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Summary: To distinguish between antigenic stimulation and CD4* T-cell homeostasis
as the cause of T-cell hyperactivation in HIV infection, we studied T-cell activation in
47 patients before and during highly active antiretroviral therapy (HAART). We show
that expression of human leukocyte antigen (HLA)-DR, CD38, and Ki67 on T cells
decreased during HAART but remained elevated over normal values until week 48 of
therapy. We confirm previous reports that T-cell activation correlates positively with
plasma HIV RNA levels (suggesting antigenic stimulation), and negatively with CD4
count (suggesting CD4* T-cell homeostasis). However, these correlations may be
spurious, because misleading, due to the well-established negative correlation between
CD4 count and plasma HIV RNA levels. To resolve this conflict, we computed partial
correlation coefficients. Correcting for CD4 counts, we show that plasma HIV RNA
levels contributed to T-cell hyperactivation. Correcting for plasma HIV RNA levels,
we show that CD4" T-cell depletion contributed to T-cell activation. Correcting for
both, activation of CD4* and CD8" T cells remained positively correlated. Because this
suggests that CD4" and CD8" T-cell activation is caused by a common additional
factor, we conclude that antigenic stimulation by HIV or other (opportunistic) infec-
tions is the most parsimonious explanation for T-cell activation in HIV infection.
Persistence of HIV antigens may explain why T-cell activation fails to revert to levels
found in healthy individuals after 48 weeks of therapy. Key Words: Activation—
Proliferation—T lymphocytes—CD4—CD8—Antiretroviral therapy.

T lymphocytes of HIV-infected people have increased
expression of activation markers human leukocyte anti-
gen (HLA)-DR and CD38 (1-11) and increased prolif-
eration rates. The latter has been demonstrated using two
different techniques. First, by determining the fraction of
dividing cells through expression of the nuclear antigen
Ki67 (12), it was shown that T-cell proliferation rate is
increased maximally twofold to threefold in the CD4*
population, and sixfold to sevenfold in the CD8 popula-
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tion (13-16). This limited increase in the division rate is
consistent with results of studies that measured the rep-
licative history of T cells by the average telomere lengths
(17,18). The second technique, using deuterated glucose
to label DNA in vivo, showed that the turnover of CD4*
and CD8" T cells in HIV-infected patients is about three
times higher than that of uninfected individuals (19).
Increased turnover of CD4* and CD8" T lymphocytes
has also been observed in macaques infected with simian
immunodeficiency virus using BrdU to label DNA in
vivo (20).

Two models have been proposed to explain the hyper-
activation and increased proliferation of T cells in HIV-1
infection. One model contends that T-lymphocyte acti-
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vation in HIV infection is driven by antigens from HIV
and/or from other pathogens (15,21,22). Alternatively,
increased production of CD4* T cells may be a homeo-
static response to compensate for the loss of CD4" T
cells that are killed by HIV (23,24). The goal of this
study was to determine which of these two mechanisms
best explains the T-lymphocyte activation in HIV infec-
tion. We therefore performed cross-sectional and longi-
tudinal analyses of the activation status of T lympho-
cytes, T-lymphocyte population density, and plasma HIV
RNA levels in a large cohort of HIV-infected patients
before and during HAART.

MATERIALS AND METHODS
Study Population

The activation and proliferation status of T cells was analyzed in 47
patients from the previously described CHEESE study cohort (25) with
a sustained plasma HIV RNA response to levels <50 copies/ml. Briefly,
this is a randomized study comparing antiviral efficacy of zidovudine
(Retrovir) plus lamivudine (Epivir) plus saquinavir-soft-gelatin-
capsules (SQV-SGC, Fortovase) versus zidovudine plus lamivudine
plus indinavir (Crixivan) in HIV-l-infected patients. Antiretroviral-
naive patients were eligible for study treatment if at the moment of
screening plasma HIV RNA levels were at least 10,000 copies/ml
and/or if CD4 counts were <500 cells/ml and/or if they had a history of
HIV-related symptoms (U.S. Centers for Disease Control and Preven-
tion [CDC] stage B or C). During 48 weeks of treatment, the virologic
and the CD4 count responses were no different between the two treat-
ment arms (data not shown). Of the selected patients, 25 were from the
indinavir arm and 22 from the SQV-SGC arm.

Healthy Controls

As controls for the expression of Ki67* on T lymphocytes, cryopre-
served peripheral blood mononuclear cells (PBMCs) from 5 HIV-
seronegative blood bank donors were used. As controls for expression
of CD38 and HLA-DR on T cells, freshly isolated PBMCs from 12
healthy HIV-seronegative donors were used.

Blood Sampling

Blood samples were obtained at baseline, and every 4 weeks through
week 24, and every 8 weeks from week 24 through week 48 of treat-
ment.

Plasma Viral Load

Plasma HIV RNA levels were measured using an investigational
version of the ultra-sensitive quantitative reverse transcriptase poly-
merase chain reaction (RT-PCR) assay (Amplicor HIV-1 Monitor,
Roche Diagnostic Systems, Neuilly, France). The lower limit of detec-
tion was 50 copies/ml.

Monoclonal Antibodies

Peridinin chlorophyll protein (PerCP)-labeled CD4, PerCP-labeled
CD8 and phycoerythrin (PE)-labeled HLA-DR monoclonal antibodies
were obtained from Becton Dickinson (San Jose, CA, U.S.A.). Fluo-
rescein isothiocyanate (FITC)-labeled CD38 and FITC-labeled Ki67
monoclonal antibodies were obtained from Immunotech (Marseilles,
France).

Flow Cytometry

The fraction of activated CD4* and CD8" T cells was determined by
three-color fluorescence-activated cell sorter (FACS) analysis using
monoclonal antibodies against CD4 (or CD8), CD38, and HLA-DR on
heparin-anticoagulated venous blood (FACScan; Becton Dickinson Im-
munocytometry Systems). In 16 patients, the fraction of proliferating T
cells was determined before therapy and at weeks 4, 12, 24, and 48 of
highly active antiretroviral therapy (HAART) by measuring the expres-
sion of the nuclear antigen Ki67 on cryopreserved PBMCs.

Statistical Analysis

The nonparametric Mann-Whitney-U Test (Wilcoxon Rank-Sum W
tests) was used to compare patients with controls. Longitudinal changes
of patient characteristics were tested using the nonparametric Wilcoxon
matched pairs signed-rank test. Pearson’s correlation coefficients were
computed to measure bivariate correlations. Partial correlations were
calculated to analyze the correlation that remains between two vari-
ables after removing the correlation that is due to their mutual asso-
ciation with a third variable. Correlations were computed for pooled
data of all timepoints (weeks 0—48) and for data of baseline only.
Similar correlations were found for baseline and for the pooled data,
although the p values were generally higher in the baseline correlations
probably due to a smaller sample size (Tables 1 to 3). Reported p values
are two sided. All statistical analyses were performed using SPSS for
Windows, release 8.0.0 (Chicago, IL, U.S.A.) Nonlinear regression
analysis was performed using Mathematica, version 2.1 (Wolfram Re-
search, Inc., Champaign, IL, U.S.A.).

RESULTS

Expression of Activation Markers Before Highly
Active Antiretroviral Therapy

T cells expressing Ki67 were considered to be prolif-
erating. Ki67 is a protein expressed by cells in the late
G1 and the S, G2 and M phase of the cell cycle (12). T
cells expressing HLA-DR were considered to be acti-
vated cells. The CD8* T cells expressing CD38 were also
to be considered activated (2,4,6—11). We confirm pre-
vious reports (1-11) that, before beginning HAART, the
expression of HLA-DR and Ki67 on CD4* T lympho-
cytes, and the expression of HLA-DR, CD38, and Ki67
on CD8" T lymphocytes, is higher in HIV-1 infected
patients compared with healthy controls (Fig. 1).
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TABLE 1. Correlation between plasma viral load and T-cell activation/proliferation

All data Baseline data
Activation Controlled Controlled
marker r for CD4 r for CD4

%HLA-DR (CD4)* 0.22° 0.20¢ 0.46¢ 0.33¢
%Ki67 (CD4)? 0.47” 0.46” 0.39¢ 0.44;p = .1
%HLA-DR (CD8)* 0.27% 0.26° 0.20;p = .2 0.23;p = .1
%CD38 (CD8)" 0.64” 0.60” 0.64” 0.56"
%Ki67 (CD8) 0.47° 0.54% 045, p = .07 0.51¢

“n = 461 for pooled data; n = 47 for baseline data.

" p < .001.

‘p<.05.

9pn =179 for pooled data; n = 16 for baseline data.

HLA, human leukocyte antigen.

Effect of Highly Active Antiretroviral Therapy on
Plasma Viral Load, CD4 Count, and CD8 Count

The median plasma viral load decreased from 40,000
copies/ml to <50 copies/ml in 16 weeks (p < .001). The
CD4 count increased from 301 + 28 at baseline to 507 +
40 cells/ml at week 48 (p < .001). The increase of CD4
count during the first 4 weeks of therapy was higher (2.0
cells/mm>/day) compared with the mean CD4 count rise
during later 4-week intervals (0.38 cells/mm>/day), in
agreement with a biphasic response pattern of the CD4"
T cells to HAART (26). The CD8 count decreased from
1050 + 70 cells/mm’ at baseline to 870 + 60 cells/mm’
at week 48 (p = .023).

Effect of Highly Active Antiretroviral Therapy on
Expression of HLA-DR, CD38, and Ki67 Cells on
T Lymphocytes

Expression of all activation markers on CD4" and
CD8* T cells gradually decreased during HAART (all p
values < .005). At week 48, however, the mean expres-
sion levels were still significantly higher than in healthy
controls, even though all patients had plasma HIV RNA
levels below 50 copies/ml for a median period of 32

weeks (range, 0-44 weeks; Fig. 1), which is consistent
with the findings of others (27-31).

Correlation Between CD4 Count, Plasma Viral
Load, and Percentage of Activated and
Proliferating T Cells

Previous studies have concluded that T-cell activation
markers are positively correlated with the plasma viral
load, and negatively with CD4 counts (11,14). For all
three activation markers, we report similar correlations
(Tables 1 and 2). However, these correlations may be
spurious, because of the indirect effect of the negative
correlation between CD4 count and plasma HIV RNA
levels (at baseline r -04; p .04). We therefore
corrected for the negative correlation between CD4
count and plasma HIV RNA by computing partial cor-
relations. The positive correlations that were observed
between the plasma viral load and the expression of ac-
tivation markers on T lymphocytes (Table 1) are scarcely
affected by controlling for the indirect effect of the CD4
count. Apparently, independent of homeostatic effects
through the CD4 count, the plasma HIV RNA level has
a true contribution to the T-cell hyperactivation. This

TABLE 2. Correlation between CD4 count and T-cell activation/proliferation

All data Baseline data
Activation Controlled for Controlled for
marker r viral load r viral load

%HLA-DR (CD4)“ -0.46" -0.43" -0.50" -0.40¢
%Ki67 (CD4)¢ -0.58" -0.55% —-0.60° —-0.64¢
%HLA-DR (CD8)* —-0.12¢ -0.03;p =3 -0.13;p = 4 -02;p =2
%CD38 (CD8)“ —-0.42° -0.32° -0.53¢ -0.39¢
%Ki67 (CD8)* -0.30° -0.12;p =3 -02;p = 4 -03;p =

“n = 461 for pooled data, n = 47 for baseline data.

®p < .001.

“p < .05.

d

n = 79 for pooled data, n = 16 for baseline data.
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TABLE 3. Correlation between activation in CD4* and CD8" subsets

All data

Baseline data

Activation markers

Controlled Controlled for Controlled for Controlled Controlled for Controlled for
CB8 CD4 r for CD4 viral load CD4 and VL r for CD4 viral load CD4 and VL
%HLA-DR* %HLA-DR 0.58”  0.62° 0.56” 0.62° 0.36° 0.49" 0.32¢ 0.45”
%CD38" %HLA-DR  0.39” 0.24* 0.33% 0.23% 0.46° 0.26¢ 0.24¢ 0.15¢
%Ki67¢ %Ki67 0.62° 0.49” 0.28> 0.32¢ 021;p =45 038p=.18 0.10;p=.8 022;p =4
“n = 461 for pooled data, n = 47 for baseline data.
b p <.001.
“p < .05.
d

n = 79 for pooled data; n = 16 for baseline data.
VL, viral load; HLA, human leukocyte antigen.

supports the model that antigenic stimulation plays a role
in T-cell hyperactivation during HIV infection. Simi-
larly, the negative correlation between the CD4 count
and activation of CD4" T cells persists after controlling
for the plasma HIV RNA load. This suggests a true ad-
ditional role for CD4 homeostatic effects on CD4* T-cell
activation. Thus, in the CD4" T-cell compartment, both
mechanisms seem to play a role. The negative correlation
between the CDS activation markers and the CD4 count
however largely disappears (HLA-DR, Ki67, Table 2)
when controlling for plasma HIV RNA. Apparently, ac-
tivation of CD8" T cells largely results from plasma HIV
RNA levels and is not directly related to the CD4 count.

In contrast to the inverse relationship between CD4
count and the percentage of activated CD4" T cells,
which suggests homeostasis (Table 2), no association
was observed between the CD8 count and percentage of
CD8" T cells expressing HLA-DR or CD38 (r = 0.12
and r = -0.01, respectively; p > .05). This seems rea-
sonable because homeostasis is not expected to play a
role in the expanded CD8 population. A weak positive
correlation between CDS8 count, and the percentage of
Ki67-expressing CDS cells was observed (r = 0.22;p =
.047).

Rate of Decay of T-Cell Activation Markers During
Highly Active Antiretroviral Therapy

To determine whether a relationship exists between
decreasing plasma HIV RNA levels and T-cell activation
during HAART, we estimated the second phase slope
(weeks 4—48) of HIV RNA from plasma for each patient
by linear regression analysis. In addition, the decay rates
of the activation markers on T cells were estimated as-
suming that the percentage of activated T cells at base-
line is a, and that T-cell activation decreases with rate per
day c to a level of healthy individuals b. We estimated a,
b, and c by fitting equation y = b + a[exp(-ct)] to the

measurements of T-cell activation, where y is the per-
centage of activated T cells and ¢ is time. No significant
correlations were found between the rate of decline of
plasma HIV RNA and the decay rates ¢ of HLA-DR and
Ki67 expression on CD4" T cells, or the decay rates of
HLA-DR, CD38, and Ki67 expression on CD8" T cells
(each absolute Pearson’s coefficient <0.37, each p value
> .24). These findings indicate that the daily decrease of
plasma HIV RNA plays a limited role in the decay rate
of T-cell activation.

To determine the influence of increasing CD4 counts
on CD4" T-cell deactivation during HAART, we also
estimated the daily increase of the CD4 count during
HAART for each patient. Because of the biphasic pattern
of CD4 count increase, the speed of increase was esti-
mated for the first phase (weeks 0—4), and the second
phase (weeks 4-48), using linear regression analysis.
During both phases, no significant correlations were ob-
served between the daily increase in CD4 count and the
decay rates of expression of HLA-DR and Ki67 on CD4*
T cells (each absolute Pearson’s coefficient <0.24, each
p value > .45). These findings indicate that the daily
increase of the CD4 count plays a limited role in the
decay rate of T-cell activation.

Correlation Between Activation and Proliferation
Status of CD4" and CD8" Cells

We confirm observations by Sachsenberg et al. (14)
that Ki67" expression on CD4* and CD8* T cells is
positively correlated (Table 3, Fig. 2D).Similarly, the
percentage of HLA-DR" CD4" T cells was positively
correlated with the percentage of HLA-DR™ or CD38"
CD8* T cells (Fig. 2C). This suggests that CD4" and
CDS8" T-cell activation is driven by a common mecha-
nism.

That the positive correlation between CD4" and CD8*
T-cell activation persists after controlling for the indirect
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FIG. 1. The effect of highly active antiretroviral therapy
(HAART) on expression of activation antigens on T lymphocytes.
Mean values are shown. Bars represent standard error of the
mean. Dotted lines indicate mean expression levels in healthy
HIV-seronegative controls. (A, B) Expression of human leukocyte
antigen (HLA)-DR and Ki67 on CD4* T cells, respectively. (C-E)
Expression of HLA-DR, CD38, and Ki67 on CD8* T cells, respec-
tively. At week 48, mean expression levels of the activation mark-
ers on T cells were still significantly higher than in healthy con-
trols (p < .05 each comparison of patients versus controls [Mann-
Whitney U-test]).

effect of CD4 count (Table 3) suggests that other factors
than CD4 homeostasis drive CD4* and CD8" T-cell ac-
tivation. This positive correlation, however, also persists
when we control for plasma HIV RNA level, and when
we control for both CD4 count and plasma HIV RNA
levels. These findings indicate that additional factors
may play a role in T-cell activation, such as immune
activation by other infections or HIV antigens that are
not correlated with the plasma HIV RNA load.

DISCUSSION

The aim of this study was to determine the mecha-
nisms involved in increased activation and division of T
lymphocytes in HIV-infected patients. We found a nega-
tive correlation between the CD4 count and the percent-
age of activated CD4" T cells, which remains after con-
trolling for plasma HIV RNA load. Observations like this
suggest a homeostatic response of the CD4* T-cell popu-
lation to compensate for the CD4™ T-cell depletion in
HIV infection (23,24). Several other observations, how-
ever, argue against a general role for homeostasis in the
increased activation of CD4* and CD8" T cells in HIV
infection. First, the activation and proliferation are also
resent in the expanded CD8" T-cell population. Second,
because the expression of activation markers on CD4*
and CD8" T cells remains positively correlated after con-
trolling for the CD4 count (Table 3), factors other than
CD4™" T-cell depletion appear to play a role in driving the
activation of both CD4* and CD8* T cells. Third, the
percentage of CD4" T cells expressing HLA-DR and
Ki67 decreased rapidly after the start of HAART even
though CD4" T cells were still depleted (15). Fourth, at
no timepoint during therapy, the decrease in the expres-
sion of HLA-DR and Ki67" on CD4* T cells was corre-
lated to the increase in CD4 count (data not shown).

The plasma viral load correlated positively with the
expression of HLA-DR, CD38, and Ki67 on T cells. This
positive correlation suggests that plasma HIV RNA load
and HIV replication drive T-cell activation. However,
two of our observations suggest that additional factors
play a role. First, even though at week 48 of HAART, all
patients had plasma HIV RNA loads below 50 copies/ml
for a mean interval of 32 weeks, the level of T-cell ac-
tivation and proliferation remained significantly higher
than in healthy controls. Second, the decay rate of the
percentage of activated and proliferating T cells was not
correlated with the elimination rate of HIV RNA from
plasma. Third, the expression of activation markers on
CD4" and CD8" T cells remained positively correlated
after controlling for plasma HIV RNA, suggesting that
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other factors than plasma HIV RNA contributes to T-cell
activation.

Which additional factors, apart from CD4 homeostasis
and plasma HIV RNA levels, could contribute to T-cell
activation? The positive correlation between fractions of
activated cells in the CD4" and CD8* T-cell population,
which persist after controlling for the CD4 count and the

plasma HIV viral load, suggests that CD4" and CD8"
T-cell activation are governed by similar factors. Thus,
we believe that the most parsimonious explanation for
the hyperactivation of both CD4" and CD8" T-cell popu-
lations is antigenic stimulation. This may involve (long-
lived) antigens from HIV and/or other (opportunistic)
pathogens.
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The negative correlation between the CD4 count and
T-cell activation, which could be taken as evidence for a
homeostatic response of the CD4" T-cell population,
may also be explained by antigenic stimulation. A low
CD4 count increases the risk of developing opportunistic
infections with Pneumocystis carinii, cytomegalovirus
(CMV), or Mycobacterium avium complex (32,33).

% Ki67+ (CD4)

Moreover, in the blood of patients with low CD4 counts
signs of active CMV and Epstein-Barr virus replication
have been observed (34-37). These (opportunistic) in-
fections are associated with increased T-cell activation
(11,38—40). Antigenic stimulation also explains the posi-
tive correlation between the plasma viral load and T-cell
activation. A high plasma viral load is associated with an
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increases the risk of developing opportunistic infections,
and replication of HIV itself also increases antigenic
load.

The slow decay of T-cell activation during HAART
may be explained in two ways. First, the clearance of
antigens from other anatomic compartments than the
blood, for instance, lymphoid tissue, is expected to be
slow (41-43). In line with this, we observed persistence
of HIV p24 antigen in lymphoid tissue, after 18 months
of HAART with plasma viral loads below 50 copies/ml
(data not shown). Secondly, low-level ongoing HIV rep-
lication during HAART may play a role. Based on theo-
retical considerations (44) and the detection of HIV
mRNA in lymphoid tissue of patients on HAART with
plasma viral load <50 copies/ml (45,46), it has been hy-
pothesized that a low level of HIV replication may occur
during HAART. In addition, it has been demonstrated
that the presence of episomal HIV-1 infection interme-
diates persist in patients with undetectable plasma HIV
RNA levels during HAART (47).

A strong interaction exists between HIV replication
and T-cell activation because productive HIV infection is
largely restricted to CD4" T cells that are activated
(22,48). Several predator-prey type mathematical models
of HIV infection describe this interaction, assuming that
activated CD4* T cells are the primary target cells of
HIV (48). In contrast to our observations (Fig. 1) how-
ever, the number of activated CD4% T cells increases
during HAART in these models. Thus, the number of
target cells increases if HIV is suppressed. Our results
therefore suggest that current mathematical models
should be extended with mechanisms for CD4 T cell
activation by HIV and/or other antigens. One such
mechanism, obviously, would be to allow for the im-
mune response to HIV (and/or other antigens).

In conclusion, our results suggest that antigenic stimu-
lation is the dominant mechanism of T-cell activation in
HIV infection, rather than CD4" T-cell homeostasis. Per-
sistence of HIV antigens, or low-level ongoing HIV rep-
lication during HAART may explain why T-cell activa-
tion fails to revert to levels of healthy individuals after 48
weeks of therapy.
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