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Abstract In this review, we consider a variety of aspects of polymer crystallization using
a very simple lattice model, This model has three ingredients that give it the neces-
sary flexibility to account for many features of polymer crystallization that have been
observed experimentally. These ingredients are (1) a difference in attraction between
neighboring (nonbonded) components, (2) attraction between parallel bonds, and (3)
temperature-dependent flexibility due to the energy cost associated with kinks in the



2 W. Hu « D. Frenkel

.

S—— el Pl Pl A aaL

polymer chain. We consider this model using both dynamic Monte Carlo simulations and
a simple mean-field theory. In particular, we focus on the interplay of polymer crystalliza-
tion and liquid-liquid demixing in polymer solutions. In addition, we study the factors
that are responsible for the characteristic crystal morphologies observed in a variety of
homopolymer and statistical-copolymer crystals, Finally, we consider how the freezing of
polymers in the bulk can be related to the crystallization of a single polymer chain.

Keywords Crystallization - Lattice statistics - Melting - Monte Carlo simulations -
Phase diagram

1
Introduction

The building blocks of liquid-crystalline polymers are anisometric, and
many of them form liquid-crystalline mesophases, even in monomeric form.
Monomers that have this property are called mesogens. The molecular driv-
ing force to form a nematic phase can be due to anisotropic steric repulsions
between the anisometric hard cores of the mesogens. This mechanism was pro-
posed by Onsager [1]. It provides a successful description of many lyotropic
disorder-order phase transitions. Alternatively, nematic ordering can be in-
duced by the anisotropy of the polarizability of the mesogens, making the
parallel orientation of mesogens energetically favorable. This mechanism for
theisotropic~nematictransition was proposed by Maier and Saupe (2, 3]. It pro-
vides a useful description of thermotropic disorder-order phase transitions.
In many cases of practical interest, both interactions play a role and should be
taken into account in a description of the isotropic~-nematic transition [4~11].

The building blocks of nonmesogenic polymers are also nonspherical; how-
ever, their degree of nonsphericity may be insufficient to induce nematic
ordering. As already pointed out by Flory [12], the rigidity of a polymer chain
- and thereby the anisometry of the Kuhn segments—tends to increase with
decreasing temperature. Flory argued (on basis of the Onsager model) that, at
sufficiently low temperatures, the anisometry of the Kuhn segments becomes
so large that the isotropic (disordered) state is no longer stable and sponta-
neous ordering—in this case crystallization—must occur [12], Note that this
freezing mechanism is rather different from the one considered in simple li-
quids: thereitis assumed that freezing occurs simply because the molecules can
pack more densely in the solid state than in the liquid. The density change on
freezing of simple liquids is typically much less than that observed in the orien-
tational ordering of hard rods. Moreover, most lattice models cannot be used
to describe a freezing transition driven by packing alone. However, this does
not imply that a lattice model cannot properly describe polymer crystallization
other than as an isotropic-nematic transition driven by anisotropic excluded-
volume effects. In fact, it is possible to describe polymer freezing by taking
into account the enhanced attraction between bonds with parallel orientation.
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A lattice model that takes such attractions between parallel bonds into account
provides a reasonable prediction of polymer melting points [13] and of their
interplay with liquid-liquid demixing in polymer solutions [14]. The same fac-
tors that favor freezing do affect to a greater or lesser extent the formation
of mesophases; hence, there is a close relation between polymer crystalliza-
tion and the formation of mesophases, which are frequently observed before
polymer crystallization (see other papers in this issue).

In this review, we focus on the effect of anisotropic interactions, in particu-
lar parallel attractions, and demonstrate that the inclusion of such interac-
tions in a model leads to a great richness in possible polymer phase behavior.
From a practical point of view, the model that we describe has the advantage
that it is computationally very cheap—although this advantage comes at the
price of sacrificing the greater realism of an off-lattice model.

In what follows, we use simple mean-field theories to predict polymer
phase diagrams and then use numerical simulations to study the Kinetics of
polymer crystallization behaviors and the morphologies of the resulting poly-
mer crystals. More specifically, in the molecular driving forces for the crys-
tallization of statistical copolymers, the distinction of comonomer sequences
from monomer sequences can be represented by the absence (presence) of
parallel attractions, We also devote considerable attention to the study of the
free-energy landscape of single-chain homopolymer crystallites. For readers
interested in the computational techniques that we used, we provide a de-
tailed description in the “Appendix.”

2
Lattice Model for Polymer Crystallization

2.1
Flory’s Treatment for Semiflexible Polymers

The structure of a simple mixture is dominated by the repulsive forces be-
tween the molecules [15]. Any model of a liquid mixture and, a fortiori of
a polymer solution, should therefore take proper account of the configu-
rational entropy of the mixture [16-18]. In the standard lattice model of
a polymer solution, it is assumed that polymers “live” on a regular lattice of n
sites with coordination number g. If there are n; polymer chains, each occu-
pying r consecutive sites, then the remaining 7, single sites are occupied by
the solvent. The total volume of the incompressible solution is n = ny + rny.
In the case r = 1, the combinatorial contribution of two kinds of molecules to
the partition function is

n! n\™M (n\"
Zcomb = o) ~ (—) (""") . (1)
ni:n,. ni n2
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This expression accounts for the configurational entropy of an ideal binary
mixture with identical molecular sizes, but not for that of a polymer solution,
since polymer chains are large and flexible, For that case, more contributions
arise from the chain conformational entropy, first considered by Meyer [19]
and then derived by Huggins [20] and Flory [21]. In analogy with a nonre-
versing random walk on a lattice, the conformational contribution of polymer
chains to the partition function is given by

5)”2 zgr-z)ng

_
Zconf j _a(r‘l)m ) (2)

where the first factor 1/2 is the symmetry factor of chain ends. This factor
accounts for the fact that the calculation can start from either of two chain
ends. In Eq. 2, g is the number of possible ways to put the second chain unit
along the chain, 2. (=g - 1) is the number of possible ways to place each
subsequent chain unit of the rest, and a is a correction term for each step
of random walk due to the presence of other chains. Flory showed that if
one assumes random mixing (i.e., ignores all local structural correlations),
a = e. Huggins used a somewhat more sophisticated procedure to estimate the
probability of finding two consecutive vacant sites and obtained the estimate
a=(1-2/g)"4/2"1) [22]. To account for semiflexibility, Flory introduced a po-
tential energy penalty E, for every “kink” in the lattice polymer. The presence
of this kink energy changes z, the intramolecular part of the partition func-
tion, to z. = 1 + (¢ - 2) exp[- E;/(kp T')], where kg is Boltzmann’s constant and
T the temperature [12]. For the fully disordered state at very high tempera-
tures, the so-called “disorder parameter” d, defined as the mean fraction of
consecutive bonds that are not collinear, should be

. (q—-2)exP (— %) |
1+(q-—-2)exp(— %)

As the temperature is decreased, the chains become increasingly rigid: z.
then approaches 1 if we assume that there is only one fully ordered crys-
talline structure and Z.,,r for the liquid becomes smaller than 1. This means
that, at this level of approximation, the disordered state becomes less fa-
vorable than the crystalline ground state. A first-order disorder-order phase
transition is expected to occur under these conditions. Flory interpreted this
phase transition as the spontaneous crystallization of bulk semiflexible poly-
mers {12]. However, since the intermolecular anisotropic repulsion essential
in the Onsager model is not considered in the calculation, only the short-
range intramolecular interaction is responsible for this phase transition.

The calculation of Z.onr makes use of the random mixing approximation
for the fully disordered state. Several authors [23-27] have reported improved
estimates of Z.,,¢ that take into account the effect of local ordering at low
temperatures; however, the resulting improvement in the prediction of the

(3)
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melting point is not very large [22]. Another approach in the calculation of
configurational entropy of semiflexible lattice chains was suggested by Di-
Marzio [28] and was expanded by Ronca [29], and this has been found usetul
in the study of orientational relaxation of stretched polymer liquids {30-32].

A number of Monte Carlo simulations have verified the spontaneous
disorder—order phase transition of semiflexible polymers in 3D lattice
models [33-36]. In molecular dynamics simulations, even the metastable
chain-folding in the supercooled melt has been observed [37]. However,
the ordering transition studied in these simulations was the one from the
isotropic to the nematic phase, rather than the actual crystallization tran-
sition [38]. At high densities, cooling results in the formation of a glassy
disordered state rather than a crystal [39].

2,2
Implications of Parallel Attractions in Polymer Systems

In Monte Carlo simulations, it has been found that introducing a parallel
attraction between the polymer bonds, in addition to the bending-energy
penalty, could significantly enhance the first-order nature of the isotropic-
nematic phase transition at high concentrations [40, 41]. In fact, the inclusion
of attraction between parallel bonds has been found to be useful in many stud-
ies of nonmesogenic polymers. Such attractions between parallel bonds can
mimic the short-ranged orientational order in polyethylene melts that was
observed in molecular dynamics simulations [42], in agreement with experi-
mental observations on n-alkaneliquids [43]. The anisotropic interactions have
been considered in the study of orientational relaxation of stretched polymer
melts [30-32] and of local order in polymer networks [44, 45].

An early study on the role of parallel attraction in polymer crystallization
was made by Bleha [46], who considered the enthalpic effect of parallel pack-
ing on the melting point of polymers. In addition, Mansfield [47] took parallel
interactions into account in his Monte Carlo calculation of the chain-folding
probability at the interphase zone between lamellar crystals and amorphous
liquid. Monte Carlo simulations by Yoon [48] showed that parallel attrac-
tion can lead to the formation of ordered domains and a density-functional
theory study of melt crystallization by McCoy et al. [49] revealed the exis-
tence of an effective “chain straightening force” originating from attractive
potentials [50]. In Monte Carlo simulations of AB-copolymer crystalliza-
tion, parallel attractions were used to distinguish the crystallizable sequences
from the noncrystallizable sequences [50-52]. Parallel attractions were also
applied in the Monte Carlo study of polymer crystallization from dilute so-
lutions on 2D [53] and 3D lattices [54], as well as from the homopolymer
melt in 2D [55] and 3D [56] lattices. In earlier work, we showed that the
incorporation of attraction between adjacent, unconnected bonds allows us
to reproduce the sectorization of chain-folding in a single lamellar crystal-
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lite [57] and the shish-kebab morphology of polymer crystallites induced by
a single pre-aligned chain [58]. More details of some simulation results are
discussed in Sects, 3 and 4.

2.3
Mean-Field Treatment of Parallel Attractions

We now consider a lattice model for a polymer solution that has both
isotropic and anisotropic interactions. A mean-field expression for the free
energy of the system can be obtained by approximating the local concentra-
tion of polymer chain units by its average value. We consider a solution of
polymers consisting of r units on a cubic lattice. The volume fraction occu-
pied by the polymers is denoted by ¢. Two energetic interaction parameters
play a role. One is the “mixing energy” B. It is a measure for the energetic cost
(relative to the unmixed situation) for having a solvent particle and a polymer
chain unit on adjacent lattice sites: B = Eys - (Egs + Euy)/2, where E,, repre-
sents pair interactions of the chain units (u) and the solvent particle (s). The
second interaction energy E, denotes the energy cost to break up a pair of
adjacent, parallel polymer bonds. The mixing interactions act between sites
and are isotropic, while the parallel attractions act between bonds and are
anisotropic.

In the fully disordered state, the probability to find a bond at a given
bond site is simply given by the ratio of the total number of bonds [n;(r -
1)] to the total number of bond positions (ng/2). The probability that
a given bond has a specific parallel neighbor is therefore given by 2n;(r -
1)/(nq). Bvery bond has g - 2 neighbors, since two consecutive neighbors
along the chain should be subtracted from the coordination number. Un-
less a neighboring site is occupied by a parallel bond, its energy cost equals
Ep. The average potential energy cost due to nonparallel packing is there-
fore In(zp) =- 1/2(q - 2)[1 - 2n2(r - 1)/(nq)|Ep / (ks T), where the factor 1/2
eliminates double counting of pair interactions. At the mean-field level, the
potential energy due to nonparallel packing reduces the partition function by
a factor of z,’ 1), Similarly, most chain units can have g - 2 neighbors oc-
cupied by solvent. The probability of finding a solvent molecule on a specific
neighboring site is ny/n. It then follows that the total mixing potential energy
per chain unit is In(zy) =- (g - 2)m B/(nkp T). The corresponding contribu-
tion to the partition function is z- .

Combining all contributions to the partition function of the disordered
state of a lattice polymer solution, we obtain

2 = ZeombLecont zng(r—l)znzr (4)

P m

{2 ) n E 1\" FM2(r-2) p=ta(r-1) ,nz(r-1) jnar
11 143 2 ¢ P m °
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where z. =1+ (g - 2) exp(—- ]c%), Zp = exp{-—- 5%2- [1 - 3”2(.}(.;—12?%} : a;
Zm = €Xp [— (—qmﬁ)nl FET] .

The mean-field expression for the free-energy density of the polymer solu-
tion is therefore [13, 14]
¢

_ ® Ine - 4
f)=(1-9)In(1-¢) + Zlng-¢ln () (5)
2 1 -2 1
—¢[— (1—‘;)111%"'1*';'*'(@"2)3"’7(1—;)Ep:|
) 1 2 .

In the perfectly ordered crystalline ground state, all polymer bonds are par-
allel and no solvent-polymer contacts are present. If we ignore disorder (va-
cancies, kinks) in the polymer crystal at finite temperatures, the free-energy
density of the crystalline state is zero.

2.4
Predictions of the Polymer Melting Point

Inspection of the mean-field free-energy density given in the previous para-
graph allows us to see the relationship between the (microscopic) molecular
parameters of the lattice-polymer model and 1its (macroscopic) phase dia-
gram. Let us first focus on the equilibrium melting point, i.e., the temperature
at which the crystalline phase and the isotropic liquid phase are in thermo-
dynamic equilibrium. We first consider the effect of the energy parameters in
the model and of the polymer chain length on the melting point of bulk ho-
mopolymers. Polymer solutions and mixtures will be discussed in the next
section.

At coexistence, the chemical potentials of given species must be equal. In
a plot of f(¢) versus the polymer concentration ¢, this equality leads to the
familiar common-tangent condition: at coexistence, the tangents to the free-
energy densities of the solid and liquid phases must coincide. In the lattice
model that we use, the partition function for the fully ordered ground state
is given by Z = 1 and hence its free-energy density is zero. At finite tempera-
tures, the presence of defects will change the free-energy density of the solid.
We ignore this effect. In addition, the lattice model ignores the effect of the
vibrational degrees of freedom of the polymers.

In a pure homopolymer system, the free-energy density only depends on
E. (the quantity that determines the chain rigidity) and Ej, (the quantity that
determines the tendency of backbone chains to form parallel, close-packed
structures). Let us first consider the relative stability of the pure polymer melt
and the polymer solid in the limit of infinitely long chains. In that case, we
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find that the free energies of the liquid and solid are equal when

E -2)* E
1+(q-—2)exP(- th;m) mexp[1+ (q_iq kB%niI .

(6)

If Ec < kg T at melting, we can ignore the first term on the left-hand side and
we obtain

E. + 4 E
= i (7)
kplln(g-2)-1]

Equation 7 shows that both an increase in chain rigidity and an increase in
the interaction between parallel chains will lead to an increase in the melt-
ing point, in agreement with experiments [59-62]. For example, semirigid
chains that contain aromatic groups in the chain backbone usually have high
melting points. Similarly, aliphatic polyamides that have strong interchain
interactions, due to hydrogen bonding, tend to have higher melting points
than aliphatic polyesters. In addition, strong interchain interactions are only
possible in the absence of steric obstructions. For example, polypropylene
has smaller side branches than poly(1-butene) and, a fortiori, than poly(1-
pentene). And indeed, polypropylene has a higher melting point (460.7 K)
compared with poly(1-butene) (411.2 K) and poly(1-pentene) (403.2 K) [63].
Bunn [64] has observed a linear dependence of Tp, on the cohesive energy
density of the same series of homologues [64]. This observation is under-
standable because both E. and E; contribute to the cohesive energy density

of solid polymers in a linear way, and in addition the compounds in the same
homologous series should have similar E; and E; values.

I'm

10 ~

00 05 1.0

E/E,
Fig.1 Melting temperatures of polymers (kp Ty /E.) with variable E;,/E¢ values. The line
is calculated from Eq. 10 and the circles are the simulation results obtained from the onset

of crystallization on the cooling curves of disorder parameters, in a short-chain (r = 32)

system (occupation density is 0.9375 in a 32-sized cubic box) with a template substrate
(Hu and Frenkel, unpublished results)
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The quality of the mean-field approximation can be tested in simulations
of the same lattice model [13]. Ideally, direct free-energy calculations of the
liquid and solid phases would allow us to locate the point where the two
phases coexist. However, in the present studies we followed a less accurate,
but simpler approach: we observed the onset of freezing in a simulation where
the system was slowly cooled. To diminish the effect of supercooling at the
freezing point, we introduced a terraced substrate into the system to act
as a crystallization seed [14]. We verified that this seed had little effect on
the phase coexistence temperature. Por details, see Sect. A.3. At freezing, we
have

o= /—*Lsa (8)

where 1€ and w® are the chemical potentials of the polymers in the crystal and
solution, respectively. We ignore disorder in the polymer crystal, so u° = 0. As
the free-energy expression of the polymer solution is approximated by

AF F q

= z=piinm +mInm-mlnn-nylnn-nyln = 9
T " Rer - Minm A mlnm -m 2 2In 2 (9)

+ #a(r-1) = na(r -~ 2) In z

-2 2(r - 1)m E
+n2(7‘—1)i§“ 1--—-(—-qn) 2] -]-c-j)i_’-

nmnyr (q-2)B
1 kBT ’

the condition that the chemical potentials in the solid and the liquid are equal
yields

+

nzr qn EC |
)= +ln 2=+ (r-2)Ir - - 10
(1-7) . + In o +(r-2)In [1 + (g -2) exp( kBTrn)_I (10)
(r-1)(q - 2) [ 2r - Dny(n + nl)] E, rni(q-2)B
:m kLY 1-—- - i — + .
2 qn2 kg T'm n? kT

The melting point Ty, is computed by solving this equation iteratively. It is
often convenient to use E./(kg Tm) as our unit of (inverse) temperature. The
phase diagram of the polymer solution then depends on the molecular pa-
rameters 1, q, B/Ec, and Ey/E, the composition parameters n, and n,;, and
on the temperature parameter E¢/(kg Tm) .

Figure 1 shows a comparison of the simulation data with the correspond-
ing theoretical predictions. The figure shows that, over a range of Ep/Ec
values, the theoretical predictions are in good agreement with the simulation
results. Note that the curve in Fig, 1 is close to the straight line expected on
the basis of Eq. 7.

In addition to variations in E,/Ec, we can change the polymer chain
length. In particular for small chain lengths, the melting point can be quite
sensitive to this parameter [65, 66]. Flory and Vrij [67] analyzed this effect by
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treating polymer melting as a virtual two-step process: the first step involves
the melting of infinitely long chains and the second step corresponds to the
cutting of an infinitely long polymer into chains of finite length. The second
step leads to an additional free-energy change Afe upon melting, as shown in
the equilibrium condition

where Af, is the free-energy change of each chain unit and Af, is the addi-
tional free-energy change associated with the breakup of the infinite chain. If
we assume that the terms in Eq. 7 correspond to the terms in T, = Ahy/Asy
for each chain unit, we can arrive at the approximate expression

Afu mAhu - TmASu (].2)
(9 -2)°
24
The fusion free energy of both chain ends can be calculated from the equi-
librium condition Z =1 in Eq. 4 by setting the chain length r = 2 in the melt

phase. The additional contribution is thus given by

Afe = (qm2)(‘:I------":-*--—l--)—El;J - kgTm(lng -1) - 2Af,. (13)

2q
Figure 2 shows that, for all but the shortest chains, the Flory-Vrij analysis
predicts a slightly higher melting temperature than the present mean-field

model, Both approximations are give values higher than the simulation re-
sults, but the overall agreement is reasonable.,

=E. +

E, - ks Trm[In(q - 2) - 1],

------------------------
-

nnnn
-
-----
L

3 . k o —— o

0 50 100 150
Chain length

Fig.2 Melting temperatures of polymers (kgTr/E;) with variable chain lengths. The
solid line is calculated from Eq. 10, the dashed line is calculated from Flory-Vrij analysis
(Eq. 11), and the circles are the simulation results in the optimized approach, In simula-
tions, the occupation density is 0.9375, and the linear size of the cubic box is set to 32 for
short chains and 64 for long chains (Hu and Frenkel, unpublished results)
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3

Interplay of Polymer Crystallization and Liquid-Liquid Demixing

3.1
Thermodynamic Interplay in Polymer Solutions

When B 1s positive, the polymer solution can exhibit liquid-liquid demixing,
By adjusting the relative values of B and Ep, we can tune the phase diagrams
of polymer solutions and study the interplay of freezing, on the one hand, and
demixing on the other [14].

To calculate the liquid-liquid coexistence curves, we cast Eq. 5 in the stan-

dard Flory-Huggins form where all terms linear in ¢ are subtracted. The
free-energy expression then becomes

AFmix:

- =mlam o -mlan-nlan+nlnr (14)
B
2r -1 E —-2)B
+nz(r-1)(ﬂ'_ ) - )(1_”2?’) L M
2 qr n/ksT  n  kgT
n r
=zmln—1+r121n-ni
n n

+n1n3r 1_3 1____1_ 252_+(q—2)3
H g r/ kgT kg T

This allows us to introduce an effective x parameter, through

AkFBn;x = 111 In 1:11 + ny1n %r- + "Tﬂ“:':"%r'xeff, (15)
where X = (q - 2)B/(kpT) + (1 - 2/g)(1 - l/r)zEp/(kB T). As usual, the
liquid-liquid coexistence curves can be calculated from the chemical-
potential equivalence of two mixtures.

Figure 3a shows the mean-field predictions for the polymer phase diagram
for a range of values for E;/E. and B/E.. The corresponding simulation re-
sults are shown in Fig. 3b. As can be seen from the figure, the mean-field
theory captures the essential features of the polymer phase diagram and
provides even fair quantitative agreement with the numerical results. A qual-
itative flaw of the mean-field model is that it fails to reproduce the crossing
of the melting curves at ¢ = 0.73. It is likely that this discrepancy is due to
the neglect of the concentration dependence of x.¢. Improved estimates for
Xefr at high densities can be obtained from series expansions based on the
lattice-cluster theory [68, 69].

Figure 3 illustrates the thermodynamic interplay of polymer crystallization
and liquid-liquid demixing in polymer solutions. The liquid-liquid binodal
curve is primarily determined by the B value. With the increase of E; values,
the liquid-liquid binodal curves shift slightly upward. On the other hand, the
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liquid-solid coexistence curves are primarily controlled by the E;, value. With
the decrease of B values from positive to negative, the melting point depres-
sion due to dilution will be enhanced. Proper choices of energy parameters
can lead to an intersection of two phase-coexistence curves: the phase dia-
gram then exhibits a (monotectic) triple point. Experimental studies of the
intersection of freezing and demixing curves in solutions and blends have
been reported[70-74].

Flory proposed a semiempirical expression to predict the concentration
dependence of the melting curve of long-chain polymers mixed with small
solvent molecules [75]:

(16)

0.0 02 04 06 08 1.0
Polymer volume fraction

T, (1, 0.25) (b)

104 *+-%.

LI
-
L
i'.,‘

B T,(1,00) T T

. T-"T ....... T (1 0.1“)5'_".'* -‘ut*
Y-. ) -‘
. - i‘Eﬂ'l "' ."—*-dﬂ!=

TIEJK,
xh
;

. —t /d—‘
Tl -0. +
2- "‘L-A’JP
{ T,{1,-0.3)
0- ——————
0.0 0.2 0.4 0.6 0.8 1.0

Polymer volume fraction

Fig.3 Liquid-liquid demixing curves (dashed lines denoted by Ty) and liquid-solid tran-
sition curves (solid lines denoted by Tp) of polymer solutions with variable energy
parameter sets [denoted by T(E,/E., B/Ec)]. The solution system is made of 32-mers

in a 32-sized cubic box. a Theoretical curves; b simulation results in the optimized ap-
proach [14]
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Fig.4 Rescaled data from Fig. 3b to show the linear relationship predicted by Eq. 16. The
bulk equilibrium melting temperature Ec/kgTp, is chosen to be approximately 0.2. The

lines are the results of linear regression, and the symbols are for the variable values of
B/E. [14]

where TY is the melting point of pure polymers and Ahy is the heat of fu-
sion per chain unit. This semiempirical equation accounts well for numerous
experimental data [76]. In Fig. 4, we have transformed the simulation results
of Fig. 3b in such a way that, according to Eq. 16, a linear plot should result.
However, the values Ah, and x that follow from a fit to the numerical data
differ from the expressions that follow from Eq. 16 [14].

3.2
Kinetic Interplay in Polymer Solutions

In the dynamic Monte Carlo simulations described earlier, we used a crys-
talline template to suppress supercooling (Sect. A.3). If this template is not
present, there will be a kinetic interplay between polymer crystallization and
liquid-liquid demixing during simulations of a cooling run. In this context,
it is of particular interest to know how the crystallization process is affected
by the vicinity of a region in the phase diagram where liquid-liquid demixing
can occur.

Simulations [77] and theoretical analysis [78,79] indicate that the rate of
homogeneous crystal nucleation may be significantly increased in the one-
phase region near a metastable liquid-liquid critical point. In simple polymer
solutions and melts, crystallization often occurs after the system has entered
the region where fluid-fluid spinodal decomposition takes place. The density
modulations that occur during this spinodal decomposition are “frozen in”
during subsequent crystallization and affect the morphology of the resulting
crystalline phase [80]. This phenomenon is, in fact, of considerable practical
importance for the control of sol-gel transitions, in particular in the context
of membrane formation [81~83].
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To study the interplay between demixing and crystallization, we consid-
ered three different model systems, all at a polymer volume fraction of
15% [84]. The interaction parameters of the models were chosen such that
all systems had the same (equilibrium) melting temperatures but different
demixing temperatures at the chosen concentration. One case (C1) had its
critical demixing temperature very close to the melting curve, the second
case (C2) had its critical point at a temperature where primary crystal nu-
cleation would occur in the absence of liquid-liquid demixing, and for the
third case (C3), the critical demixing temperature was located far below the
melting curve. In case C1, we expect to observe demixing prior to crystalliza-
tion, in case C2 crystallization and liquid-liquid demixing may be strongly
coupled, and in case C3, crystal nucleation should proceed without any effect
of liquid-liquid demixing, The theoretical (i.e,, mean-field) phase diagrams
for these three cases are shown in Fig, 5. Figure 6 shows the simulation re-
sults for slow cooling runs of homogeneous polymer solutions corresponding
to models C1, C2, and C3.

As can be seen from Fig. 6, liquid-liquid demixing clearly precedes crys-
tallization in case C1. Moreover, crystallization in this case occurs at a higher
temperature than in cases C2 and C3. Apparently, the crystallization takes
place in the dense disordered phase (which has a higher melting temperature
than the more dilute solution; Fig. 5). In case C2, the crystallization tempera-
ture 1s close to the expected critical point of liquid-liquid demixing, but
higher than in case C3. This suggests that even pre-critical density fluctua-
tions enhance the rate of crystal nucleation,

The different pathways for crystallization have consequences for the result-
ing crystal morphology. This can be seen in Fig. 7, where we compare the

F
1 L -~ I e ‘m l _‘H. 'I-I'Lm'l

0.0 0.2 0.4 0.6 0.8 1.0
Polymer volume fraction

e C3, E/E,=1.14, B/E=0
- ke

Fig.5 Theoretical liquid-liquid demixing curves (dashed lines) and liquid-solid tran-
sition curves (solid lines) of 32-mers in a 64-sized cubic box. Three sets of energy
parameters are denoted by CI, C2, and C3, respectively. The arrow indicates the cooling
trajectory of the simulations [84]



Polymer Crystallization Driven by Anisotropic Interactions 15

ppnlor'shhi i e TP i L irmraly

1.0 S —— o— , -

0.8

-------------------------------------
_______________________

- e wd
J_Fﬂ - ﬂ.'HF"‘--‘ﬂﬁ-
-i.ll'—"ﬂ"" -
- -
-

0.6 Mixing parameters

Cooling
0.4
0.2
0.0 KDV T N GUPA E—— 1 N A WINEINIS W——
2.0 2.5 3.0 3.5 4.0 4.5
T /E /K,

Fig.6 Simulational cooling curves of disorder parameters (solid lines) and mixing param-
eters (dashed lines) for 32-mers with different sets of energy parameters in a 64-sized
cubic box (the concentration is fixed at 0.150). The mixing parameter is defined as the
mean fraction of neighboring sites occupied by the solvent for each chain unit [84]

crystal morphologies that result if systems C1, C2, and C3 are all quenched to
the same temperature (T = 2.857E./kg). The figure shows that, for system CI,
small crystallites are homogeneously distributed throughout the simulation
box. This is the result of liquid-liquid demixing under conditions of a deep
spinodal quench (short-wavelength instability), followed by freezing of the
high-density domains. In case C2, larger crystallites are formed. This is the
result of liquid-liquid demixing under conditions of a shallow spinodal
quench (long-wavelength instability), again followed by the freezing of the
high-density domains. In case C3, liquid-liquid demixing cannot occur at the

Cl C2 C3

Fig.7 Snapshots of the simulation systems for C1, C2, and C3 after an isothermal crystal-
lization following the quenching from the infinite temperature to a temperature of 2.857
E¢/ kp [84]
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chosen temperature and, indeed, the resulting crystal morphology is quite
different: a single, lamellar crystallite grows from the homogeneous solution.
For more details on the experimentally observed differences in morphology
of polymer crystals grown from solution, the reader is referred to Ref. [85].

3.3
Thermodynamic Interplay of Crystallization and Mixing in Polymer Blends

In polymers mixed with small molecules, there is a very strong entropy
penalty for demixing (see Eq. 15). If, in our lattice model, we put B equal to
zero and E, # 0, polymer crystallization will always pre-empt liquid-liquid
demixing (see case C3 in Fig. 5), However, in polymers mixed with long-chain
polymers, the entropy penalty for demixing becomes so small that a differ-
ence in Ey for the two polymer species may lead to liquid-liquid demixing
before crystallization [86]. Recently, the monomeric geometrical assymmetry
between two species has been found to raise a positive entropic contribution
to the mixing free energy [87]. This was achieved by the lattice-cluster theory
with calculations beyond the random mixing approximation [88]. Here, this
assymmetry may also be absent for seeing demixing. If we view E;, as a meas-
ure for the crystallizability of a polymer, then one could argue that, in such
polymer blends, the liquid-liquid demixing is driven solely by the difference
in crystallizability of two components [86].

To see this, consider the mixing free energy expression for a polymer blend
with symmetrical chain lengths and with only one crystallizable component
(ie., E, = 0 for one component and E, # 0 for the other). In that case the
(mean-field) partition function for the liquid mixture is

n 1
. (.51.) 1 (;%) 2 (g)nﬁnz z£n1+nz)(r~2)e-(n1+n2)(r—1)zgg(r—1)zﬁlgr, (17)

where z. and Zp are defined as in Eq. 4, 2z, = exp E-— —’5?1;’5(—1%] , 11 and ny de-

note the number of noncrystallizable and crystallizable polymer chains, all
containing r units, n = nyr + ny7, and B is the net potential-energy exchange
for a site-site contact between units of types 1 and 2. The mixing free energy
of this polymer blend is then

A_)Crni}: _ qbl ‘?52
knT = " 1n¢q+ - 111(}52 (].8)

B 2 1\* E
+ 9192 [:(Q"z)m'*'(l-g) (1-;) E‘Efil:

where ¢; and ¢, are the volume fractions of noncrystallizable and crystal-
lizable polymer chains, respectively. When r >> 1, the mixing entropy is very
small, and hence a small contribution of E, may already make the mixed state
unstable. Then, liquid-liquid demixing pre-empts polymer crystallization on
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Fig.8 Theoretical liquid-liquid demixing curve (solid line) and the bulk melting tempera-
ture (dashed line) of a flexible-polymer blend with one component crystallizable and with
athermal mixing. The chain lengths are uniform and are 128 units, the linear size of the
cubic box is 64, and the occupation density is 0.9375 [86]

cooling (Fig. 8). Such liquid-liquid demixing has been verified by simulation
of a cooling process passing through the critical point of the symmetrical-
polymer blend [86].

One practical example of demixing that might be attributed to a differ-
ence in crystallizability is the incompatibility in blends of polymers with
different stereochemical compositions. The stereochemical isomers contain
both chemical and geometrical similarities, but differ in the tendency of close
packing. In this case, both the mixing energy B and the additional mixing
entropy due to structural asymmetry between two kinds of monomers are
small. However, the stereochemical differences between two polymers will
result in a difference in the value of E,. Under this consideration, most experi-
mental observations on the compatibility of polymer blends with different
stereochemical compositions [89-99] are tractable. For more details, we refer
the reader to Ref. [86].

4
Some Applications of Parallel Attractions in Molecular Simulations

4.1
Characteristic Morphologies of Polymer Crystallites

One of the most remarkable features of polymer crystallization is that such
chain molecules can form lamellar crystals that contain heavily folded poly-
mer chains. In experiments, the structural analysis of these lamellar crystals
became possible when polyethylene single crystals were first prepared from
a solution [100-102]. It was found that the orientation of the polymer chains
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was perpendicular to the top and bottom faces of the lamellar crystal. How-
ever, as the crystal thickness is typically much smaller than the polymer
length, this can only be realized if the chains fold back at the top and bot-
tom surfaces. The fold ends prefer to align in parallel to the crystal growth
front. However, there is no correlation between the positions of fold ends
in successive crystalline layers, During growth, a single crystal can develop
several facets. Each facet corresponds to a sector in which the fold ends
are preferably parallel to this facet. This leads to the sectorization of chain
folding in the single crystal of polymers [103-106]. Interestingly, this sector-
ization phenomenon can be reproduced in simulations of the simple lattice
model described before (Fig. 9) [57]. As in the experiments, we find that the
folds are aligned with the growth front but exhibit little correlation from
one crystalline layer to the next. The simulations provide molecular-level
detail on how a single chain can be incorporated into the growth front. Mul-
tiple steps have been found and can be attributed to a limited size of the
growth front, A detailed observation of a single chain attaching to the smooth
growth front has been reported by Muthukumar’s group [107]. There is ex-
perimental evidence for sectorization on the surface of thin films of bulk
polymers [108, 109]. However, the available simulations have, thus far, not

reproduced the sectorization of lamellae grown in the melt away from any
surface [56].

Fig.9 Snapshot of a single crystal of lattice polymers viewed from the chain direction.
The bonds are drawn as solid cylinders, The viewing angle is large for better observation
of folds. The chain length is 512 units and the thickness of the crystallite is about 12 units.
The dissolved chains are not shown for clarity [57]
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Polymer crystallization is usually initiated by nucleation. The rate of pri-
mary nucleation depends exponentially on the free-energy barrier for the
formation of a critical crystal nucleus [110]. If we assume that a polymer crys-
tallite is a cylinder with a thickness [ and a radius R, then the free-energy cost
associated with the formation of such a crystallite in the liquid phase can be
expressed as

AF.(v) =- R | Ap| + 27 R*0, + 27 Rloy, (19)

where v = 7R?] is the total number of chain units in the crystallite, Au is
the free-energy difference per chain unit between solid and liquid, and o,
and o] are the surface free energies for the fold surface and the lateral sur-
face, respectively. On the right-hand side of Eq. 19, we can see that there are
competing terms: the first one is the thermodynamic driving force for crystal-
lization, and the remaining two terms are the surface free-energy penalties.
Accordingly, there are two basic ways to accelerate the polymer nucleation
rate, i.e., enhance the driving force or decrease the barrier. An interesting way
to enhance the driving force is to decrease the polymer conformational en-
tropy in the liquid through pre-aligning or stretching of the chains under an
extensional or shear flow. Under those conditions, one often observes the for-
mation of a stack of lamellae around a central fiber. The resulting morphology
has been given the name “shish kebab™ [105,111-114]. The central fiber can
be a substrate for the nucleation of lamella growth as in a heterogeneous nu-
cleation. As can be seen in Fig. 10, in simulations even a single pre-aligned
chain can facilitate the nucleation of lamellar crystallites, leading to the shish-
kebab structure [58]. In this case, the remaining chains in the liquid were not
pre-aligned; hence the central fiber acted as a template for the nucleation of
lamellar crystals.

The critical size of crystallites can be calculated from the condition
3AF(v)/dv = 0. Beyond the critical size, the thermodynamic condition for
crystal growth is 8AF(v)/dv < 0. Since at the later stage of crystal growth,
R > |, the last term on the right-hand side of Eq. 19 can be omitted. The
thermodynamic growth condition, therefore, gives | > 20¢/ A = Iin. This
means that there is a minimum thickness of lamellae for the lateral crys-
tal growth. The linear relationship between "' and Ty, (or T¢) has been
observed by small-angle X-ray scattering measurements in many polymer
systems [115, 116].

In the classical Lauritzen—Hoffman theory for the mechanism of polymer
crystal growth [106], it is assumed that the observed lamellar thickness cor-
responds to those crystallites that happen to have the largest growth velocity.
However, this picture is hard to reconcile with the experimental observation
that the thickness of polyethylene single crystals can be modulated by vary-
ing the temperature at which they are grown {117, 118]. In fact, simulations
by Doye et al. [119,120] suggest that the observed lamellar thickness does
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Fig. 10 Snapshot of a shish-kebab crystallite induced by a pre-aligned single chain (drawn
much thicker than other chains for better visibility) in a solution, The chain length is
32 units and the thickness of crystallites is about 7 units. The bonds are drawn in solid
cylinders [58]

not correspond to a maximal growth velocity, but rather to a condition of
dynamic stability during growth.

The tip of a growing lamellar crystal has a thickness close to [yjn. However,
behind the tip, the crystallite tends to thicken, as this increases the thermody-
namic stability of the crystallite. Whether or not such crystallite thickening
occurs depends on the ability of the polymer chains in the crystallites to
undergo sliding diffusion [121-123]. High c-slip mobility such as what is ob-
served in the hexagonal phase of polyethylene, can even lead to the formation
of extended chain crystallites, while low c¢-slip mobility such as is observed
in the orthorhombic phase of polyethylene prohibits the “stretching out” of
folded-chain crystallites. When the polymer chains are sufficiently short, one
can observe that the thickening proceeds in steps: from one state of inte-
gral folding to the next [106], As our dynamic Monte Carlo simulations allow
for sliding diffusion, we can study the phenomenon of crystal thickening by
simulation. In order to do so, we should take account of the fact that long
stems experience more friction during sliding diffusion than short stems. It
is possible to account for this length-dependent friction in a way that satisfies
detailed balance [57]. Figure 11 shows the thickening from a twice-folded to
a once-folded layer for 32-mers.
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Fig. 11 Monomer distributions of 32-mers with Ef/E; = 0.1 at E./kg/T = 0.174 vs. variable
crystalline-stem lengths changing with time during isothermal crystallization at a specific
temperature. The evolution time is denoted by the numbers (times 1000 Monte Carlo cy-
cles) near the curves. The curves are shifted vertically with an interval of 300 for clarity.
We can see that with time the peak shifts from one third to half of the chain length [56]

4.2
Crystallization and Melting of Statistical Copolymers

Irregularities in the structure of the polymer backbone will make it difficult
for a polymer to be incorporated in a regularly packed crystal structure., This
phenomenon is particularly pronounced in systems of random copolymers
that consist of a mixture of crystallizable monomers and noncrystallizable
comonomers, A very simple way to represent the difference in crystallizability
1S to assume that crystallizable monomers have a parallel bond-bond inter-
action energy Ej, while no such interaction is present in pairs of bonds in-
volving the comonomers [52]. In addition, we account for the difference in the
size of monomers and comonomers by assuming that the comonomers can-
not diffuse through a crystalline region of monomers. With these ingredients,
we can perform dynamic Monte Carlo simulations to study how the statisti-
cal nature of the copolymers affects the crystal morphology. Three kinds of
statistical sequences were then generated, namely, homogeneous (randomly
sequenced) copolymers, homogeneous (slightly alternating) copolymers, and
heterogeneous (a product in batch reaction with a significant compositional
shift) copolymers. On cooling from the melt and then on reheating, crystal-
lization and melting of bulk statistical copolymers were monitored through
the absolute crystallinity, which was defined as the fraction of monomer
bonds having more than five parallel neighbors of the same type, We find that
the phase transition temperatures depend not only on the comonomer con-
tent but also on the sequence distribution. Figure 12 shows that on cooling
a copolymer system, almost all monomers eventually end up in crystalline
domains, irrespective of the composition of the copolymer. Upon reheat-
ing a partially crystallized system, we first observe crystallization, rather
than melting (cold crystallization). The crystallites that form first upon cool-
ing tend to contain predominantly long monomer sequernces. Hence there is
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Fig. 12 Cooling (solid lines) and heating (dotted and dashed lines) crystallinity curves of
random copolymers with variable comonomer mole fractions as denoted near the curves.

The dashed lines start from the reduced temperature of 2 and meet the dotted curves at
high temperatures [52]

a sequence-length segregation during crystallization (Fig. 13) [124]. As the
comonomer content of the polymer is increased, the morphology of the crys-
tallites changes from lamellar to granular (Fig. 14). A more detailed analysis
can be found in Ref, [52]. Furthermore, there exists a liquid-~liquid demixing
in the heterogeneous copolymers, but not in the homogeneous copolymers,
before the crystallization occurs on cooling (Fig, 15). Since the heterogeneous
copolymers are some kinds of polymer blend, the principle of this prior
demixing was actually discussed in Sect. 3.3.

Crystallinity

sa2uanbas pazieisiuo jo ybua| abelaay

Fig. 13 Cooling (solid line) and heating (dashed lines) curves of crystallinity and averaged
length of crystallized sequences for slightly alternating copolymers with a comonomer
mole fraction 0.24. The crystallized sequences are defined as the monomer sequences
more than half of whose bonds are in crystalline states [124]
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Fig. 14 Snapshots of random copolymers with variable comonomer mole fractions at the
reduced temperature of 1 in the cooling process of Fig. 12. a~f Comonomer contents of 0,
0.06, 0.12, 0.24, 0.36, and 0.44, respectively. Polymer bonds are drawn in cylinders and the
bonds containing comonomers are shown in double thickness [52]

4.3

Free-Energy Barrier for Melting and Crystallization
of a Single-Homopolymer Model

Thus far, we have been discussing the crystallization of a multichain sys-
tem. However, under suitable conditions, crystallization can even occur in
a single-chain system., Using a combination of biased sampling, multihis-
togram techniques, and parallel tempering {125], we can directly compute the
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Fig.15 Cooling curves of crystallinity (solid line) and demixing parameter of
comonomers (dashed line), The latter is defined as the mean fraction of neighboring sites
occupied by other comonomers around each comonomer. The cooling program is a step-
wise increase of Ep/(kgT) from zero with a step length of 0.002 and a step period of 300
Monte Carlo cycles, a The slightly alternating copolymer with a comonomer mole fraction
0.36; b the heterogeneous copolymer with a comonomer mole fraction of 0.36 [52]

free-energy barrier (if any) that separates the crystalline state of the single
chain from the disordered “coil” state [126]. Technical details can be found
in Sect. A.4. The simulations showed that, at coexistence, there can be a quite
high free-energy barrier between the crystalline and molten states of a single
chain. The height of this free-energy barrier depends on chain length [127].
As can be seen from Fig, 16, the chain-length dependence can be described
by a simple nucleation-like model that takes into account the bulk and surface
contributions to the free energy change of single-chain melting:

AFpelt = M Afimett + 0 (N = 1?3, (20)

where ny is the number of molten units, Afyeir 15 the free-energy change of
each chain unit on melting of bulk polymers, o represents surface free energy
of the crystallite, and N is the chain length.,
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Fig. 16 Height of the equilibrium free-energy barrier for melting and crystallization vs.

the chain length in single-chain systems. The circles are the simulation results, and the
solid line is calculated from Eq. 20 with fitting parameter o = 15Ep [127]

Equation 20 predicts a free-energy barrier for primary crystal nucleation

(Le., the free-energy difference between the top of the barrier and the initial
coil state) as

403

AFC —_ ———
27Af Iielt

(21)

Interestingly, this barrier does not depend on chain length. This result coin-
cides with experimental observations on the primary nucleation rate of bulk

polymers [128-130}. For secondary nucleation of crystallization on a smooth

growth front, a similar free-energy expression can be obtained for 2D nucle-
ation:

AFmelt,ZD = Bm Afmelt,ZD + op(N - ”Tm)l/2 -.- (22)

where Afpelrop and ogp have slightly different values from Eq. 20. The free-
energy barrier for secondary nucleation is still independent of chain length,
and is given by

CJ‘E

4 Af melt,2D |

This result also happens to be compatible with the experimental observa-
tions on the crystal growth rate of bulk polymers [131, 132]. In addition, both
Egs. 21 and 23 give a reasonable temperature dependence of the free-energy
barriers for primary nucleation and secondary nucleation, compared with the
the cases for bulk polymers. It is therefore tempting to speculate that the
rate of crystallization of bulk polymers is determined by intramolecular nu-
cleation, similar to the macromolecular nucleation mechanism suggested by
Wunderlich [133]. The model suggests that both primary nucleation and sec-
ondary nucleation of long-chain polymers are dominated by an intramolec-

AFt:,.ZD —

(23)
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ular process. Incidentally, such an intramolecular nucleation model provides
a natural explanation for the observed molecular-size fractionation during
polymer crystal growth.

The free-energy barrier for melting and crystallization of single chains is
also dependent on the quality of the solvent, The same concepts that apply to
the interplay of polymer crystallization and liquid-liquid demixing in polymer
solutions are also relevant in the freezing of a single-chain system: a large posi-
tive B will drive a coil-globule collapse transition [134], while a large E; drives
crystallization [126]. The mean-field theory developed for a polymer solution
is still meaningful for the single-chain system. Figure 17 shows that if B/E}, 1s

15 - e
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Fig. 17 B/E, dependence of the critical temperatures of liquid-liquid demixing (dashed line)
and the equilibrium melting temperatures of polymer crystals (solid line) for 512-mers at
the critical concentrations, predicted by the mean-field lattice theory of polymer solutions.
The triangles denote T, and the circles denote Tery; both are obtained from the onset of
phase transitions in the simulations of the dynamic cooling processes of a single 512-mer.
The segments are drawn as a guide for the eye (Hu and Frenkel, unpublished results)
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Fig.18 The equilibrium temperatures (circles) and the heights of the free-energy barrier
at these temperatures (triangles) for a single 512-mer as a function of B/E;. The dashed
line shows the demarcation for the occurrence of a prior collapse transition (Hu and
Frenkel, unpublished results)
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small (or even negative) there will be a direct transition from the coil state to the
single-chain crystal. In contrast, for large positive values of B/E;, a coil~globule
transition will precede the transition to the crystalline state (Hu and Frenkel,
unpublished results). The free-energy barrier for crystallization decreases with
increasing B/E,, but levels off once there has been a prior coil-globule collapse
transition (Fig. 18). These results suggest that single-chain crystallization 1s
easiest if the polymer has undergone a prior coil-to-globule transition, yet the
temperature is not so low that the globule has effectively vitrified.

Appendix

A
Dynamic Monte Carlo Simulations of Lattice Polymers

A.1
Microrelaxation Model

In the dynamic Monte Carlo simulations that we describe, polymers “live” on
a lattice [135]. They can move either by local jumps or by “sliding” moves
that involve a longer stretch of the polymer. The ability to perform such
sliding moves greatly increases the rate at which the polymers can sample
configuration space. Moreover, it mimics the real dynamics of polymers in
dense media. For this reason, the present “microrelaxation model” allows us
to gain some insight into the dynamics by which an initial nonequilibrium
state of the polymer system relaxes. The first microrelaxation model for lattice
polymers was suggested by Verdier and Stockmayer [136], who allowed the
change of local chain conformation through end-bond twisting, kink jump-
ing, and crankshaft rotation. The sliding diffusion model was developed to
simulate chain diffusion on a lattice [137]. However, all of these models tend
to be rather inefficient in changing the orientational distribution of bond vec-
tors, as new bond orientations are predominantly generated at the chain ends.
These models are therefore not very efficient in achieving conformational re-
laxation. In contrast, the kink-generation model allows new bond vectors to
be generated in the middle of the chains [138]. This kink-generation model
was later developed into the well-known bond-fluctuation model [139, 140].
Actually, combining both kink generation and sliding diffusion together pro-
vides higher efficiency for chain relaxation. Such a hybrid approach was first
suggested by Lu and Yang [141]. In this hybrid model, sliding diffusion that
extends to the end of the chain is allowed during kink generation, In the al-
gorithm that we use, we assume that sliding diffusion takes place between two
defects: it is terminated by smoothening out the nearest kink along the chain
(Fig. 19) [134]. In this respect, the algorithm is a numerical implementation
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Fig. 19 Our hybrid microrelaxation model. The solid circles are occupied by a polymer

chain. The dashed lines show the new bond positions produced by a move consisting of
kink generation and partial sliding diffusion along the chain, The arrows indicate the di-
rections of monomer jumping [134]

of the kink-defect diffusion mechanism proposed by de Gennes [142]. Since
the polymer bonds are allowed to stay either along the lattice axis or along
the body and face diagonals, the coordination number of such a cubic lat-
tice includes all the neighbors along these directions, namely, 6 + 8 + 12 = 26.
In all simulations, we used periodic boundary conditions. In order to map
the length and time scales of the lattice model onto those of real polymer
systems, one can study the behavior of the radius of gyration (or the end-to-
end distance) of the polymer chain (for static properties) and the polymer
diffusion coefficient (for dynamics) [143]. Figure 20 shows the mean-square
end-to-end distance of lattice polymers vs. the chain length r for polymer
solutions over a wide range of concentrations. In very dilute solutions, the
polymer size (in three dimensions, in an athermal solvent) is expected to
scale as (h%) ~ r1, while in the melt, it scales as (k%) ~ r [144]. Figure 20

1.8 oo

| —=— single chains
164 ——0.125

Slope=0.2

In[<h®>/(r-1)]

In(r-1)

Fig.20 Mean-square end-to-end distance of chains vs. chain length in a 32 (or above)-
sized cubic lattice. The data are those of the polymer volume fractions (Hu and Frenkel,
unpublished results)
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Fig.21 Mean-square displacement vs. evolution time for 16-mers with an occupation
density of 0.9375 in a 32-sized cubic lattice. The triangles are for four middle chain units,
the circles are for the mass center, and the crosses are for the chain units relative to the
center of mass. The lines with slopes of 1,0 and 0.5 indicate the scaling expected according
to the Rouse model of polymer chains [56]

shows the slopes of In({h?)/r) vs. In(r) changing from 0.2 to zero with the in-
crease of polymer concentrations. Figure 21 shows the time dependence of the
mean-square displacements of individual chain units, of the chain units rela-
tive to the mass center, and of the center of chain mass. For the relatively short
chains studied, we expect to observe Rouse dynamics [145], as is indeed the
case.

A.2
Sampling Strategy

In our simulations, we use the Metropolis method to accept or reject
trail moves [146]. Moves are rejected if they cause hard-core overlaps
or bond crossing; otherwise, they are accepted with a probability equal
to min {1, exp[- AE/(kgT)]}, where AE/(kgT) = (bB + PE, + ¢E.)/(kgT) =
(bB/E. + pEp/EC + ¢)E./(kgT). The meaning of the quantities B, Ep, and
E. is described in the main text, b denotes the change in the number of
polymer-solvent contacts, p is the change in the number of nonparallel pairs
of neighboring bonds, and ¢ accounts for the change in the number of non-
collinear connections between consecutive bonds along the chain. Within the
same model, we can add a frictional energy penalty E; for the local sliding dif-
fusion of chains in the crystalline region. Note that this penalty is present in
forward and reverse moves; therefore, it does not affect the detailed balance
condition. Rather, it acts like a kinetic pre-factor that slows down the slid-
ing diffusion of long polymer stems in the crystallites, compared with that of
short ones [56]. The potential energy barrier can be expressed in the reduced
parameters. kg T'/E is often used as the reduced temperature, B/E. 18 a meas-
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ure for the solvent quality, and Ep, /E. reflects the flexibility of the chains. For
tully flexible chains, Ec = 0. Then, kgT/Ey, is used as the reduced temperature.
Usually, we fix E, /E; = 1 for the semiflexible chains.

A3
Temperature Scanning Program

To perform temperature scans, we increase/decrease the value of E./(kgT)
in steps of size 0.002. Every step takes 300-500 Monte Carlo cycles [14]. In
monitoring the properties of the system during heating or cooling, we dis-
card the results of the first 100-400 Monte Carlo cycles because the system
is far from equilibrium at the early stages of every step. Statistics on thermal
or structural properties of the system are then collected during the remain-
der of the step. We use the “disorder parameter” described in the main text to
monitor the progress of crystallization. To monitor the phase separation, we
follow the behavior of the mixing parameter, defined as the mean fraction of
solvent sites around a chain unit, To facilitate comparison with experiment,
we use the same (rather ad hoc) methods to detect the onset of phase tran-
sitions: it 15 defined as the crossing point of two lines extrapolated from the
transition region and from the one-phase region on either side of the phase
transition, respectively, To observe primary nucleation on cooling, a large
supercooling is usually required. This can delay the onset of crystallization
well beyond the equilibrium freezing point, especially in the case of dilute
solutions. To suppress such overshooting effects we introduce one molecu-
lar Jayer of solid substrate consisting of fully extended chains. This substrate
serves as a template for primary nucleation of both crystallization and liquid-
liquid demixing. Figure 22 compares two cooling curves: one was obtained

1.0- T

0.8- cooling

Disorder parameter

T /E /K.

Fig. 22 Cooling curves of the disorder parameter for 32-mers in 32-sized cubic lattice with
a conventional cooling program (dashed line) and an optimized cooling program (solid
line), Polymers have a volume fraction of 0.0625 with B/E. = 0 and Ep/Ec. =1 [14]



Polymer Crystallization Driven by Anisotropic Interactions 31

L . i L T A P —— il

by cooling a homogeneous phase; the other employed the substrate to sup-
press overshooting. Clearly, the presence of the template significantly raises
the onset temperature of crystallization in dilute solutions.

A.4
Biased Sampling and Multihistogram Parallel Tempering

The formation of crystal nuclei in a moderately supersaturated solution is
a rare event. In order to probe the frequency of such fluctuations, we used
umbrella sampling [148]. In particular, we bias the formation of crystallites
by increasing their Boltzmann weight. In fact, during a single simulation, we
favor the formation of crystallites with crystallinity x; in a window around
xo by lowering their potential energy with W = k(x; - xo)*, where k deter-
mines the width of the window. To recover the free energy of the clusters in
the unbiased system, we have to correct for the bias [149,150]. In practice,
about 15 overlapping windows were employed to calculate the free-energy
barrier separating the crystalline and disordered states of a single-chain sys-
tem [126]. The multiple histograms in the simulations of these windows are
then merged to form a single, smooth curve. Parallel tempering was used to
enhance equilibration between the different windows. An example is shown
in Fig, 23.

100 - — - : -

80 -

60

40 1

F A{kgT)

20 r

g ’ AT
- 1
0 . LA L. l . ] b v 4l

0 200 400 600 800 1000 1200
Molten units

Fig.23 Parallel tempering of the free-energy curves in the overlapping windows as a func-
tion of the number of molten units for a single 1024-mer at a temperature of 2.967E; /kp.
The y-axis is not for the absolute value of the free energy but for the relative distribution
of the free energy (Hu and Prenkel, unpublished results)
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