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■ Abstract Many of the patterning mechanisms in plants were discovered while
studying postembryonic processes and resemble mechanisms operating during animal
development. The emergent role of the plant hormone auxin, however, seems to repre-
sent a plant-specific solution to multicellular patterning. This review summarizes our
knowledge on how diverse mechanisms that were first dissected at the postembryonic
level are now beginning to provide an understanding of plant embryogenesis.
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INTRODUCTION

Multicellular animals and plants develop from the single-cell zygote. Divisions
of the zygote, which are precisely controlled in many organisms, give rise to a
population of cells, different from one another and from their progenitors, that
will form the body plan of the embryo. The process by which cells are specified
in three dimensions has been termed pattern formation. Mechanisms of pattern
formation in plants can be put into context by comparing the well-studied fruitfly
Drosophila melanogaster with the flowering plant Arabidopsis thaliana. In insects
like Drosophila, the adult differs radically from the juvenile larva, but postembry-
onic development nevertheless uses the patterning information laid down during
embryogenesis as a reference (189). A similar situation holds true also for flower-
ing plants. The difference in appearance between the young seedling, which is the
end result of plant embryogenesis, and the mature plant derives mostly from the
later activity of local mitotic cell populations, the meristems. Although the mature
plant is almost exclusively derived from the postembryonic activity of meristems,
the overall organization of the plant body and hence the activity of the meristems
appear to be conditioned by patterns generated in the embryo (74). Thus, mecha-
nistic understanding of pattern formation in plants has to start from the embryo.
Nevertheless, patterning mechanisms have been studied primarily at the postem-
bryonic stage because of the relative inaccessibility and the lack of differentiation
landmarks of the higher plant embryo. Here we focus on postembryonic pattern-
ing mechanisms that have emerged, compare them with animal counterparts, and
finally describe how these mechanisms have helped to elucidate embryonic pattern
formation in synergy with focused studies on plant embryo development. Several
aspects of plant embryogenesis have been reviewed (73, 74, 82, 153, 175); here
we attempt to highlight the mechanisms underlying patterning.

PATTERNING MECHANISMS IN ANIMALS:
LESSONS FROM FLIES

Genetics, experimental embryology, and molecular studies have combined to pro-
vide remarkable insights into the mechanisms involved in patterning the Drosophila
embryo (67, 115). Formation of a patterned Drosophila embryo is the result of a
cascade of gene activities that establish the body plan along the antero-posterior
and dorsal-ventral axes. Along the antero-posterior axis, maternal gene products
laid down in the egg are translated after fertilization. They provide positional
information that regulates zygotic gene expression to specify a pattern of master
regulatory genes encoding transcription factors in the segments and to stabilize
the parasegment and the segment boundaries.

Different mechanisms are involved in specifying regions of the Drosophila
embryo. Examples for the most important ones are briefly described here.
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1. Combinatorial codes: Region identity is established by the spatially spe-
cific transcriptional activation of an overlapping series of master regulatory
genes, the homeotic selector genes, that encode transcription factors. The
combined expression of the Ultrabithorax, Abdominal-A, and Abdominal-
B genes of the bithorax gene complex is required to specify parasegment
and segment identity (96). Combinatorial codes of transcription factors with
overlapping expression domains give cells unique “addresses” and allow the
transcription of cell-specific target genes, leading ultimately to differentiated
characteristics (68).

2. Feedback signaling in boundary formation: The engrailed (en) gene, which
encodes a homeodomain transcription factor, is expressed in cells along the
anterior margin of the parasegment. These cells also express the segment
polarity gene hedgehog (hh) and secrete Hh protein. Hh activates and main-
tains expression of the segment polarity gene wingless (wg) in the adjacent
cells across the compartment boundary, and wg feeds back on en-expressing
cells to maintain the expression of en and hh. These interactions stabilize
and maintain the compartment boundary (174).

3. Stochastic mechanisms: Definition of fine-grained patterns (e.g., spacing of
the ommatidia in the eye of Drosophila and the specification of neuroblasts by
DELTA-NOTCH interactions) occurs by a process called lateral inhibition,
in which a noncell-autonomous signal from a differentiating cell influences
the differentiation choice of immediately adjacent cells (11).

4. Gradients of signaling molecules (morphogens): In the unfertilized egg, Bi-
coid mRNA is localized to the anterior end. After fertilization, the Bicoid
transcription factor diffuses from the anterior end and forms a concentration
gradient along the antero-posterior axis (34). Morphogens required for pat-
terning also operate postembryonically during formation of the appendages
of adult flies. These appendages develop from imaginal discs, which are
monocellular epithelial layers consisting of undifferentiated, proliferating
cells (78). In the wing disc the formation of an antero-posterior boundary
is established by a pattern-organizing center. In the organizing center (OC),
decapentaplegic (dpp) is expressed in a narrow stripe of anterior cells as a
response to secreted hh from the posterior side (192). At the boundary of the
anterior compartment, hh also induces Patched, an Hh receptor that binds
but does not transduce the Hh signal, restricting the range of its own effect
and the range of Dpp action through this negative feedback loop. Dpp, in
turn, defines the expression pattern of downstream targets (38).

Mechanisms such as those described for Drosophila are well conserved in
many animals. Examples of conservation of mechanisms include the following:
Antennapedia class Hox genes in mouse and humans, which show striking simi-
larities in their organization, expression, and combinatorial coding to the selector
genes of the Antennapedia complex of Drosophila (108); lateral specification in
vulva precursor cells of Caenorhabditis elegans involves LIN-12, the orthologue
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of NOTCH (51); and SONIC HEDGEHOG, an Hh homologue in vertebrates, and
dpp homologues act together during limb development (119).

Whether the mechanisms of pattern formation described are unique for the
animal kingdom or represent common and “unavoidable” principles can only be
determined when pattern formation in other kingdoms has been studied to a com-
parable degree. In this respect, a comparison with plant development is informative
(109). Plants differ dramatically from animals in their life strategy, and multicel-
lularity in plants and animals evolved independently. Animal cells are capable for
some time of adjusting to a new position during embryogenesis, but at gastrula-
tion most cells lose this ability and develop autonomously. Plants, however, have
the capacity to develop most organs continuously in the postembryonic phase and
most, if not all, living cells remain totipotent. This strategy makes sense because
plants are sessile organisms that cope with changing environmental conditions by
translating stimuli from the environment into developmental decisions. The poten-
tial to develop new organs and to initiate new meristems focuses in the meristems
and recapitulates aspects of embryonic pattern formation (157). Did plants evolve
unique mechanisms to ensure this developmental flexibility?

PATTERN FORMATION IN PLANTS:
LESSONS FROM WEEDS

Flower Development: A Combinatorial Code
of Homeotic Gene Products

The development of the Arabidopsis flower elegantly illustrates the existence of
combinational codes of transcription factors for regional specification in plants.
Flowers arise from floral meristems at the flanks of inflorescence meristems that,
in turn, derive from the shoot apical meristem (SAM). Once the flower primordium
is initiated, the floral homeotic genes establish regional identities within the radial
axis of the developing flower to specify concentric domains (whorls) (Figure 1A).
The ABC model describes this combinatorial interaction of floral homeotic genes
(29, 184, 111). With the exception of APETALA2 (AP2), these genes encode MADS
box transcription factors (112).

Ectopic expression of the ABC genes alone in leaves is not sufficient to trans-
form leaves into flowers. Floral organ specification is also dependent on MADS
box proteins of the SEPALLATA (SEP) class, which act as cofactors in activating
complexes with B and C class proteins (Figure 1A) (66, 122, 123).

LEAFY (LFY), a plant-specific transcription factor, is required for the transition
of inflorescence meristems to flower meristems (183). In addition to this role in pro-
moting flowering, LFY plays a key role in floral patterning. AP1 is a direct target of
LFY (179). LFY requires UNUSUAL FLORAL ORGANS (UFO), an F-box con-
taining protein that forms a SCFUFO complex (120, 182) and is spatially restricted
in a ring-like domain in all meristems, to activate AP3 in the B domain of the flower
(120). LFY can bind to AG promoter elements and activate AG (22). One of the
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Figure 1 ABC model and the Ultrabithorax complex: examples of combinatorial
codes of transcription factors involved in organ identity. A. The ABC model for Ara-
bidopsis flower organ identity. Schematic representation of the flower, shown from
above. The wild-type flower has a characteristic structure: sepals (SE) develop in the
outermost whorl (whorl 1), petals (PE) in the second whorl, stamen (ST) in the third
whorl, and carpels (CA) in the center (whorl 4). The floral homeotic genes are active in
two adjacent whorls in the flower such that A alone specifies sepals, A and B specify
petals, B and C specify stamen, and C alone specifies carpels. The homeotic genes are
for A, APETALA 1 and 2 (AP1 and 2); for B, APETALA 3 (AP3) and PISTILATA (PI);
and for C, AGAMOUS (AG). The combinatorial activity of three classes of homeotic
gene products specifies floral identity: A (AP2, AP1) = SE, A + B (AP3 + PI) =
PE, B + C (AG) = ST, and C = CA. Loss of one of the genes results in homeotic
alterations. B. Combinatorial expression of genes of the bithorax complex character-
izes each parasegment. Different homeotic transformations are found depending on
the combination of residual genes. The absence of Abdominal-B, Abdominal-A, and
Utralbithorax leads to conversion of parasegment 5–13 into 9 parasegments 4 (Modified
from 126, 189).

cofactors required for this might be the homeobox transcription factor WUSCHEL
(WUS) (101), which is expressed in the center of the meristems (86, 90).

The mechanism of a combinatorial code of overlapping transcription factors
is reminiscent of that operating in Drosophila, but in plants it remains to be es-
tablished how the spatial domains in the flower are set up in collaboration with
earlier expressed meristem factors like UFO and WUS, and how these in turn are
activated during embryogenesis.

An Organizing Center Under Feedback Control
to Specify Stem Cells

The postembryonic SAM of Arabidopsis gives rise to leaves, stems, and flowers
in a predictable and regular pattern. The SAM consists of a small dome of cells
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Figure 2 Organization and maintenance of the SAM. A. Schematic view of the dif-
ferent domains in the SAM. The central zone (CZ) contains slowly dividing cells (in
light gray) that include the apical stem cells. Initiation of organ primordia takes place
in the peripheral zone (PZ). Differentiation of central pith tissue is initiated in the
rib zone (RZ). Different layers of the SAM are indicated with L1, L2, and L3. The
mRNA expression domains of CLV1, CLV3, and WUS are depicted in dark, light-, and
mid-gray, respectively. Model for shoot meristem maintenance: WUS expression in
the OC promotes an as yet unidentified signal to specify stem cells. The stem cells
restrict the range of WUS expression via CLV3 signaling. Cells that have passed the
boundary defined by the CLV function establish organ founder cell populations. B. In
analogy, the root meristem contains the QC, which promotes stem-cell identity of the
surrounding cells (A: modified from 55, 142).

and it is organized into regions with different functions and fates. The SAM can be
subdivided into layers and into zones. The cells of L1 layer divide anticlinally and
therefore remain in this layer and eventually differentiate into epidermis. Cells in
the L2 form a subepidermal cell layer and gametes. The third layer (L3) gives rise
to the vascular system and the pith (Figure 2A). The central zone includes slowly
dividing cells that replenish the peripheral zone and are required for maintenance
of the SAM (69).

The clavata (clv) mutants accumulate too many cells in the central zone of the
SAM and floral meristems (26, 27). CLV1 and CLV2 encode leucine-rich-repeat
trans-membrane proteins, which can form a heterodimeric receptor molecule (28,
72). CLV3 encodes a small polypeptide with an amino-terminal putative signal
sequence (37). CLV1 is expressed in the L3 layer of the central zone whereas CLV3
is expressed in a central region of the L1 and L2 layers (Figure 2A). CLV1 and
CLV3 likely undergo a receptor-ligand interaction (132). The active CLV receptor
complex also contains one or more members of the Rop subfamily of Rho/Rac
small GTPase-related proteins (170) and kinase-associated protein phosphatase
(KAPP) (160, 186). CLV signaling restricts WUS, which is expressed in a subset
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of cells within the CLV1 domain (Figure 2A) (83). In wus mutants, the meristem is
not established during embryogenesis; after germination, axillary meristems are
initiated and abort repeatedly, which is attributed to a failure to specify the central
stem cells that are required to repopulate the peripheral meristem. wus mutations
are epistatic to clv1 (142), and CLV3 is down-regulated in wus (20), suggesting that
the CLV signaling pathway negatively regulates WUS activity. WUS is required
for positive regulation of CLV3 gene expression to promote stem-cell identity in the
upper meristem layers (20, 142). Binding to the CLV1 receptor may prevent CLV3
from entering the WUS-expressing OC to repress WUS transcription there (88).

The current model for feedback regulation of stem-cell fate in the SAM of
Arabidopsis postulates that the homeobox transcription factor WUS acts from an
OC in the deeper layers of the meristem to specify stem cells in an overlying region.
These stem cells express and secrete the CLV3 protein that activates a CLV1/CLV2
heterodimer and counteracts WUS activity (Figure 2A).

Thus, the size of a cell population in the SAM is controlled by a positive-
negative feedback loop. The root meristem also contains an organizing center,
the quiescent center, the existence of which was first inferred from laser ablation
experiments (173) (Figure 2B). Overexpression of the CLV3 homolog CLE19
resulted in a restriction of root meristem size, suggesting that components of a
CLV pathway also operate in roots, but in this case CLE19 affected the stem-
cell daughters (25). Whether positive-negative feedback mechanisms keep animal
stem-cell populations in check is unknown (155, 81).

Abaxial/Adaxial Fate Specification in Leaves
and Boundary-Linked Organizers

Leaves are lateral organs of seed plants with proximal-distal and adaxial (central)-
abaxial (peripheral) polarity. Leaves are derived from the flanks of the SAM and
therefore possess an asymmetric relation to the rest of the plant, with the future
adaxial leaf surface adjacent to the meristem and the abaxial surface distant from it
(Figure 3A). Current models of the establishment of leaf polarity involve translation
of a radial cue in the meristem into an adaxial/abaxial asymmetry in leaves.

An unknown signal from the SAM appears to activate the members of the REVO-
LUTA (REV)/ PHABULOSA(PHB)/ PHAVOLUTA(PHV) gene family. These genes
encode homeodomain-leucine zipper (HD-ZIP) transcription factors containing a
START domain, which may bind steroid-like ligands and/or miRNAs (35, 124,
130, 165). REV/PHB/PHV are first expressed in the SAM and uniformly within
the organ primordia, but their expression becomes restricted to the adaxial side
of the primordium as it initiates from the SAM. Dominant mutations and expres-
sion patterns suggest related roles for these three genes in promoting adaxial fate.
Genes involved in promoting abaxial fate in leaves are members of the GARP fam-
ily of putative transcription factors, KANADI 1–3 (KAN1-3), and members of the
YABBY family encoding for presumptive transcription factors such as FILAMEN-
TOUS FLOWER (FIL) and YABBY3 (35, 77, 136, 150). Yabby and kanadi double
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Figure 3 Boundary-linked organizers in outgrowth of Arabidopsis leaf and
Drosophila wing. A. Schematic view of an Arabidopsis SAM shown from above, illus-
trating a model for leaf development. In this model, adaxial and abaxial domains of the
leaf are specified early during leaf primordium development, while the primordium still
resides within the SAM. The juxtaposition of adaxial and abaxial cell fates causes the
subsequent development and outgrowth of the leaf blade. B. Schematic representation
of the development of the wing blade from the imaginal disc. The dorsal and ventral sur-
faces start off in the same plane, but at metamorphosis, the sheet folds and extends, so
dorsal and ventral surfaces come into contact with each other (modified from 107, 189).

mutants show enhanced phenotypes, which suggests that these gene families are
independently required for abaxial fate specification. Current models predict that
the activated form of PHB or PHV acts as a repressor of KAN1 and KAN2 in the
adaxial regions where continued abaxial expression in turn represses PHB and
PHV (36). The KAN genes then activate members of the YABBY family on the
side of the primordia away from the meristem, which leads to abaxial fate (18,
150). Interestingly, mutation of KAN and class III HD ZIP genes also perturbs
central/peripheral patterning of vascular bundles (35).

The absence of an adaxial/abaxial boundary in many leaf polarity mutants
results in the formation of radialized leaves without blade outgrowth (Figure 3A)
(107, 180). Thus, the juxtaposition of adaxial and abaxial cell fates appears to be
required for blade outgrowth. This resembles the wing disc organizer where the
juxtaposition of an antero-posterior boundary promotes outgrowth of a wing blade
from the wing imaginal disc (Figure 3B).

Radial Patterning: Moving Transcription Factors?

The distally located cortical stem cells in the Arabidopsis root meristem divide
horizontally to give rise to daughters and new stem cells (33, 140). The stem-cell
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Figure 4 Schematic presentation of the cell-to-cell movement of the SHR transcrip-
tion factor. A. mRNA transcription domains of SCR (dark gray) and SHR (light gray)
in the Arabidopsis root tip. B. SHR protein (light gray circles) is moving from the
vascular bundle to the nucleus of the endodermis, which is expressing SCR protein
(dark gray).

daughters divide periclinally to give rise to endodermis and cortex. Two genes
required for this aspect of radial pattern formation in the root are SHORTROOT
(SHR) and SCARECROW (SCR) (13). SCR is essential for the rotation of cell
division that separates cell layers (31, 139). In contrast, SHR plays a role in both
cell division and specification of the endodermis.

SHR and SCR encode putative transcription factors of the GRAS family (63,
128, 191). SCR is expressed in the quiescent center (QC), cortex/endodermis initial
and endodermis (Figure 4A) (191). Surprisingly, SHR is transcribed in the vascular
bundle and not in the ground tissue cells where its action is required (Figure 4A)
(63). Antibodies and a fusion protein between SHR and the green fluorescent
protein (GFP) indicated that the protein is located in both the nucleus and cytoplasm
of the stele, but appears to move into the nucleus of endodermal cells where its
function is required (Figure 4B) (110).

The QC, a subset of four cells in the root tip, is required for maintaining the
stem-cell population in the root meristem (173). Recently, it has been shown that
SCR functions in the QC to maintain the stem-cell identity of root meristem ini-
tials (134). QC-specific expression of SCR in shr mutants did not rescue shr QC
function, suggesting that SHR may also act in the QC by moving there (134). The
data on SHR indicate that nonautonomous action of transcription factors can occur
in the cytoplasmically connected cells of plant meristems (110). Recent results on
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ectopic SHR expression provide evidence for regulatory mechanisms that restrict
SHR movement (146). Other moving transcription factors have been identified,
but in contrast to SHR, the function of the movement of these transcription factors
is unclear (93, 147).

In animals, movement of transcription factors occurs in the syncytium (a single-
cell stage of embryogenesis with multiple nuclei), where, for example, Bicoid
diffuses in a gradient from the anterior end to the posterior end to provide positional
information for patterning the antero-posterior axis. We are not aware of examples
of moving animal transcription factors as a patterning mechanism in multicellular
stages.

Epidermal Patterning by Lateral Inhibition

Plant epidermal cells specialize to produce hair-like structures separated by nonhair
cells. In leaves, the initial patterning is stochastic so that hair cells (trichomes)
arise randomly, but once formed, they inhibit neighboring cells from becoming
trichomes. In the Arabidopsis root, the trichoblast always overlies the underlying
cell wall between two cortex cells (33, 98). Basically the same genes pattern root-,
leaf-, and stem-epidermal cell types. In trichomes, a cell-autonomous myb factor
called GLABRA1 (GL1) was identified as a positive regulator of hair fate (97)
and a related gene in atrichoblasts WEREWOLF (WER) is a positive regulator of
nonhair fate (84). CAPRICE (CPC) and TRYPTYCHON (TRY), truncated Myb
transcription factors, inhibit trichome and a-trichoblast hair fate (85, 137, 141,
177, 178).

WER in the root and GL1 in the shoot form a complex with a basic-helix-
loop-helix (bHLH) transcription factor and a WD40 protein in vitro (121), which
regulates GLABRA2 (GL2) transcription required for fate specification (131, 163).
TRY and CPC interact in vitro with this complex, and genetic interactions sug-
gest that this binding inactivates the complex (Figure 5A) (84, 85, 98, 137, 178).
CPC and TRY presumably act as noncell-autonomous inhibitors of trichome and
atrichoblast hair fate in the neighboring cells (Figure 5A) (85, 137, 177). In tri-
chomes, where this process is unbiased, the first selected trichomes influence the
fate of neighbors through these inhibitors. In the root epidermis, the relation to the
underlying cortex cells biases this process in some way, but it is not yet clear how.

Neuronal specification in Drosophila, involving transmembrane signaling us-
ing the DELTA-NOTCH ligand-receptor pair, is a comparable lateral inhibition
mechanism (Figure 5B) (8). Competitive inhibition of neighboring cells by TRY
and CPC may also serve as an additional example of cell-to-cell movement of
transcription factors, as described in the previous section.

Overview

Several mechanisms of plant pattern formation share similarities with those used
in animals. The use of combinational codes for flower development and lateral
inhibition for trichome and root hair outgrowth are prominent examples of such
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Figure 5 Lateral inhibition in Arabidopsis epidermis cells and Drosophila neurons.
A. Model for epidermal patterning with an activator complex, consisting of myb, a
bHLH protein, and a WD40 protein. The complex binds the promoter of GL2 to
promote primary cell fate (root; atrichoblast; leaf:trichome). TRY and CPC inhibit the
noncell-autonomous activator complex and small initial differences resolve into stable
state in which one cell adopts primary cell fate and the other the second cell fate.
B. Simplified model for neuroblast specification by lateral inhibition. DELTA is the
ligand for the NOTCH receptor, both transmembrane proteins. Activation of NOTCH
by DELTA leads to inhibition of the proneural genes and thus inhibits neuroblast fate.
Small differences in Notch/Delta signaling between cells allow one cell to embark on
the pathway to neural specification sooner than others; as a result, it sends a signal that
prevents the other cell from a neural fate (modified from 138, 189).

similarities. However, some mechanisms may be plant specific. The negative feed-
back regulation of the WUS domain in the shoot meristem and the cell-to-cell
movement of transcription factors to regulate gene expression serve as examples.
Many genes involved in postembryonic patterning have specific expression pat-
terns in the embryo, and ultimate understanding of pattern formation in plants will
require determining how these expression domains are initiated. Therefore, a pri-
mary question in plant development remains: What is the origin of the distribution
of transcription factors that set up cell-specification patterns? To find the origin
of apical/basal, radial and bilateral patterns in plants, the genes involved in their
initiation must be identified and analyzed.

IDENTIFICATION OF ARABIDOPSIS GENES INVOLVED
IN EMBRYONIC PATTERN FORMATION

The principles of pattern formation during Drosophila embryogenesis have been
used to categorize embryo-patterning mutants in Arabidopsis. In an attempt to
isolate early patterning mutants, seedlings were analyzed and classified by loss
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or alterations in apical-basal or radial pattern elements at the seedling stage and
the phenotypes were traced back to changes in regional division patterns in the
embryo (104).

In assessing these embryo mutants, a distinction has emerged between pattern
formation mutants, which are specifically affected in spatial control of position-
dependent cell specification, and morphogenetic mutants, which can be affected
in all processes leading to overall shape and variation in cell shape and number
(15).

Early Embryo Patterning Genes: Hints
to Auxin-Response Factors

Alterations in embryonic cell divisions patterns in monopteros (mp) mutants in-
dicated that these identified a candidate-patterning gene. The Arabidopsis zygote
divides transversely into a small apical cell and a large basal cell. The apical cell
results in most of the proembryo while the basal cell gives rise to the hypophy-
seal cell and the precursors of the distal root (Figure 6A). In wild-type embryos,
the apical cell divides vertically, whereas in mp embryos the apical cell divides
transversely. In later-stage mp embryos, procambium cells elongate inappropri-
ately and hypocotyl and root development is abnormal (16). Later in develop-
ment, MP is also required for continuous vascular tissue formation (127). The
MP gene encodes a transcription factor of the AUXIN RESPONSE FACTOR
(ARF) family (59), which binds to auxin-response elements in the promoters of
genes inducible by this major plant hormone to regulate their transcription (166,
171).

mp-like phenotypes were also observed in bodenlos (bdl) and auxin resistant
6 (axr6) mutant seedlings (58, 65). bdl carries a dominant mutation in IAA12, an
early auxin-response gene of the Aux/IAA family, encoding short-lived, nuclear-
localized proteins that contain four highly conserved domains (1–3, 57, 79). ARFs
(like MP) interact with domains III and IV of these Aux/IAA proteins. The (semi-)
dominant character of mutations in Aux/IAA genes such as bdl is thought to result
from increased stability of the mutant protein (118, 190) or from the formation of
nonfunctional dimers with Aux/IAA proteins or members of ARF class of proteins
mediating auxin responses (52, 79, 172). Consistent with the possibility that BDL
interacts with an ARF (i.e., MP), mp and bdl mutants show similar early embryo
phenotypes, mp and bdl interact genetically, and two-hybrid studies indicate MP
and BDL protein interaction (57). MP and BDL transcripts are gradually confined
to subepidermal cells and eventually restricted to provascular cells and future QC,
but only MP becomes expressed in the progenitors of the columella root cap. MP
expression was detected in bdl early-embryos, showing that the bdl mutation does
not interfere with MP transcription, a finding consistent with interactions between
the gene products at the protein level (57). NON-PHOTOTROPIC HYPOCOTYL4
(NPH4) encodes a member of the ARF family with amino acid sequence and
overlapping expression patterns highly related to MP (60). MP and NHP4 can
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form heterodimers and can act redundantly in various processes, as is apparent
under conditions with reduced MP activity (60).

In axr6 embryos, abnormal orientation and timing of cell divisions are ob-
served in the basal part of the embryo proper (65). AXR6 encodes the Arabidopsis
CULLIN 1 (AtCUL1), a component of the SCF (for SKIP, CDC53/CULLIN, and
F-box protein) TIR1 complex (64). The SCFTIR1 is a complex of ubiquitin lig-
ases, binding Aux/IAA proteins (e.g., BDL) (49). SCF complexes attach a chain
of ubiquitin molecules to target proteins, which leads to degradation of the tagged
proteins by the 26S proteasome (12). The involvement of BDL, MP, and AXR6
in early root formation suggests that BDL and MP form a complex in vivo that
prevents MP from activating target genes. In this scenario, BDL protein could be
degraded in response to auxin by the SCFTIR1 complex, thus activating MP (57,
58, 64).

Early defects observed in hobbit (hbt) embryos resemble those found in mp, bdl,
and axr6 (187). Analysis of marker gene expression in the basal region of the early
embryo and the homology of HBT protein to the CDC27/NUC2 component of the
anaphase-promoting complex suggest that the HBT gene is required for cell divi-
sion and progression of cell differentiation (17). Accumulation of IAA17/AXR3
in hbt seedlings suggests that HBT, as a component of the APC, may also be in-
volved in targeting Aux/IAA proteins for degradation. The cell cycle–regulated
HBT gene could couple cell division to auxin responsiveness by restricting certain
auxin responses to dividing cells.

In contrast to the many transcription factors revealed by initial screens in early
fly development, the Arabidopsis screens for early embryo patterning mutants
revealed only a few transcriptional regulators, all suggesting a prominent role for
the phytohormone auxin in early patterning. Given the wide range of physiological
and developmental responses to ectopically provided auxin during regeneration in
tissue culture, this is perhaps not surprising in hindsight.

Mechanisms of Meristem Formation During Embryogenesis

Analysis of mutant seedlings with specific shoot and root meristem defects provides
valuable insights into pattern formation during embryogenesis. From the globular
to the heart stage of embryogenesis, the apical region of the Arabidopsis embryo
can be divided into three subregions that will give rise to cotyledons, cotyledon
boundaries, and the SAM (6, 19, 91). The CUP-SHAPED COTYLEDON genes
(CUC1-3), which encode transcription factors of the NAC family, are required
for cotyledon separation and SAM formation (5, 164, 176). MP (see previous
section) is also involved in cotyledon separation and in SAM formation (16).
mp cuc1 double mutants have enhanced numbers of fused cotyledons and CUC1
and CUC2, normally expressed in a stripe between the cotyledon primordia at
early heart stage, show altered expression in mp embryos. It was concluded that
MP is required for repression of CUC1 in the cotyledons and for activation of
CUC2 in cotyledon boundaries, but how CUC1 gene expression is initiated remains
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unclear. CUC1 is largely responsible for cotyledon separation in the mp mutant
(7). Furthermore, CUC1 and CUC2 are expressed in the SAM and are redundantly
required for SAM formation. CUC1 (and possibly CUC2) can activate SHOOT
MERISTEMLESS (STM) expression in the SAM.

STM encodes a homeobox transcription factor of the KNOX family (92). Mature
stm embryos lack a SAM and thus STM is required to maintain proliferation of cells
in the SAM and/or prevent their differentiation from late-globular stage onward.
Postembryonically, the cells at the position of the SAM are consumed by leaf
primordia in stm mutants. Repression of differentiation by STM occurs mainly
via repression of the MYB transcription factor ASYMMETRIC LEAVES1 (AS1),
which is expressed in lateral organ primordia, because loss of AS1 function in a
stm mutant background rescues SAM formation (23).

The WUS gene, which is required for the maintenance of stem cells, is first
expressed in the prospective L3 at the 16-cell stage. Later on in development, its
expression is restricted to a subset of cells underneath the outer three cell layers
of the SAM (in the L3) (101). The mechanisms or genes involved in initiation and
asymmetric inheritance of WUS expression are not known. wus and stm mutants
display different phenotypes, and recent evidence corroborates that WUS and STM
act independently to generate a self-maintaining meristem. Ectopic expression of
WUS and STM induces the expression of downstream target genes and meristem
activity in the shoot (44, 87). Ectopic WUS expression in roots induces shoot-
specific pattern elements, indicating that WUS establishes stem cells with intrinsic
shoot identity (43). WUS induces expression of CLV3, but not KNAT1 or KNAT2.
STM does not regulate CLV3, but can induce KNAT1 and KNAT2. Conversely, STM
suppresses differentiation independently of WUS and is required and sufficient to
promote cell division in stem-cell daughters before these cells are incorporated
into organs (87).

The PLETHORA (PLT1-2) genes are required for generating a stem-cell niche
in the embryonic root pole (Figure 6B) (4). The PLT genes encode AP2-class pu-
tative transcription factors, which are essential for QC specification and stem-cell
activity and whose expression depends on auxin-responsive transcription factors.
Ectopic expression of PLT genes in the early embryo transforms apical regions
into hypocotyl and root identities, indicating that PLT genes play a role in the
establishment of all basal embryo identities, which is reminiscent of the role of
WUS in the SAM.

Interestingly, the early expression dynamics of the members of the WUS RE-
LATED HOMEOBOX (WOX) gene family suggest that the specification of the
embryonic meristem is presaged by a partitioning of cell fates along the apical-
basal axis (Figure 6A) (54). Three WOX genes (WOX2, 9, and 8) partition in
apical, central, and basal domains from the zygote to the eight-cell stage of em-
bryogenesis. After the eight-cell stage, WOX2 marks shoot-specific pattern el-
ements and WOX5 marks the QC in the basal part of the embryo (Figure 6A).
Detailed mutational analysis of the WOX genes, whose phylogenetic relation-
ships suggest redundant activities, should indicate whether this partitioning into
homeobox-expressing domains has a functional significance that resembles the
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partitioning of animal embryos in regions specified by combinatorial codes of
homeobox proteins. The recent finding that a MAPKK, YODA, can influence cell
fate of the zygotic daughter cell raises the question whether MAPK signaling might
operate to partition fate determinants like the WOX genes (95).

In summary, the proper activation of critical patterning genes involved in both
shoot- and root-meristem formation that have been identified so far suggests a
role for auxin signal transduction in the early embryonic specification of meristem
domains. Candidate factors involved in early partitioning of cell fates, which might
set the stage for region-specific shoot and root meristem genes, have recently been
identified, but their mode of action and their connection to later-acting transcription
factors remain to be investigated.

Role of Polar Auxin Transport During Embryogenesis

In Arabidopsis embryo patterning screens, mutations in the GNOM/EMB30
(GN) gene were found to affect embryo polarity along the apical-basal axis and
the orientation of early cell divisions (102, 104). GN encodes a Brefeldin A (BFA)
sensitive membrane-associated guanine-nucleotide exchange factor on ADP-
ribosylation factor G protein (ARF GEF) involved in vesicle trafficking (21, 148,
149, 159).

In Brassica juncea, a remarkable range of aberrations resembling embryos with
mutations in the GN gene has been observed after exogenous application of auxins,
auxin antagonists, and polar auxin transport (PAT) inhibitors (53). The induced phe-
notypes at later stages of development resembled mutations in the putative auxin
efflux carrier PIN-FORMED1 (PIN1) (53). The pin1 mutant exhibits reduced po-
lar auxin transport and develops naked, pin-shaped inflorescences and defects in
cotyledon number, size, shape, and position (45, 116). PIN1, a putative auxin efflux
facilitator postembryonically involved in polar auxin transport from the shoot to
the root, is located at the basal end of vascular cells. PIN1 rapidly cycles between
the plasmamembrane and endosomal compartments and is internalized upon treat-
ment with BFA, an inhibitor of vesicle transport (47). During embryogenesis, the
localization of PIN1 becomes polarized from midglobular stage onward, and co-
ordinated polar localization of PIN1 is disrupted in gn embryos (159). Analysis in
plants harboring a specific mutation in the BFA-interacting site of a still-functional
GN protein showed that PIN1 localization was no longer sensitive to BFA whereas
other trafficking processes remained sensitive. Thus, GN is specifically required
for PIN1 recycling between the plasma membrane and endosomes (46) and de-
fects in this process might lead to altered vesicle transport, resulting in abnormal
localization of PIN1 protein. Internalization upon BFA treatment is also observed
for other PIN family members (41, 50), which might indicate that GN could play
a role in the localization of other PIN proteins. Analysis of partial loss-of-function
alleles substantiates a role for GN in auxin transport during embryogenesis and
postembryonic organ development (48).

Direct evidence for an important role of PIN proteins during embryo develop-
ment comes from the analysis of PIN7 and PIN4. PIN7 is detected after the zygotic
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division at the apical surface of basal cell descendants, and reverses orientation at
the globular stage (40). PIN4 is detected from late-globular stage embryos onward
along the surface of the hypophysis and at the basal end of the adjacent suspensor
cell (39). These locations correlate with an auxin maximum in the apical cell at
early stages of embryogenesis and relocation of this maximum to the basal pole
at the globular stage (Figure 6B). Interestingly, pin7 mutants failed to establish
the apical auxin maximum in early stages of embryogenesis, which resulted in
abnormal development of the first stages of embryogenesis, but recovery occurred
from the globular stage onward (40). In pin4 embryos, abnormal divisions were
observed in the hypophyseal cell derivatives and suspensor cells with low per-
centage (39). Loss of multiple PIN family members in extreme cases phenocopied
gn and effects of chemical inhibition of auxin transport, suggesting a high redun-
dancy among PIN genes (40). Taken together, the phenotypes and the altered auxin
distribution of mutants in putative auxin efflux carriers and in the ARF-GEF that
regulates their trafficking are consistent with the notion that polar auxin transport
plays an important role in embryo pattern formation.

The association of patterning elements and division activity in the root with an
efflux carrier-dependent auxin-response maximum that appears from embryoge-
nesis onward indicated that auxin distribution in maxima plays an instrumental
role in root patterning and cell division (Figure 6C) (133). Interestingly, PIN-
dependent auxin distribution might represent a common principle for embryonic
and postembryonic development, where outgrowth of embryo regions and root
and leaf primordia is always associated with distal auxin maxima (Figure 7A).
The direction of the auxin flux around maxima in shoot primordia appears to be
reversed from the flow in root primordia (Figure 7B,C) (14). In the shoot api-
cal meristem, such a local accumulation and surrounding depletion of auxin may
regulate primordial spacing or phyllotaxis (129).

In summary, distal accumulation of auxin in diverse primordia appears to be
instrumental in primordium outgrowth and patterning, which indicates that auxin
acts as a positional cue of principal importance that can be utilized in multiple
developmental contexts. For the basal auxin maximum of embryo and root, the
PLT genes have emerged as candidate downstream transcription factors, a finding
that should allow for a further dissection of the mechanism by which embryonic
auxin accumulation can generate region-specific responses (Figure 6B) (4). The
mechanisms whereby auxin distribution patterns are set up and changed, and how
these interact with transcription factors, remain to be elucidated.

ARABIDOPSIS EMBRYO MUTANTS IDENTIFY GENES
INVOLVED IN CELL MORPHOGENESIS

In several plant screens for embryo patterning genes, mutants were categorized by
early embryonic division patterns. Many of the mutants recovered were affected
in the orientation and execution of cell division and found to be involved in basic
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cellular processes that consequently affect pattern formation. Why were those
mutants not emphasized in the initial animal screens? The fly embryo is subdivided
into segments that have characteristic differentiation landmarks (e.g., denticles),
and can be used to select for alterations in the identity of cells in specific regions
in the embryo. In plants, however, cell division planes have long been the only
criterion on which to select for patterning mutants. In addition, plant embryos
might tolerate gross changes in cellular processes with more flexibility, although
these often lead to embryo lethality in animals (71, 125, 145).

Cytokinesis mutants in Arabidopsis were initially interpreted as radial pattern
mutants because of defective epidermal cell specification (104). These mutants
were later noted to have embryos with more general cellular defects such as in-
complete cell walls and enlarged cells with one or more large nuclei (10, 94).

In plant cytokinesis, formation of a new cell plate occurs in the phragmoplast, a
complex structure containing microtubules, microfilaments, and vesicles (62, 113,
156). At late anaphase, golgi-derived secretory vesicles carrying cell wall mate-
rials are transported to the equatorial zone of the phragmoplast. Fusion of these
vesicles gives rise to a membrane-bound compartment, the cell plate. The cell plate
expands until it reaches the division site on the mother cell wall (30). Once this at-
tachment has taken place, the cell plate undergoes a complex process of maturation
during which callose is replaced by cellulose and pectin (135). Two plant-specific
cytoskeletal arrays of microtubules and actin filaments, the preprohase band and
the phragmoplast, play central but as yet poorly understood roles in the orientation
and expansion of the cell plate and in the execution of cytokinesis (9, 117, 162).
Thus genes implicated in vesicle trafficking and fusion and cytoskeletal dynam-
ics will affect plant cytokinesis. Indeed, isolation of cytokinesis mutants revealed
genes involved in both processes.

1. Vesicle trafficking and fusion: Genes required for the execution of cytokine-
sis are HINKEL/NACK1, KNOLLE (KN), and KEULE (KEU). HINKEL/NACK1
encodes a plant-specific kinesin-related protein required for the cell cycle–related
reorganization of phragmoplast microtubules by regulating the activity and local-
ization of ANP1/NPK1 (a MAPKKK), which is involved in cell plate expansion
(114, 161). A complex of v-SNARE and t-SNARE (syntaxin) proteins mediates
fusion of vesicles to their target membranes (185). KN encodes a cytokinesis-
specific syntaxin (80, 94). KEU encodes the yeast Sec1 homologue (10). Sec1
proteins are key regulators of vesicle trafficking and specifically regulate the steps
involved in tethering/docking and membrane fusion, by interacting with syntaxins
(56). KEU interacts genetically and biochemically with KNOLLE (10, 181). In
both keule and knolle, vesicles are transported to the equator of a dividing cell
but do not fuse (181). knolle keule double mutants do not show defects in the
cell cycle, but fail to undergo cytokinesis, which results in giant single cells with
many nuclei (181). Therefore, KN and KEU cooperate to promote vesicle fusion
in the cell division plane (152). Isolation of a KN interactor via a biochemical
approach yielded AtSNAP33, a homologue of the animal t-SNARE SNAP 25,
required for plant cytokinesis. AtSNAP33 belongs to a small AtSNAP25 gene
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family (61). Studies in animals show that t- and v-SNARE proteins are involved
in fusion of vesicles to plasma- and endomembranes (42). Further research on t-
and v-SNARE complexes should provide links to dissect the various requirements
for vesicle trafficking during embryo development.

2. Cytoskeletal dynamics: An example of a gene required for proper orientation
of the plane of division is FASS/TONNEAU2, (104, 151, 162, 168). fass mutant em-
bryos are made up of irregularly shaped, enlarged cells that are not arranged in regu-
lar rows (168). TONNEAU2/FASS encodes a type 2a protein phosphatase (24), and
it remains to be investigated how it is involved in formation of the preprophase band
and ordered microtubular arrays that make up the plant cytoskeleton (105, 169).

Members of the pilz and titan groups of mutants also have abnormally formed
embryos as a result of cytoskeletal defects that interfere with mitosis and cytoki-
nesis. The endosperm of ttn does not cellularize and contains a small number of
extremely enlarged nuclei (89). The pilz mutant embryos lack microtubules but
contain actin, which results in a mushroom-shaped embryo with one or a few
grossly enlarged cells containing one or more enlarged nuclei (103, 106). Several
ttn mutants are allelic to pilz group mutants: ttn1 is allelic to champignon and ttn5
is allelic to hallimash (106). TTN5 encodes a small G protein Arl2 with a predicted
role in regulation of intracellular vesicle transport (106). Other genes of the pilz
group encode orthologs of mammalian tubulin-folding cofactors (TFCs), which
mediate the formation of α/β tubulin heterodimers in vitro (158). The availability of
mutations in these genes paves the way for future studies on the requirement of the
microtubular cytoskeleton for development of specific cell types (99). Similarly, the
discovery of weak conditional alleles in actin polymerization factors in trichome
mutants will allow future studies on the role of actin in pattern formation (100).

Mutations in genes involved in sterol biosynthesis FACKEL/HYDRA2 (FCK/
HYD2), STEROL METHYLTRANSFERASE1/ CEPHALOPOD (SMT1/CPH), and
HYDRA1 show pleiotropic defects during embryogenesis (32, 143, 144, 167).
FCK and SMT1 are expressed from the octant stage onward, and cell division and
expansion defects in fck, smt1/cph and hyd1 during early embryogenesis result in
embryos with abnormally shaped cotyledons and reduced central and basal regions
(32, 70, 143, 144, 187). These defects were postulated to be caused by alterations
in unidentified steroid signals in these mutants (143, 144). Alternatively, these
findings may reflect a role for bulk sterols during embryogenesis (154). In smt1orc

seedling roots, cell-polarity defects were observed and localization of PIN1 and
PIN3 was disturbed. These data suggested a link between sterol biosynthesis and
efflux carrier positioning that may be explained either by defects in sterol trafficking
(50) or by the existence of sterol-dependent membrane microdomains (187).

CONCLUDING REMARKS

Transcription factors identified by embryo-patterning screens have linked early
patterning events with auxin-response factors. Other transcription factors with a
role in embryonic patterning have been identified through the analysis of genes
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involved in postembryonic patterning processes. The shoot meristem and its stem
cells are specified and maintained by two parallel mechanisms involving WUS
and STM. Combinatorial activity of SCR, SHR, and PLT provides positional in-
formation for specifying the stem-cell niche in the root meristem. These factors
exemplify the use of combinatorial coding in the plant embryo.

Differential auxin distribution has been correlated with a number of develop-
mental responses during embryogenesis and organ outgrowth. The precise spatial
auxin-distribution pattern during embryo development requires PIN protein activ-
ity, presumably through a plant-specific mechanism, that might be directly involved
in activation of the patterning genes identified through postembryonic screens. For
example, PLT activation in the basal domain of the embryo may be promoted by
accumulation of auxin in an MP-dependent way to specify the root stem cells.
Interestingly, the dynamic expression during embryogenesis of WOX homologs
suggests even earlier partition events, but how and if the WOX dynamic expression
is correlated with the expression of other transcription factors involved in embryo
patterning and early auxin distribution patterns, discussed above, remains to be
elucidated.

Identification of many genes from morphological mutants affecting cell polarity
and auxin transport has provided specific entries into vesicle trafficking and cy-
toskeletal functions, which are essential for cytokinesis and influence cell division
planes in the early embryo. The merger of these lines of investigation with the grow-
ing knowledge on transcription factors involved in embryonic patterning should al-
low the major mechanisms for plant embryonic pattern formation to be determined
in the near future, thereby informing us on the universality of these mechanisms.
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Figure 6 Embryo development. A. The temporary expression of different members
of the WOX family during early embryo development. The egg cell and the zygote
show overlapping WOX2 and WOX8 expression, which later on localize to the dif-
ferent poles of the zygote. After the first zygotic division, WOX2 is localized to the
apical cell (a) and the basal cell (b) expresses WOX8 and WOX9. The basal cell will
give rise to the suspensor, which expresses WOX8. WOX9 becomes restricted to the
uppermost suspensor cell, the hypophyseal cell (H). The apical cell will form the
embryo proper, which can be divided into an upper tier (ut) and a lower tier (lt). The
upper tier will give rise to most of the shoot tissues and express only WOX2, and the
lower tier gives rise to the hypocotyl and root and expresses only WOX9. WOX9 later
on during development becomes restricted to the protoderm layer [in the lower lower
tier (llt) together with WOX2]. WOX5 is turned on at later stages of development and
is expressed in precursors of the QC. At heart stage, WOX5 can also be detected in
the cotyledon primordia together with WOX1 and WOX3. B. Transcription domains
of PLT and WUS stem-cell organizing genes during early stages of embryogenesis.
C. PIN expression and presumed auxin distribution. Auxin accumulates in the apical
cell of a two-cell stage embryo through PIN7-mediated auxin transport. Later on dur-
ing development, auxin is transported to the hypophyseal cell in a PIN1- and PIN4-
dependent manner. Auxin accumulation patterns inferred from auxin-responsive
reporter genes. Accumulation of auxin (green) at different stages of development
triggers organ-specific downstream events.
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C-2 WILLEMSEN ■ SCHERES

Figure 7 Auxin maxima during plant development. A. Inferred auxin distribution
during early stages of embryogenesis. Overall low accumulation (light green) is
gradually restricted to the apical cell eight-cell-stage embryo. At late-globular stage,
auxin accumulates in the hypophyseal cell and from heart stage onward, additional-
ly accumulation is detected in cotyledon primordia. B. Inferred auxin flow (red
arrows) via the auxin maximum (green) in the root tip (left) is reverse of the auxin
flow through maxima in leaf primordia (right).
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