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Abstract This article reviews the recent progress that has been made in the application of
computer simulations to study crystal nucleation in colloidal systems. We discuss the concept
and the numerical methods that allow for a quantitative prediction of crystal nucleation rates.
The computed nucleation rates are predicted from first principles and can be directly compared
to experiments. These techniques have been applied to study crystal nucleation in hard-sphere
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1

Introduction

Heating a block of ice will result in melting. Cooling the resulting water will freeze
it again. At a given pressure, water and ice can coexist at only one temperature.
The water-ice coexistence temperature at ambient pressure is of such importance for
every-day life, that it has been chosen as the zero-point of the widely used tempera-
ture scale invented by the Swedish physicist Celsius. Closer inspection of the melting
and freezing transition shows that this transition is not quite symmetric. Ice heated
above 0° C always melts, whereas cooling it below 0° C does not always result in
immediate freezing. In fact water, and most other liquids, can be cooled significantly
below their freezing temperature and kept there without crystallizing (1, 2]. This
phenomena is known as supercooling. A supercooled liquid can be triggered into
freezing by adding a little bit of the corresponding solid. A single snowflake in a
glass of supercooled water will induce freezing of water that touches it and grow
rapidly into a big chunk of ice. Other disturbances, such as dust or even shocks, can
trigger the freezing of supercooled liquids as well. It thus seems that the freezing
process has great difficulty to start spontaneously, but becomes very easy once it is
initiated. The spontaneous formation of a piece of solid is an example of nucleation.

The fact that a liquid can be supercooled is best understood qualitatively in the
framework of classical nucleation theory (CNT) (see e.g. Ref. [3]). According to
CNT the free energy of a spherical nucleus that forms in a supersaturated solution
contains two terms. The first term accounts for the fact that the solid phase is more
stable than the liquid. This term is negative and proportional to the volume of the
nucleus. The second term is a surface term. It describes the free energy needed to
create a solid/liquid interface. This term is positive and proportional to the surface
area of the nucleus. The (Gibbs) free energy of a spherical nucleus of radius R has
the following form:

4
AG

,2

= 37r ps 471 R2y , (1)

where ps is the number density of the bulk solid, A tt the difference in chemical po-
tential between the solid and the liquid, and y is the solid/liquid surface free energy
density. The function AG has a maximum at R 2y Aps I All I) and the correspond-
ing height of the nucleation barrier is given by

16r y3
AG* (2)

3 (osliiii1)2.

For small nuclei the surface term dominates and the free energy increases. Only if
this nucleus exceeds a critical size does its free energy decrease and the crystallite
can grow spontaneously (see Fig. 1). The probability for the formation of a critical
nucleus depends exponentially on its free energy of formation:

Pc or exp(AG7icsT). (3)
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Fig. 1. Free energy barrier of a spherical nucleus described by classical nucleation theory
Eq. (1). For small radii the surface term dominates and the free energy increases. When the
radius exceeds a critical size the bulk term dominates and the free energy decreases

The crystal nucleation rate is given by the product of Pc and a kinetic factor r that
describes the rate with which a critical nucleus grows. The CNT expression for the
nucleation rate per unit volume is:

16r y3/ = exp r
3kBT (pslAy1)2]'

(4)

with r fc+. Here p1 is the number density of the liquid, Z = y 1/67rkB7-n,
is the Zeldovich factor and L.+ is the attachment rate of particles to the critical cluster.
The Zeldovich factor arises from the fact that not all particles that are at the top of
the nucleation barrier crystallize: some will recross the barrier and melt again. The
attachment rate of particles to the critical nucleus can be estimated by multiplying the
number of monomers available at the surface of the nucleus which is proportional to
nc213 with a typical transition rate of these particles to become part of the nucleus.
This transition rate is proportional to Ds/A2, where Ds is a self diffusion coefficient
and A is a typical distance over which diffusion takes place:

24Dsne2/3
fc+ = Az (5)

The above expression for the nucleation rate is the one most commonly used to
analyze crystal nucleation rate experiments. The problem with the CNT approach
is however that, in most cases, neither A nor y are accurately known. More often
than not, both parameters are obtained by fitting the CNT expression to experimental
nucleation data.

To illustrate the problems associated with the fitting of CNT to experimental data,
we give two examples. Let us start with Turnbull's first quantitative measurement of
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a nucleation rate in liquid mercury [2] (see Fig. 2). For the interpretation of his data
he used Eq. (4), where he estimated the difference in chemical potential between the
two phases by p Ah(Tn, T)/ Tm. Here Ah is the enthalpy change per particle
on freezing at coexistence, Tm is the coexistence temperature and T is the tempera-
ture of the liquid mercury. A plot of log(/) vs. I/ T T2 should give a straight line
with the slope proportional to y 3 and the intercept equal to log(x). From this two

Flg. 2. The steady state nucleation rate, I in units of l/(in3s), as a function of undercooling
in Kelvin for liquid mercury from Ref. [2]. The open and the filled circles correspond to two
different samples. The solid lines result from a two parameter fit of Eq. (4) to the experimental
data

parameter fit we see that the functional form given by CNT for the nucleation rate
reproduces the experimental data. However, the resulting value of tc is a factor 107
larger than predicted from CNT. The corresponding estimate for the typical diffusion
distance A is many orders of magnitude too small. To explain this Turnbull noted is
his paper: "...suppose that y depends upon temperature according to the equation:

= yo + bT, [where yo is the value at coexistence and b is a constant], ... a value of
b=0.0008/K is sufficient to change the apparent value of the kinetic factor by six or-
ders of magnitude." A remarkable statement which might be correct, but at the time
direct corroboration was not possible because of the absence of a priori knowledge of
both fit parameters. The major problem of experimental investigations of crystalliza-
tion kinetics in atomic systems is the high speed of nucleus formation and subsequent
crystal growth, as well as the difficulty of preventing heterogeneous nucleation. The
second example we take from more recent experiments on the crystallization kinetics
in a suspension of hard-sphere colloids. Crystallization in colloidal suspensions is in-
teresting because it can be studied in considerable detail, since colloidal particlesare
much larger than atoms. Colloids therefore crystallize on a timescale which is about
ten orders of magnitude longer than that for an atomic liquid. Moreover because of
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their size, colloids can be probed by powerful optical methods such as time-resolved
static laser light scattering and confocal microscopy. In these systems it is also some-
what easier to control heterogeneous nucleation. In Fig. 3 we show the results from
crystallization rate measurements in hard-sphere colloids, performed by two differ-
ent groups [5, 6]. For this system the difference in chemical potential between the
two phases can be calculated accurately from existing analytical expressions for the
equation of state. The curves in the figure result from a two parameter fit of Eq. (4)
to the experimental data. Palberg [4] fitted the data from Harland and van Megen [5]
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Fig. 3. Measured crystal nucleation rates I as of function of volume fraction in a system
of hard-sphere colloids. The data are taken from Ref. [5] (open circles) and Ref. [6] (filled
cubes). The lines result from a two parameter fit of Eq. (4) to the experimental data. The inset
shows the dimensionless nucleation rate densities plotted logarithmically versus
The figure is taken from Ref. [4]

and obtained y = 0.5kB T/cr2 and A = I7dNN, while for the data from Heymann et
al. [6] he found y = 0.54kBT1c2 and A = 2.8dNN, where a is the particle diameter
and dNN is the nearest neighbor distance. The estimates for the surface free energy
are rather low when compared to numerical estimates [7] and the values of the ef-
fective jump length A seem rather large (a factor 10 to 100 larger than the mean free
path in the liquid). However, as the experimental results could be fitted with Eq. (4),
there was little reason to doubt the values of the fit parameters thus obtained from
experiment.

As experiments to determine absolute crystal nucleation rates are notoriously
difficult, there is a clear need for a first principle prediction of a crystal nucleation
rate.
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In this review we discuss some of the recent progress that has been made in the
application of computer simulation to gain a better understanding of the kinetics of
colloidal crystallization.

2
Method

Simulating the crystallization process is a computational challenge, precisely be-
cause crystal nucleation is an activated process. This implies that the formation of
small crystal nuclei in a supersaturated liquid is infrequent but, when it happens, the
process is quite fast, i.e. it proceeds on a time scale that can be followed in a molec-
ular simulation. For instance, experimentally measured nucleation rates are typically
on the order of 0(101) to 0(106) nuclei per cm3 per sec. We can estimate the number
of time steps needed in a molecular dynamics (MD) simulation to observe one nucle-
ation event. In a large-scale computer simulation, it is feasible to study the dynamics
of 0(106) particles, but the number of particles in a typical simulation is some two to
three order of magnitude less. For an atomic liquid, the volume of a simulation box
containing one million particles is of order 0(10-15) cm3. If a million nuclei form
per second in one cubic centimeter, then it will take, on average, 109 seconds for a
nucleus to form in a system of a million particles. As the typical time step in a molec-
ular simulation (MD) is on the order of femto seconds, this implies that it would take
some 1024 MD time-steps to observe a single nucleation event under experimental
conditions.

This example illustrates why it will be difficult to compute nucleation rates using
conventional MD simulations. One way around this problem is to simulate a system
at a much higher supersaturation, where the free energy barrier for the formation of
crystal nuclei is sufficiently low to allow the system to crystallize spontaneously on
a time scale that is accessible in a MD simulation. The problem with this approach is
that, at such extreme supersaturations, crystallization may proceed differently than at
moderate supersaturations. For example at high supersaturations, many crystal nuclei
may form simultaneously and may interact in an early stage of their development. It
then becomes difficult to compare the computed crystallization rates with predictions
based on CNT.

In order to study crystal nucleation at moderate supersaturation, we exploit the
fact that the crystallization rate is determined by the product of a static term, namely
the probability for the formation of a critical nucleus Pc, and a kinetic factor r that
describes the rate at which such nuclei grow. We use umbrella sampling to compute
Pe and kinetic Monte Carlo simulations to compute T. The computed nucleation
rates can be directly compared to experimental data.

In the following we describe the numerical techniques needed to compute a nu-
cleation rate based on Ref. [8], First we discuss the calculation of the cluster size
distribution. After that we turn to the calculation of the kinetic prefactor.
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2.1
Calculation of the Cluster Size Distribution

The probability to form a crystal nucleus of size n can be approximated by P(n) =
Nal N, where N is the number of crystal nuclei of size n in a system containing
N particles [8, 9, 10], see also Appendix A. The approximation becomes better
as N/N becomes smaller, i.e. when the spontaneous formation of clusters is rare.
Knowledge of the ratio Na N allows us to define the Gibbs free energy A G(n) for
the formation of a nucleus of size n:

= exp[ A G(n)I T]. (6)

Before we can calculate N in a Monte Carlo simulation we need to have a mimer-
ical technique that enables us to distinguish between particles in a liquid and solid
environment. To this end, we use local bond-order analysis introduced by Steinhardt

et al. [1 1] and applied to study nucleation by Frenkel and coworkers [8, 12, 13].
The advantage of this analysis is that it is only sensitive to the overall degree of
crystallinity in the system, but independent of any specific crystal structure. This re-
quirement is important as otherwise we would apply an external biasing potential,
that could force the system to crystallize in a specific structure. A second advantage
is that these bond-order parameters can be constructed so as to be independent of the

reference frame.
The local bond-order parameters are a measure of the local structure around a

particle and are constructed as follows. First we define a (21 + 1) dimensional com-

plex vector with the components

Nb(i)
1

=
Nb j=1

where the sum goes over all neighboring particles Nb(i) of particle i. Neighbors are

usually defined as all particles that are within a given radius rg around a particle.
are the spherical harmonics evaluated for the normalized direction vector

Ij between the neighbors.
The orientation of the unit vector j is determined by the polar and azimuthal

angles Oii and Ou. The rotationally invariant local bond-order parameters are then

defined as follows:

and

(i)
( 47r

2/ + 1
E igim(012)1,2

in=-1

wi (1)
iZj(i)

lqini(i)12)3/2

with

N
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Fig. 4. Distribution functions of the local bond-order parameters: q4, (76, are and iti6 from
Monte Carlo simulations in a hard-sphere system. Here the cutoff radius rq for the local envi-
ronment of a particle is chosen to be 1.4a, where a is the hard-core diameter. This means that
we included the first, and in some cases also the second nearest neighbors

w/(i) = 12 qbni(i)gb.,(i)gbn3(i).
??? I ,n12,n13

rn -Fn12-Fm3=0

The term in brackets in the last equation is the Wigner-3j symbol. In Fig. 4 we show
typical distribution functions of the local bond-order parameters q4, q6, 0J4, ih6 cal-
culated in a Monte Carlo simulation of hard-spheres under conditions close to the
coexistence point, where the liquid and the solid phase are equally stable. The figure
illustrates that there is some separation between the distribution functions obtained
from the liquid and those obtained from the solid. Sometimes, there is even a sep-
aration between the solid structures themselves, a property that we will use later to
distinguish between different solid structures. For the identification of solid-like par-
ticles we have to choose an order parameter that is able to distinguish between the
liquid on the one hand, and all possible solid structures, on the other. From Fig. 4 we
see that q6 has some of the desired properties, as the values of the solid phases are
all shifted to higher values compared to the liquid. These order parameters are sen-
sitive to the degree of orientational correlations of the vectors that join neighboring
particles. In simple liquids we expect that there are no preferred orientations around
a particle and therefore the correlations decay rapidly. In contrast, for a particle with
a solid-like environment the vectors are correlated and as result there should be a
clear separation between distribution functions for the bond-order parameter. For this
reason we can enhance the selectivity of the method by calculating the correlation
function of the vectors q6 of neighboring particles i and j

6
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where the * indicates the complex conjugate. In Fig. 5 we show the correspond-
ing distribution functions for a hard-sphere system. Note that we did not attempt to
normalize the dot-product. The relevant solid structures, which for the hard sphere
system are fcc, hcp and bcc, yield much higher values for the dot-product than the
liquid. We now define two neighboring particles i and j to be connected, if the dot-
product described above exceeds a certain threshold. In the case of hard spheres this
threshold is set to 20. By using this definition we can correctly identify effectively
all particles in a solid to be solid-like, however also in the liquid it happens quite
frequently that a particle has more than one connection. To illustrate this, we show
in Fig. 6 the distribution functions for the number of connections per particle. Note,
that the peak for the solid structures is at 12 for fcc, hcp and around 13 for bcc. These
numbers correspond to the first, or first and second nearest neighbors, which were
included in the local environment. For the bcc structure the peak is slightly shifted to
lower values, which is due to the fact that the bcc structure is relatively disordered.
The bcc lattice of monodisperse hard-spheres melts spontaneously. We found, how-
ever, that a slightly polydisperse (3%) bcc crystal is mechanically stable. We used
such a crystal to study the bcc bond-order properties. Thus far, we have no clear
separation between solid-like and liquid-like particles, because the order-parameter
distributions overlap. We therefore apply a more stringent criterion to distinguish
between solid and liquid. To this end, we impose a threshold on the number of con-
nections a particle has with its neighbors. All particles with less connections than this
threshold are considered to be liquid-like. We should bear in mind that, in a small
nucleus, most particles are at the surface. These should be recognized as solid-like.
We found this is achieved if we choose threshold value between 6 and 8. The present
analysis provides us with an unambiguous local criterion to identify solid-like parti-
cles. Finally, we need a criterion to identify which solid particles belong to a single
cluster. For this purpose, we used a simple distance criterion: if two solid-like parti-
cles are closer than a certain threshold distance, then they belong to the same cluster.
The values that we chose for this were between 1.5a and 2a, where c is the hard-
core diameter. We note that, whereas the absolute number of particles in the cluster
depends somewhat on the choice of the threshold values, the height of the computed
free-energy barriers is fairly insensitive to the precise criterion that is used.

Using this local bond-order analysis we can sample the equilibrium distribution
function for the probability P(n) in a Monte Carlo simulation. In all cases we per-
formed Monte Carlo simulations in the isobaric-isothermal (N PT) ensemble. In this

ensemble the average of a microscopic quantity A is given by

(A)Npr f dV fdrW exp[fl(U(rN) PV)]

where U(rN) is the potential energy of the system with particle positions rN.
11kBT is the reciprocal of the thermal energy, N the number of particles and P
the applied pressure. In a Metropolis Monte Carlo simulation the above ensemble

average is approximated by

f dV f drN A(rAl) exp[fl(U(rN) PV))
(7)

# =
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where M is the total number of measurements and A (ri1v) the value of our property
A associated with configuration ri N . In the case of crystal nucleation we need to
calculate the average number of clusters of size n and Eq. (8) becomes
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As an example we show the results from Monte Carlo simulations in a system of
hard-spheres. In the simulations we used N = 3375 particles and applied a pressure
fl P 3 = 16. At this pressure, the liquid phase is meta stable with respect to the solid,
but does not crystallize spontaneously as the Gibbs free energy barrier between the
two states is too high. The temperature T does not play a role in that system. After
equilibrating the system, one could in principle measure the cluster size distribution
after every Monte Carlo move, however this would be computationally expensive and
statistics would still be poor, as the measurements are strongly correlated. Instead we
measure the cluster size distribution after one trajectory, which consists of 20 moves
per particle plus about 10 volume moves. The total length of the simulation was
100000 trajectories. In this simulation we could measure the probability distribution
P (n) up to cluster sizes of n = 15 particles. The corresponding Gibbs free energy
for the formation of such a cluster is shown in the inset of Fig, 8. The formation of
larger cluster was so rare that the statistical accuracy was too poor.
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Fig. 7. Examples of the cluster size sampled during one simulation. The different configura-

tions started with clusters of sizes n = 20, 50 and 110. Due to the parallel tempering technique,

swapping between different windows is possible and the configurations could sample almost

all possible cluster sizes

In order to sample larger cluster sizes we needed to apply the umbrella sam-
pling technique of Torrie and Valleau [14]. The method is based on the idea that the

ensemble average can be rewritten as follows

(A)NPT

where we have introduced an, as yet unspecified, weighting function W (rN)
fico(r'')], where a)(rN) is the biasing potential. The subscript (...)w indicates

(9)
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an ensemble average according to the biased distribution function exp[/1(U(rN)
PV))W(rN). By specifying the weighting function W we can force the system to
sample in the relevant regions of phase space. In the case of crystal nucleation we
can calculate the ensemble average according to the weighted ensemble, Eq. (9), as
follows

11V(riNVW in]
(AT n)N PT

where the sum goes over all measurements M. We now need to consider the choice
of the weighting function. As the formation of large nuclei is rare, the probability
to have two large clusters simultaneously in the system, is vanishingly small. As a
consequence, we can choose a bias potential that just controls the size of the largest
cluster in the system. Somewhat arbitrarily, we chose the bias potential to be a har-
monic function of the size of the largest cluster:

co[n(rN)] = 21 k[n(rN) no]2. (10)

The constant k determines the range of cluster-sizes sampled in one simulation.
The parameter no determines the center of the "window". In principle, it should be
possible to design a biasing function that makes it possible to sample all cluster sizes
in a single simulation. However, such a "smart" simulation would take much longer
to equilibrate [15]. This is why we split the simulation into a number of smaller
simulations that are restricted to narrow, but overlapping windows of different cluster
sizes. The implementation of the biasing potential in the Monte Carlo simulation is
straightforward. As the computation of cluster sizes is relatively time-consuming, we
do not compute the size of the largest cluster after every Monte Carlo move. Rather,
we carry out a fixed number of Monte Carlo moves per particle without bias. We
then calculate the final cluster size and accept or reject the whole sequence of trial
moves on basis of the change in the biasing potential: exp[fl Act)], where AO) is
the difference in the biasing potential after and before the trajectory, To facilitate
the (very slow) stacking rearrangements of the clusters, we implemented the parallel
tempering scheme of Geyer and Thompson [16], The idea is to run all the simulations
in the different windows in parallel and allow them to exchange clusters between
adjacent windows. The actual change between windows i, j is accepted according to
exp[fl(w w0)], where to = ki12(ni no,i)2 kj12(ni no, j)2 is the energy
of the biasing potential before and w = ki12(nj no,i)2 + 1(1/2(n1 no, j)2 after
the change. In practise, what is exchanged between processors, are the minima of the
bias potential rather than configurations. This requires virtually no communication
between different computer nodes. In Fig. 7 we show an example of the cluster sizes
sampled in the course of a simulation of hard spheres.

In the inset of Fig. 8 we show the results for the Gibbs free energy of a nucleus ob-
tained from the simulations in each window (unbiased+biased runs). The Gibbs free
energies in the different windows are determined up to a constant A Gi(n)I knT +bi,
where the subscript i indicates the number of the window. In order to determine the

+
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fitting the results for the free energy in the different windows to one polynomial. The inset
shows the sequence (unbiased + biased) of measured Gibbs free energies G (n)/ k BT + hi
before the fit

constants bi we fitted all the free energy estimates in the different windows to one
polynomial in n. This can be done by a linear least-square fit, where we minimize

nmax n m kmn:

X = Z Z wi(n)[AGi(n) Eaknk bi]2
n=1 1=1 k=1

Here (n) = 1/crilGi 00 is the statistical weight determined by the variance alGi
of the free energy measurement and nu, the total number of windows used in the
simulation. The maximum order of the polynomial used was k max = 10. Note that by
using a high-order polynomial, we do not assume a functional form of the nucleation
barrier (the barrier might or might not be correctly described by CNT). From the
unbiased simulation we get the absolute Gibbs free energy for the formation of a
cluster of size n with respect to the liquid state. Therefore the constant b1 is known.
In Fig. 8 we show the final result for the calculation of a nucleation barrier for hard-
spheres at pressure 13 Pa. 3 = 16.

2.2
Kinetic Prefactor

In atornistic simulations, the kinetic prefactor is usually calculated using the Bennett-
Chandler scheme [17]. In the case where the barrier crossing is relatively diffusive, it
is attractive to use a modification proposed by Ruiz-Montero et al. [18]. The principle
of both methods is to generate a large number of independent configurations at the
top of the barrier. These configurations are then used as the starting point for an
unbiased trajectory in which one determines if the nucleus grows and the system
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crystallizes, or if it shrinks. From the number of nuclei that grow and shrink one
can extract the kinetic factor. However, in order to get a reasonable estimate one
has to simulate a rather large number of trajectories, on the order of one hundred.
In the present work, we consider barrier crossing phenomena that are, effectively,
purely diffusive. In that case, we can compute the kinetic prefactor directly using the
expression: .1" = Zpi fn+, . After a barrier calculation at number density pi the only
unknown quantity is fn+,.. In order to compute fn+,, we assume that the critical cluster
grows and shrinks via the diffusive attachment of single particles. We can then define
an effective diffusion constant for the change in critical cluster size:

Daft 1 (Aq(t))
= (11)

2 t

Here An2 (t) = [nc(t) nc(t = 0)12 is the mean square change in the number ofnc.

particles in the critical cluster. As the slope of this change is related to the corre-
sponding attachment rates via ( nc2(t)1It = (fn+, f7.)/2, and as we know that, at
the top of the barrier, the forward and backward rates are equal (LI; = fn7.), we get

1 (Anc2(t))

2 t
(12)

This is a general expression for the calculation of the kinetic factor for diffusive
barrier crossing. Using a Molecular Dynamics simulation one only needs to measure
the change in size of the critical cluster as a function of time. The only restriction
is that, during the measurement, the critical nucleus needs to fluctuate around its
critical value.

To apply this method for the calculation of the attachment rate in a colloidal sus-
pension, we need to have a simulation technique that generates trajectories following
Brownian dynamics and hydrodynamic interaction also needs to be considered. Tra-
jectories following Brownian dynamics could be generated using a kinetic Monte
Carlo scheme proposed by Hinson and Cichocki [19]. These authors show that, in
the limit of very small maximum particle displacement, Ax,ax --÷ 0, the trajectories
generated by the kinetic Monte Carlo simulation are stochastically equivalent to the
process described by the Smoluchowski equation. The limit Ax,ax 4 0 means that
simulation time would become infinitely long. However, Hinson and Cichocki also
propose an extrapolation procedure with which this limit can be approached system-
atically by repeating simulations with a smaller maximum displacement. In experi-
ments nucleation rates are usually presented in dimensionless form I' = I ka51Do,
where a is the diameter of a monomer and Do the free diffusion coefficient. There-
fore we only need to compute the ratio fn+, / Do. From the previous calculation of the
nucleation barrier in a hard-sphere system we could determine the critical cluster size
and had generated independent configurations in which such a cluster was stabilized.
We used these configurations, to perform an unbiased kinetic NVE Monte Carlo sim-
ulation, measuring the size of the critical cluster as a function of Monte Carlo blocks.
Here one block is 100 trial moves per particle. In the inset of Fig. 9 we show such
a measurement at 0 = 0.5277(P = 16). From these data we then extracted the
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Fig. 9. Reduced attachment rate fVD0 of particles to the critical cluster at volume fraction
= 0.5277. Here one block is 100 moves per particle in an NVE Monte Carlo simulation.

The inset shows the development of the size n of the critical cluster during one trajectory

attachment rate using Eq. (12) which is shown in the same figure. Surprisingly, we
see that the attachment rate has a different short time and long time behavior. This
implies that, at short times, the diffusion in cluster size is not a Markov process. As
the diffusion of the critical cluster over the nucleation barrier is on the time scale of
the long time behavior of the attachment rate, this is the value we have to use. To test
the dependence of our results on the maximum particle displacement we performed
simulations for two different values Axma, = 0.12a and 0.012u. The correspond-
ing values for the free diffusion coefficients are Do = (A.xax )/6. The ratio of the
results for fn+,IDo in both simulations is equal to 4.79. Computing the long time self

diffusion coefficient D/Do = ((r (0) r (t))2)/6t Do we get a ratio in both simula-
tions of 5.07. Therefore the difference in the results for the attachment rate is mainly
due to diffusion. In our simulations we did not follow the extrapolation procedure
for Axmax 0 described in [19], as for Axniax = 0.012a we are already in a limit
where the attachment rate has effectively reached its limiting value. We justify this
by testing our approach on the calculation of the long time self diffusion coefficient,
which will be discussed later.

To correct for the effect of hydrodynamic interactions that are known to be impor-
tant at high volume fractions, we used an approach proposed by Medina-Noyola [20].
To this end, we replace the free diffusion coefficient Do by the short-time self diffu-
sion coefficient D. We therefore have to multiply our result by a factor a = DP1.")0.
In the case of hard spheres, several (rather similar) functional forms for this factor
have been proposed in the literature [21, 22, 23, 24]. Here we used the phenomeno-
logical expression (I 0/0.64)1.17 [25] at high volume fraction 0. As a test of our ap-
proach we computed the long-time self diffusion coefficient of a dense colloidal sus-
pension of hard spheres. Our results, *Do = 2.9 x 10-3, 2.5 x 10-3, 2.1 x 10-3,
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calculated at volume fractions 0 = 0.5207, 0.5277, 0.5342, are within statistical er-
ror of experimental data, see e.g. [26, 39].

For the calculation of the kinetic factor we usually performed about 5 trajectories.
The length of the trajectory depends on whether the cluster size fluctuates around
the critical size or not; if not the simulation is stopped. From these simulations we
calculated the attachment rate. The error estimates vary between a factor of one for
the larger critical cluster sizes and a factor of two to three for the smaller cluster
sizes. In the regime of smaller critical cluster sizes, the fluctuations in cluster size
are almost on the order of the critical cluster size and it becomes therefore more
difficult to get a good estimate.

3

Hard-Sphere Colloids

A collection of hard, identical spheres is the simplest possible model system that
undergoes a first order phase transition. For low packing fractions the particles are
in a liquid state, but when the packing fractions exceeds a value of 49.4% a ordered
solid state becomes more stable. This was first shown in computer simulations by
Hoover and Ree [27] in 1968. The experimental realization of a colloidal suspen-
sion that closely mimics the phase behavior of hard spheres followed about 20 years
later and was a milestone in soft matter physics [28, 29]. More recently the phase
transition kinetics of hard sphere colloids has been studied extensively in experi-
ments [5, 30, 31]. However as mentioned in the introduction the interpretation of the
data with CNT was rather indirect.

Using the simulation techniques described before, we can compute the rate of
crystal nucleation for hard sphere colloids by a direct calculation of the nucleation
barrier and the kinetic prefactor [8, 32]. We first performed Monte Carlo simulations
in the isobaric-isothermal ensemble NPT to compute the crystal nucleation barrier
at three different pressures ft Pa3 = 15, 16, 17. The corresponding bulk volume frac-
tions of the liquid are = 0.5207, 0.5277, 0.5343. The resulting nucleation barriers
are shown in Fig. 10. As expected, with increasing volume fraction the crystal nucle-
ation barrier decreases. Our simulation results for the crystal nucleation barrier can
be compared directly to the predictions from CNT for the nucleation barrier Eq. (1).
For the hard-sphere system the chemical potential difference can be calculated accu-
rately using phenomenological equations of state for the liquid and the solid [33], see
Appendix B. As the solid-liquid interfacial free energy y of a small crystal nucleus
in a supersaturated liquid is not known a priory we use its corresponding value for a
flat interface at coexistence. This value has been calculated in a recent simulation [7]
for three different crystal planes. Here we use ya, = 0.61kBT1a2 which is the av-
erage of the three crystal planes. The results for the barrier height based on CNT in
order of increasing density are 6, G*11c5T = 27, 15.7, 10.2. These values are about
30-50% lower than our numerical estimate. This discrepancy might be due to the
fact that for a small nucleus in a supersaturated liquid the interfacial free energy is
different from that of a flat interface at coexistence. For this reason we also used y
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Fig. 10. Calculated free energy barrier for homogeneous crystal nucleation of hard-sphere
colloids. The results are shown for three values of the volume fraction. The drawn curves are
fits to the CNT-expression Eq. (1). For the identification of solid like particles we used the
techniques described before. The cutoff for the local environment was set to ru = 1.4cr , the
threshold for the dot product q6q6 = 20 and the threshold for the number of connections was
set to 6. If two solidlike particles are less than 2cr apart, where a is the diameter of a particle,
then they are counted as belonging to the same cluster. The total simulation was split up into
a number of smaller simulations that were restricted to a sequence of narrow, but overlap-
ping, windows of n values. The minimum of the bias potential was placed in steps of tens,
i.e no = 10, 20, 30, ... In addition we applied the parallel tempering scheme of Geyer and
Thompson [16] to exchange clusters between adjacent windows. All simulations were carried
out at constant pressure and with the total number of particles (solid plus liquid) fixed. For
every window, the simulations took at least 1 x 106 MC moves per particle, excluding equili-
bration. To eliminate noticeable finite-size effects, we simulated systems containing 3375 hard
spheres. We also used a combined Verlet and Cell list to speed up the simulations

as a fit parameter to our results. Using R = (3n/ (4n.ps)1/3 we fitted Eq. (1) to our
data. The result can be seen as the solid line in Fig. 10. As can be seen, the functional
form of the nucleation barrier seems to be described well by CNT, but the values for
the fit parameter yell (P = 15) = 0.711c877c2 , yeff(P = 16) = 0.737k8TIcr2
and yeff(P = 17) = 0.75 lIcHT /a2 are higher than the coexistence value and they
increase with volume fraction. If we assume that this dependence is linear, than our
simulation results extrapolate to a value of yeff(P = 11.7) = 0.64kaTlu 2 at coex-

istence a value that is very close to yao. For a discussion of the dependence of the
surface free-energy density on supersaturation, see Ref. [34]. In Appendix C we dis-
cuss an alternative, thermodynamic route to compute the surface free-energy density

for the critical nucleus.
Our results for the surface free-energy density can also be compared to the val-

ues extracted from experiments. Palberg [4] fitted the data from Harland and van
Megen [5] and obtained y 0.5kBT/c2 and for the data from Heymann et al. [6]=
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he found y 0.541c5T/(72. Note that these values are significantly lower than the
numerical estimates.

In the crystal-nucleation experiments, the colloids had a size polydispersity of
about 5%. We therefore repeated our simulations for a suspension with 5% poly-
dispersity. We find that both systems have the same nucleation barrier at the same
Alt [35]. For a caculation of Ali see Appendix C. Therefore polydispersity alone
cannot account for the difference between the barrier heights derived from experi-
ment and simulation.

Table 1. Summary of the simulation results for the calculation of the nucleation rate for
monodisperse hard sphere colloids. Here is the volume fraction of the liquid phase. AG* is
the measured free energy to form a cluster of critical size nr. /Do is the attachment rate of
particles to the critical cluster divided by the free diffusion coefficient. I* = Icr5 /130 is the
reduced nucleation rate, and A is the estimated typical jump distance from the calculation of
the attachment rate. A /1 is the difference in chemical potential between the two phases

cb AG* nc I DO loglo[rn A p

0.5207 43.0 260 189 19.3 0.31 0.34
0.5277 27.8 130 43 13.5 0.46 0.44
0.5342 18.5 75 66 9,14 0.27 0.54

Subsequently, we performed kinetic Monte Carlo simulations to compute the ki-
netic prefactor and, thereby, the absolute crystal nucleation rate. The results of our
calculations of the attachment rate for the monodisperse hard-sphere system are sum-
marized in Table 1. As experimentally determined values for the kinetic factor often
differ by orders of magnitude from those predicted by CNT, it is also important to
compare our computed kinetic prefactor with the one predicted by CNT. We find that
the Zeldovich factor that follows from our numerical calculations is almost identi-
cal to the CNT prediction. This is not surprising, as CNT provides a good fit to the
numerical data for the shape of the barrier. The remaining quantity to compare is
the reduced attachment rate fc+ /Do. If we assume that in Eq. (5), Ds = Dk, where
Dk is the long-time self-diffusion constant, and if we treat A as a fit parameter to
reproduce our calculated attachment rates, then we get values for A in the range
0.27 0.460 (see Table 1). This jump distance in the case of colloids it might be
better to call it a diffusion distance is comparable to the inter-particle spacing in a
dense suspension, which seems reasonable. In contrast, experimental estimates for A
tend to be rather large: A = 2.8 17rt [4]. The identification Ds Dis- is justified

by the fact that the time A2/Dk' corresponds to long-time diffusion.
Using our simulation results we can compute steady-state nucleation rates that

can be compared directly (i.e. without any adjustable parameters) to experiment. In
Fig. 11 we show our numerical predictions for the nucleation rate of a monodisperse
suspension and a suspension with 5% polydispersity. These results can be compared
directly to the experiments on suspensions with the same polydispersity. Note that
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the polydispersity in Ref. [31] is about 2.5%. As can be seen from the figure, the sim-
ulations predict a much stronger dependence of the nucleation rates on density than
is observed in the experiments. This discrepancy between the simulations and exper-
iment is unexpected and significant because hard-sphere colloids are among the best
studied experimental realizations of a simple liquid. We know the structural and ther-
modynamic properties of hard-sphere suspensions quite accurately and, more signif-
icantly, these properties tend to be well reproduced by the ideal, hard-sphere model.
Hence, large discrepancies between experiment and simulation cannot be easily dis-
missed as being due to uncertainties in the parameters that characterize the colloidal
suspension. Rather, we must envision the possibility that either our theoretical de-
scription of crystallization is inadequate or that what is measured is not really the
steady-state, homogeneous nucleation rate. In fact, the latter suggestion is not alto-
gether unreasonable, as light-scattering cannot be used to see the very early stages of
crystal nucleation. Secondly, the experiments are extremely sensitive to any residual
ordering in the solution that may have survived the preparation of the experimental
system. Thirdly, at high supersaturations, the concentration of crystal nuclei rapidly
becomes sufficiently large that the interaction between different crystal nuclei may
no longer be ignored [36]. In that case, the steady-state nucleation expressions that
we employ are no longer applicable. We note that Dixit and Zukoski [37] developed
a purely kinetic model to predict nucleation rates which yields good quantitative
agreement with the experimental data. Volkov et al. [38] recently reported molecular
dynamic simulations of hard-sphere crystallization at large supersaturations. In this
regime, the simulations are in good agreement with experiment. In fact, in the simu-
lations of Volkov et al., the simulation data could be analyzed in the same way as the
experiments (namely, by studying the time evolution of the first Bragg peak of the
static structure).

One unique feature of the simulations is that they allows us to study, in detail, the
structure of small crystal nuclei. This is interesting as already in 1897 Ostwald [40]
pointed out the role of meta-stable phases in crystal nucleation when he formulated
his famous step rule. This rule states that the phase that nucleates does not need to be
the one that is thermodaynamically most stable. In the recent years there have been
several attempts to provide a microscopic explanation [41, 42, 43, 44] for Ostwald's
observation. Alexander and McTague [41] argue, on the basis of Landau theory, that
if the differences in the liquid and solid densities were not too great, then the phase
that would be nucleated from the liquid would be bcc regardless of the structure of
the stable (lowest free energy) phase. Leyvraz and Klein [42, 43], showed that for
deeply quenched systems with long-range interactions, the critical droplet can have
a bcc symmetry, though not a bcc crystalline structure. Simulations by ten Wolde
et al. [13] showed that the situation can even be more subtle, at least for a Lennard-
Jones system: The core of a stable Lennard-Jones cluster formed a stable fcc structure
while the surface of the nucleus showed indications of a bcc structure. Thermody-
namically the formation of metastable phases might be explained by differences in
interfacial free energies. The formation of a bcc-liquid interface might cost less en-
ergy than that of a fcc-liquid interface. In the case of hard-spheres it is known that
the fcc phase is the stable structure, but the free energy difference between the fcc
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and the hcp structure is very small ( < I 0-3 kBT) [45, 46]. This means that thermal
fluctuations of the order of IcBT could transform a cluster of 1000 particles from fcc
to hcp or just cause stacking faults. Note that the fcc and the hcp structure differ
only in the stacking of close-packed hexagonal crystal planes. For the fcc structure
the stacking is ABC, whereas for the hcp structure the stacking is AB. If the inter-
facial free energies of a crystal fcc-liquid, hcp-liquid or a rhcp-liquid interface are
different, than this could also completely change this picture. Here rhcp refers to a
random stacking of the close-packed hexagonal crystal planes. The question if small
crystal nuclei are more fcc or hcp like is not clear. Experiments by Pusey et al. [47]
and Elliot et al. [48] indicate that the fcc structure is favored. However, microgravity
experiments by Zhu et al. [49] showed that, initially, small crystal nuclei have a rhcp
structure. A snapshot of the cross-section of a simulated critical nucleus is shown in
Fig. 3. From a direct inspection of the nuclei we found that the structure of the nuclei
is rhcp. In order to be able to carry out the stacking analysis the nuclei needed to
have a size of at least 150 particles, otherwise the number of layers is too small to
distinguish in a meaningful way between different stackings. To study the structure
of even smaller nuclei we performed a local bond-order analysis. We set up a set of
vectors, Vrhcp, Vbcc, VicoVliq, which contain the characteristic distribution functions of
the bond-order parameters, get, 96, th6, of the relevant lattice structures, i.e. rhcp,
bcc, ico and the liquid structure, see also Fig 4. In our simulation the distribution
functions for the cluster were also calculated. The corresponding vector is vd. The
vector vd was then decomposed by minimizing the difference A:
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Fig. 12. Snapshot of a cross-section of a critical nucleus of a hard-sphere crystal at a liquid

volume fraction = 0.5207. The figure shows a three-layer thick slice through the center
of the crystallite. Solid-like particles are shown in yellow and liquid-like particles in blue.
The layers shown in the figure are close-packed hexagonal crystal planes. The stacking shown
in this figure happens to be fcc-like, i.e. ABC-stacking however, analysis of many such

snapshots showed that fcc and hcp stackings were equally likely
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Fig. 13. Structure analysis of (pre) critical crystal nuclei. The figure shows the relative weight
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A = (frhcpVrhcp fbccvbcc ficoVico Acing) )2.

The coefficients frhcp, fbcc, fico, ffici are a measure for the type of order in the system.
If we apply this analysis to an equilibrated bcc crystal, we would get fbcc = 1 and
zero for the others. In Fig. 13 we show the results for frhcp, fbcc, fico and fug as
a function of the size of the largest cluster in the system at P = 15, The results
for P = 16 are qualitatively similar. The figure shows that bcc and icosahedral
structures play no role in the nucleation process. Small clusters are fairly disordered
and have an appreciable liquidlike signature. The figure shows that the rhcp signature
is dominant for all cluster sizes. This was also found in more recent simulations by
O'Malley and Snook [50]. Surprisingly, these simulations also found evidence for
multiply twinned nuclei with a decahedral morphology.

4
Effect of Polydispersity

In practice, the colloidal particles used in the experiments have a distribution of par-
ticle radii (referred to as polydispersity) that is rarely less than 2-3% of the average
radius. In order to compare our measured nucleation rates with experiments we al-
ready needed to study the effect of a small polydispersity (up to 5%) in the preceding
section. For polydispersities up to 5%, we found no effect of polydispersity on the
height of the nucleation barrier. However, experiments on hard-sphere colloids indi-
cate that crystallization is suppressed if the polydispersity exceeds 12% [51]. This
suppression of crystallization is usually attributed to the fact that in poly-disperse
suspensions the freezing point is shifted to higher densities where the system tend
to become glassy. In a glass, the kinetic pre-factor F is expected to be very small,
but the nucleation barrier itself should continue to decrease with increasing super-
saturation. To test this, we studied the behavior of the crystal-nucleation barrier for
polydispersities up to 10% [35],

We performed Monte Carlo in the constant-pressure, semi-grand-canonical en-
semble of the type described in [52]. In such a simulation it is not possible to impose
the size distribution of the particles directly, but the size distribution can be con-
trolled through variation of the imposed activity-ratio distribution function. In our
simulations we imposed a Gaussian activity distribution and a typical particle size
distribution function is shown in Fig. 14.

In these simulations, we computed the crystal-nucleation barrier and the structure
of the critical nucleus, as a function of both polydispersity and supersaturation. As
in the case of monodisperse suspensions [32], we find that all critical nuclei have a
randomly-stacked close-packed structure. During crystallization, size-fractionation
occurs [52,53]: the particles that make up the critical nucleus are on average larger,
and the polydispersity is lower, than those in the metastable liquid, as is shown in
Figs. 14 and 15.

We find that AG*, the height of the nucleation barrier, at fixed IAL, does not
depend on the polydispersity for polydispersities < 5% (see Fig. 16). However, as

+ + +
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Fig. 14. Typical particle size distribution functions from Monte Carlo simulations in the
constant-pressure, semi-grand-canonical ensemble in a bulk liquid and solid. At that pres-
sure the volume fraction of the liquid is q5 = 0.5775 at a polydispersity of 10%. The volume
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Flg. 16. Computed dependence of the free-energy barrier AG* for crystal nucleation of poly-
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the polydispersity is increased beyond 5%, AG' increases rapidly. This implies that
the probability to form a critical nucleus, is suppressed in polydisperse suspensions.

It follows from Eq. (2) (or actually from its polydisperse equivalent, see Appen-
dix C), that at constant I A y I, the variation of A G* with polydispersity is due to an
increase of the interfacial free energy y , see Fig. 17.

Table 2. Supersaturation and volume fraction of polydisperse colloids. Ap is the supersatura-
tion and is the volume fraction of the colloidal fluid. For a calculation of A p in polydisperse
systems see Ref. [8]. The polydispersity ranges from 0% (left) to 10% (right). The polydisper-
sities quoted in this table and in the figures, are those of the metastable liquid

0% 5% 8.5% 9.5% 10%

AP 95 AP 45 AP 95 AP cb AY 96

0.339 0.5207 0.310 0.5344 0.385 0.5614 0.397 0.5697 0.382 0.5717
0.439 0.5277 0.349 0.5377 0.451 0.5673 0.465 0.5746 0.419 0.5738
0.538 0.5342 0.395 0.5414 0.512 0.5726 0.509 0.5782 0.455 0.5775

0.448 0.5456 0.728 0.5864 0.565 0.5808 0.587 0.5878
0.544 0.5528 0.833 0.5948 0.575 0.5828 0.959 0.6239

1.088 0.6145 0.616 0.5859
1.260 0.6212 1.125 0.6239

The increase of y with polydispersity runs counter to Turnbull's suggestion that
the interfacial free energy should be proportional to A H , the latent heat of fusion [3].
For the systems that we studied, A H crosses zero at a polydispersity of 9% [54],
where the liquid becomes denser than the coexisting solid [52]. Yet, y clearly re-
mains non-zero, see Fig. 18.

Surprisingly, the variation of AG* with lAyl is non-monotonic. As I A kt I is
increased, the nucleation barrier goes through a minimum (Fig. 16). This non-
monotonic behavior of AG* is due to the increase of y with I A p I. To illustrate this,
let us approximate the I A y I-dependence of y by y YO (1 + a I App. Ignoring the
slight I Ait i-dependence of the solid density, it then follows from Eq. (2) that AG*
must go through a minimum when lAyI = 2/a. The nucleation theorem [55, 56, 57]
suggests that the minimum in AG* is due to the inversion of the densities of the
polydisperse fluid and the crystal nucleus. In CNT it is usually assumed that y is
constant. A linear variation of y with I&uI has been observed in inorganic glasses
[3], but there the constant a is negative and hence there is no minimum in AG*.
In other systems [58, 59], non-monotonic behavior of G is induced by a hidden
phase transition in the meta-stable phase.

The minimum value of AG* increases rapidly with polydispersity. Using kinetic
Monte Carlo simulations, we can estimate the value of the attachment rate [19]. We
find that, over the range of supersaturations studied, the attachment rates vary by
at most an order of magnitude (Table 3). This means that the variation in the rate
of nucleation is dominated by the behavior of AG*. We estimate that, for colloidal
particles with a radius > 500 nm, homogeneous nucleation will be effectively sup-
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Fig. 18. Surface free energy y as a function of the enthalpy difference Ah (per particle)
between the liquid and the crystal phase shown for the different polydispersities

pressed (less than one nucleus per cm3 per day) when the polydispersity exceeds
10%. This finding has important implications for the morphology of polycrystalline
colloidal materials. Using a simplified version of the analysis proposed by Shi et al.

Table 3. Reduced attachment rate fn+,./D0 as a function of the volume fraction 0

8.5% 9.5% 10%

g/DO 0 g/DO 0 g/DO 0
40 0.5614 12 0.5697 20 0.5717
75 0.5673 60 0.5746 55 0.5738
21 0.5726 15 0.5782 40 0.5775
30 0.5864 50 0.5808 10 0.5878
15 0.5948 10 0.5828 8 0.6239
35 0.6145 20 0.5859
10 0.6212 5 0.6239

[58] we can estimate the size of crystallites in a polycrystalline sample at the end of
a crystallization experiment. We assume that / , the rate of steady-state nucleation, is
given by Eq. (4), and that ug, the rate at which the crystallite radius grows, is given
by the Wilson-Frenkel law:

vg -Ds [1 - exp(-16,pIRBT)],

where A is a typical atomic jump distance and Ds a self-diffusion constant. Note
that both / and vg are proportional to Ds. The total volume fraction occupied by
crystallites as a function of time t is approximately given by the Avrami growth law
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lit vg r4/3.

Crystallization stops when is of order 1. This happens after a time tmax
(I v3)-1/4. The average crystallite radius at this time is equal to R c,v g t mx Usinga

the expression for f.max above, it follows that R, (vg11)1/4. The crucial point to
note is that the average crystallite size depends only on the ratio ugll. As the strongly
density dependent diffusion constant Ds drops out of this ratio, its I Akt -dependence
is mainly determined by the variation of exp(AG" /1c5 T), except for small supersat-
urations. We therefore expect that the typical crystallite size at the end of a nucleation
experiment should scale as R, exp(AG*/4kB T). This should be experimentally
observable.

We could only compute AG* if spontaneous nucleation did not occur in the
course of a simulation. In practise, this implied that we could not study barriers
lower than 15kBT. As a result, we could not test whether AG* in systems with a
low polydispersity (less than 8.5%) also has a minimum. If we assume that, also
at lower polydispersities, we can extrapolate the increase of y with !Asti to large
supersaturations, then we predict that a minimum in AG` should occur even in nearly
monodisperse systems. Again, this should be experimentally observable, because
we should expect to see the formation of larger crystallites if the solution can be
compressed rapidly through the region where AG' is small.

There are two ways to interpret the experimental finding that crystallization is not
observed in suspensions with a polydispersity > 12%: either crystals do not form,
or they are too small to be observed. Our simulations support the first interpretation.
Using Shi's approach, we can estimate the maximum number of crystallites per unit
volume [58]. For a suspension of colloids with a 500-nm radius, we expect to see
less than one crystallite per cubic centimeter, once AG' > 32kBT. In other words,
under those conditions the colloidal glass is truly amorphous.

Our predictions concerning the structure and free energy of colloidal crystal nu-
clei can be tested experimentally. Recently, the technique of confocal scanning laser
microscopy has been applied by Gasser et al. [60] to study the structure and size of
critical crystal nuclei in dense colloidal suspensions. This technique would be per-
fectly suited to test our predictions. Our prediction concerning the minimum in A G*
is even easier to verify. By visual inspection, one could verify whether the crystal-
lites that nucleate in strongly supersaturated solutions are larger than those that form
at lower supersaturations. Over a decade ago, Pusey and van Megen published beau-
tiful images of the morphology of poly-crystalline hard-sphere colloids [29] (simi-
lar morphologies have recently been observed in a study of colloidal crystallization
in micro-gravity Z.D. Cheng, W.B. Russel and P.M. Chaikin, unpublished data).
Pusey and van Megen observed an increase of the crystallite size at large supersat-
urations. However, they attributed this effect to heterogeneous nucleation. Hence, a
direct test of our prediction is still lacking.
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5

Weakly Charged Colloids

Experiments on colloidal crystallization consistently show that it is much easier to
crystallize charged colloids than uncharged ("hard-sphere") colloids. Clearly, long-
ranged repulsion has a large effect on the crystal-nucleation rate. This may even
be true for colloidal suspensions of particles that are only weakly charged. Using
simulations, it is possible to study in detail how repulsive inter-particle forces affect
the crystal-nucleation process [61]. The aim of this section is to elucidate the factors
that affect the rate of crystal nucleation in a system of weakly charged colloids.

In suspension, the charged colloids are surrounded by a cloud of counterions.
This counterion double layer screens the pure Coulomb interaction between the col-
loids. If we use the linearized Poisson-Boltzmann equation to describe the charge
distribution around a charged colloid with hard-core diameter a, then we obtain the
following expression for the pair interaction between two charged macro-ions:

co for r <
PU(r) = )6ex (---,c(rIer-1)1 (13)6 P " for r > cr.rla

U(r) is usually referred to as the "hard-core Yukawa potential". Here K is the in-
verse screening length in units of the hard-sphere diameter a and fie is the value
of the Yukawa repulsion at contact. )5 is a measure for the inverse temperature
(fl 1/ kBT), where kB is the Boltzmann constant. In the linearized Poisson-
Boltzmann theory, we have explicit expressions for both lc and c in terms of the
size and surface charge of the colloid, and of the concentration of counterions and
added salt. However, the linearized Poisson-Boltzmann description provides only an
approximation to the real colloid-colloid interaction. For instance, it is expected to
break down at short distances and for low added salt concentrations. A way to treat
the interaction between charged colloids at short distances was already proposed by
Derjaguin, Landau, Verweij and Overbeek (DLVO) in the 1940s [62]. Since then,
several modifications of the form of the pair potential between charged colloids have
been proposed [63, 64] but, except at very short distances, most expression are very
similar to the hard-core Yukawa model. The main difference between the theories
is the values that they yield for K and E. In the original DLVO theory, these para-
meters depend only on the ionic strength of the solution and on the bare charge of
the colloids. In the more recent theories, lc and c may themselves depend on the
concentration of charged colloids. In the present work, we simply assume that the
interaction between charged colloids is adequately described by a hard-core Yukawa
potential. However, we shall return later to the question whether this is allowed. A
special case of the hard-core Yukawa model, is the hard-sphere model. The latter
model applies in the limit of high salt concentrations oo and in the limit that
the strength of the repulsion is much less than the thermal energy, i.e. fle * 0. This
is typically the case for weakly charged colloids. We note that, whilst the hard-core
Yukawa model is commonly used to describe slightly charged colloids, it can also
be used as a crude model for sterically stabilized colloids. Hence, many of the con-
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elusions that we obtain below, in particular those for systems with a high value of lc,
should equally apply to sterically stabilized, uncharged colloids.

PC

Fig. 19. Calculated coexistence pressure from Ref. [67] for K = 5 as function of the Yukawa
repulsion fle

The phase behavior of the hard-core Yukawa potential has been studied exper-
imentally and by numerical simulation, see e.g. Ref. [65, 66, 67]. The computed
phase diagram of Ref. [67] shows a fluid-solid (bcc/fcc) and a solid-solid (bcc-fcc)
coexistence line and it exhibits two fluid-bcc-fcc triple points, (see Fig.19). The main
difference between the phase diagram of the hard-core Yukawa model and that of the
pure (i.e. point-particle) Yukawa potential [68] is the presence of the second triple
point. This triple point sets a lower limit for the strength of the Yukawa interaction
for which a bcc phase exists.

Only few nucleation experiments on charged colloidal suspensions have been re-
ported. Some of these were based on light-scattering studies [69, 70]. More recently,
Gasser et al. [60] reported a confocal microscopy study of homogeneous crystal nu-
cleation in slightly charged hard-sphere colloids. Recent light-scattering experiments
of crystallization in more highly charged colloids has been reported by Schope et
al. [71] and Wette [72].

We performed a computer-simulation study of crystal nucleation in a hard-core
Yukawa system varying both parameters, the amplitude of the Yukawa repulsion
and the magnitude of screening length. First we computed the nucleation barrier
at fixed K = 5 for four different values of the amplitude of the Yukawa repulsion
fie = 2, 6, 8 and 20. Increasing the contact value fle of the Yukawa repulsion shifts
the volume fraction of the liquid phase at freezing to lower values than the hard-
sphere value ç = 0.494. In order to be able to interpret our numerical data on the
free-energy barrier for crystal nucleation, we need an accurate estimate of the den-
sity, pressure and chemical potential of the liquid at freezing. The data of Ref. [67]
were obtained using a (modified) Gibbs-Duhem integration method. While this tech-
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Table 4. Excess free energy per particle for the different bulk structures and the liquid state
calculated via a thermodynamic intergration in the limit of infinite number of particles [102].
The reference state for the free energy calculation of the liquid was the hard-sphere fluid, and
for the bulk solid structures we used an Einstein-crystal. In some cases we also used the hard-
sphere system as a reference state for the solid structures. We found that the solid free energies
obtained via these two distinct routes agreed to within ±0.005kB T, which corresponds to our
estimate of the statistical error in this calculation. The statistical accuracy of the computed free
energy of the liquid is estimated to be ±0.01kB T. In the table, the values in brackets indicate
the volume fraction at which the excess free energy was calculated. The calculated excess free
energies for the fcc and the hcp structures can be compared directly, as they were calculated
at the samc pressure, whereas the others are not. The fcc-hcp free energy difference is always
smaller than (1 x 10-2kBT)

ffcc fhcp fbcc fliquid

fic = 2
= 5

12.894
(0.5425)

12.892
(0.5425)

11.38
(0.5032)

fic = 6
= 5

23.258
(0.5027)

23.256
(0.5027)

21,49
(0.4808)

19.11
(0.4503)

pc = 8 24.344 24.35 24.32 22.23
= 5 (0.4563) (0.4563) (0.4558) (0.4329)

fie = 20 20.872 20.873 20.986 16.16
K = 5 (0.2888) (0.2888) (0.2895) (0.2529)

fle = 8 11.144 11.147 11.067 10.02
K = 10 (0.4084) (0.4084) (0.4054) (0.3853)

fie = 8 39.107 39.110 38.08
x = 3.33333 (0.5168) (0.5168) (0.5055)

nique is useful to estimate the location of solid-liquid coexistence curves, the com-
puted coexistence data were not sufficiently accurate for the present purpose. We
therefore computed the location of all coexistence points by direct free-energy cal-
culation of the solid and liquid phases [15]. The results for the excess free energy
per particle are summarized in Table 4. From the computed free energies, we obtain
estimates for the chemical potential at freezing that have an error of ±0.011c8 T. We
found the following values for the volume fraction of the liquid phase at freezing:
q5 = 0.48212, 0.43823, 0.4049 and 0.26171 for fic = 2, 6, 8 and 20, respectively
(see Table 5). In Fig. 20 we show the results for the barrier height as a function
of supersaturation with respect to the stable solid phase (fcc). As the figure shows,
the main effect of increasing the strength of the Yukawa repulsion is to lower the
nucleation barrier at constant supersaturation

Note that the decrease of the height of the nucleation barrier is particularly strong
when only a weak repulsion is added to the hard-core potential. In particular, switch-
ing on a repulsive Yukawa potential with a contact value of only 2kBT decreases the
nucleation barrier by some 10/c8T. This implies that for real hard-sphere colloids,
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Fig. 20. Calculated barrier heights AG' of the hard-core Yukawa system with x = 5 and
fie = 2, 6, 8, 20 plotted as a function of supersaturation p of the liquid phase to the stable
fcc phase
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Fig. 21, Calculated barrier heights AG' of the hard-core Yukawa system with fie = 8 and
= 10, 5, 3.33333 plotted as a function of supersaturation ,6,p of the liquid phase to the
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the presence of only a small amount of charge can enhance the nucleation rate at con-
stant volume fraction by many orders of magnitude through two mechanisms: first
of all, the charge increases the supersaturation at constant density. This effect would
shift the nucleation curve to lower densities. But, in addition, the charge lowers the
nucleation barrier at constant supersaturation. Further increase of the strength of the
Yukawa repulsion leads to some additional decrease of the nucleation barrier, but the
effect seems to saturate for values of fle between 8-20.
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Table 5. Summary of the data for the calculations with the repulsive hard-core Yukawa po-
tential. Here P is the Pressure and Ijq Ofcc ibb the corresponding volume fraction of the

fcc and bcc phase. 4,ufcc and Apbcc is the difference in chemical potential between the
liquid and the fcc/bcc phases. AG' are the measured crystallization barriers. f,VD0 is the re-
duced attachment rate of particles to the critical cluster. I is the calculated reduced nucleation
rate

P 951iq Ofcc Obcc A P fcc Alibcc AG* Do log10(/)

K = 5 25 0.5103 0.5420 0.28 - 41 46 -19.1
and 26 0.5159 0.5484 0.34 - 29 84 -13.5

fie = 2 27 0.5218 0.5551 0.40 - 21 6 -11.1
28 0.5257 0.5599 - 0.46 - 15.5 19 -8.1

= 5 37 0.4714 0.4827 0.4808 0.19 0.15 48.1 202 -19
and 38 0.4755 0.4864 0.4848 0.22 0.17 34 57 -16.1

fle = 6 42 0.4903 0.5031 0.5004 0.32 0.25 16.6 52 -8.3

= 5 38 0.4415 0.4487 0.4481 0.17 0.15 43 218 -19.5
and 40 0.4491 0.4563 0.4558 0.21 0.19 31 200 -14.3

fie = 8 43 0.4596 0.4671 0.4668 0.26 0.24 19.1 300 -8.8

= 5 23 0.2859 0.2888 0.2895 0.15 0.14 39.1 167 -18.2
and 25 0.2938 0.2973 0.2974 0.19 0.19 30.4 58 -14.8

fie = 20 28 0.3048 0.3084 0.3083 0.25 0.25 19.1 53 -9.7

x = 10 18 0.3848 0.3978 0.3949 0.23 0.15 49 80 -22.6

and 20 0.3955 0.4084 0.4054 0.32 0.21 26.5 44 -13
fie = 8 22 0.4054 0.4180 0.4150 0.40 0.28 15.2 11 -8.5

x = 3.33333 57 0.4937 0.5042 - 0.24 - 31.5 205 -14.4

and 59 0.4996 0.5106 0.28 - 22.5 81 -10.8
fic = 8 61 0.5055 0.5168 - 0.33 - 15.8 80 -7.7

Let us next consider the effect of the range of the repulsive potential on the nu-
cleation barrier. We computed the height of the crystallization barrier for x = 10,
5 and 3.333 at a fixed contact value fie = 8. In addition, we know the behavior of
the system in the hard-sphere limit (lc = co). As x is decreased, the range of the
potential grows. Initially, (as K is decreased from co to 10, the density at which the
liquid freezes shifts from 0 = 0.494 to 0 = 0.354. Subsequently, the freezing den-
sity increases again. For K = 5, the volume fraction at freezing is 0 = 0.405 and
for K = 3.333, the liquid freezes at cb = 0.456. The variation of the crystallization
barrier with x and Ai.2 is shown in Fig. 21. The figure shows that increasing the
range of the repulsive interaction, at constant supersaturation, initially has the effect
to lower the nucleation barrier. However, as lc is decreased below 5, the nucleation
barrier starts to increase again.

From the CNT expression for the height of the nucleation barrier Eq. (2), we can
estimate the corresponding values for the liquid/fcc interfacial free energy yfcc. In
Fig. 22 we show the variation of the interfacial free energy with fie at fixed K. Fig-
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Fig. 24. Dependence of the reduced crystallization rates /* on the amplitude of the Yukawa
repulsion fic = 2, 6, 8, 20 for pc = 5 plotted as a function of supersaturation A y of the liquid
to the stable fcc phase
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Fig. 25. Dependence of the reduced crystallization rates /* on the inverse screening length
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the stable fcc phase

0.5 0 6

g. 14

18



Numerical Simulation of Crystal Nucleation In Colloids 183

ure 23 shows the variation of the interfacial free energy with c at fixed fie for various
values of the supersaturation A p. The dependence of the interfacial free energy on
the range of repulsion mirrors that of the nucleation barrier and is therefore non-
monotonic. Coming from the hard-sphere limit, the interfacial free energy initially
goes down, but for K less than 5, it increases again.
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Fig. 26. Comparison between the experimentally measured nucleation rates [60] and the sim-
ulation data. The nucleation rates are expressed in reduced units l* = I c 5/D0 where a is the
hard core diameter and Do is the self-diffusion coefficient at infinite dilution. 01 is the volume
fraction of the liquid. In the plot we added only the data sets that match the freezing volume
fraction of the experimental system

In Refs. [32, 35] we found that, for hard spheres, the interfacial free energy y in-
creases with supersaturation A i. As can be seen in Fig. 23, such behavior is also ob-
served in a system of charged colloids. In polydisperse hard-sphere systems [35], the
increase of y with supersaturation could even result in a non-monotonic dependence
of the nucleation barrier on supersaturation. In the present system, the interfacial
free energy also increases with supersaturation, but the effect is not strong enough to
result in a minimum in the nucleation barrier.

Using the techniques described before we computed the kinetic prefactors. Note
that for the correction of the hydrodynamic interaction we used the expression
al/Do = (1 0/0.64)1'17 for the short time self diffusion coefficient from the hard
sphere system. We therefore defined an effective packing fraction of the Yukawa
system such that the packing fraction at freezing of the two systems are equal. We
find that the kinetic prefactors do not vary strongly with either supersaturation or
interaction potential and therefore the behavior of the nucleation rate is reflected by
that of the barrier height. Our results for the computed nucleation rates are shown in
Figs. 24 and 25, where we plot the nucleation rate as a function of supersaturation.
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It is interesting to compare the computed crystallization rates with the results of
the confocal microscopy experiments of Ref. [60]. In order to do this we need to
know the potential parameters that best characterize the experimental system used
in Ref. [60]. From the fact that the suspensions studied by Gasser et al. freeze at a
volume fraction 0 = 0.38, it is clear that the colloidal particles used in these ex-
periments are slightly charged. It is therefore natural to describe them by a Yukawa
model that also has its freezing point at 0 = 0.38. This condition is, however, not
sufficient to fix the values of both K and E. For instance, if K = 5, then the ob-
served freezing density can be reproduce by choosing fic 7. Conversely, if we
choose fic = 8, then there are in fact, two values of K that will reproduce the ob-
served freezing density (lc 20 and K 6) [67]. In Fig. 26, we show a compari-
son of the reduced nucleation rates reported in Ref. [60] with the simulation results
for those ic-fle combinations that yield a freezing point near 0 = 0.38. As can be
seen from the figure, different tc-/36 combinations yield very different nucleation
rates. However, the main effect of the variation of K and c is to shift the nucleation
curves horizontally: the slopes of the different curves are all rather similar. When
we compare the computed nucleation rates with the experimental data, we note two
things: first of all, the experimental rates tend to be (much) higher than the com-
puted rates (Gasser et al. find 6.9 < log[P] < 6.5 for 0 between 0.45 and 0.53).
But, more importantly, the experiments suggest that the nucleation rate barely varies
with volume fraction. We were unable to reproduce this behavior with any of the
Yukawa models that we studied. This discrepancy between experiment and simula-
tion suggests that the experimental system is not well described by a Yukawa model
with density-independent K and c. On the contrary, it is likely that the effective po-
tential parameters of weakly charged colloids in the absence of added salt depend
strongly on concentration. In fact, recent experiments by Sch tope et al. [73] clearly
illustrate this effect: with increasing concentration, the effective potential of charged
polystyrene spheres in dilute aqueous solution, becomes increasingly hard-sphere
like. If we assume that the same phenomenon occurs in the more concentrated sus-
pensions of Ref. [60], then experimental results for the nucleation rates at different
densities should be compared with the numerical predictions that correspond to dif-
ferent effective Yukawa potentials. As can be seen from Fig. 26, the variation of the
nucleation rate with density can be strongly reduced (and can possibly even become
non-monotonic) if, as we expect, c and c decrease with density. It is, however, not
obvious that this effect is large enough to account for the apparent discrepancy be-
tween experiment and simulation. Clearly, a truly quantitative comparison between
simulation and experiment requires better knowledge of the density dependence of
the effective interaction between slightly charged colloidal spheres.

The repulsive Yukawa system offers a unique opportunity to study the effect
of meta-stable crystal phases on the pathway for crystal nucleation. To study the
effect of meta-stable intermediates on crystallization, we analyzed the structure of the
(pre)critical nucleus in different regions of the phase diagram. Note that the pressure
range region where the bcc phase is stable is rather narrow. For these pressures, the
supersaturation of the fluid phase is small, and hence the nucleation barrier is very
high. As a consequence, we could only study the formation of pre-critical nuclei in

".
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the fcc regime. In order to study the structure of the (pre)critical nuclei, we used the
local bond-order analysis proposed by ten Wolde et. al. [13]. In this analysis the local
bond-order signature of a nucleus is decomposed into the signatures of the different
bulk structures (liquid, fcc and bcc) using a linear least square fit. The value of the
resulting coefficients { ftiq, ffcc, Ace} are a measure of the structure of the nucleus.
Our simulations show that the pre-critical nuclei always have a strong bcc signature.
Only for larger (post)critical nuclei well inside the fcc regime, do we find a mixture
of bcc and fcc signatures. In this sense, our simulations unambiguously support the
prediction that nucleation into bcc nuclei is always uniquely favored, even when the
fcc phase is closer in free energy to the fluid phase.
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Fig. 27. Structure analysis of two independent crystal nuclei of size n = 100 and 200 from
the simulations with parameters fit = 8 and K = 10. The figure shows the results for the fit
parameters for the local bond-order analysis as a function of the distance from the center of
mass of the nuclei. The core of the cluster of size n = 100 has a clear bcc signature, where the
cluster of size n = 200 shows a clear fcc structure

Figure 27 shows the results of our cluster analysis for two distinct nuclei of size
n = 100 and n = 200. The picture shows the variation of the structural signature
with the distance from the center of mass of the nucleus. The results shown in this
figure apply to the case K = 10 and fir = 8. This corresponds to the points in
the phase diagram where the preference for the fcc structure is strongest. The core
of the cluster of size n = 100 has a clear bcc signature while the fcc phase does
not seem to play a role. However, for the larger nuclei (n = 200) the core of the
nuclei becomes fcc like while the bcc phase seem to disappear. In this case the clus-
ter transformation happened before it could reach critical size. This phase transition
in the pre-critical nucleus allows us to quantify what value of the bcc-fluid inter-
facial free energy is needed in order to compensate for the difference in chemical
potential of the two bulk structures. From our free-energy calculations, we deduce
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pbcc fcc = 0.082(±0.01)k3T. We used the CNT expression for the barrier height
to estimate the fcc-liquid interfacial free energy: Yfcc = 0.45kBT/72. The transfor-
mation from bcc to fcc nuclei occurred for n 100. At that point, the gain in bulk
free energy is 100 * 0.082 = 8.2kBT. This free-energy gain must be compensated
by the increase in surface free energy as the crystallite transforms from bcc to fcc.
To estimate this surface free energy, we need to know the radius of the crystal nu-
cleus for n = 100. If we assume that the nucleus is spherical and that the solid is
effectively incompressible, we arrive at the estimate Ybcc = 0.38k3T1c2, We find
such a pre-critical transformation from bcc to fcc for fir = 2 with K = 5, and for
fir = 8 with x = 10 and 3.33333. In all the other cases (fir = 6, 8, 20 with x = 5)
even the critical nuclei had a strong bcc signature. This observation has implications
for the interfacial free energies shown in Figs. 22 and 23. In these figures, we show
interfacial free energies that were computed from the CNT expression for the barrier
height, assuming that the nucleus had the same structure as the stable crystal phase.
We now see that, in some cases, the critical nucleus has a meta-stable bcc structure.
This affects the value for A it in the CNT expression, and hence our estimate for y . In
the cases where the critical nucleus has a bcc structure, we therefore also estimated
the value of ybcc from the height of the nucleation barrier. The results are also shown
in Figs. 22 and 23.

Thus far we did not mention the possibility that the structure of the crystal nuclei
could also be hexagonal closed packed (hcp) or a random stacking of the fcc and
hcp domains (rhcp). In the case of hard-spheres it is known that the free-energy
difference between the stable fcc and hcp solid structure is very small (=z-', 10-3kB T)
and therefore stacking faults are expected. Such stacking faults have been observed
in experiments and computer simulations. In the case of charged spheres the situation
is less clear. Some experiments indicate that the situation changes and there seems
to be tendency that crystal nuclei become more fcc-like [74]. Other experiments
suggest that the structure of the cluster is still rhcp [60]. To resolve this question for
the present model system, we first calculated the free energy difference between the
fcc and hcp solid, for all the different parameters of the model potential for which
we performed the rate calculations. It turns out that the free energy difference per
particle between the fcc and hcp structure was always smaller than 1 x 10-2k8T (see
Table 4), which is about the limit of the accuracy that we had in our calculations. This
means that thermal fluctuations on the order of a few kBT could easily transform
clusters containing hundreds of particles from fcc to hcp, or generate intermediate
stackings. To find out if this really happens we, analysed the stacking of the (111)-
planes of 10 nuclei with parameters pc = 8, K = 10 and fir = 8, lc = 3.33333.
In both cases, we do find stacking faults, but they seem to be less frequent than in
the pure hard-sphere case. We stress, however, that these preliminary conclusions are
based on the analysis of only a small number of crystallites.

=4
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6

Poly-12-hydroxystearic Coated Polymethylmethacrylate
Particles

Our findings for the weakly charged colloids suggest that even a slight "softness"
of the intermolecular potential, has important consequences for the crystallization
behavior. This effect could be relevant for experimental "hard-sphere" colloids, as
these particles are, in fact, slightly soft. A particularly popular experimental hard-
sphere colloid consists of a polymethylmethacrylate (PMMA) core coated with a
thin layer of poly-12-hydroxystearic (PHSA). Due to the coating, the particles are
slightly soft. We studied the effect that such a softness has on the phase behavior and
the crystallization kinetics [75].

The potential that we used to model the interaction between two PHSA-coated
PMMA spheres was deduced from surface-force measurements. Costello et al. [76,
77] measured the force between two mica surfaces coated with a PMMA (backbone)-
PHSA (sidechain) comb copolymer, with the PMMA backbone directly adsorbed on
the mica and the PHSA side chains protruding into the solvent. The interaction thus
mimics that between the surfaces of two PHSA-stabilized PMMA colloids. Costello
et al. analyzed their measurements according to a model proposed by Alexander and
de Gennes [78]. In this model, expected to be valid for high grafting densities, each
chain is assumed to consist of connected semi-dilute blobs. The chains are stretched
by osmotic repulsion between the blobs. This tendency is opposed by the increase
in elastic free energy of the chain upon stretching. The resulting expression for the
force per unit area between two parallel plates at a distance r is

F(r) = kBT [(2L)914 r \3/ 4]
(14)

s3 2L )

where s is the mean spacing between between grafting points and L is the thickness
of the polymer layer; a is a numerical prefactor and kBT the thermal energy. The
expression is supposed to hold for 0 < r < 2L. Integration yields the corresponding
energy density. From the distance of onset of the interaction, Costello et al. estimated
that their layer thickness was L = 12.5 nm. A fit of the Alexander-de Gennes model
to experimental measurements yielded a = 0.025 and s = 2.8 nm. By using the
Derjaguin approximation (see e.g. Ref. [79]) we can estimate the interaction potential
between two spheres. Different methods have been used to measure the thickness of
the PHSA layer on PMMA colloids synthesized according to the method of Antl
et al. [80], giving values of L = 7-13 nm [81] and a maximum distance between
grafting points of s = 2.0 nm [82]. As a starting point in our calculations, we used
L = 13,5 nm and s = 2.0 nm to yield the strongest repulsion compatible with
these experimental data. Denoting the radius of a particle's PMMA core (without
the PHSA hair) as R, we plot the interaction potentials for two cases, R = 305 nm
and 201 nm, in Fig. 28. These two radii are chosen to enable us to compare our
calculations with the equilibrium phase behavior data of Pusey and van Megen [29,
83] and the crystallization kinetics data of Harland and van Megen [5] respectively.

, ,
r '1
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R-305 nm
R=201 nm

19 20 21 22 23 24 25 26 27
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Flg. 28. Estimated interaction potential between two PMMA spheres coated with a layer of
PHSA. Results are shown for particles with core radii of R = 201 nm and 305 nm with the
following values for the parameters: = 2.0 nm, L = 13.5 nm, a = 0.025

We see that in both cases the interparticle interaction increases steeply to lOkBT
within 6-7 nm from the point of first contact.

We used the potential obtained in the previous section to calculate the freezing
and melting densities of the colloidal suspensions from simulations using thermo-
dynamic integration [15]. The resulting freezing and melting core volume fractions
for our model potential were estimated to be Of = 0.4137 and 0,n = 0.4579 (for
R = 201 nm) and Of = 0.4380 and q5, = 0.4850 (for R = 305 nm). By scaling the
freezing volume fractions to that of hard-spheres 078 = 0.494 [27] we obtain the
effective hard-sphere diameter aeff = 1.061a and aeff = 1.041 cr of the two systems.
We can compare these diameters to the effective hard-sphere diameter predicted by
first order perturbation theory: car = fo- exp[LIORBT]). The results
Graf = 1.061a (for R = 201 nm) and aeff = 1.041a (for R = 305 nm) are identi-
cal to the estimate above. The values for the interaction potential at this distance are
U (r = crefORBT = 0.7056 and 0.7065. If we use the effective hard-sphere diameter
to rescale the melting volume fractions of the soft systems to that of the hard spheres
we find 0,7, = 0.5469 and On, = 0.5463 (to be compared with ezs = 0.545 [27]).

Our results can be compared directly with the observations of Pusey and van
Megen [29, 83]. These authors measured the core radius of their PMMA particles
by static light scattering and electron microscopy, and found R = 305 nm. Knowing
the core radius R, Pusey and van Megen dried down their suspensions and converted
the measured mass fraction to core volume fractions using literature values of the
densities of PMMA and the suspending liquid. They found core volume fractions at
freezing and melting Or = 0.407 and Om = 0.441 [47]. The corresponding effective
hard sphere diameter is aeff = 1.067. The experimental volume fractions are some
3.1% lower than the freezing volume fraction determined in our simulations. If we
consider the fact that the particles are polydisperse (5%) the discrepancy increases
to 4.1% [52]. One may seek to obtain a better fit to experiments by varying the
parameters s and L. The value of s used gives the minimum surface coverage (at
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areal density s-2) necessary for steric stabilization to function [82]. In any case,
we find that the effective hard sphere diameter is somewhat insensitive to variations
in s. Instead, agreement with the hard-core freezing volume fraction of Pusey and
van Megen can be obtained by using a value of L c,-- 22 nm. While there was no

0.2

0.15

1.5

0.05

0
0 1 2 3 4

0

Fig. 29. Calculated parameter set (Up/ kBT,K) of a hard-core Yukawa potential that accounts
for the observed shift in the freezing density. The same curve but in units of charge per sphere
is also shown

direct determination of the PHSA chain length for the batch of PMMA particles used
by these authors, this value of L is twice to three times as long as values obtained
from a variety of experiments on PHSA-coated PMMA particles [81]. Pusey and
van Megen, who estimated the effective hard sphere diameter of their particles to
be o-eff = 2R x (0.494/0.407)0, also concluded [83] that the implied PHSA layer
thickness of L 20 nm was rather larger than expected. It is therefore possible
that there is an additional source of weak repulsion, such as a slight charge on the
colloids. If we assume that the interaction between charged colloids is described
by a repulsive hard core Yukawa potential: Uo/kBT exp[K(r/ff O]l(r/cr) for
r > a, we can use the previous equation for the effective hard-sphere diameter from
first order perturbation theory to estimate the values of the parameter UolkBT and lc
needed to account for the observed shift in freezing volume fraction. Here Up/kg T is
the value of the Yukawa repulsion at contact and ic is the inverse screening lenght in
units of the hard-sphere diameter cr . We find that the added repulsion is indeed quite
weak, and very soft (see Fig. 29). Note that such a weak, soft repulsion can hardly be
detected in the surface-force measurement. We can estimate the charge on a particle
from the contact value of the interaction potential: Uo/kBT = Q2 PlIr coca, where
Q is the charge, co and c are the permittivity of the vacuum and the solvent. A value
Up/ kBT = 0.1 corresponds to an average colloidal charge of about one electron per
sphere. More recent experiments by Bryant et al. [84] indicate that the polymer layer
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thickness is even smaller, which suggests that the charge might even be higher. In
more polar solvents, long range repulsions have been observed for the same kind of
particles [85].

We turn now to study how the softness of the potential affects the crystallization
kinetics. For the system with R = 201 nm we computed the crystal nucleation bar-
rier at four different pressures Po-3/k11T = 12.5, 13, 13.5 and 14, corresponding
to volume fractions of the liquid 0/ = 0.43441, 0.43803, 0.44144 and 0.44480. In
Fig. 30 we show the results for the crystal nucleation barrier as a function of Ap .
In the figure we also show the results for the hard-sphere system. As can be seen,
despite the only slight softness, the crystal nucleation barrier is reduced by about 2
4 kBT at constant A. This is largely the result of a lowering of the surface tension
compared to the case of hard spheres. If we assume that the nuclei are spherical we
can use Eq. (2) to calculate the surface free energy density of the critical nuclei. The
results are y = 0.592, 0.608, 0.629, 0.636kBTIc72 (in order of increasing density).

Fig. 30. Computed crystal nucleation barrier heights AG* for the slightly soft-spheres plotted
as a function of supersaturation A p. In addition we also show results from previous simulation
on the hard-sphere system

To estimate the crystal nucleation rate we computed the kinetic prefactor r as
described before. The result for the crystal nucleation rates as a function of A ,u is
that the decrease in the nucleation barrier transforms into an increase of the crystal
nucleation rate of about two orders of magnitudes. Our simulations can be compared
directly with the experimental results of Harland and van Megen [5], who measured
nucleation rates by time-resolved static light scattering for PMMA spheres of radius
201 nm1. To make this comparison, we show in Fig. 31 the crystal nucleation rate
as a function of the resealed volume fraction of the metastable fluid. Comparing

Essentially, this radius was determined by assuming the hard-sphere freezing and melting
volume fractions of 0.494 and 0.545 respectively. Thus 201 nm is not the core radius (but
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first the results for monodisperse hard spheres [32] and monodisperse soft spheres
(this work), we see that there is again an increase of the nucleation rate of more
than one order of magnitude. However, the particles used in Harland and van Megen
were 5% polydisperse. Previous simulation results for 5% polydisperse hard spheres
[32] are reproduced in Fig. 31: these disagree with Harland and van Megen's data
by up to 10 orders of magnitude. If we assume that the effect of softness on the
nucleation rate is also an upward shift of a little over an order of magnitude, then
results for polydisperse soft spheres would agree somewhat better with the data, but
substantial disagreement remains. We also show the results of experiments by Sinn et
al. [31]. The particles they used are larger (435 nm, and therefore less soft) and have
a polydispersity of 2.5% (i.e. more monodisperse than the particles used by Harland
and van Megen). The simulation results for monodisperse hard spheres can therefore
be expected to be more comparable. Even here, however, there remains many orders
of magnitude disagreement.
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Fig. 31. Reduced nucleation rates I" as a function of the resealed volume fraction of the
meta-stable fluid. We show the experimental results of Ref. [5] (a) and Ref. [31] (V). The
simulation data for the monodisperse colloids are indicated by (*), where the solid and the
dotted lines correspond to the hard sphere system and the slightly soft system. The results of
the hard sphere system that has a polydispersity of 5% are shown as (M)

0.56 0.57 0.58 0.59

The fact that the particles may be weakly charged and the system has a large
Debye screening length might have two additional effects on the crystallization ki-
netics. First of all, the charge further lowers the surface free energy which increases
the nucleation rates. Secondly, as both the surface charge and the Debye screening

more like R L). We nevertheless have estimated the interparticle potential in this case
using R = 201 nm, because the accuracy of our nucleation barrier simulations and the
uncertainties associated with estimating the absolute nucleation rates do not warrant any
attempt at estimating R to an accuracy of 5%.
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length may depend on density this can qualitatively change the dependence of the
nucleation rate on supersaturation [61]. A better agreement with experimental nucle-
ation rates would be obtained if we make the (not unreasonable) assumption that the
colloids become more hard-sphere like at higher densities.

7
Wall Induced Crystallization

Thus far, we have focused on the homogeneous nucleation in colloidal suspensions.
However, in the real world, crystallization is usually initiated by heterogeneous nu-
cleation. If ice could only form through homogeneous nucleation, the freezing of
water would be a rare phenomenon in countries with moderate climates.

To study the effect of an external surface on the crystallization process,we stud-
ied the behavior of monodisperse hard-sphere colloids near a hard wall [86]. De-
pending on the nature of the surface, it may have different effects on the freezing
transition. One possibility is that the crystal phase "wets" the surface: in that case,
one or more crystalline layers form at the surface, before the bulk freezing transition.
Alternatively, the crystal may partially wet the wall, in which case crystal nucleation
from a supersaturated solution takes place at the wall, rather than in the bulk.

The effect of a structured surface on the crystallization of hard-sphere colloids
has been extensively studied in experiments [87, 88, 89, 90]. These experiments in-
dicate that crystallization on a template is induced at densities below freezing. This
finding is supported by computer simulations of hard spheres in contact with a pat-
terned substrate, by Heni and Lowen [91]. These simulations indicate that surface
freezing already sets in 29% below the coexistence pressure. Furthermore the ef-
fect of a surface on crystallization has also been studied in mixtures of binary hard-
spheres [92, 93] and colloid-polymer mixtures [94, 95, 96]. In both systems surface
crystallization was found to take place before bulk fluid-solid coexistence. In thesys-
tems studied in Refs. [92, 93, 94, 95, 96], depletion forces favor the accumulation
of the larger component on the wall, and this should facilitate surface crystalliza-
tion [97].

For the important case of pure hard-sphere systems confined by fiat walls, it is not
a priori clear if bulk freezing will be preceded by surface crystallization. Yet, we are
not aware of any systematic, experimental studies of surface crystallization in pure
hard-sphere systems. Courtemanche and Swol [98] reported a numerical study of a
(rather small) one-component hard sphere system, confined between two plane hard
walls. These simulations suggested that surface crystallization occurred at a pressure
some 3% below the coexistence value.

Before we present the simulation results, we briefly discuss the effect of a wall on
crystal nucleation in the context of Classical Nucleation Theory (CNT). Turnbull [99]
extended CNT to the case of heterogeneous nucleation of a crystal that forms on a
plane substrate. The difference with the homogeneous case is that there are now two
interfaces present. The Gibbs free energy of a crystal containing n particles is given
by:
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G(n) Aws(y IDS AiS PS (15)

where the subscripts to, 1, s refer, respectively, to the wall, the liquid and the solid.
Note that in this formulation the contribution to AG (n) due to the line tension is ne-
glected. More seriously, the dependence of the interfacial free energy on the surface
orientation is ignored. With those assumptions, the shape that minimizes A G(n) at
fixed n, is a sphere sector, with a contact angle of the two phases with the wall
given by: cos(0) = (ywl )'ws)lyts. The resulting height of the nucleation barrier is

167r 71i f (0)
A G* = (16)

3

where ps is the number density of the bulk solid and the factor f (0) = (2 +
cos(0))(1 cos(0))2/4. The only difference with the expression for the homoge-
neous case is the factor f (0). Depending on the values for the interfacial free energy
densities, we distinguish three different cases. The first case corresponds to the sit-
uation where yws > ywl + vii. Under these conditions the crystal will not form on
the substrate, because this would increase its free energy, and nucleation will take
place in the bulk. A second scenario applies when vrs < Y hos < yis. Then
1 < cos(0) < I. This means that a crystal can lower its free energy by attach-
ing to the wall (partial wetting). The final case is when cos(8) = 1(0 = 0°) or
Ywl > yis. In that case, the solid phase prefers to form a thin layer on the wall
(complete wetting) and the barrier to nucleation disappears.

For the hard-sphere system, we can speculate what scenario should apply, as all
relevant surface free energies have been estimated numerically [100, 7], at least at
coexistence. The estimated value for the wall/liquid interfacial free energy density
at the freezing volume fraction = 0.494 is NI = 1.99kB T/6,2 [100], where a is
the hard-sphere diameter and kBT the thermal energy. The values for the wall/solid
interfacial free energies for different orientations (111), (110), (100) are estimated to
be yws = 1.42, 3.08, 2.01kBT/a2 [100]. The values for the liquid/solid interfacial
free energy for the same three orientations are yis = 0.58, 0.64, 0.62k11T/a2 [7].
These numbers suggest that the (110) plane will not attach to the wall as y,/ + yis <
y.s. In contrast, the (100) planes is expect to partially wet the wall. For the (111)-
plane, the difference between yis + yips and NI is estimated to be 0.01+0.18, which
is not significantly different from zero. Hence, the (111) plane is expected to be at,
or very close to, complete wetting.

To explore the pathway for wall-induced crystallization, we performed Monte
Carlo simulations in the constant normal-pressure (N PIT) ensemble. Here N refers
to the number of hard-spheres in the system. The simulation box was rectangular
with periodic boundary conditions in the x and y directions. In the z-direction, the
system is confined by two flat, hard walls at a distance L. PI is the component of
the pressure tensor perpendicular to the plane wall, and T is the temperature. As our
unit of length we used the hard-sphere diameter cr . T only sets the energy scale. In
the following we always use reduced units. The state of the bulk hard-sphere system
is completely specified by its volume fraction 0. The coexistence volume fractions
for the bulk fluid and solid phase are known [27]: = 0.494 and on, = 0.545. The
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corresponding coexistence pressure is Pc. = 11.57. To suppress finite-size effects,
we simulated a system containing N = 13824 particles. The wall area was fixed at
L,Ly = 600.25(72, the distance between the two walls in the z-direction fluctuated
but was close to 24er, which is much larger than any correlation length in the fluid.
During the simulations, we performed on average one volume move per two cycles
(trial moves per particle).

The simplest way to detect if a crystal phase wets the surface is to measure the
density profile of the particles between the two walls. In Fig. 32a we show the ob-

10

a)

15 20 25 10 15 20 25

Fig. 32. (a) Density profile along the z-direction for a hard-sphere system between the two
plane walls at an excess pressure A P = 0.53. The corresponding bulk volume fraction is ib
0.4966. Simulation length: 2 106 cycles. (b) as in (a) but at an excess pressure A P = 0.63

served density profile at the end of a simulation performed at a pressure just above
bulk freezing (excess pressure AP a.-- Py 0.53). If crystallization at the wall
had taken place, this would cause a pronounced dip between the first and the second
peak in Fig. 32a. No such behavior was observed, even at pressures well above P.

The situation changes when the excess pressure is increased to AP = 0.63. The
liquid starts to crystallize, as can be seen from the density profile shown in Fig. 32b.
These results indicate that supersaturation is needed to induce crystallization. Yet,
the degree of supersaturation needed to induce nucleation is very small compared
to that typical for bulk systems. In fact, in simulations of homogeneous systems of
comparable size, the rate of crystal nucleation during a simulation of similar length,
is negligible up to excess pressures that are an order of magnitude larger (A P s 5.4
(cb 0.53)). In order to identify the early stages of crystal nucleation, we used a
local bond-order analysis [32] to distinguish between particles with a liquid-like and
solid-like local environment. The result of this analysis is shown in Fig. 33, which
shows a snapshot of the particles closest to the wall at A P = 0.53. The dark particles
have a liquid-like environment and the light particles have a solid-like environment.
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Fig. 33. Snapshot of a configuration which shows the particles at the wall. A local bond-
order analysis was used to distinguish between particles with a liquid-like (dark particles) and
solid-like (light particles) environment. The snapshot is taken from a simulation at pressure
Pj = 12.1

Only a few small crystalline clusters can be identified. These clusters form and break
up spontaneously. Under the same conditions, not a single solid-like cluster formed
in the bulk of the fluid.

A more quantitative measure of the effect of the surface on crystal nucleation we
obtained from a direct calculation of the crystal-nucleation barrier. We performed
Monte Carlo simulations in the constant normal-pressure (N PIT) ensemble where
we used N = 13824 particles and simulated 2 106 cycles for every window. The
result for the free energy barrier calculated at a pressure A P = 0.63 is shown in
Fig. 34 (dots). At this pressure, the estimated barrier height is A G* = I7kBT at a
critical cluster size n, = 150.

We can compare this estimate with a prediction for the barrier height in a ho-
mogeneous system. For the hard-sphere colloids we showed before that, given the
correct value for the interfacial free energy, CNT describes the barrier height quite
well [32]. But we also found that the interfacial free energy depends on density.
As the present system is close to coexistence we use its average coexistence value
yap = 0.611(877o-2 [7]. We then obtain AGNT = 1334kBT at a critical cluster
size of ne = 52 000. The overall reduction of the nucleation barrier due to the plane
wall is about two orders of magnitudes, resulting in a huge (0(1057°)) increase in
the nucleation rate. The computed nucleation rate per unit area is 10-9 (in units

DO/a 4)
The implication for experiments is clearly that crystallization of suspensions of

hard-sphere colloids should proceed heterogeneously, whenever a sufficiently flat
surface is available. Yet, somewhat surprisingly, there are, to our knowledge, no
systematic experimental observations of surface-induced freezing in hard sphere
colloids, even though most bulk crystallization studies are performed in contain-
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ers with, effectively flat walls. When we compare the computed nucleation barrier
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Flg. 34. Calculated nucleation barrier AG(n) of a crystal nucleus formed at the wall as a
function of its size n (filled dots). In the figure, we show two fits to the nucleation barrier: the
dashed curve assumes the published values for the surface free energies anduses a curvature-
independent line tension. To obtain the drawn curve, we used ywi as a fit parameter and we
assumed that the line-tension was curvature dependent. If we had used the CNT expression
(Eq. 15), there would not be a nucleation barrier at this supersaturation

with the predictions of CNT (Eq. (15)), we find that this expression seriously un-
derestimates the height of the nucleation barrier. In fact, CNT would predict that, at
an excess pressure A P = 0.53), (where 6./4 = 0.05kBT [33]), the barrier to nu-
cleation is negligible compared to kBT. In order to resolve this discrepancy, we are
forced to take into account the line tension, TLine, of the crystal nuclei on the wall.
If we attempt to fit our numerical data to Eq. (15) plus a term due to line tension,
we can indeed reproduce a nucleation barrier with the same height as found in the
simulations, but the shape of the simulated barrier is reproduced rather poorly (see
Fig. 34). A much better fit can be obtained by allowing 7,1 to vary within the bounds
set by the (large) estimated error in the computed value: l.99(±0.18)4T1u2. In
addition, it turns out that we have to allow for a curvature correction of the line
tension: rLine = roo cIR. This fit yields roo = 0.43kBTIcr, c = 1.1kBT and
Y = 2.016k5T/a2. Note that with this value of yo, the condition for complete
wetting would be satisfied yips + ysI ywi= 0.021c8T/o-2. This would agree with
the conclusion of Ref. [98]. However, the statistical inaccuracy in this estimate is ap-
preciable. We can compare our fitted value for roo with a naive estimate by assuming
that the contribution to the free energy due to line tension is really nothing else than
the surface free energy of the lateral surface of a cylinder of height la. Assuming
that the lateral surface free-energy density is approximately equal to y1(.,.11()), our es-
timate for roo would be roo 0.64kBT/a, which is within 50% of the numerical

Z-5'

+

it



Numerical Simulation of Crystal Nucleation in Colloids 197

result. An estimate of the curvature correction to rLi,ie would necessarily be even
cruder. From the simulations, we can also determine the orientation and shape of the

Fig. 35. Sideview of the snapshot of a crystal nucleus of size n = 150

incipient crystal nucleus. Figure 35 shows a snapshot of a critical nucleus containing
150 particles. From the figure, it is clear that the (111) plane attaches to the wall.
Note that the critical nucleus is quite flat. Clearly, small nuclei prefer to spread on
the surface rather to grow into the bulk. This is in agreement with the CNT predic-
tions in the case where the (111) face wets the wall, either completely or very nearly
SO.

The fact that the range of metastability becomes very narrow might provide a
powerful tool for the determination of the freezing density in experiments. Using
confocal microscopy it should be possible to detect the formation of crystallites on a
flat surface. Provided the interaction of the particles with the wall is the same as the
interparticle potential, such crystallites will be first observed under conditions where
the bulk density differs less than 1% from its value at coexistence. Our simulations
suggest that pre-freezing first occurs at a pressure that is some 2% below the coex-
istence pressure, but, as explained above, this estimate is subject to a large statistical
uncertainty,

8

Concluding Remarks

Computer simulations of crystal nucleation play a dual role. On the one hand, they
can be used as a direct test of existing nucleation theories and, on the other, they can
be compared directly with experiments (provided we have a good model for the ex-
perimental system). The fact that both types of comparisons lead to discrepancies, is
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interesting. It suggests that the existing nucleation theories may need to be improved,
and it indicates that there is something wrong with our interpretation of nucleation
experiments. There may be a problem with our model, or with our assumption about
the experimental conditions ("steady-state, homogeneous nucleation"). Of course,
there may also be problems with our numerical approach. It is appropriate to con-
sider the latter possibility in this paragraph. As we discussed in the text, there is a
certain degree of arbitrariness in the choice of the order parameter that measures
crystallinity. Hence, the reported size of the crystal nuclei should be taken with a
grain of salt. However, as long as the real size of the nucleus is related linearly to
the computed size, the height of the nucleation barrier is not affected by a different
choice of order parameter. Any estimate of the surface free energy that is based on
this height, is therefore also insensitive to the choice of order parameter. However,
if we use the complete shape of the nucleation barrier to compute the surface free
energy, then we may expect to find that the results depend on the choice of order
parameter. In fact, this is not surprising, as the surface free energy of a spherical ob-
ject necessarily depends on our choice for the location of the surface (e.g. surface of
tension or equimolar surface). Finally, the nucleation rate should not depend at all on
our choice of order parameter: this is a true, physical observable that cannot depend
on the scheme that we use to compute it.

We should always bear in mind that the Classical Theory of Nucleation is, in
essence, a macroscopic theory. But, at the microscopic level, such a level of descrip-
tion is not adequate. In the end, all observable quantities should be expressed as
functions of material properties that are, themselves, unambiguously observable.
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A
Distribution of Cluster Sizes in Equilibrium

The distribution of cluster sizes can be derived microscopically from statistical me-
chanics. The derivation is based on Refs. [10, 101, 9]. The partition function of a
system containing N particles in a volume V at temperature T is given by

1

Q(N, V , T) I drN exp[flU(rN)].

Here U(rN) is the potential energy of the configuration with coordinates IN and
A = h1-122rmkT is the thermal de Broglie wavelength. Now we assume that we

=
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have a criterion, that enables us to identify a cluster in our system. We then define a
function Lon(rn) such that

w(e) = {0 1 if all n particles belong to the cluster

otherwise

In addition, we define a function ID, (r") = rani[ I wn+i (rn, ri)1, which
ensures that all other particles do not belong to the cluster

=w r.(r") / 1 if no other particle belongs to the cluster

0 if any other particle belongs to the cluster

We can then define a partition function for a system that contains at least one n-
particle cluster

1 1

Q"
V

T) A3" n! 43(N ") (N n)! x

Idr" I drNn w (rn)wr(r") exp[ pc; r"n)],

where we have used the fact that there are N! / (n!(N n)!) ways to select an n-
particle cluster. Note that the remaining particles may still form additional clusters
of size n. The product ing (rn) wr (r"n) = I, only if all rn particles belong to the
specified cluster and all the other rig' do not. We now rewrite the potential energy
of the system as the sum of contributions from the particles in the cluster Ilh(rn) and
the contribution from all other particles UN_n(r"n), plus the contribution from the
interactions between particles in the cluster and the others Un,N_n(r" , r"--n ). The
partition function then becomes

Q (N, V , T) =
1 1

drNn exp[flUivn (rNn)]
4311 n! 43(N") (N n)!

x f drn a),,wr exp[fi exp[fl Un.Nn rNn)].

We can now define effective potentials for all the particles in the cluster

= (In kT In[ton],

and the interaction between cluster particles and the others

= Un,Nn kT

yielding

Q,,(N , V , T)
1

1

43n43(N -0
I de' expf fiUNn (rNn

(N - n)! n!

dr" exp[fl /4] exp[flU,',.N_].

_

,

InEtorl,

=

=

_
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Multiplication of the right side by Q(N n, V, Q(N n, V, T) gives

Q(N,V,T)= 1

Q(N n, V , T) (17)

dra(exp(flUrc,N_J) expf 13 U;i],

where we have defined a potential of mean force

(exp[fl
f drivn exp[fi(4,,N_] expligUNn(rivfl )]

(N n)!A3(Nn)Q(N n,V,T)
It is the average potential the particles in the cluster feel due to the interactions with
all other particles. We define now the partition function of an n-mer as

1q(V = f (exp[fli4.N_J) exp[flta (18)

Note that qn(V,T, it) is the partition function of a cluster in which the interaction
with the remaining (N n) molecules is included in the factor (exp[flUN_,,]).
The interaction with possible other clusters is also included as such clusters can still
exist in the remaining (N n) particles. The partition function Eq. (18) can then be
written as

Qn(N,V,T)=Q(Nn,V,T)qn(V,T).

The probability to find at least one cluster of size n is then given by

Qn(N,V,T) Q(N n,V,T)
Q(N,V,T)

P =
Q(N, V ,T)

q(V

As the free energy of the system is given by F = kT ln[Q], the above equation
becomes

= q(V,T)exp[fl(F(N n, V, T) F(N, V , T))].

Using

oF \F(Nn,V,T)F(N,V,T)
( aNly,Tn

it follows that

Pn = q(V,T) exp[+/3pn].

The problem with this definition of the probability is that it depends on the volume
V. To see this we rewrite Eq. (18)

1qn(V,T) f exp[flUeff],
n!A3n

n! A3"

=

dr"
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where we defined an effective potential Ueff = Rewriting the par-
tition function in terms of the center of mass of the cluster yields

n3
9/1(V T) =

n! A3n
f d Rc f dr"I-1 exp[fi 1-ieff I.

Performing the integral over the center of mass and defining a partition function of
the cluster in terms of the internal coordinates we get

V
4n =

_internal

where An = h -N/27r nmkT is the de Broglie wavelength of the cluster and

n3/2internal
A3(12-1)n!

f den-1 ].

It is better to define an intensive probability distribution

P 1 -Inter? a
N p A

where p is the number density of the system. For rare clusters we can write the
probability as

Pn = pn (1) + p(2)+ =--, p(1), (19)

where p(i) is the probability that there are exactly i clusters of size n. If we assume
that the formation of different clusters is uncorrelated p(i) = [Pn(l)]', then we can
neglect higher order terms provided the probabilities are small, p(l) << 1. As the
average number of clusters of size n is equal to

Nn = 1 pn (l ) + 2pn (2) + 3Pn (3) -I- (20)

we can write in the case of rare clusters

Pr' Nn

N N p

We note that this is a classical result and should not depend on Planck's constant h,
and, in fact it does not, as the ideal gas part of the chemical potential

p = p' + kT ln[A]
cancels the h in A.

The main point of Eq. (21) is that we can write down a microscopic expression for
the equilibrium number of n-clusters if this number, which is equal to the probability
of finding one cluster of size n, is much less than one. Using Eq. (6) this in turn
defines an intensive Gibbs free-energy of the cluster where the reference state is the
homogeneous phase:

N
= exp(--LIG(n)lk8T]. (22)

This is the key relation which enables us to compute a nucleation barrier in a Monte
Carlo simulation.

(21)

)

43

exp[ fi (Jeff

exp[fily.],

1 q:internal

(tint U,11.

q

+

=

.

= 961,/flimi
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Calculation of the Chemical Potential

Here we describe the calculation of the chemical potential for the monodisperse hard-
sphere system. For the calculation of the chemical potential of the two phases, we
performed a thermodynamic integration. The Helmholtz free energy F, per particle
and in units of the thermal energy kBT, of a liquid is determined by integrating the
equation of state, starting from low densities, where the fluid behaves like an ideal
gas [151:

F(p) Fid(p) 1 , (p')
NkBT NkBT kBT 0 12

where P(p) is the pressure and Fid (p)I N k BT = ln(p) 1 the free energy of an
ideal gas at density p. The corresponding chemical potential is given by:

(P) F(p) P(p)
kBT NkBT pkBT.

The calculation of the chemical potential of the solid is slightly more complicated.
The reason is that it is not possible to perform the integration from the ideal gas limit,
as the solid melts at lower densities. One has to calculate the excess free energy of
a solid at a reference density where the solid is stable, which requires a different
thermodynamic integration technique, the so-called Einstein integration. The idea is
to transform the solid reversibly into an Einstein crystal, where the atoms are coupled
harmonically to their lattice sites. The free energy can be calculated very precisely
and we use the results from Poison et al. [102] for the excess free energy of a (defect
free) hard sphere solid at coexistence: F"(n,coex = 1.0409)/NkBT = 5.91889.
From the above equation we can then calculate the chemical potential of the solid at
any other density according to:

It Co) d (P) + 5.91889
kBT NkBT

1 1.P (p') p'kaT P(p)
kBT I pc P/2 j pkBT

For the equation of state P(p) we used the analytical expressions by Hall [33] for
the liquid and the solid. The integration was performed numerically.

Surface Free Energies of Critical Nuclei

In general, the value of the surface tension (or, more generally, surface free-energy
density) depends on the criterion used to define the surface of a cluster. However,
in the special case that we consider a critical nucleus, there exists a thermodynamic

fP

k

=
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relation between the height of the nucleation barrier and the surface free-energy den-
sity associated with the thermodynamic surface of tension. Below, we derive this
relation.

Consider two systems. System I contains the homogeneous, metastable phase
fi. System II contains the parent phase (p) in unstable equilibrium with a critical
nucleus of phase a. We consider the general case that the parent phase is an n-
component mixture. The height of the nucleation barrier can be computed in several
ways (depending on the thermodynamic variables that we keep fixed). For instance,
for a system at constant pressure and temperature, the nucleation barrier is given by
the difference in Gibbs free energy between states II and I. To compute this barrier,
we first evaluate the difference in the internal energy

iU = u" Ul. (23)

The internal energy of system I is given by

= TIS1 pTVT +E Ali, (24)

where p! is the chemical potential of component i in state I. As state II is also in
equilibrium (be it an unstable one), the chemical potentials of all species are also
constant throughout the system even though the system itself is inhomogeneous.
The internal energy of system II is given by

fl

U" = T"S" Va" 41131 + y A + 141 Ni
1

i=1

(25)

We consider the situation that the nucleus is formed at constant pressure and
pu T1 Ttt T and Ail = = Thetemperature. In that case, pt

last equality follows because the chemical potential in the parent phase is a function
of P and T only. The difference between the internal energies of systems I and II is
then given by

AU=TAS+(p prar)1111+y A pAV, (26)

where AS = S" Si and A V =VII Vt. Note that the terms involving the chem-
ical potentials drop out of the expression for AU. The expression for the nucleation
barrier then becomes

AG = AU+ pAV T AS = (p pa")K1,1 + y A. (27)

This equation holds for every dividing surface. Moreover, we have not made any
approximations concerning the compressibility of either phase, nor concerning the

U1

i=1

i=

= = = pi.

11

= Tug + (pri 14)VT 4V" + y A +E ptNt
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interfacial free energy. If we choose the surface of tension as the dividing surface,
then we can use the Laplace equation (Ap = 2y5/125) to express the height of the
barrier as

4 2 27r
AG = 37r = ApRs3. (28)

In what follows, it will turn out to be convenient to express the surface tension ys in
terms of the barrier height AG and the Laplace pressure Ap

1/3

)ys = (-167r A AG /3I Ap213. (29)

We stress that, for every component, the chemical potentials in the parent phase
and in the critical nucleus are the same. In the absence of the Laplace pressure, the
chemical potentials in phase a would be lower than those in phase p. The effect
of the Laplace pressure is to compensate this difference for every component i. At
first sight, it would seem that the computation of Ap is an intractable problem for
a multicomponent system to satisfy the condition that p7 = pi/ for all i, it is not
enough to compress phase a; we should also change its composition. The problem is
greatly simplified if we make use of the semi-grand canonical ensemble. In the semi-
grand ensemble, the independent variables that describe the state of an n-component
system are: the temperature T , the pressure P, the total number of particles N and
the set of n 1 differences in the chemical potential (A pi) between a reference
species (say, species 1) and all other species i A I. The number of components n can
be infinite.

At coexistence, the chemical potentials of all species i in the two phases, are
equal: 14 = p. In the notation of the semi-grand ensemble, this means that, at co-
existence, the temperature and pressure of the two phases are equal, as are all Ay, ,

and finally also the chemical potential pi of the reference compound. Now consider
what happens if we supersaturate the parent phase, for instance by compression (the
analysis for the case of supercooling follows by analogy). In the semi-grand ensem-
ble we perform this supersaturation by increasing P, while keeping T and all Ay;
constant. Note that this route need not correspond to the physical route for supersatu-
ration. The reason is the physical route is (usually) to supersaturate at constant com-
position. But in that case, all Api change by different amounts, and this is precisely
the factor that complicates the analysis of nucleation in multicomponent systems.

Suppose that we have compressed the system up to a pressure Pp where y (and
thereby all pi) in the parent phase have increased by an amount Apfl. An equal
compression of the phase a leads to an increase A ye in the chemical potential of all
species in that phase. Obviously, A ye is less than A pp, because beyond coexistence,
phase fi is metastable. However, we can compress phase a to a higher pressure Pa
such that

Age(Pa) = Apfl(Pg) (30)

Note that, as we are working in the semi-grand ensemble where we keep all Api
constant, we have thus achieved equality of the chemical potentials in the two phases

167r
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for all species in the multicomponent mixture. In homogeneous nucleation, it is
the Laplace pressure Ap that ensures that the chemical potential of every individual
species is equal inside and outside the critical nucleus. We can therefore make the
immediate identification:

Ap = Pp (31)

Of course, once we have determined the pressure P,, then the density and composi-
tion of phase a follow.

In a simulation, we can solve Eq. 30 by making use of the fact that, for a semi-
grand ensemble we have the following relation:

(32)

We can compute the average volume V in a semi-grand simulation, and hence we
can obtain A p by integration. Our expression for the Laplace pressure then becomes

Pp+ tip
(V (P))a = f (V (P))fl d P. (33)

JP.e, Prox

This can also be written as

f
p+ tip

(V (P))a d P = A PP' (Pp). (34)

For an incompressible system, we can simplify this expression further, but we will
not do this here. Once we have computed Ap, we can estimate the interfacial free-
energy ys by using our numerical information about the nucleation barrier AG, using
Eq. (29):

3 \ 1/3
vs AG° Ap213 .
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