --  (]o(x --  i~/)], ~ >  0, (9.1) 

namely 
[do(e0 + x)[ < A . x ~+t, for x > 0, (9.2) 

where A and x are positive constants. 
If we write 

Go(so + z) = -- <9o [VI 90> + g(z), 

the function g(z) has, according to (8.5), the property that  zg(z) is bounded 
for large [z[. This implies that  the path of integration C in Cauchy's 
formula 

g(z) -~ (2a i ) - l f c  de g(~)(~ --  z)-I for non-real z, 

can be deformed into a contour around the singular points of g(z) on the 
positive real axis. One finds in this way using (9. I) 

Go(eo + z) = ~z-lf~ ° d~ ]o(eo + ~)(~ --  z) -1 -- (9o[ V[ 9o>, (9.3) 

and, taking the derivative at both sides, 

G0(~o + z) = ~ - l f ~  d~ do(e0 + ~)(~ --  z) -2. (9.4) 

As an immediate consequence of our assumptions we see that  both Go(so + z) 
and its first derivative exist at the origin. 

The validity of the assumptions we made to reach these conclusions must  
of course be established in each special case. One can however easily see that  
the assumption that  the branch point B is situated on the negative real axis 
would lead to unphysical results. In the case that  Go(eo + z) has negative 
singularities, equation (8.4) can only be solved by  a function Do(eo + z) 
having singularities extending to -- oo. This would correspond to a perturbed 
energy spectrum without lower bound, a situation not realized in actual 
physical systems. In quantum electrodynamics the branch point B is at the 
point z = 2m (m is the observable mass of the electron), corresponding to 
the lowest energy necessary for the creation of an electron-positron pair and 
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a photon.  For  a Fermi  gas wi th  interaction,  the case considered as main 
example in the present paper, B is at  the origin with x > 0, as will be shown 
in the for thcoming paper a l ready announced.  

To reduce (8.4) to a simpler form we introduce the function 

h(z) = ( 0 0 ( t 0  + z) - 00(t0))z-1 (9.5) 

which, under  our assumptions,  has no singularities except for a cut  on the 
positive real axis, f rom B to + oo. At  the origin it has the well-defined 
value h(0) = (~o(to). Subst i tu t ing (9.5) in (8.4) we find 

z . Do( so  + z) = --  1 --  Go(to) Do(so + z) --  (2~i)-1 ~ de h(~) Do(to + z --  ~) 

which, by  the subst i tu t ion z -+ z --  Go(to) can be wri t ten  

z D o ( t o  - -  O0(to) + z) = --  I --  (2hi)-1 ~ d~ h(~) Do(to --  Go(to) + z --  C). 

If  we introduce the nota t ion  

[(z) = Do(to --Go(to) + z) (9.6) 

our integral  equat ion is reduced to the simple form 

z f (z )  = -- 1 --  (2~i) -1 ~ de h(~) [(z  - -  ~). (9.7) 

Both  h(z)  and the desired solution/(z)  have the proper ty  tha t  zh(z )  and z / (z )  
remain bounded for [z[ -+ oo, which means t ha t  according to (7.3) the equat ion 
can be wri t ten  in the equivalent  form 

z / (z )  = --  1 --  (2~/) -1 ~ de h(z  - -  ~) ](¢).  (9.8) 

The second te rm on the r ight -hand side tends to zero for [zl ~ co. This 
gives the relation 

- -  ( 2h i )  - 1  ~ d z  ](z) = 1, (9 .9)  

which also follows from (3.3) by  taking the expectat ion value for 1~00> and 
put t ing  t = 0. 

To solve equat ion (9.7) we proceed in the following way. I t  can be shown 
tha t  (9.7) has at  most  one solut ion/(z)  belonging to the class of functions 
which are holomorphic outside the real axis and  bounded for large Izl. A 
proof will be given in appendix A2. If  we now can find a funct ion [(z) of the 
class ment ioned  which solves (9.7) we are certain t ha t  it is the only one. 
F rom a physical  point  of view we are not  interested in other solutions if they  
exist. 

Equat ion  (9.7) suggests a solution of the form 

/ ( z )  -~ - -  N o / z  n t- ~o(z), (9.10) 

where the funct ion ~o(z), just  as h(z) ,  has no other singularities than  a cut  
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on the positive real axis running from B to + o o  t). We shall show tha t  a 
solution of the form (9.10) exists and we shall determine No and ~o(z). The 
relations (5.3) imply h(z*)= h(z)* and ~o(z*)= ~o(z)*. Consequently the 
functions p(x) and 9(x), defined by 

2zd p(x) ---- lim,r~0 [h(x + iT) -- h(x -- i~/)], ~ />  0 (9.11) 

2~ri 9(x) ~-~ limv_~0 [~o(x + it/) -- ~o(x --  i~/)], ~/ > 0 (9.12) 

are real. They vanish for x < B. Furthermore,  from (5.2), 9(x) > 0, while 
(9.1) and (9.5), imply 

p(x) = Jo (co + x)/x. (9.13) 

I t  will be sufficient for us to determine 9(x). The function ~o(z) will  then 
follow by application of Cauchy's theorem. Substi tut ing (9.10) in (9.8) one 
finds, using (9.12), 

- -  No + z~o(z) = - -  1 + No h(z) + f~o d~ h(z - -  ~) 9(~) 

which by (9.11) and (9.12) can be reduced to the following integral equation 
for 9(x): 

xg(x) = No p(x) + f~  d} p(x -- ¢) 9(~). (9.14) 

This equation is solved by means of a Laplace transformation. If one 
defines 

~(S) = f~o 9(x) e-,Xdx, ~(s) = f~o p(x) e-,X dx, 

(9.14) can be transformed into 

d ~(s) = No p(s) + ~(s). ~(s). 
ds 

(9.1s) 

The general solution of this linear first order differential equation is 

~(s) = -- No + C exp ( - - f  ~(s) ds), 

where C is an arbitrary constant.  The indefinite integral in the exponent  can 
be taken equal to - - f ~ '  p(x) x -1 exp (--sx) dx. For ~(s) to be the Laplace- 
t ransform of a function 9(x) tile following condition mus t  be satisfied: 
lim~oo~(s) = 0. I t  implies C = No and gives us the following expression 
for ~(s): 

= Eexp ( t o , , ;  ,3 
Whether  this function ~(s) is the Laplace-tr~nsform of a solution 9(x) of 

t)  In  the  case  B = 0, the origin is no t  a proper  pole of t(z). We shal l  h o w e v e r  continue to call s u c h  
a point a pole, provided the  f u n c t i o n  ~(x) ,  de f ined  in  (9.12) has  near  the  or ig in  the  b e h a v i o u r  
~(x) = O(x ~-1)  with ~ > 0. As seen from (9.19) this condition is fulfilled. 
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(9.14) depends on the behaviour of p(x) near the origin. I t  will be shown in 
appendix A3 tha t  a sufficient condition for this to hold is 

Ip(x)l = O(x~), x > o. (9.17) 

Equat ion  (9.17) however follows immediately from (9.13) and (9.2) and is 
thus  always satisfied under our assumptions. For 9(x) one has the expression 

A! 
9(X) = /9-~:~-1 ~-1 f+~°°+.B qo (S) e 8x ds, ~ > 0 (9.18) 

which is independent  of & I t  is also shown in A3 that  the behaviour of 9(x) 
near the origin is given by 

9(x) = O(x~-l), ~ > 0 (9.19) 

(see footnote on page 508). 
The constant  No must  still be determined. Substi tut ing (9.10) in (9.9) 

and using (9.12) one finds 

f~* 9(x) (Ix = 1 - -  No. (9.20) 

Remembering tha t  f~*9(x) dx = ~(0) one obtains from (9.16) and (9.20) 

No = exp (-- f~* p(x) x -1 dx) 

or, from (9.13) and (9.4), 

No = exp (-- ~'0(s0)). (9.21) 

Finally, Cauchy's theorem gives rise to the following expression of ~o(z) 
in terms of 9(x) 

~(z) = f~* d~ ~0(~)(~ --  z)-l. (9.22) 

By direct subst i tut ion it is now easily shown tha t  (9.10) actually represents 
a solution of (9.7) if for No and y(z) we adopt  the expressions just found. 
The solution of the integral equation (8.4) is now completed. The result 
reads, by (9.6), 

exp (-- Go(So)) + fyde ~(e) 
Do(z)= so -- Go(sb) --  z _ _  ~ - - z + s o - - G o ( e o )  

(9.23) 

where 9(x), by (9.18) and (9.16), is explicitly expressed in terms of p(x) = 
= ,lo(eo + x)/x. It  also contains the factor No ---- exp (-- Go(e0)). 

Equat ion (9.23) gives an explicit expression for Do(z) in terms of Go(so), 
G'0(so) and ,/o(so + x), quantit ies which, for large $2, are all proportional 
to $2. Let us analyse our results in more detail, in particular for the pole 
of Do(z). 

As shown in section 5 the pole of Do(z) is the energy Eo of the perturbed 
ground state J~oo>. From (9.23) we obtain its expression in very simple terms 

Eo = so -- Go (so). (9.24) 
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As was to be expected the energy shift AEo = --  G0(e0) and consequently 
the perturbed energy Eo are proportional to ~2 for large ~2. This important  
result is established to general order in the perturbation. It  will be comment- 
ed upon later. On the basis of (8.3) the energy shift can be writ ten 

AEo -~ 

= - -  (~0o[ [-- V +  V(Ho--eo)-l V - V(Ho--eo)-I V(Ho--eo)-I V +...] elq0o). (9.25) 

This formula was recently derived by  G o l d s t o n e  5), who used an adiabatic 
switching-on of the interaction and a t ime-dependent perturbation method. 
A slightly different formula is obtained by  summing the contributions of 
all diagrams that  can be reduced to the same irreducibl.e form, thus replacing 
(8.3) by  (8.5). It  reads 

AEo = --  <90I[--V+VD(e0)V--VD(e0)VD(e0)V+...],aeIg0>. (9.26) 

One should note that  the ground state energy shift is the only quant i ty  for 
which the D-dependence was studied before to general order in the pertur- 
bation. The argument used to this end by  G o l d s t o n e  does not extend to the 
investigation of other quantities. As we shall see in the following, our 
method is of much greater generality. 

The residue of the function Do(z) at its pole is --  No. The D-dependence 
of this quant i ty  is not linear but, as follows from (9.21), exponential. This is 
in accordance with the remark in section 8 that  terms of arbitrarily high 
powers in f2 occur in the expansion of Do(z). As seen from equation (5.9) 
the factor Nt0 is a normalization constant for the wave function [~P0). 
In fact, No is the probability that  one finds the actual ground state I~P0> in 
the state 190>. That this factor should decrease exponentially with the size 
of the system can be understood on  the basis of the same general arguments 
sometimes used to explain why the total energy of a large system is pro- 
portional to its volume. One subdivides the system in a large number of 
identical cells, themselves large enough for the interactions across cell 
boundaries to be negligible. Jus t  as the total energy is then approximately 
the sum of the energies of the individual cells and consequently proportional 
to the size of the system, the total wave function takes the form of a product 
and mast  therefore depend exponentially on the size. 

I0. Energies o[ excited states. We shall now turn to the determination of 
D=(z) for a state different from the ground state. Taking in (8.1) the diagonal 
element for a state [~) :# [9o> one finds 

Dc,(eo + z) = D~,(eo + z) ~, Do(eo + z), (10.1) 

where, as defined in section 8, D~(z) is the sum of the contributions to D,,(z) 
of all diagrams which do not contain ground state components. This 
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equation determines D~(eo + z) in terms of Do(*o + z) and D~(,0 + z), 
thus leading us to a s tudy  of the function D~(eo + z). 

Applying the methods of section 4 and taking into account tha t  only 
diagrams without  ground state components  are involved, we derive, in 
exactly the same way as (4.2), the formula 

~(~o + z)= (~_' - z)-i + (~' -z ) - i  [ -  v + vD(~o + z) v-...]~aL(~)~(~o+ z), 
t 

where ,~ = e~ --  so. 
The subscript idL means tha t  only irreducible diagonal diagrams without  
ground state components  contribute. The L stands for "linked clusters", 
an expression used by B r u e c k n e r ,  e.a., to indicate contributions from 
diagrams without  ground state components.  Defining 

0~(,o + z) = [ -  v + v ~ ( , o  + z) v - . . -] ,~d~) (lO.2) 

one obtains for/9~(eo + z) the expression 

3~( ,0  + z) = ( ~  - z - 0~ (c0 + z))- l ,  (10.3) 

which has just  the same form as (5.1). 
The considerations of section 6 tell us tha t  G~(e0 + z) and D~(e0 + z), 

being defined by means of diagrams without  ground state components,  
have a finite limit for 19 -+ oo. We see here clearly the important  advance 
made with respect to chapter  II.  While in the developments of chapter  I I  
we were forced to keep 19 finite in order to avoid the occurrence of infinite 
quantities, we can here in the expressions of D~(e0 + z) and G~(*o + z) 
carry out completely the limit 12-+ oo. In this limit G~(eo + z) has no 
poles as can be concluded from (10.2). There will be one or more cuts in the 
complex plane along the real axis. Exact ly  as for Do,(z) and G~,(z) we have 

O~,(z*) = (~(z)* and D~(z*)~= D~(z)*. 

If we define the real functions g~(x) and d,~(x) of the real variable x by the 
equation 

limv_~o G~,(x + iT) -~ K.a(x) + iJ~,(x) ; ~/ > 0, (10.4) 

the above relations imply 

l imv.  o O,,(x -- i~/) ---- K'~(x) -- iJ~(x) ; n > 0, (10.5) 

The singular points of (~(*o + z) on the real axis are the points where 
]~(*o + x) ~ 0. Equat ion (10.3) shows tha t  these points will also be singu- 
larities of D~(*o + z). In addit ion D~(eo + z) can have a pole, when the 
equation 

~'. - x - g ~ ( ~ o  + x )  = o (10.6) 

has a root in the neighbourhood of which ]~(~0 + x) = 0. Equat ion (10.6) 
has at least one and in most  cases it has only one root E~; for simplicity we 
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assume the latter to be the case. The present section, as well as sections 12 
and 13 hereafter, deal with the case that  this po in t /~ i s  a pole of D~(s0 + z). 
For N o to be a true pole o f / ) , ( e  + z) one must have J~(eo + x) = 0 in a 
neighbourhood of E~. This condition is, however, too strong for our purpose. 
It  will be enough to assume that  d~ satisfies for small x tile relation 

d~(eo + B~ + x) = O(Ixl 1+~) with oc > 0. (10.7) 

Under this circumstance we still call E~ a pole of the funct ion/) , (eo + z). 
The condition (10.7) is sufficient for the finiteness of G,(eo + z) and its 
derivative 0$(eo + z) at E,.  From (10.6) and (10.7) we also notice 

~ = ~ - 0~(~o + ~ ) .  (lO.8) 

The residue of/)~(eo + z) at E~ we denote by -- _N~. It  follows easily from 
(10.3) that  

N~ -1 = 1 + 0"(eo + -E,x). (10.9) 

Equation (10.1) enables us to express the pole E ~ - - s o  and the residue 
- -  N~ of Do,(so+z) in the corresponding quantities of J0~(so+z) and Do(so+z). 
We must simply add up the poles of D~(s0 + z) and Do(co + z) to find the 
pole of D,(so + z), whereas the residue of Do~(so + z) is minus the product 
of the residues of D~(eo + z), and Do(so + z). This leads to the equations 

and 
N ~  = N o  • ~ ,  (10.10) 

E~ = E0 + B~. (10.11) 

It  can furthermore be shown that  the relation (10.7) implies that  the dis- 
continuity of/)~(e0 + z) at a point x of the real axis in the neighbourhood 
of / ~  behaves like O(Ix -- B~I ~-1) and that  by (10.1) the same holds for the 
discontinuity of D~(z) in the neighbourhood of E~. We shall forgo the proof. 
These facts imply that  we are justified in calling E~ and E~ poles (see the 
footnote on page 508). 

The inequality (5.2) for D~(z) and D o(z) implies that  both N~and No are 
positive quantities. Hence (10.10) shows that also iV~ > 0. 

We shall now discuss tile physical significance of the result (10.11). In 
section 5 we saw that  the pole E~ of Do,(z ) represents the energy of the 
perturbed states I~p~) ± which, through the influence of the perturbation, 
originate from the unperturbed state I s )  with energy s~. Equation (10.1 I) 
shows that  / ~  represents the energy of the system in the state [~v~)~ as 
compared with the energy E0 of the perturbed ground state I~oo), i.e. B~ 
is the excitation energy of I~v~) 4-. From tile ~-independence of 29~(so + z), 
the energy E~ is independent of the size of the system, in agreement with 
physical expectation. We thus see that  E~ is not only a convenient auxiliary 
quantity, but that  it also has a simple and direct physical meaning. In field 
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theory in particular, where the true (perturbed) energy Eo of the vacuum 
is not measurable, E= is the only energy of physical interest. 

An important remark must be added concerning the case where the state 
J=> involves several particles or holes. The diagonal diagrams contributing 
to/-)=(e0 + z) for such states are not connected. An example is shown in figure 
2. The diagram c represents a contribution to/-)~(e0 + z) where J~> is a state 
of two particles. As seen in section 3 the diagonal diagrams of states con- 
taining several particles and holes are always composed of diagonal diagrams 
of one-particle-states and one-hole-states. Let us, to be more explicit, take 
the state ]~> = [klk2 ; >, and consider/~(~o + z). Each diagram is composed 
of a diagonal diagram of the state ]kl ; >, and a diagonal diagram of [k2 ; >. 
Applying (7.4), and summing over all possible diagrams one gets 

])=(e0 + z) =/)k~(eo + z) *D/% (~0 + z), (10.12) 

where/)k(eo + z) denotes the function Dv(eo + z) for I7> = [k ; >. Repeating 
the arguments which led to ( 10. I 0) and (10.11) one finds from (10.12) 

R~ = Ark, Nk~, ~ = ~ + ~ .  (10. 13) 

The last equation expresses the additivity of the perturbed excitation 
energies of the two particles. It is clear that  our argument extends to states 
with an arbitrary number of particles and holes. 

CHAPTER V. THE PERTURBED WAVE FUNCTIONS 

11. The wave /unction o~ the ground state. In this and the following 
sections we are concerned with the application of the considerations of 
chapter I II  to the calculation of wave functions. We have learned in section 
5 that  to each unperturbed state J=>, such that  D=(z) has a pole E=, can be 
associated two perturbed stationary states J~o=> + respectively characterized 
by the outgoing and incoming nature of the scattered waves. For such a 
state r~>, according to (5.7), the matrix element <fl JR(z)l ~> can be written 
as a product of two factors. The second factor is D~(z) and has a pole E=, 
whereas the first factor has a cut on the real axis running from a point B 
to + oo. For most states I~>, B < E= and E= is not a proper pole of the 
function <fl aR(z)l ~>. Instead of one, there are two residues in such a point 
E= defined by 

~R~ [<fl JR(z)] ~>] = l imz_~ (z -- E~) <fl JR(z)] ~>, 

where the plus (minus) sign must be chosen if z approaches E= from the 
upper (lower) half of the complex plane. It is clear that  both residues coin- 
cide if E= < B. Using this, slightly more general, definition of the residue 
we found in section 5 that  the wave functions 

I~>~ = - N ~  ~ =  JR(z) [~>] (11.1) 

are normalized eigenfunctions of H ---- Ho + V. 

Physica XXIll 33 
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We now write this equation in an alternative form. We define the 
operator 

A~(z) =f/3 </5 IR(z)] ~¢> . A/3, (11.2) 

where At~ is for each [/5> the ordered product of creation operators such that  
A~ 19o> -= [/5>. Applying (11.2) to [9o> we get the equality 

X~(z) I~o0> = R(z)I~>. (11.3) 

A~,(z) contains the factor D~(z) which has a pole at z = E~. We define the 
residues ~R~[A~(z)] of A~,(z) (in the extended sense defined above) by taking 
the residues of each matrix element in the expansion (11.2). We then define 
the operators 0 + and 0~- 

= - [XAz)], (11.4) 

where --N~ is as usual the residue of D~,(z) in E~. 
• From (11.4) and (11.3) the formula (11.1) can be written 

I~v~> i = 0~ [9o). (11.5) 

The purpose of this section is to achieve a far-reaching simplification of 
(11.4) by means of the results of chapter III .  

We study first the ground state wave function [~oo>. Equation (5.7) for 
[~>-----[9o> reads 

<fl ]R(z)l qoo> = </5[[1 + {--O(z) V + O(z) V O(z) V --...},na] [90> Do(z). (11.6) 

The intermediate states }y) occurring in (11.6) are also intermediate states 
in the expression for Go(z), which one obtains from (4.3) by taking the diagon- 
al matrix element for [90). Furthermore, according to section 5, the fact that  
Eo is a pole of Do(z) implies that  Go(z) is single-valued at the point Eo. This 
requires, as was shown in H I, that  for none of the intermediate states Jr> 
under consideration the cut of Dr(z ) would extend through Eo. Conse- 
quently the cut of the first factor on the right-hand side of (11.6) does not 
extend through Eo. In other words Eo -<< B. Accordingly the matrix element 
</5 IR(z)l 9o> and the operator 

Ao(z) = f~ </5 [R(z)[ ~00> At3 

have only one residue, whether calculated from the upper half or the lower 
half of the z-plane. Hence 

I~o> = Oo I~oo>, (11.7) 
where 

Oo = -- No½ ~E o [A'o(z)]. (11.8) 

A o(z) can be written 

Ao(z) = Do(z) + f '  <fl [R(z)l 90> A~, (1 1.9) 
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where the sum extends over all states ]fl> except ]90). Replacing z by 
so + z and applying (8.1) to the matr ix  element <fl ]R(eo + z)[ 9o> we 
obtain the formula 

Ao(eo + z) = -/io(eo + z) ~ Do(so + z), (11.10) 

where ~io(to + z) is defined by 

-/io(so + z) = -- i/z + f '  </5 [R(so + z)] 9o> A/~. (I1.I1) 

The matr ix  element </5 JR(to + z) l ~0o5 for ]fl> :/: ]9o> was defined in section 
8 as the sum of the contributions to <fl IR(eo + z)l 9o> of all" diagrams, 
which do not contain ground state components. 

Applying the methods of section 4 it is easy to express </5 JR(so + z)[ 9o> 
in terms of irreducible diagrams only. One finds, remembering that  
I/5> :# [~oo>, 

<3 IR(so + z)l ~oo> = 

= <31 [ -  D(so + z) v + ~(so + z) vD(so + z) v - . . . ] , L  I~o> ( -  z ) - i  (11.12) 

where the subscript iL means tha t  one should take only irreducible diagrams 
without  ground state components.  Instead of the factor Do at the extreme 
right of (11.6), one finds in (11.12) the factor (--z)  -1. This shows that  
</5 ]/t(so + z)l~oo> has a pole in the origin, and the same holds true for 
-/io(eo + z ) ,  as seen from (11.11). From (11.10) Ao(to + z) is obtained by 
convolution of -/io(eo + z) and Do(so + z). The latter functions have poles 
at z = 0 and z = Eo -- to, and these poles determine the pole of Ao(so + z) 
at Eo -- to. Consequently the residue of Ao(so + z) at its pole Eo -- so is 
simply minus the product  of the residues of ~io(so + z), and Do(to + z). 
This gives the formula 

• :.% [Ao(z)] = No ~Ro EAo(to + z)]. (11.13) 

Defining the operator 0o by 

0o = - -  ~Ro [Ao(so + z)], (I 1.14) 

we get from (11.8) and (11.13) 

0o = No ~ • Oo. (11.15) 

This formula already presents an impor tant  simplification with respect to 
(11.8), inasmuch as the definition of Oo only involves diagrams without  
ground state components.  

Equat ion (11.15) is equivalent to a result derived recently by Gold-  
s t o n e  5). To show the equivalence we write (11.11) in a more explicit form 
using (3.5). 

~io(so + z) lqoo> = 
= [1 -- (Ho--so--z) -1 V +  (Ho--so--z) -1 V(Ho--so--z) -1 V--...]z, ]0oo> (--z) -1 



516 N.M. HUGENHOLTZ 

which, together with (11.14) and (11.15), gives 

]~oo> -~ N~o I1 -- (Ho--eo)- lV+ (Ho--so)-lV(Ho--eo)-lV--...]Ll~oo). (11.16) 

The subscript L excludes diagrams with ground state components.  This 
equation is, except for the normalization factor No ~, identical with eq. (3.2) 
of Goldstone's paper. 

We now proceed to derive a still simpler expression for O0. We notice tha t  
the diagrams occurring in the definition of Ao(so + z) are, in general, not 
connected. They can be composed of an arbitrary number  of components,  
each of which has external lines at the left end. We define the operator 

Ao(eo -I- z) = f ~  (/5] /~(eo + z)l cpo) A/~, (11.17) 

where (fl IR(eo + z)l ~o7 is the sum of all connected diagrams contributing 
to the matr ix  element (/5 IR(eo + z)i ~oo), for I/:1):/: I~o>. In exactly the 
same way as (11.12) we derive for Ifl> ~: I~o) the formula 

</5 IR(~o + z)f ~o> = 

= D~(eo + z) <fl I[--V + VD(eo + z)V -- ...]¢cl 9o> (-- z)-l, (11.18) 

where the subscript iC means tha t  one sums over the contributions of 
irreducible connected diagrams only. As we see (fl I/~(eo + z)] 9o> has a 
pole in the origin, and by (11.17) the same holds for Ao(so + z). We now 
define the operator Oo by 

0o = -- 2o [Ao(eo + z)]. (11.19) 

Jflst  as before for 0o and 60, the residue is unique. Using (11.17) and (11.18) 
we can write (11.19) in a more explicit form 

Oo = f ~  (/5 I[--D(eo)V + D(eo) VD(eo)V-  ...]~c Iq:o). Ag, (11.20) 

where the sum is extended over all states [fl> =fi [90>. 
Only connected diagrams contribute to Oo. This class of diagrams is 

much smaller than  the class of all diagrams without  ground state components,  
which we had to use in the expression of Oo. Still, as we shall see now, Oo 
can be expressed very simply in. terms of 0o. We write 

/io(eo + z) ---- 2~°= 0 Av, (11.21) 

where A v is the sum of the contributions of all diagrams of/io(eo + z) con- 
taining exactly v components.  From (11.11) and (11.17) follows immediately 
tha t  Ao = -- z -1 and A1 = Ao (co + z). Let us calculate A2. Consider all 
diagrams which are composed of a diagram of (/5' I/)(eo + z)l 9o> and a 
diagram of (/5" I[~(eo + z)l q:o>. These diagrams have two components  and 
their contribution to A ~. is given by 

(t5' [/~(eo + z)[ 90> 0e (3" ]/~(eo + z){ 90> A~,A~,,, 
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as follows immediately from the fundamental  formula (7.4). Summing this 
expression over all states ]fl'> and [fl"> distinct from ]9o> we get 

A2 = ½A0(e0 + z) * Ao(eo + z). 

The factor ½ arises from the fact that  in the summation over [fl') and [fl"> 
each diagram of A 2 is counted twice. The diagrams of A 8 can be obtained by 
the combination of a diagram of A ~ with a diagram of A 1. Another factor ½ 
must be added to compensate for redundant  counting and one gets 

A3 = ~do(~o + z) ~ Ao(~o + z) ~ Ao(~o + z). 

Continuing in the same way we get generally 

Av = (v!)-i Ao(~o + z) ~+ A0(eo + z) ~+ . . . . . .  ~+  d0(t0 + z), 

with v factors Ao(e0 + z) in the convolution. If we now take the residue in 
z = 0 of each term in the expansion (I 1.21) we find 

Oo = 1 + Oo + 6~12! + 0~/3t ,+ . . . . . . .  

a result which reduces to the compact form 

00 = exp (0o). (11.22) 

Inserting this in (11.15) we obtain the important result 

Oo = N~o exp (0o) = exp (--½0'o(eO) + 0o), (11.23) 

where 0o is given by (11.20) and where the value (9.21) of No has been used. 
The derivations of (11.15) and (11.23) are actually valid for a finite but 

very large volume /2. The operators 0o and 0o are defined by means of 
diagrams which do not contain ground state components. 

In section 6 we have shown that  the contributions of such diagrams have 
a finite limit for ~2 -+ oo. This means that  in the expansion of 0o [~00) or 
of 0~ [9o>, v ---- 1, 2 . . . . .  in unperturbed states all coefficients have a finite 
limit. Owing however to the large number of terms in the expansion the 
norm of 0~ [~oo) is large as ~2 v/~, while the norm of Oo ]9o> is exponentially 
large for ~9 -+ oo. As seen from (11.15) this behaviour is compensated in ( 11.23) 
by the normalization factor Nto, which approaches zero exponentially in the 
limit f2 -+ oo. In fact we saw before that  0'0(~o) is proportional to ~2 for large ~2. 

12. Wave /unctions o/ excited states. Having determined Oo in terms of 
contributions of connected diagrams we turn to an analysis of O~ where 
[*> :/: [90) is a state such that  D~(z) has a pole E~. 0~ is defined by (11.4). 
Let us consider an arbitrary diagram of (/~ [R(,o + z)[ ~>. It  contains one 
or more components with external lines at the right end, and other compo- 
nents without such lines. Diagrams composed only of components of the 
latter type give contributions to (fl' JR(eo + z)J 9o>- On the other hand we 
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can take together all diagrams of (fl" ]R(eo + z)[ ,t), all components  of which 
have one or more external lines at their right end. The sum of the contri- 
butions of these diagrams we denote by (fl" [R(eo + z)] m>. 

Consider all diagrams which are composed of a diagram of (fl'] R(eo+z)  [9o> 
and a diagram of (fl" ]/~(eo + z)] ~). These diagrams contribute to the matr ix  
element (fl'fl" [R(eo + z)[ ~) where [fl'fl") = A~, . A~,,[ 90). 
Their contribution is, as follows immediately from (7.4), 

<fl' ]R(eo + z)[ 90> ~ <fl" IR(,6 + z)l m>. (12.1) 

The operator A~(eo + z), defined by (11.2), can now be writ ten 

A~,(e + z) = f~'a" </3'./5" [R(eo + z)[~> Aa,Aa,  = 
---fo'a" </~' IR(eo + z)l ~oo> ~ <fl" IR(eo +z)l  ~> Aa,Aa,,. (12.2) 

Defining the operator 

.4e(e0 + z) =.[~ (/SI/~(eo + z)[ ~) A/3 (12.3) 

we obtain for equation (12.2) the simple form 

Ao,(eo + z) = -4~(eo + z) -~ Ao(eo + z). (12.4) 
A 

We must  now s tudy the matr ix  element (fl [R(e0 + z)[ ~> in somewhat 
more detail. All diagrams with ground state components  are excluded 
from its definition. By the methods of section 4 we can easily express 
(fl JR(e0 + z) [~> in terms of contributions of irreducible diagrams. The 
formula we obtain reads 

<P IR(*o + z)l o~> = 

<,01[1 + {-D(~o+z) V+D(~o + z) V~(~o+z) V-...}~n~R] I~> D~(~o+z), (12.5) 

where [~> ~ [9o). The subscript indR indicates restriction to irreducible 
non-diagonal diagrams, all components  of which have at least one external 
line at the r ight-hand side. We see, from (12.5), tha t  (fl JR(so + z)[ ~) 
contains the factor D~(eo + z), which has a pole E~. The other factor on the 
r ight-hand side of (12.5) has a cut along the real axis; in most  cases this 
factor is double-valued at the point E~, giving exactly the same situation 
as met  before with (/~ IR(eo + z)l ~). In (12.2) we have the convolution 

</~' IR(~o + z)[ ~oo> ~ <B" I~(eo + z)[ m>. 

The residue of this expression at its pole E~ --  so is 

~- ,o [<B '  IR(eo + z)l 9o> ~-<P"l -~(eo + z) It,>] = 
= - -  m~= [</~" IR(,o + z)l ~>3 mEo-,o[</~' IR(~o + z)l 9o>], 

where we have used E~ = E~ --  Eo. Inserting this in (12.2) we find with the 
definitions (11.2) and (12.3) 

m~, [A~,(z)] = ~ , ,  [-4~,(eo + z)] . ~R~o[Ao(z)]. (12.6) 
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If we now define the operators ( ~  by 
^ 4- *~ 
O~ = --  N~-½ ~R~[A~(eo + z)], (12.7) 

where - - _ ~  is the residue of D~(eo + z) in E~, we obtain, using (10.10), 
the important  result 

O~ = (9~ . 00. (12.8) 

O~ and Oo were defined b y  (11.4) and (11.8). Applying the operator 
equation (12.8) to [9o) we get 

1~,o,>4- = ( ~  Iw0>. (12.9) 

This equation shows clearly the physical meaning of (9~. I t  "creates" the 
state [~v,)4- from the actual (perturbed) ground state [~0). I t  is the analogue, 
for the per turbed system, of the operator A~ which creates [~) from [90) 
in absence of the interaction. The importance of the operator O~ is further 
stressed by considering the case of large systems. From the definition (12.7) 
and from the fact tha t  in the calculation of D~(e0 + z) and -4,(e0 + z) only 
diagrams without  ground state components  are involved, we conclude that  
(9~ has a finite limit for /2  --+ oo. Although for an infinitely large system a 
proper expansion of ]~00) in unper turbed states strictly speaking no longer 
exists (remember the vanishing of No for f2 -+ oo in (11.15)), the operator 
(9~, which describes the change of Iv?0) introduced by the presence of particles 
outside the Fermi sphere and holes inside it, keeps a simple and meaningful 
form. 

Throughout  this paper we have often used a terminology inspired by the 
special problem of a gas of Fermi particles with interaction. As mentioned 
before, however, all results are of a quite general nature and are applicable 
to a broad range of problems. Up till now we investigated states [~) for  
which the function D~,(z) has a pole. As will be shown elsewhere, in the theory 
of the Fermi gas with interaction strictly speaking no such state except [90) 
exists. Low-lying states satisfy however this requirement with a very good 
approximation and the results of the preser~t section will provide us with an 
excellent start ing point for their study. In the quan tum theory of fields, on 
the other hand, all states [~) satisfy the requirement that  D¢,(z) has a pole 
and the whole discussion of this section is immediately applicable. 

We end this section with a remark concerning one-particle-states. Let 
La) be a state differing from the unper turbed ground state [90) by the pres- 
ence of one single particle. Taking e.g. the case of interacting meson and 
nucleon fields, [90) is the free vacuum and ]a) would be for example 
a one-nucleon-state. We denote this state by ]k>, k referring to the mo- 
m e n t u m  of the particle. F rom (12.5) we see that  the diagrams contributing to 
(/3 l i~(,0+ z)[ k) are connected and have one external line at the right end. 
As is easily seen the intermediate states in (12.5) are the same as those oc- 
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curring in the expression (10.2) for G~(s0 + z) if we take [~> = [k>. By our 
assumption Dk(s0 + z) has a pole E~, a fact which requires tha t  Gg(s0 + z) 
be single-valued at the point Ek, i.e., tha t  the cut of Gk does not go through 
E~. As shown in H I, this has the consequence tha t  the same property holds 
for all functions Dr(s0 + z) belonging to states [7> which occur as inter- 
mediate states in (10.2). We conclude tha t  also (/5 [/~(s0 + z)[ k), and by 
(12.3) -4k(s0 + z) are single-valued in Ek. Thus we have shown tha t  to each 

^ +  
single particle state [k), such tha t  Dk(z) has a pole, the operators 0 k and 
~9~- are identical. The expression (12.9) reduces to a single stat ionary state 

I~v~> = 0k I~o0>. (12.10) 

If I~> is a state of more than  one free particle or hole the states I~o~) + 
and I~v~)- will in general be different. They correspond to scattering states 
with outgoing and incoming scattered waves respectively. This was shown 
in H II  by an investigation of the asymptot ic  behaviour of wave packets for 
large times. 

13. Asymptotically stationary states. In this sect ionwe shallbriefly consider 
in the light of the diagram analysis, the theory of asymptotical ly stat ionary 
states as developed by V a n  H o v e  in H I and H II.  I t  will appear tha t  
these states can be expressed very simply by means of the operators ~9~ 
introduced in the last section. 

Let Ice> = ~k*~* * k2 ...... ~k, 190> be an unper turbed p-particle state and 
assume tha t  the function D~(z) has a pole E~. Consider the state I~v~>a8 
defined by 

I~v~) a8 = 0 k l 0 ,  ~ ... Ok, I~v0). (13.1) 

As will be shown hereafter, this state is identical with the asymptotically 
s t a t i ona rys t a t e  let)as defined by V a n  H o v e  in H I (equation 5.12). The 
physical meaning of I~v~) as is particularly clear in field theory. I t  is a state 
of p "dressed" particles without  mutua l  interaction. In meson-theory for 
example it would represent a physical si tuation where one has e.g., p nucleons 
with their surrounding cloud of mesons and nucleon-antinucleon pairs, 
moving independent ly of each other in plane wave states. Such a state is 
clearly not  stationary, and a wave function I~o(t))as, defined as a linear 
combination 

I~v(t)>a8 = f~ c~ exp (--iE~t) t~o~> a*, (13.2) 

is not a solution of the SchrSdinger equation. I t  does however approach 
such a solution for large ]tl. Indeed, considering the two wave functions 

I~o(t) >± = f~ c~ exp (--iEe, t ) I~v~> ± (13.3) 
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which obviously verify the SchrSdinger equation, one has the following 
relations 

limt_~_oo I[~v(t)> as - -  ]~v(t)> +] = 0, 

lim,_~+oo I I~(t)>~s - -  I~( t )>-I  = 0. 

The bars refer to the norm of the wave functions enclosed. These formulae 
are identical with (3.2) in H II. 

All we want to do here is to establish the identity of the states (13.1) with 
the states [~)as in H I. From the definition (13.1) of I~v~)a8 we derive, using 
(12.7), (12.3) and (11.8), 

[~o~)a8 = _ N ~  ~ E , - , o  [ fPo~l..g, [/3o31 .--/3,) • 
• (/30 IR(eo + z)l 90) * (/31 J/~(e0 + z)l kl> ~* ...... oe (/3v I/~(eo + z)l k,)] .  

This again can be written 

[~oc,>as = - -  N :  ½ ~E~, [R'(z) I~>], (13.4) 

where </3 IR'(z)l ~> for arbitrary I/3> is the sum of the contributions to 
</3 IR(z)l ~> of all diagrams, each component of which has at most one ex- 
ternal line at its right end. We shall call such diagrams completely disconnected. 
Substituting (4.1) in (13.4) and taking the residue in E~ one finds 

I~p,,> as = N~ t [1 --  D(E~) V + D(Z~) V D(Ec, ) V --  . . .]w I~). (13.5) 

The subscript iD indicates that  in calculating [~2~> a* one should limit oneself 
to irreducible non-diagonal diagrams which are completely disconnected. 
Comparing equation (13.5) with equation (5.12) of H I one sees that  they 
are equivalent. The projection operators Y~ in (5.12) of H I were intended 
to limit the intermediate states to those states which contribute to D~(z). 
In the language of diagrams this means that  only completely disconnected 
diagrams should be taken. The identity of the states [~,)as defined in (13.1) 
with the states [c¢>as in H.I is thereby established. 

14. Metastable states. Up till now we have considered states [~) such that  
D~(z) has a pole in E~. This value E~ is a root of the equation 

e~ --  x - -  K~(x) = 0, (14.1) 

where e, is the unperturbed energy and K~(x) is defined by (5.4). If J~(x), 
also defined by (5.4), vanishes in a neighbourhood of E~ (or if this quanti ty  
approaches zero sufficiently fast for x -+ E~) the states [~o~) + defined by 

[~o~)±=N~ [1--D(E~ ± io) V + D(E~ 4- io) V D(E~ 4- io) V --  ...], [c¢), (14.2) 

where N~ -1 ~-- 1 + K~'(E~), are stationary states. 
We already mentioned that  in field theory the above condition is always 

fulfilled. There are however many  quantum mechanical systems where for 



522 N. lVi. HUGENHOLTZ 

some or all of the states L~> ~ 190>, one has ]~(E~,) ~ O. By (5.5) J~,(E~) is 
then positive. Under such conditions it is still possible to define states 
]~o~>± by  the relation (14.2), but  these states have in general no simple 
physical meaning. However in the special case that  J~(E~) is very small, we 
shall see that  [~v~> + still approximately behaves as a stat ionary state. States 
of this type will be called metastable. They are frequently encountered in the 
many-particle systems of statistical mechanics and play also an important  
role in the theory of nuclear matter.  They are investigated in the present 
section. 

According to (5.1) we can write 

O~(z) -1 = e~ - -  z - -  Gc~(z ). 

At the point z = E~, + io we have D~X(E~ + io) = - -  iJ~,(E~,). We expand 
D~-:(z) in a power series of (z --  Ea) for z in the neighbourhood of E~, + io 
and obtain in this way an analytic continuation of D~-X(z) from the upper  
to the lower half of the complex plane. Thus, to first order, 

D~-l(z ) = -- iJa(E~) + (Ec, - -  z)(1 + G'~(Ec, + io)). 

f~,(x) is assumed to be small for x near Ea. We put  accordingly 

G'~(Eo, + io) = K'c,(Eo~ ) 

and find 

with 

D~-:(z) = N~-: [E~ -- iNj ,~(E~,)  - -  z], (14.3) 

N ~ : =  1 + K'.,(E,x ). 

Equation (14.3) shows that  Do,(z ), if continued analytically from above to 
below the real axis, has a pole 

F~ = Em - -  iNJc , (Ec ,  ). (14.4) 

The time-dependent wave function corresponding to [~v~) + is, according 
to (3.3), given by  

U(t) 1~o~>+ ,~_.,_: r+oo+,o d~R(¢) e -gt  = (z,~*) J - ~ + i o  I~o~) +, (14.5) 

where we assume t > 0. This leads us to a s tudy of the matrix element 
(fl ]R(¢)[ ~0~>+ for arbitrary ]fl> and Im ~ > 0. If we apply both sides of 
(5.8) to the state [a), putting z = ~, z' = E~, + io, we get after some simple 
manipulations using (14.2), 

<B IR(¢)I V,~,> + = 

----- N~(¢ -- Ea)- i  (fl [R(¢)I x> D ~ I ( E e  + io) - -  (¢ - -  E~) -1 (fll~v~> +. (14.6) 

We have seen that  D~:(E~, + i o ) = -  if~(E~,), a quant i ty  assumed to 
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be small. Nonetheless, owing to the singularity at ¢ = E~, the first term on 
the right-hand side cannot be neglected when inserting (14.6) in (14.5). 
Equation (14.6)can be rewritten as 

</3 IR(¢)1%o~>+ ---- -- ilo,(Eo, ) . N ~ .  (¢ - -  Eo,) -1 [</3 IR(¢) 3-1(¢)[ ,¢> - -  

- -  <fl IR(Eo, + io) DjI(E,~ + io)l ~>] D~(¢) + 

+ D~ , (¢ ) (¢ -  E~,)-I[D-I(E~, + io) - -  Oj l (¢ ) ] .  <fil~v~>+. (14.7) 

It  is now legitimate to drop the first term in the right-hand side. The second 
term no longer has a singularity at ¢ = E~, but its analytical continuation 
in the lower half of the C-plane has a pole at ~ = Fo, = Eo, - -  iNJ~,(E~,) .  
Neglecting terms of the order of fo,(E~,) we are left with 

<fl IR(¢)I V)~> + ---- (¢ - -  E~ + iN~J~(E~,)) -1 <fll~v~> +, for Im ¢ > 0. 

If we substitute this approximate result in (14.5) we find, for positive t 
large of order J~(E~)-I and arbitrary I/3>, 

<fl IU(t)l ~o~> + = exp (-- iE~t - -  N j ~ ( E ~ ) t )  </3ly,~> + *). (14.8) 

This equation shows that  l~v~) + is a metastable state with an energy E~ 
and a mean life-time T~ = 1/Nj , , (E~, )  = 1/F~,. The quant i ty  F~ plays for 
our case of continuous spectra a role analogous to the level width of discrete 
spectra. Just  as we derived (14.8) we could establish for t < 0 

<ill U(t) 1~>- = exp (-- iE~t + NJ~(E~, ) t )  <fl [~v~>-, 

a formula which however has little physical interest. 
Before commenting upon the significance of (I 4.8) we shall derive, along 

the lines of sections 10 and 12, simpler expressions for F~ and [~v~>+. In 
section 10 we introduced the function/~(eo + z) which was defined by means 
of diagrams without ground state components. It  was established that  the 
validity of the equation d~(to + x) = 0 for x in a neighbourhood of E~ (E~ 
was the root of equation (10.6)) implies J~(x) = 0 in a neighbourhood of E~. 
In the case considered here we have clearly 3~(~o + E~) :# 0, and, as we 
shall see below, d~(eo + ~'~) is positive but small. Using (9.23) and (10.I) 
we can write 

D~,(eo + z) = No(Eo  - -  to - -  z)-i -~/~(~o + z) + ~o(e0 -- Eo + z) * 3~(e0 + z). 

To study the singular behaviour of D~(z) obtained by analytical continu- 
ation in the neighbourhood of E~ the second term on the right-hand side 
can be neglected and we have approximately 

D~,(z) = No  D~(eo - -  Eo + z) for Iz -- E~I small. (14.9) 

*) I t  is essential for the validity of this equation that Ifl) is a state with only a finite number of 
particles and holes. 
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Taking the value at z = E~ = Eo + g'~ we get 

- -  i J ~ , ( E ~ , )  = - -  i N o d ~ , ( e o  + E~,). 

This gives the important  formula 

I'~ = Nd~(E~) = Nj~(eo + E~), (14.10) 

which expresses the life-time _r'~ -I in terms of diagrams without ground state 
components. In particular we conclude that/'~ is independent of the volume 
/2 of the system, since both N~ and J~(eo + E~) have this property. 

The wave function [~0~> +, defined by (14.2), can be written 

+ = O: I o>, 

where 

0 + = N~A~,(E~ + io) D~I(E~ + io). (14.11) 

The operator A~(z) was defined in section 11 by (11.2). According to (12.4) 
we have 

A~(to + z) = A~(eo + z) * Ao(eo + z). 

Following exactly the same arguments as in the derivation of (14.9) we find 

A~(z) = -- fftE o [Ao(z)] . -4~(eo -- Eo + z), for [z -- E~[ small. 

Substituting this expression in (14.11), one obtains, using ( 11.8) and (14.9), 

0 + = 0 +  . 00 ,  I~v~> + = 0 + IW0> (14.12) 

with 

b~ + = --  ida(e0 + g~) ~V~ A~(~0 + g~ + io). 

Notice that  this formula, which only has a'n approximate validity, is exactly 
of the same form as (12.8). 

Examples of metastable states in systems with continuous spectra, in the 
sense defined here, are actually well known. We mention only one, the 
so-called cloudy-crystal-ball model of heavy nuclei, which is meant  to describe 
the scattering of nucleons at low energies z). The imaginary part  of the 
potential, introduced in the model to describe the "absorption" of the 
incident nucleon in nuclear matter,  (leading to compound nucleus formation) 
corresponds to our quant i ty  F~. In a forthcoming paper, which will deal 
with the application of the Fermi gas model to the problem of nuclear 
structure, we shall have opportunity to come back to this point in greater 
detail. Let us only mention here that  in the~ Fermi gas model, states con- 
taining in addition to the Fermi sea one particle with momentum k are 
metastable in our sense (small F~) when k is near the Fermi momentum ke. 
Application of (10.12) shows immediately that  states containing more 
additional particles are then also metastable. Furthermore it is easy to 
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verify the approximate validity of (10.13) for the case at hand. This formula 
expresses now the excitation energy of a state containing several additional 
particles as the sum of the excitation energies of the single particles, whereas 
the inverse life-time of the total state becomes the sum of the individual 
inverse life-times. Also the considerations concerning asymptotically statio- 
nary states are approximately valid for metastable cases. The asymptotically 
stationary states are essential for the description of scattering processes. In 
H I and H II they are used to establish a formula for the S-matrix. If one 
is interested in collision processes in dissipative systems (e.g., .collisions 
between two additional nucleons in nuclear matter) one can apply this 
S-matrix formalism provided the life-time of the metastable states is long 
compared to the time in which the collision takes place. 

CHAPTER VI.  CONCLUSION 

15. Summary o/results. We have now come to the end of our analysis and 
we shall briefly summarize what has been achieved. Our starting point was 
the resolvent operator R(z) from which one can derive most of the desired 
information, such as energies and wave functions of stationary states and 
life-times of metastable states. The resolvent was expanded in powers of the 
perturbation, as shown in (3.5). The different contributions to each term in 
(3.5) were analysed by means of diagrams. In section 6 we investigated the 
dependence of these contributions upon the volume ~2 (or the total number 
of i~articles) of the system under consideration. We found that  diagrams 
containing a certain number n of ground state components give, in the limit 
of Q -+ oo, a contribution proportional to ~2 n, whereas in the same limit all 
other diagrams give finite contributions. Because diagrams containing any 
number of ground state components contribute to R(z), the straight per- 
turbation expansion (3.5) has terms with arbitrarily high powers of Q. 
Clearly such an expansion is extremely inadequate for the application to large 
systems. 

The analysis of chapters I I I  and IV showed how this important difficulty 
can be overcome. On the basis of a general theorem (expressed by (7.4)) we 
derived the basic formula (8.1) which expresses an arbitrary matrix element 
<fl [R(z)[ 0¢> by means of a convolution integral involving the unperturbed 
ground state matr ix element <~o [R(z)[ ~07 = Do(z) and the matrix element 
<fl [/~(z)[ c¢>. The latter differs from <fl [R(z)l a)  in this respect that  the only 
diagrams contributing to (fl [/~(z)[ ~> are those without ground state 
components. Consequently <fl [/~(z)[ a> is, in the limit of ~2-+ ~ ,  finite 
and independent of £2. The whole Q-dependence is thereby isolated in Do(z). 

To investigate Do(z) we derived by a new application of (8.1) the integral 
equation (8.4). This equation can be solved explicitly, the solution being 
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given by (9.23). It  expresses Do(z) in terms of the function G0(z). According to 
its definition (8.3), only connected ground state diagrams contribute to 
G0(z), so that  it is, for large f2, simply proportional to f2. 

Two quantities of physical interest can be derived from Do(z). They are the 
pole E0 of this function, giving the perturbed energy of the ground state, 
and the residue -- No in this pole. The factor N~0 plays the role of a normali- 
zation factor in the expansion of the exact ground state wave function I~v0) 
in unperturbed states. The values of E0 and No are given by (9.24) and (9.21). 
We see that  these expressions involve only the values of G0(z) and of its 
derivative at z = e0, both proportional to f2 (*0 is the unperturbed ground 
state energy). Two of our intermediate formulae, (9.25) and (11.16), which 
we used for the shift/1E0 = E0 -- eo of the ground state energy and for the 
wave function I~v0 )were found recently by G o l d s t o n e  s) who derived them 
from a time-dependent perturbation method originally introduced by Gell-  
M a n n  and L o w  ~). These expressions differ considerably from our final 
formulae (9.26) and (11.23). The simplicity of (11.23) as compared to (I 1.16) 
lies in the fact that  the former involves only connected diagrams. In 
addition the reduction of the diagrams to their irreducible form (using 
the method introduced by V a n  H o v e  in H I) makes our formulae much 
more suitable for the application to infinitely large systems. The perturbed 
ground state wave function is obtained by application to its unperturbed 
analogue of the operator (11.23) involving the exponential of a very simple 
operator 00. 

Going over to the consideration of excited states (i.e., for the example of 
"a Fermi gas, of states differing from the ground state by the presence of 
some additional particles and some holes), the main results of this paper are 
expressed by (10.11) and (12.9). The importance of these formulae can be 
expressed by saying tha t  the excitation energy E~ and the operator ( ~  
have a finite and simple limit for f2 ~ oo. E~ is the perturbed energy 
difference between excited and ground state, while $~ is the operator which 
transforms the perturbed ground state wave function into the perturbed 
wave function of the excited state. As a further result we might mention 
formula (13.1) which gives a very concise and transparent expression for the 
asymptotically stationary states as defined by V a n  H o v e  in H I and H II. 
These states play an important  role in the theory of collisions. 

A striking property of many systems with a large number of degrees of 
freedom is the existence of dissipative effects. For systems with an excitation 
energy of the order of the total number of particles, these effects are 
responsible for the trend towards thermal eguilibrium; they were studied 
extensively by V an  H o v e 8). Also for smaller excitation energies (a situation 
corresponding to zero-temperature) such dissipative effects can play an 
important role. One aspect of them has been investigated here: the case of 
metastable states, i.e. of states which would be stationary were it not that  
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they show, as a result of the perturbation, an exponential decay with a long 
life-time. Such states have been studied in section 14. An important example 
is provided by  a slow nucleon penetrating into nuclear matter  and traveling 
a considerable distance before the compound nucleus is formed. 

16. Final remarks. At the start of our investigation we assumed the 
convergence of the expansion (3.5) of R(z) in powers of the perturbation, 
at least for z non-real. Our final results are still expressed as series expansions 
but  the latter differ from the original expansion by the fact that-a number 
of partial summations have been performed explicitly. This circumstance 
manifests itself clearly in our results, inasmuch as the class of diagrams 
contributing to the final expressions is very much smaller than the class 
contributing to the original ones. We have therefore every reason to believe 
that  the convergence of our resulting expressions is much better. We know 
in particular that  this convergence is no longer affected in any way by  the 
large size of the system and its large number of degrees of freedom. The 
question under what condition on the strength and form of the two-body 
potential our final series converge is however unsolved. Let als devote a few 
comments to this difficult point. 

Let us take a large vessel, with volume/2,  filled with a gas of interacting 
Fermi particles. Considering the ground state of the system we distinguish 
the following cases. 

1. The particles are distributed homogeneously throughout the vessel, 
exerting a pressure on the walls. This situation certainly occurs whenever 
the forces are repulsive, but  also part ly attractive forces can obviously give 
rise to it. For not too singular forces it is to be expected that  our expansions 
converge. 

2. The particles are bound together by  their mutual  interaction, thus 
occupying only a pa r t /2 '  of the volume/2.  The volume/2 '  and the energy 
are proportional to the number N of particles, as will be the case for satu- 
rating forces. A large nucleus of volume ~9' enclosed in a vessel of volume 
/2 > / 2 '  is an example of the case considered here. For such a system the 
perturbation theory, even in case of convergence, is not strictly valid: the 
state [~o0>, obtained by  perturbation of the unperturbed ground state, 
would then not represent the state of lowest energy. If, however, we reduce 
the vessel to a volume < / 2 ' ,  thus increasing the particle density, we are 
back to the first case. 

3. In contrast with case 2, the forces may be such that the ground state 
corresponds to a particle density and all energy density increasing with 
the total number of particles. This corresponds to non-saturating forces. 
For such forces the perturbation method will break down completely. 

Another remark concerns the normalization factor No ~ in (! 1.23). This factor 
has the simple form exp (-- G0(eo)). The exponent is proportional to ~ and 
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consequently No approaches zero in the limit of /2  -+ oo. Consequently, if 
this limit is actually carried out, all expansion coefficients are zero and a 
proper expansion of I~v0> in unperturbed states is no longer possible. Another 
way of stating this remarkable fact is to say that  the ground state ]~0> as 
well as any other eigenstate [~v~> + of the total hamiltonian, become orthogon- 
al to all unperturbed states ]~> in the limit ~2 -+ oo. This is connected with 
the fact that  in this limit the system has infinitely many degrees of freedom 
(e.g., infinitely many particles), so that  the set of basic vectors spanning the 
Hilbert space of its state vectors is no longer countable. In this non-separable 
Hilbert space ma~y separable subspaces can be formed. On the one hand, 
the unperturbed ground state [90>, and all unperturbed states J~> differing 
from ]90> by excitation of a finite number of particles (and holes) span a 
separable Hilbert space. On the other hand a separable Hilbert space is formed 
by the perturbed states I~v0> and I~v~> +. The vanishing of No for /2 = oo 
implies that  these separable Hilbert spaces are orthogonal to each other. 
As was remarked by V a n  H o v e  9), a similar situation occurs also in field 
theories where the vacuum is not affected by the perturbation (no pair 
creation). It  is then caused by ultra-violet divergencies. In such theories it 
is irrelevant whether the volume in the configuration space is finite or not, 
the essential fact is the occurrence of divergencies in momentum integrations, 
i.e., the occurrence of an infinite "effective" volume in momentum space. 

Finally some words must be said on the relation of the present investigation 
to the formalism of current field theory. Applying our formalism to field 
theory, one would be tempted to identify the function /~(e0 + z), being 
the diagonal element of R(s0 + z) for a state of one particle with momentum 
k, calculated with omission of all disconnected diagrams, with the Fourier 
transform of the one-particle propagation function A'F(x, t) as introduced 
by D y s o n  10). This, however, is not generally true. One can show that  the 
identity exists only in those theories where the free vacuum is not affected 
by the perturbation. I t  can nevertheless be established that  the singularities 
of both quantities, which determine the mass renormalization of the particle, 
are the same 11). 
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APPENDICES 

A p p e n d i x  1. An alternative proof of equation (7.1) can be obtained by  
comparison with the case of a system composed of two completely inde- 
pendent subsystems. The hamiltonian H of the total system can be written 

H = H I  + H2, 

where HI  and H2 are the hamiltonians of the two independent subsystems. 
We shall denote the resolvent operators by  R(z),  Rl(z) and R~(z). They 
are commuting operators. 

If one multiplies the identity 

H - -  z = ( H 1 - -  ~) + ( H 2 - -  z + ~)  

by  the product R(z)  RI(~) R2(z - -  ~) one gets 

RI(~) Rg.(z - -  ~) = R(z) (RI(~) + R2(z - -  ~)). 

Taking I m  z ::# 0 and integrating on both sides over the variable ~ along 
the path defined in section 7 eq. (7.2) one obtains the formula 

--  (2~i)-1~ d~Rl(~) R ~ ( z - - ~ ) = R ( z ) [ - - ( 2 z d )  -1 ~ d~RI(~)--(2~i) -1 ~d~R2(z--~)]. 

The second term on the right-hand side is zero, owing to the fact that  
R ( z  - -  ~) has no singularities on the real ~-axis. The first term within the 
brackets is equal to one, as one sees from (3.3) by  putt ing t = 0. We are 
left with 

R(z) = Rl(z) ~- R2(z), (AI.I) 

where we used the notation introduced in section 7. 
Suppose now that the two subsystems are identical though independent 

systems of the type studied in this paper. As an example one could think 
of two vessels of equal volume filled with the same number of identical Fermi 
particles. The hamiltonians are H1 = H ° + V1 and Ha = H ° + V2. The 
total resolvent R(z)  can be expanded in powers of V = V1 + V2 

1 1 1 
- (V~ + v2) + . . . . . .  

R(z) = HO + H O _  z H ° + H ° -  z H ° + H ° - z 

and the contributions to the different terms can again be represented by  
diagrams. Consider such an arbitrary diagram. It  contains two different 
kinds of vertices corresponding to V1 and V2. The diagram falls apart into 
two subdiagrams A' and B'  which contain all vertices of systems 1 and 2 
respectively. A' and B'  are not connected with each other, there being no 
lines joining a vertex of system 1 with a vertex of system 2. Together with 
this diagram we consider all diagrams which can be obtained from this one 
by  changing the positions of the vertices of A' with respect to B'. The con- 
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tributions of these diagrams differ only by the energy denominators. Let 
us denote the sum by (a'fl' [C'(z) ]aft> where [a> and [a') are the initial and 
final state of system 1, [fl> and Ifl') of system 2. If we denote the contribution 
of A'  to Rl(Z) by (a' ]A'(z)] a) and the contribution of B' to R2(z) by 
(fl' I B'(z) I fl>, application of (A1.1) gives immediately the formula 

<a'/t' IC'(z)l a/t> --  <a' IA'(z)l a> * <tl' IB'(z)l/~>. (A1.2) 

I t  is valid for two uncoupled systems and must not be confused with (7.4). 
We can however use (A1.2) to establish the validity of (7.4) by means of the 
following argument. Let us take the diagrams A' and B' identical with A and B 
of section 7. The quantities <~' [A'(z)[ a> and <fl' [B'(z) l fl> are then formally 
identical with (a' [A (z)[ a)  and (fl' IB(z) l fl) of section 7. Let us now compare 
(a'fl' IC'(z)[ af t )wi th  (fl'a' [C(z)l aft). Although these quantities deaf ly  have 
different meanings, the only formal difference is the fact that  in the latter 
the energy eo of the unperturbed ground state is counted only once and not 
twice in the energy denominators. This difference can be compensated for 
by substituting z -- eo for z in (fl'a' ]C(z)[ aft). This leads to the formula 

< ~ ' a '  I C ( z  - e0) l  a ~ >  = < a '  I A ( z ) l  a >  * </t'  I B ( z ) l / t > ,  

an alternative form of (7.4) or'(7.1). 

Appendix 2. I t  will be shown in this appendix that  the integral equation 
(9.7) has at most one solution/(z) which is holomorphic outside the real axis 
and bounded for large ]z]. I t  is sufficient to prove that  the homogeneous 
equation 

z/(z) = -- (2~i)-i ~ dC h(C)/(z -- ~) 

has no such solution/(z). 
By (9.1 I) this equation can be written 

zt(z) = I T  d~ p(~) /(z -- ~). (A2.1) 

We shall make use of the fact that  the integrals 

f0 o L = IP(x) l dx and M -- IP(x) l dx (A2.2) 
x 

are convergent. These properties of p(x) are an immediate consequence of 
(9.13) and (9.2). We choose an arbitrary point z, not on the real axis, for 
which Re z < 0. The tunct ion/(z  + a) of the real variable a is bounded; 
consequently there exists a positive number N(z) such that  

[/(z + a)l < N(z) for all a. 

Iterating equation (A2.1) n times, one obtains 

lfo° fo°f/ /(z) = z d~l ...... d~n d~n+l p(~l) ...... P(~n) 
z - -  ~1  z - -  ~1 - -  ~2  - -  . . .  - -  ~ 

• P(~,~+I)/(z - ~ 1  - . . .  - ~+I). 
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This equal i ty  can be changed into an inequal i ty:  take  the absolute  value 
of bo th  sides and replace the integrand b y  its absolute  value. The r ight-hand 
side is increased fur ther  if one replaces the  denominators  Iz - -  21 - -  ... - -  2~1 
b y  21 + . - .  + ~k, and I/(z - -  21 - - . . .  - -  2 n + l ) ]  b y  N(z). One finds, using (A2.2), 

i_~1 f l  ° f0 ° lP(21)I IP('~)l L.  N(z). I/(z) l < d21 ... . . .  d2n 2----~ ... . . .  21 + 22 + -.. + 2n 

The integral  at  the r ight-hand side is not  changed b y  a pe rmuta t ion  of the 
variables 21, 22 . . . . .  2n in the integrand. Using the simple algebraic equat ion 

Xe 2i-1(21 + ~2) -1 ...... (~1 + 2~ + ... + 2,) -1 = 2i -1 2 ;  1 ... ~Zx, 

where the sum is ex tended  over the n l permuta t ions  of the n variables, one 
is led to the  inequal i ty  

1 l f0" f ' f  1P($1)1 IP(2n)l L.N(z), ll(z) l < ] ~  ~ d2~ . . . . . .  d2,~ t ~  ...... 2---~ 

or b y  (A2.2) 
I/(z) t < LN(z) Izl-1. M,/n!. 

This inequal i ty  holds for all n. Hence,  noticing tha t  limn_~, o Mn/nl = O, 
we f ind / (z )  ---= 0 for all non-real  z, for which Re z < 0. This is enough to 
conclude tha t / ( z )  =-- 0 and tha t  the homogeneous integral equat ion has no 
non-zero solution which is holomorphic outside the real axis and bounded  
for Iz[ --> oo. This proves  our s ta tement .  

Appendix 3. In section 9 the integral  equat ion (9.14) was solved b y  means 
of a Laplace- t ransformat ion.  We shall prove here tha t - the  funct ion ~(s), 
given b y  (9.16), is the Laplace- t ransform of a funct ion 9(x) given b y  (9.18). 
The known propert ies  of p(x) imply  the absolute  convergence of 
f ~p (x )  exp (--  sx) dx andf~Ox-lp(x) exp (--  sx) dx for s ---- 0 as can be seen 
from (A2.2). F rom this we conclude tha t  bo th  }(s) = f~o p(x) exp (--  sx) dx 
and f~* x -1 p(x) exp (--  sx) dx are analyt ical  functions of s for Re s > 0 
(see e .g .G.  D o e t s c h, H a n d b u c h  der Laplace-Transformat ion I, Satz 1 [3.2]). 
Consequent ly  the same holds true for the functions ~(s) and ~'(s) given b y  
(9.16) and (9.15). F rom the behaviour  of p(x) near the origine (9.17) we 
can determine the asympto t i c  behaviour  of ~(s) and f0** x-lp(x) exp (--sx) dx 
for large s. Applicat ion of one of the Abelian theorems (see e.g. D o e t s c h ,  
Satz 5 [14.1]) immedia te ly  gives 

p(s) = O([s[ - l -a)  and f~* x -1 p(x) exp (--sx) dx = O(]sl -~) for Is[ -+ oo. 

Hence,  f rom (9.16), 
limM_.** ~(s) = 0 

and from (9.15) 
A 

~0'(s) = O(Is1-1-~) for Is[ -+ co. 
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A !  
This asymptotic property of 9 (s) is sufficient (see e.g. D o e t s c h ,  Satz 3 
[7.2]) to ensure the existence of a function ;~(x) such that 

~'(s) = f ~  •(x) exp (--sx) dx. 

Z(x) is given by the complex integral 

- -  (z i)-i exp  ds, > 0. 

Another Abelian theorem (see e.g. D o e t s c h  Satz 1 [15.5]) predicts the 
behaviour of Z(x) near the origin from the asymptotic behaviour of ~'(s) 
for large [s[: 

z(x)  = 

This enables us to define the Laplace-transform 

F(s) -~ f~x-1 Z(x) exp (--sx) dx. 

F(s) is an analytical function for Re s > 0, with the same derivative as 
~(s). Both F(s) and ~(s) tend to zero for s -+ oo and are consequently equal. 
This proves that ~(s) is the Laplace-transform of a function 9(x) ----- x -1 Z(x). 
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