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I T MAY be supposed as generally known+that the spatial ventricular gradient 
is the time integral of the heart vector 11: 

It is the vectorial sum of the infinitesimal small products of the heart vector 
2 and the infinitesimal small time interval dt. It can be extended over the period 
of depolarization (QRS), over the period of repolarization (ZJ or over the total 
heart period : 

&S-T = &s + z (21 

The sum has to be taken as a vectorial one. 
The vectorial ventricular gradient owes its signilicance to the allegation 

that its value depends only on the state of the heart muscle and is independent 
of the origin of the excitation. So it should be a means to discriminate between 
a failure of the heart muscle and of the Purkinje system. The clinical significance 
of the gradient must remain undiscussed here. 

In view of equation (1) the name “gradient” is paradoxical. While this 
word denotes in physics a differential quotient with respect to position or a co- 
ordinate it appears here as indicating an integral with resyct to time. It is 
the purpose of this paper to show that, in a schematic case, G defined according 
to (1) has, indeed, a relation to a gradient in the physical meaning. 

We will consider first the schematic case of a narrow homogeneous muscle 
strip as depicted in Fig, 1. An analogous case was treated some years ago by 

Wilson3 and by Cabrera.l The present one, 
however, is somewhat less specialized. It 
is supposed that the boundary between 
depolarized and repolarized muscle tissue 
is a plane perpendicular to the strip. So 
the “heart vector” has the direction of the 

Fig. l.-Excitation of a muscle strip 
AE, beginning2t A. ds = element of 

strip and is supposed to have a constant mag- 

muscle strip. H = heart vector. nitude, the same for the depolarization and 
the repolarization wave. 
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If the depolarization (QR.S) is started at /I (Fig. l), the gradient of de- 
polarization can be calculated according to equation (1) : 

ZQRS = 
/ 

i7 dt (2&j 

We assume the velocity of propagation of the depolarization to be constaut 
(cl. Then the length of an infinitesimally small element ds of the strip equals 
the product of velocity c and time &: 

ds = c di, or dt = d,q!c. (,%?,I 

This substituted in (2) gives: 

C;Rszp+~~J2ds, 

As g and & (considered as a vector) have the same direction, we can put 
the arrow over z as well as over g: 

zQRs = ; 
i 

-n 
HAds. 

. A 

II, the magnitude of the “heart vector ” is supposed to be constant, so: 

The vectorial sum of all elements 2 is the vector /I!!, independent of the 
shape of the arbitrarily curved muscle strip, and therefore: 

If the starting point of the excitation is not 
at the end of the strip but in arbitrary point 

Fig. 2.-Excitation of a muscle 
strip, beginning at C and proceeding 
t,o ,.t and B. 

It can be easily seen that this vector sum generally depends on the position of 
the starting point C on the muscle strip AB. 

After the depolarization (== excitation) there follows repolarization. If the 
time r taken by the muscle tissue to repolarize is constant all over the strip, 
it is easily seen that the repolarization process follows the depolarization with the 
same velocity c. The only difference is that llow the direction of the vector X 
is reversed. So: 
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We have, therefore, to accept some heterogeneityys to the time of repolariza- 
tion r, in order to be able to explain a finite value of GQB,s-y. We will, therefore, 
suppose henceforth that the time of repolarization 7 is a function of the position 
on the muscle strip. 

In order to realize the consequence of this supposition we return to the 
simple case of Fig. 1, where the depolarization starts at the beginning LI of the 
muscle strip. When r does not depend greatly on the position, i.e., on s, the 
distance of a point from /I measured along the strip, the repolarization follows 
the same course from A to B. But the velocity is not c; it can be calculated in 
the following way. 

If s is again the length of the muscle strip from L! to an arbitrary point l’ 
on it, the depolarization, starting at A, takes a time s/c to reach P. If T(S) is 
the time taken for the repolarization, depending on the position of P and so on 
the length 5, the repolarization takes place at the time s/c + r(s), after the 
starting of the depolarization at A. So: 

f *w. = s/c + T(S). 

By differentiating this equation with respect to s, we obtain: 

h(s) . 
when T’(S) = -dy 1s the derivative of the function T(S). 

IVCN WWrep. is the velocity creP, of the repolarization wave 7-, so: 
1 
- =; +TI(s) 
c ((5) 

re*. 

The contribution of the T wave to the sp3,tial vytricular gradient is ex- 
pressed by the general equation (1), but since H and ds have now an opposite 
direction, we get: 

ZT = - lBgdt = - lBi?Ep, 

l/Gep. can be replaced by its value according to (6), and 2 ds can be writteu 
as H 2 just as in the QRS case. Then we obtain: 

g= -H/‘~{++w(s)}= -H[+[T~(s);;. 
A 

The first integral can be evaluated as in the preceding case: 

-H[$ m:[&::A2. zt 

According to (2) the total ventricular gradient is: 

&sz = &&ZT =:A2 -:A3 -H 
B 

T!(S)&= -H 
n 

v(s) 2. (7) 



From this equation we can only derive a distiiict result, if LVV suppose that T’(Y) 
is constant along the muscle strip AB. Then (7) reduces to: 

In order to understand the next step, it should be borne in mind that T’(S) 
is positive if the time r increases from A to B. This next step is that we retur11 
to the situation of Fig. 2, where the excitation starts at an arbitrary point C 
of the muscle strip. From C the excitation proceeds akrlg the muscle strip to 
A and to B. Both processes give their contribution to G according to (8 1. 1:o1 
the propagation from C to B we can appl!. (8 1 clirectl>- ;II~CI have: 

(E&.y&fi = --~~T~(S~ ZB c (l;t) 

But for the propagation from C to A the direction of the propagation has a 
sign opposite the direction in which T’(.Y) is taken positive. We must, therefore, 
give T’(S) in this integral a negative sign, but according to our assumption the 
same value as in the preceding case, so: 

&&4 = + HP(A) z4 (9bl 
The total gradient is the sum of the contributions (9a) and (9b) : 

From (10) the important conclusion may be drawn that the ventricular 
gradient, which takes all our assumptions for granted, is independent of the 
position of the point C, the starting point of the excitation. It is this propert! 
that gives the gradient its importance. 

Two remarks may be made with respect to equation (10) : (a) The gradient- 
is proportional to the differential quotient T’(S), which is a real gradient, i.e., a 
differential quotient of a property T of the muscle with respect to a “coordinate” 
.s. For a homogeneous muscle strip the gradient is zero; (b) bVe may suppose 
that the retardation time T of the repolarization is greater the more the muscle 
is injured or strained. If the strain+is greatest at B then the time T is greatest 
there+and T’(S) is positive. Then G has, according to (lo), the same direction 
as BA, so the gradient is directed from the more injured or strainecl part B to 
the less injured or strained part A. 

The muscle strip, dealt with above, may- be curved and may even be 
curved in space. It need not be flat 

Fig. 3.-Heart muscle partly depolarized 
fshaded). The excitation proceeds along a nor- 
mal of the boundary surface between polarized 
and depolarized. & = infinitesimally small 
element of normal. This is a vector whose direc- 
tion gives the direction of propagation of the 
excitation. 

So we have solved a spatial problem: 
but on the other hand it is a linear 
object, although curvilinear. It is 
possible, however, to solve the prob- 
lem with some restrictions for :I real 
spatial case- i.e., for a muscle mass 
extending in three dimensions and hav- 
mg an arbitrary shape. But iii this 
case we need more mathematics tharr 
in the preceding one. in the schematic 
(Fig. 3) part of the muscle mass (shaded 1 
is excited. As the depolarization is de- 
pitted, the shaded part is increasing. 



As in the former case, we suppose that the boundary between excited a~id 
nonexcited is sharp (Durrer and Van der Tweel?). This boundary surface may’ 
be described by the equation: 

F (.x, y, z, t) = 0. 

X, y, and z are orthogonal coordinates, and t is the time. The occurrence of ,! 
in this equation means that the boundary surface depends on time, i.e., that 
it proceeds. 

In order to make the calculation as simple as possible we think L resolved 
from the last equation: 

.f b, Y, 4 = t (11) 

The way in which f is derived from F is of no importance for the following 
deductions. By equation (11) is expressed that, at each moment, for any value 
of t, the shape of the boundary surface is determined and dependent upon t. 
At a time t’ = t + dt, somewhat later than f, the boundary surface has proceeded 
and is depicted by the dotted line, which represents a cross section of this surface 
and the plane of the drawing. By means of elementary analytic geometry it 
can be shown that the small distance dn of the two surfaces at the point P (x, y, z) 
is: 

Jg a”f af 
ax’ ry9 72 

are the partial differential quotients of the function f, with respect 

to X, y, z. The equation (12) can be used to express dt in a linear quantity dn 
in a way analogous to that in the case of the muscle strip. 

We first calculate the depoiarization part of the gradient: 

According to (12) dL may be substituted: 

The heart vector g at the moment t is a surface integral, extending over the 
boundary surface t = f (x, y, 2). If dS is y in$nitesimal element ofJhis surface, 
the contribution of dS to the heart vector His Jr dS. In this product h is a vector, 
directed normally to the surface L+(x, y, z) and from excited to unexcited. It is 
well known that the amount of /z, denoted by /z, in various cases is not much 
different and of the order of magnitude of 100 mv. It is the potential jump at 
the boundary layer. We will suppose it to be constant, i.e., independent of place 
and time during the propagation of the boundary surface. 

The total heart vector is the surface of x dS, extended over the area of the 
surface t = f (x, y, 2): 

jjc [TdS 03) 
s 



The first integral sign denoted originally an integration with respect to 
time, but by the conversion (12a) it is now a spatial integration, and both in- 
tegral signs can be replaced by an integration over the volume of the muscle. 
This is in accordance with the fact that CIE cIS is volume element, a small c>rlinder 
with d.5’ as base and ~17~ as height: 

dn dS = dv. 

SoZons is a volume integral: 

in order to transform this integral so that it is suited for calculation of ?T, 
we can introduce the gmdz’mt of .f. This is a vector, the components of which 

bfs jg, j?J are the differential quotients mL 
-9 

simply by i?. 
ax ay bz . 

It is denoted by v-f (x, y, z) or more 

Its value is computed from the components in the ordinar!. wan. as 
square root of the sum of the squares of the components: 

I& = 

Before substituting this in (14a), we may remark that the direction of vj 
is the same as that of the normal (z, Fig. 3) on the surface t = J” (x, y, z). This 
follows immediately from the well-known expression of differential analytic 
geometry. Since 2 has the direction of the normal too, we can transform the 
integrant of (14a) in this way: 

and since Jz is a constant, we get: 

z&s = 
, 

h j vf dv. (15) 
%-of 

This simple formula allows us to compute the rest of the gradient, kT. 
To this end we suppose again that repolarization follows depolarization after a 
time 7. This time is in the present case a function of the place in the muscle so 
it is a function 7 (x, y, z) of the coordinates. N?th assumptions analogous to 
those made in the first part, the propagation of the boundary. surface, on the 
analogy of equation (1 l), can now be expressed by: 

If = f @,y,z) +7 (Gy,z’l. Cl61 

Since% repolarization (7’), accepting our simplifying assumptions as in the 
first case, Jz has just the opposite direction as in depolarization, substitution of 
(16j, i.e., f+ 7 for f in (lS), gives: 



246 

Addition of (15) and (17) gives the total ventricular gradient: 

If $ is constant over the whole muscle, we can write it before the integral 
sign and, keeping in mind that 

1 
dv = V is the total muscle volume, the 

gradient amounts to: V@l 

From the formulae (18) and (1Sa) it appears that the starting point of the 
depolarizat$ has no+influence on the gradient. This influence is present in 
both parts GQRS and GT as it is represented by the functionj (x, y, z). But the 
total gradient .depends only on the lag time 7, in the state of the myocardium. 
It is interesting to reTark that in the final result it is the grudient of this 
time that determines G. The name gradient appears to be well chosen; the word 
has the same meaning2s in physics. 

The direction of GQE~-T follows from (18a). It points from parts of the 
muscle with greater 7 to such with smaller r. So it is directed from the more 
injured or strained part to the less injured or strained part, just as in the first 
case, that of the narrow muscle strip. 

SUMMARY 

In simple cases it can be shown, theoretically, that the ventricular gradient 
is independent of the point of excitation. It can be expressed in the gradient 
of the time interval between depolarization and repolarization. 
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