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Dissipative particle dynamics for interacting systems
I. Pagonabarragaa) and D. Frenkel
FOM-Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam,
The Netherlands

~Received 13 December 2000; accepted 3 July 2001!

We introduce a dissipative particle dynamics scheme for the dynamics of nonideal fluids. Given a
free-energy density that determines the thermodynamics of the system, we derive consistent
conservative forces. The use of these effective, density dependent forces reduces the local structure
as compared to previously proposed models. This is an important feature in mesoscopic modeling,
since it ensures a realistic length and time scale separation in coarse-grained models. We consider
in detail the behavior of a van der Waals fluid and a binary mixture with a miscibility gap. We
discuss the physical implications of having a single length scale characterizing the interaction range,
in particular for the interfacial properties. ©2001 American Institute of Physics.
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I. INTRODUCTION

There is a strong incentive to develop ‘‘mesoscopic’’ n
merical techniques to model the dynamics of fluids with d
ferent characteristic length scales. Mesoscopic simulat
make it possible to analyze processes that take place
length and time scales that are out of reach for purely at
istic simulations such as Molecular Dynamics~MD!. In MD,
one retains the full atomic details in the description of t
system, but at the expense of restricting the studies to s
times. In contrast, models that describe the system at m
scopic scales, employ a certain degree of coarse grain
which allows one to analyze longer times. However, c
should be taken that the loss of ‘‘atomic’’ information ass
ciated with the coarse-graining process does not lead to
realistic features on larger length and time scales. In part
lar, the coarse-grained models should provide an adeq
description of the equilibrium properties of the system. So
of the mesoscopic models that have been proposed p
ously in the literature were derived in a systematic way fr
underlying microscopic models, as is the case with
lattice-Boltzmann method,1 which can be viewed as a prea
eraged lattice gas model.2 Coming from the opposite side
smoothed particle dynamics was introduced as a Lagran
discretization of the macroscopic equations of fluid motio3

A different strategy to simulate structured fluids is to assu
that the solvent is passive, and that the suspended ob
have a diffusive dynamics with diffusion coefficients that a
known a priori. This has led to the development o
Brownian4 and Stokesian dynamics.5

In the early nineties, Dissipative Particle Dynami
~DPD! was introduced as a novel way to simulate fluids a
mesoscopic scale.6 In DPD, the fluid is represented by a larg
number~N! of point particles that have a pairwise additiv
interaction. The interparticle forces are the sum of three c
tributions. In addition to the usual conservative forces t

a!Current address: Department de Fı´sica Fonamental, Universitat de Barc
lona, Av. Diagonal 647, 08028-Barcelona, Spain
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can be derived from a Hamiltonian, DPD includes dissipat
and random forces. These mimic the effect of viscous dam
ing between fluid elements and the thermal noise of the fl
elements, respectively. Flekko”y and Coveney7 have shown
that, in principle, a particular DPD-like model can be deriv
from an atomistic description. However, no such derivatio
exist for the commonly used DPD models. Nonetheless, e
without such a link to the underlying microscopics, it h
been shown that thermal equilibrium can be ensured by
appropriate choice of the ratio between dissipative and r
dom forces.8 The hydrodynamic behavior of the DPD mod
has been explored in some detail,9–12 although the link be-
tween the mesoscopic and the macroscopic description is
completely understood.

In conventional DPD, all interparticle forces have th
same finite interaction ranger c . Their amplitudes decay ac
cording to a weight functionw(r i j ) that has been made t
vanish atr c in order to avoid spurious jumps at the cuto
distance. In this paper, we employ a more general descrip
of the conservative interactions. In the existing literature,
conservative forces have usually been assumed to de
explicitly on the distance between a pair of particles. For
sake of computational convenience, the conservative fo
between DPD particles are smooth and monotonic functi
of the distance—in fact, the smoothness of the forces is
of the advantages of DPD. When the forces depend line
on the interparticle separation, the equation of state~EOS! of
the DPD fluid is approximately quadratic in the density a
exhibits no fluid-fluid phase transition. Even though t
forces between DPD particles are smooth, they still indu
structure in the fluid~reminiscent of atomic behavior! on a
length scale of orderr c . In this respect, the conventiona
DPD scheme is similar to other mesoscopic models for n
ideal fluids but differs from the—computationally mor
demanding—scheme of Flekko”y and Coveney that was pre
viously mentioned.7

Our aim in this paper is to arrive at a formulation
DPD that allows for a description of the behavior of nonide
fluids and fluid-mixtures. To this end, we look for a model
5 © 2001 American Institute of Physics
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which there is a direct link between the macroscopic eq
tion of state and the effective interparticle forces. As we w
show, as an additional advantage, our approach result
rather weak structural correlations in the fluid. In the ne
section, we describe in detail the model and how conse
tive forces are derived. We will subsequently elaborate
general method on three characteristic examples: A noni
fluid without a gas-liquid phase transition that has been s
ied previously with a different choice of conservative force
a van der Waals fluid, and a mixture with a miscibility ga
In Sec. III we look at the interfacial properties of these e
amples to gain some insight in the physical meaning of
conservative forces that we introduce, and subsequently
lyze their equilibrium behavior and compare them with p
vious models. We conclude with a discussion of our m
results.

II. MODEL

In DPD one hasN point particles of mass$mi% that
interact through a sum of pairwise-additive conservative, d
sipative and random forces. These particles can be in
preted as fluid elements, and the dissipative forces are in
duced to mimic the viscous drag between them. The rand
force equilibrates the energy lost through friction betwe
the particles, enabling the system to reach an equilibr
state. To be specific, if we call$r k ,pk% the set of particle
positions and momenta of theN point particles, their dynam
ics are controlled by Newton equations of motion

dr k

dt
5vk , ~1!

dpk

dt
5(

j Þ i
$FC~r i j !1FD~r i j !1FR~r i j !%

5(
j Þ i

$FC~r i j !2gvD~r i j !vi j "ei j ei j 1svR~r i j !ei j j i j %, ~2!

where we have used the notationr i j [r i2r j and vi j [vi

2vj . ei j denotes a unit vector in the direction ofr i j , and
vi5pi /mi is the velocity of particlei. The dissipative force
FD(r i j ), depends both on the relative positions and veloci
of the interacting pair of particles and its amplitude is ch
acterized by the parameterg. This parameter is related to th
viscosity of the DPD fluid. The third term in Eq.~2!, FR(r i j ),
is a random force acting on each pair of DPD particles—j
stands for a random variable with Gaussian distribution
unit variance. The random force has an amplitudes and is
also central. Central pair interactions ensure angular mom
tum conservation~although the dynamics can be generaliz
to account for noncentral forces13!. The dissipative and ran
dom forces are completely specified once the weight fu
tions, vD(r i j ) andvR(r i j ), are specified—these are smoo
and of finite range. Although they can be chosen at w
Español and Warren showed8 thatvD andvR must be related
to ensure that the probability to observe a particular confi
ration of DPD particles is given by the Boltzmann distrib
tion in equilibrium. Specifically, if they are chosen such th
vR5AvD, then the correct equilibrium distribution is reco
ered, and the equilibrium temperature of the DPD fluid
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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fixed by the ratio of the amplitudes of the dissipative a
random forces,kBT5s2/(2g). We stress that the DPD equa
tions of motion, Eqs.~1! and ~2!, cannot be derived from a
Hamiltonian.

Traditionally, and for simplicity, the conservative force
in DPD have been taken as pairwise-additive and cen
with a weight function related tovD, and with a variable
amplitude that sets the temperature scale in the system
long as the force is sufficiently weak that it does not indu
appreciable inhomogeneities in the density around a D
particle, it can only lead to an equation of state with a qu
dratic dependence in the density, irrespective of the pre
choice for the weight function~see the following!. One con-
sequence is that phase separation between disordered p
cannot occur in a pure system; at least a binary mixture
different kinds of particles is needed.14

We will first consider the general form that the free e
ergy of a DPD system can have, in order to elucidate
generic shape of consistent conservative forces. In agreem
with the idea that the DPD particles refer to lumps of fluid,
seems natural to assume that the relevant energy assoc
to their configurations is a free energy, rather than a stric
‘‘mechanical’’ potential energy. We can express quite gene
cally the free energyF of an inhomogeneous system wit
densityr(r ) as

F5E drr~r ! f ~n$r%! , ~3!

where f (r) is the expression for the local free energy p
particle~in units ofkBT!, andn($r%) is related to the density
of the system atr . This formulation is reminiscent of the
strategy followed in density functional theory to study t
equilibrium properties of the fluids.15 In fact, the particular
casen($r%)5r($r%) corresponds to the local density a
proximation in density functional theory, and ifn(r ) is cho-
sen to be an average of the density over an interval arounr ,
it can be understood as a weighted density approximation
the true free energy. We can separate the total free ene
f (r)5 f id(r)1 f ex(r), as the sum of the idealf id(r)
5 log(L3 r)21 plus the excess contribution, whereL is the
thermal de-Broglie wavelength. Our purpose is to obtain
equivalent expression for a DPD system, in which we havN
particles distributed in the space. Since the free energy i
extensive quantity, the total free energy of a DPD system
be obviously expressed in terms of the free energy per D
particle,c, as

F5(
i 51

N

c~ni !5(
i 51

N E drd~r2r i !c~n$r%!

5E drr~r !c~n$r%!, ~4!

where we have introduced the symbolni to refer to the gen-
eralized density defined previously, although now expres
in terms of the positions of the discreteN DPD particles~see
the following!. Comparing Eqs.~4! and ~3!, we can easily
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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identify c(r)5 f (r) which obviously implies that we can
decomposec into its ideal and excess contributions.

If the free energy determines the relevant energy fo
given configuration of DPD particles, we can then derive
force acting on each particle as the variation of such an
ergy when the corresponding particle is displaced. Howe
the motion of the particles themselves, due to the action
the dissipative and random forces, already accounts for
ideal contribution to the free energy of the system, which
not related to the interactions among the particles. Theref
only the excess part of the free energy will be involved in
effective interactions between the DPD particles. Acco
ingly, we can write the conservative force acting on parti
i, Fi

C, as

Fi52
]

]r i
(
j 51

N

cex~nj !. ~5!

We have derived the generic form for the conservative fo
acting on a DPD particle as a function of the excess f
energy that characterizes the system, which is, in general
a pairwise additive. These forces are analogous to the o
derived from semiempirical potentials16 in MD, used to ef-
fectively model the many-body interactions in condens
systems. However, we have started from the macrosc
properties of the system, i.e., its free energy, rather than
suring microscopic consistency.

We can then fix the equilibrium thermodynamic prope
ties of the system beforehand, and derive a set of conse
tive forces consistent with the desired equilibrium mac
scopic behavior. This procedure is reminiscent of
approach used in other mesoscopic simulation techniq
that deal with generic nonideal fluids.17

Given that the free energy has been defined as a fu
tional of a certain local density, local variations in such
density are responsible for the effective forces among
DPD particles. The particular expression for the forces w
then depend both on the specific form of the free energy
on the choice of the local densityni . It seems natural to
define the local density of a particlei as its average on th
corresponding interaction range. For simplicity, we weig
this average with the same functions used to define the
sipative and random forces, as introduced in Eq.~2!. There-
fore, we write

ni5
1

@w# (j
w~r i j !, ~6!

where@A# refers to the spatial integral of a given quantityA.
The normalization factor@w# ensures thatni is indeed a den-
sity, so that in a homogeneous region,n5r. This is in spirit
similar to the weighted density approximation in dens
functional theory.15 The use of a continuous and smoo
weight function that vanishes at the cutoff distance,r c , en-
sures a smooth sampling of the environment of each part
avoiding spurious jumps. There is noa priori reason to
choosew(r ) equal to any of the other weight functions, a
though the particular case of a constant weight function c
stitutes a pathological limit—in this case the conservat
force will only act when one particle enters or leaves
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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interaction range. The dependence of the energy of a par
lar configuration on the particles’ positions enters implici
through the weighted densities. For densities of the fo
given by Eq.~6!, the conservative force acting on particlei
can be rewritten as

Fi52(
j 51

N
]c~nj !

]r i
52(

j
~c i81c j8!

wi j8

@w#
ei j [(

j
Fi j ,

~7!

where we have introduced the notation,c i[cex(ni), and
where the primes denote derivatives with respect to the
responding variables. Although the free energy of each p
ticle depends on the local density, and leads in genera
many-body effective forces, for the particular local dens
introduced in Eq.~6!, the forces between DPD particles ca
still be written down as additive pairwise forces—a comp
tational advantage.

The fact that the forces depend on the positions of m
particles through their corresponding local weighted den
ties suggests that, in general, the local structure of the fl
phase will be smoother than in the case in which forces
derived from a pair-potential. This is an attractive feature
the present model; the local structure in a fluid should o
be related to its microscopic structure, and should
smeared out at mesoscopic, coarse-grained, scales. In
respect, the density-dependent interactions of these D
models enforce an appropriate length scale separation. In
next sections, we will analyze these properties in detail.

Before considering specific examples, as a consiste
check, we will analyze the predictions for the pressure o
fluid following the free energy,pth, and the virial,pv, routes.
If we start from the free energy per particle, Eq.~4!, the
pressure for a fluid will be

pth52r f 1r
]r f

]r
5kBTr1r2

]cex

]r
. ~8!

On the other hand, since we have derived the force
tween particles from the free energy, we can also obtain
pressure of the fluid following the virial route. In this cas
the pressure is given

pvirial5rkBT1
1

2dV(
i

(
j

r i j "Fi j

5rkBT1
1

2dV E E drdr 8r~rr 8!

3~r2r 8!•F~r2r 8!, ~9!

where we have approximated the discrete sum over thN
DPD particles by an integral. Introducing the pair correlati
function,g(r ), we can rewrite the previous equation as

pvirial5kBTr1
r2

2d E drg~r !
]cex

]r
r•H 22w8~r !e

@w# J
5kBTr2

r2

d

]cex

]r

@rw8#

@w#
. ~10!

In the last equality we have assumed that the density
nearly homogeneous, and that therefore]cex/]r is effec-
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tively a constant. Otherwise, it is not possible to express
force in terms of the relative coordinates only. If there is
local structure in the fluid, andw(r c)50, then @rw8#5
2d@w#, and then Eq.~10! coincides with the prediction fo
the ‘‘thermodynamic’’ pressure, Eq.~8! for any weight
function.18 Otherwise, a discrepancy between the two pr
sures will appear because the averaged densityni is always
centered on the corresponding DPD particle—a conditio
density—and it is therefore related to theg(r ). In subse-
quent sections, we will see in some examples how such l
structure may develop.

Theoretical studies have shown that in the fluid phase
DPD, in the hydrodynamic limit the usual Navier-Stok
equation is recovered,9 and that the equilibrium pressur
term is related to the pairwise forces through the usual vi
expression, as we have derived previously. This correspo
to dynamics which conserves momentum locally~as in
model-H19!, instead of being purely relaxational~as happens
in certain dynamical models that start from density fun
tional theories20!. By analogy with the usual nonideal DP
models, in equilibrium we recover a probability distributio
for a given configuration in agreement with Boltzmann flu
tuation theorem: The probability of observing a fluctuation
proportional to the exponential of the deviation of the app
priate thermodynamic potential—the free energy@as intro-
duced in Eq.~3!# for DPD models at constant volume, tem
perature and number of particles.

In the following subsections, we will consider three pa
ticular examples, where we will compute explicitly the for
of the conservative forces.

A. Groot and Warren fluid

Let us first derive the expression for the conservat
force that corresponds to the nonideal fluid studied by Gr
and Warren.21 They introduce a conservative force of th
form

Fi j 5H aS 12
r i j

r c
Dei j , r i j ,r c

0, r i j .r c

. ~11!

For this conservative force, they have shown that
EOS is p5kBTr1aar2, where by a numerical fit they
found a50.10160.001. Using the expressions of the pre
ous section, the corresponding pairwise force is

Fi j 5H 2aa
wi j8

@w#
ei j , r i j ,r c

0, r i j .r c

. ~12!

It corresponds to an excess free energy per particlecex

5aar, which is linear in the density. As stated in the intr
duction, an interaction with a smooth, monotonic dep
dence in position does not induce a fluid-fluid phase sep
tion.

B. van der Waals fluid

The van der Waals fluid is the classic example of a fl
with a liquid-gas phase transition. It is characterized by
equation of statep5rkBT/(12br)2ar2 ~and excess free
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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energy per particle,cex52kBT log$(12br)2ar%. We can re-
cover this EOS in a DPD system with pairwise conservat
forces of the form,

Fi j 5H S kBTb

12bni
2aD1S kBTb

12bnj
2aD J wi j

@w#
ei j . ~13!

For reasons that will be discussed below, it is helpful
generalize slightly the van der Waals fluid allowing for
contribution cubic in the density. The EOS then becomep
5rkBT/(12br)2ar22a3abr3. The critical point of this
model corresponds to the parameters

Tc5
a

b
brc~213a3brc!~12brc!

2,

~14!

rc5
1

b

a3211A11 2
3a31a 2

3

4a3
,

rcb[xc5
211a31A11 2

3a31a 2
3

4a3
, ~15!

Tcb/a[yc5xc~213a3xc!~12xc!
2. ~16!

The compressibility of the fluid,x, in turn, can be written
down as

x215
kBT

r
1

kBTb~22br!

~12br!2 22a23a3abr

5
yyc

xxc~12xxc!
22223a3xxc . ~17!

In Fig. 1 we show the behavior of the compressibility f
two different values of the parametera3 , for temperature
close to the critical temperatureTc . The increase ina3 re-
ducesx both above and below the critical temperature.
expected,x becomes negative in a region belowTc that is
bounded by a spinodal.

Controlling the compressibility of the fluid is a desirab
feature; a low compressibility helps reducing fluctuations
the fluid interface, which may be useful in simulations.
also provides a way of modifying properties of the flui
such as the speed of sound. Moreover, it gives an additio
parameter to select the surface tension which, as we
explain, may even change sign in this DPD-van der Wa
fluid. Finally, it proves useful to reduce the amplitude of t
density fluctuations to compare with mean field theoreti
predictions, as the ones developed in the next section.

C. Binary mixture

A binary mixture composed of particles of two species14

A andB, has also been considered by Groot and Warren.21 In
this system, it is possible to induce demixing with usual pa
wise forces by modifying the relative repulsions between
A–A, B–B, andB–A pairs. Nevertheless, even in this cas
a model in which the forces depend on local densities can
useful since if they induce less local structure, a relev
feature at a fluid-fluid interface.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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If the system consists ofNA particles of typeA andNB

particles of typeB, then there are two relevant local dens
fields, nA and nB , that are the straightforward generaliz
tions of Eq.~6!,

nAi
5 (

j PA

w~r i j !

@w#
~18!

nBi
5 (

j PB

w~r i j !

@w#
, ~19!

nAi
andnBi

represent the concentration ofA andB particles
around particlei, respectively. Whenever it is appropriat
we will denote byrA and rB the continuum limit of the
discrete densitiesnA andnB , respectively.

The simplest free energy that leads to a miscibility g
has an excess free energy of the form

FIG. 1. Compressibilities of the van der Waals fluid around the criti
point, for two different values of the parametera3 . ~a! Curves atT/Tc

51.1; ~b! Curves atT/Tc50.8.
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
p

Fex5E dr$2lra~r !rb~r !1lAra~r !21lBrB~r !2%

5F (
i PA

~lnBi
1lAnAi

!1(
i PB

~lnAi
1lBnBi

!G , ~20!

where the two sums run over particles of typeA and B,
respectively. The corresponding conservative force acting
particle i can be written down as

Fj5F (
i PA

H l (
kPB

1lA(
kPA

J 1(
i PB

H l (
kPA

1lB(
kPB

J G
3@wik8 eik~d i j 2dk j!#. ~21!

Although in this case with two averaged local densities
conservative forces do not have the form of Eq.~7!, they can
still be expressed as pairwise additive forces,

Fi j 5H 22lA,Bwi j8 ei j , i j same type

22lwi j8 ei j , i j different type
. ~22!

This fluid will be miscible at high temperatures, and below
critical temperatureTc a miscibility gap will develop. In
terms of the parameters of the free energy, Eq.~20!, for a
symmetric mixtureTc is

kBTc5r~l2lA!,
rA

rA1rB
U

c

[cc5
1

2
. ~23!

III. INTERFACIAL BEHAVIOR

In this section we develop a mean field theory for t
interfacial properties for a nonideal DPD fluid that giv
some insight in the meaning of the conservative forces
these DPD models. For definiteness, we concentrate on
derivation of the surface tension,g̃.

Since we are interested in the interfacial properties,
focus on the excess free energy, and will not write down
ideal gas contribution, which is local in the density and do
not contribute to the interfacial properties. We start from t
continuum limit of the appropriate free energy, and make
expansion in gradients. Therefore, we disregard correlat
in the positions between the particles, hence the mean
character of the predictions of the present section.

A. van der Waals fluid

For a van der Waals fluid we can express the continu
free energy of the fluid, that corresponds to the conserva
forces introduced in Eq.~13!, as

Fex5E drr~r !S 2kBT log~12bn~r !!2an~r !

2
a3

2
abn~r !2D , ~24!

wheren(r ) is the continuum limit of Eq.~6!, namely,

n~r !5
1

@w#
E dr 8w~ ur2r 8u!r~r 8!. ~25!

In Eq. ~24!, the densityr(r ) means the mean density at poi
r . This is different from the density appearing in Sec.

l

P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



f
ng
a

s

t

rd
e

ca

he
d,
aa

in
u
en
n

ist

re
th
th
th

he
e

ex-
tter,
r
les,

the
an-
a-

he
nd-
or
uid;

the
t-
les,

ter-
no
the

e
el
ed
ter-

of
er
n der
,
ar
tic

ar-
on

to
free

rder
uid
h the
we
sion

n of
h a

d

is
his
pro-

a

-

5020 J. Chem. Phys., Vol. 115, No. 11, 15 September 2001 I. Pagonabarraga and D. Frenkel
where it referred to the instantaneous value of the density
a particular configuration. Due to this density preaveragi
the results of the present section constitute a mean field
proximation.

For a smooth planar interface, we can expand the den
in Eq. ~25! to second order in the gradients,15

r~r2z!5r~r !2z•¹r~r !1 1
2zz:¹¹r~r !. ~26!

Inserting this expression in Eq.~25!, and using the fact tha
the weight function is radially symmetric we get

n~r !5r~r !1
@z2w#

2d@w#
¹2r~r !. ~27!

With this expression, Eq.~24! can be written down as

Fex5E drr~r !H 2kBT lnS 12br~r !2
b@z2w#

2d@w#
¹2r~r ! D

2ar~r !2
a@z2w#

2d@w#
¹2r~r !

2
a3ab

2 S r~r !21
@z2w#

d@w#
r~r !¹2r~r ! D J , ~28!

where terms containing derivatives higher than second o
have been neglected. Collecting terms in powers of the d
sity gradients, making use of the integration by parts we
rewrite Eq.~28! in the usual form

Fex5E drr~r !S 2kBT ln~12br~r !!2ar~r !

2
a3

2
abr~r !2D1

@z2w#

2d@w# S 2
kBTb

~12br$r%!2 1a

12a3abr~r ! D u¹rr u2. ~29!

The first term in brackets gives the local contribution to t
excess free energy. When the ideal contribution is adde
gives us the free energy for a homogeneous van der W
fluid. The second term in brackets is the energy penalty
generate gradients in the system. It is this term that conta
to lowest order, the interfacial energy of the fluid. In partic
lar, we can obtain from it an expression for the surface t
sion. If we assume that the profile is a hyperbolic tange
and we estimate its width from the asymptotic bulk coex
ing densities,22 we arrive at

g̃5
r l2rq

2
A@z2w#

d@w# S 2
kBTb

~12brm!2 1a12a3abrmD d2f

dr2,

~30!

where d2f /dr251/r22a1kBT(22br)/(12br)2

23a3abr is the second derivative of the homogeneous f
energy with respect to the density evaluated at one of
coexisting phases. We have assumed for simplicity that
density difference between the two phases is small, so
we can approximate the density across the interface by
mean value,rm .

If we look at the structure of both the expansion of t
free energy and the surface tension, we can recogniz
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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qualitative difference with respect to the corresponding
pressions for the standard van der Waals fluid. In the la
the interfacial tension is a function only of the parametea
characterizing the long range attraction between the partic
whereas now it depends on all the parameters,a, b anda3 .
This qualitative difference can already be traced back to
coefficient of the gradient square term in free energy exp
sion, Eq.~29!—for the standard van der Waals fluid the gr
dient energy cost is only related toa. As a result, in this DPD
van der Waals fluid there are different contributions to t
gradient energy term with different signs. Therefore, depe
ing on their relative strength, it is possible either to favor
penalize the appearance of density gradients in the fl
hence, the sign of the interfacial tension may change.

In an atomic fluid, the repulsion parameter,b, in the van
der Waals EOS arises from the hard core repulsion, while
attraction parameter,a, comes from a long range weak a
traction. Therefore, they appear in different length sca
and accordingly, only the parametera—related to the long-
range structure—is responsible for the behavior of the in
facial tension. On the contrary, for a DPD fluid there is
excluded volume interaction, and all interactions between
particles take place at the same length scale,r c . Then, the
relative strength of the different contributions will determin
their overall net effect. It is known that a microscopic mod
in which both attractions and repulsions are long rang
leads to a van der Waals equation of state in which the in
facial behavior can either favor or penalize the presence
interfaces.23 The van der Waals fluid introduced in this pap
shares these same properties. Even if we can ensure a va
Waals EOS for a fluid, a careful tuning of the parametersa,
b and a3 may lead to a van der Waals model for lamell
fluid, when even interfaces are favored. Although unrealis
for atomic fluids, this behavior is relevant, e.g., for nanop
ticles, for which repulsive and attractive interactions act
similar length scales.24

Therefore, depending on the kind of fluid that needs
be modeled at mesoscopic scales, the parameters in the
energy should be chosen appropriately. For example, in o
to get a positive surface tension, the densities of the fl
phases is restricted because one must ensure that bot
pressure and the surface tension are positive. In Fig. 2
display the curves where the pressure and the surface ten
vanish for two different values ofa3 . The area defined in
between the corresponding set of curves defines the regio
phase space where the fluid is mechanically stable wit
positive surface tension. Remember that the values ofa and
b set the critical valuesrc andTc . The allowed regions do
not change very much as the parametera3 is modified.

If we makeb50, this model reduces to that of Groot an
Warren. In this case,g̃ becomes negative~remember thata is
negative now!. As we have mentioned in Sec. II A, there
no fluid-fluid phase separation in this model; therefore t
negative value of the surface tension does not lead to a
liferation of interfaces. However, the negative value ofg̃
implies that the structure factor will have a minimum at

finite wave vector. We can define a characteristic length,l̃ 0 ,
on which local structure in the fluid will develop. If we ex
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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pand the free energy Eq.~24! to next order in gradients, we
can estimate this length to be

l̃ 0;2pr cA @wr4#

12@wr2#
, ~31!

FIG. 2. Curves where the pressure and the surface tension vanish fo
different values ofa3 for a van der Waals fluid. Above the solid curve th
pressure is positive, and below the long dashed curves the surface tens
positive. The region contained in between the corresponding pair of cu
corresponds to the portion of phase space where the fluid will be mech
cally stable, with a positive surface tension. Above the long dashed cu
the surface tension is negative. Two different values ofa3 are considered:
a350 anda355.
e

o
e
n
th

-
al
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which does not depend on the amplitudea; only on the shape
of the weight functionw. Except for rapidly decaying weigh
functions, this length is of order of the interaction ranger c .
This fact is consistent with the local structure observed in
radial distribution functions for this model~see Sec. IV A!.
We have also verified numerically the presence of a m
mum in the structure factorS(k).

B. Binary mixture

We can also compute the interfacial tension for a bin
mixture following the procedure of the previous subsectio
The excess free energy in the continuum limit is now

Fex5lE dr @rA~r !nB~r !1rB~r !nA~r !#

1lAE drrA~r !nA~r !1lBE drrB~r !nB~r !. ~32!

It is useful to introduce the total densityr and the mole
fractionc of componentA as the relevant variables. They a
defined as usual,

rA5rc , ~33!

rB5r~12c!. ~34!

If we expand the local densitiesn(r ) in the same way as
in Eq. ~27!, we arrive at the square-gradient approximati
for the free energy,

wo

n is
es
ni-
es
Fex5E dr2lrA~r !rB~r !1lArA~r !21lBrB~r !21
@z2w#

2d@w#
$lrA¹2rB1lrB¹2rA1lArA¹2rA1lBrB¹2rB%

52lr2c~12c!1lAr2c21lBr2~12c!21
@z2w#

2d@w#
r2$2lc¹2c2l~12c!¹2c1lAc¹2c2lB~12c!¹2z%

52lr2c~12c!1lAr2c21lBr2~12c!21
@z2w#

2d@w#
r2$2l2lA2lB!u¹cu2%. ~35!
e
e
ulk

e.
r-

. In
Assuming thatr is constant, and for a symmetric mixtur
(lA5lB), we get

Fex5r2E dr H 2~l2lA!c~12c!

12
@z2w#

2d@w#
~l2lA!u¹cu2J . ~36!

Again, the interfacial tension can have either a positive
negative sign, depending on the relative magnitudes of thl
parameters. IflA5lB50, and only the repulsion betwee
the particles belonging to different species is kept, then
surface tension has the same sign asl, as expected.

The interfacial widthj can be obtained taking into ac
count that the concentration profile converges exponenti
r

e

ly

to its bulk value. This gives usj254k/F9, wherek/2 is the
amplitude of theu¹cu2 in the gradient expansion of the fre
energy, andF9 is the second order derivative of the fre
energy with respect to the concentration evaluated at its b
coexisting value. In the symmetric case, we get

j25
@z2v#

@v# S 211
T

4Tcc`~12c`! D
21

, ~37!

wherec` is the value of the concentration in the bulk phas
The surface tension,g, can be obtained integrating the diffe
ence between the free energy profile and its bulk value
the small gradient limit, it reduces to

g5E
2`

`

r
@z2v#

2d@v#
Tcu¹cu2. ~38!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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If we assume that the concentration profile is a tanh, we
the estimate

g5
2@z2v#

3@v#

rTc

j
~c`21/2!2 . ~39!

Close to the critical point, we recover the expected limiti
behavior for the interfacial properties,22

g52rkBTc

Tc

T
A2@z2v#

3d@v# S 12
T

Tc
D 3

, ~40!

j5A @z2w#

4d@w#~12T/Tc!
. ~41!

IV. EQUILIBRIUM PROPERTIES

We will now analyze the equilibrium properties of th
examples of nonideal DPD systems introduced in Sec. II
will compare with the predictions of previous models pe
forming numerical simulations. We take the interaction ran
r c as the unit of length and the mass of the DPD particlem
as the unit of mass. The equations of motion are integra
self-consistently to avoid spurious drifts in the thermod
namic properties.10

A. Groot and Warren fluid

Before studying a DPD model with fluid-fluid coexis
ence, we compare the results of our model for a Gro
Warren fluid with the original one, based on forces given
Eq. ~11!. In this case, both models should coincide and
analyze it to see the effects of the weight function shape
the properties of nonideal fluids.

We have performed simulations for a DPD fluid in thr
dimensions, taking as parametersa525 and
a50.101—which corresponds to those used in Ref. 21
Fig. 3 we compare the predictions for the EOS given by

FIG. 3. Pressure as a function of the density for a Groot-Warren fluid, u
both the previously proposed pairwise force, Eq.~11!, and for the force of
the present form, Eq.~12!. In the second case we compare the behavior
a linear and a quadratic weight function.a525, a50.101.L56r c , kBT
51, g51 ~see head of Sec. IV for units!.
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model and by running a DPD simulation with the Groo
Warren model.

Groot and Warren used the same weight function for
pairwise forces. The proposed model for this nonideal fl
neatly shows that, for the present class of models, a lin
weight function is not suitable to sample the local density
each DPD particle, because it leads to a pairwise conse
tive force that exhibits a discontinuity at the edge of t
interaction region,r c . We have analyzed the effect of such
jump on the thermodynamic and structural properties of t
system. To this end, we have considered both decrea
linear and quadraticw’s.

In Fig. 3 we compare the EOS obtained from simu
tions; for a quadraticw, our model coincides with that o
Groot-Warren. However, for a linearw, the agreement sur
vives only at low densities. This DPD model has a transit
to a solid state at high densities, and the results obtai
indicate that the location of such a transition is sensitive
the shape of the weight function—the characteristic force
by each particle depends on the shape ofw for a given den-
sity. In Figs. 4–5 we compare the radial distribution fun
tions for our model and that of Groot-Warren, and for diffe
entw’s, at increasing values of the density. It is clear that
shape ofw plays an important role in the local structure
the fluid, and will influence the location of the fluid-soli
transition. In Sec. III A we have noted that for the prese
model there exists a characteristic length,l̃ 0 , associated with
density fluctuations and which is of orderr c . Only for fairly
narrow weight functions will this length become muc
smaller thanr c .

At low densities, a linearw generates less local structur
a pleasant feature for a mesoscopic model. However, as
density is increased, the local structure develops faster f
linear weight function, leading sooner to a transition to t
ordered phase. The use of a quadratic weight function le
to results identical to those of the GW model, while a line

g

r

FIG. 4. Radial distribution for a Groot-Warren fluid, using both the pre
ously proposed pairwise force, Eq.~11!, and for the force of the presen
form, Eq.~12!. In the second case, we compare the behavior for a linear
a quadratic weight function. Same parameters as in Fig. 3. The mean de
is rm53.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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force tends to smooth the structure at short distances.
mean repulsion between particles is larger with a lineaw
rather than with a quadratic one. Moreover, it seems p
sible to assume that the discontinuity in the force induce
higher sensitivity to local density fluctuations. These resu
show how the modifications of the shape of the weight fu
tion can be used to fine-tune details of the behavior of a flu
once the EOS has been fixed.

B. van der Waals fluid

Next, we focus on the liquid-gas equilibrium properti
of a two-dimensional van der Waals fluid. Taking a homog
neous system, we can analyze the effect of the density fl
tuations on the EOS, and compare it with the predictio
coming from the macroscopically assumed EOS. In Fig
we show the pressure values obtained in simulations ru
fixed homogeneous density, volume and temperature. In
case we can recover the characteristic van der Waals l

FIG. 5. Radial distribution function for a Groot-Warren fluid, using both t
previously proposed pairwise force, Eq.~11!, and for the force of the presen
form, Eq.~12!. In the second case, we compare the behavior for a linear
a quadratic weight function. Same parameters as in Fig. 3. The mean
sities are:~a! rm58 and~b! rm514.
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The actual coexistence curve should be derived from it us
the equal area Maxwell’s construction. The agreement w
the expected EOS from the macroscopic free energy is v
good, and only small deviations are observed, due to par
correlations.

We have also analyzed the density and pressure pro
when we bring into contact a liquid and a gas in the coex
ence region. As mentioned in Sec. II, the compressibility
the fluid, especially in the coexistence region, is very sen
tive to the parametera3 that characterizes the amplitude
the term cubic in the pressure. Fora350 the density profiles
tend to fluctuate substantially. Note that our estimates for
parameters and ranges of stability are all based on a m
field description, which may be no longer quantitatively co
rect under such conditions. Due to this, a series of simu
tions will be needed for each set of selected parame
whenever a detailed, quantitative comparison, may be
quired.

When the parametera3 is increased~we have taken the
value a355!, imposing an initial slab of liquid in coexist
ence with a slab of gas the interface remains stable, and
density fluctuations in the liquid phase are not too large.

In Fig. 7 we show the temperature, pressure and m
square displacement of the system during the extensio
the simulation. One can see that the temperature does
shift, and corresponds to its nominally assigned value. T
pressure exhibits important fluctuations, but if we subtr
the normal and tangential components~in the figure we only
display the averaged pressure!, their difference, which is
twice the surface tension, gives a value with a well-defin
positive mean. Also the mean square displacement sh
that particles have had the time to diffuse the interfac
width, which is roughly proportional to the interaction rang
r c , indicating that the droplet is stabilized.

Fig. 8~a! shows the density profiles obtained by starti
with a step density profile in the liquid-gas coexistence
gion, where the numerical errors are smaller than the fl
tuations, as in the rest of the plots. The shape of the dro
stable and the interfaces fluctuate around their initial lo
tion, as could be expected. The density ratio between the

d
n-

FIG. 6. Equation of state for a 2-D van der Waals fluid. The different set
data points correspond to different temperatures.b50.016, a51.9b, a3

55, L57r c , g51 ~see head of Sec. IV for units!.
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fluid phases,r liq /rgas54 makes it reasonable to call the tw
phases liquid and gas. The density in the gas phase is 10r c

22,
which ensures that in both phases the number of interac
particles is sufficiently high. By looking at the density pr
files, one can also observe that the density fluctuations in
dense phase are small, as expected on the basis of the
compressibility of the fluid.

Finally, we have also computed the components of
pressure tensor across the profiles. For an inhomogen
fluid there is no unambiguous way of computing the lo
components of the pressure tensor; we follow here the
cedure described in Ref. 25 and display them in Fig. 8~b!.
They follow basically the increase in density, exhibitin
larger fluctuations in the liquid phase. In the bulk phases,
two components of the pressure tensor have to be equal.
is clearly shown in Fig. 9, where the differences in the t
components are confined to the interfaces, if we compare
location of the differences with the density profiles of F
8~a!. Moreover, the increase in fluctuations in the den
phase is clearly displayed. The equilibration of the drop c
also be monitored by analyzing the time scale at which
pressure profile becomes symmetric at both interfaces.
gether with the pressure differences, we have also plotte
thin lines the integral of the pressure difference across
profile. This quantity is the surface tension, and indeed,
values we get when the profile is equilibrated agree with
predictions extracted from the mean pressures, displaye
Fig. 7. We have also computed the excess free energy pro
Its integral gives us an alternative~thermodynamic! route to
compute the surface tension. We have verified that the va
of the surface tension obtained integrating the excess
energy profile coincides with the value presented abo
computed along the virial route.

FIG. 7. Thermodynamic values of a DPD fluid with a van der Waals E
when a liquid is coexisting with the gas phase, in two dimensions.
initial condition corresponds to a slab of fluid in they direction in coexist-
ence with a slab of gas.g̃ is the interfacial tension, extracted from the me
pressures,g̃5(Ly/2)(Pyy2Pxx). Also displayed the mean-square displac
ment in units of the interaction ranger c . Ly520, Lx53, kBT50.75, a
51.9* b, b50.0156,a355. The unit of time is the time needed for a DP
particle to diffuser c initially ~see head of Sec. IV for units!.
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Another appealing feature of these conservative inter
tions is that their density dependence induces smooth l
structure. Indeed, if we analyze the radial distribution fun
tions for a homogeneous phase, we can see that the stru
in this case is almost nonexistent. When an interface
present, it is hard to assess the spurious structure tha
model may induce through the density profile. All we can s
is that the decay of the density is monotonic from one ph
to the other, and therefore, avoids spurious structure clos
the interface. Such a structure would be spurious on the
soscopic scale modeled by the DPD fluid. In contrast,
onset of structuring of the liquid-vapor interface on
atomic scale~beyond the Fisher-Widom line! is a real
effect.26

C. Binary mixture

Finally, we have run simulations for a binary mixtur
corresponding to the model described in Sec. II C. As in
previous subsection, we concentrate on the equilibrium pr
erties of the fluid in the coexistence region. We have sim
lated a 2-D fluid, starting with an initial step profile in con

e

FIG. 8. Equilibrium~a! density and~b! pressure profiles for a 2-D van de
Waals fluid. The initial profile is a step profile. Same parameters as in Fi
~see head of Sec. IV for units!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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centration. In Fig. 10 we show the evolution of th
temperature and pressure, which remain essentially con
through the simulation. We also display the root mean squ
displacement of the two species. One can clearly see
after a short initial period, when the species start to feel
presence of the interfaces their effective diffusion slo
down. The fact that the mean square displacement is m
larger than the interfacial width, which remains of the ord
of the interaction range,r c , ensures that the initial configu
ration has relaxed to its proper equilibrium shape.

We have computed the concentration profiles as a fu
tion of time. In Fig. 11 we show the concentration profiles
one of the species at an initial and late stage of the relaxa
towards the equilibrium coexistence. As was the case in
van der Waals fluid, the fluctuations are greater in the c
centrated phase. Although the concentration of each spe

FIG. 9. Profiles of the difference between the normal and tangential c
ponents of the pressure tensor along the system, for the pressure profi
Fig. 8~b!. Same parameters as in Fig. 7~see head of Sec. IV for units!.

FIG. 10. Temperature, pressure and mean-square displacements of th
species as a function of time, for a binary mixture below its critical te
perature,T/Tc50.5, and withl51, lA50.2 ~see head of Sec. IV for units!.
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goes basically to zero in one of the two coexisting phas
the interface does not broaden and keeps its width withinr c .
Despite this large concentration gradient, the mean den
barely changes across the interface. These normalized m
densities are displayed also in Fig. 11 as thin curves.
though a small dip in the normalized mean density appear
the interfaces, its value is not large compared with the typ
bulk density fluctuations~which are due to the compressibi
ity of the fluid!. Again, this indicates that the use of conce
tration dependent conservative forces suppresses the ap
ance of spurious structure at interfaces, while still being a
to drive the phase separation.

We can also test the predictions of Sec. III B for th
interfacial properties on the basis of a binary mixture. To t
end, we have integrated numerically Eq.~38! using the con-
centration profiles obtained from the simulations, and
have compared the results with the theoretical prediction,
~39!. We display the results in Fig. 12, where we have m
tiplied the theoretical curve by an overall numerical fact
since the numerical prefactors in Eq.~39! are approximate.
One can observe that the overall good agreement is los
small temperatures, where the interface is very sharp,
close to the critical point, where fluctuations are expected
play a relevant role.

V. CONCLUSIONS

We have presented a new way of implementing cons
vative forces between DPD particles. Rather than assumi
force that depends on the interparticle separation, we h
introduced a conservative interaction that depends on the
cal excess free energy. In this way, it is possible to fix b
forehand, at the mean-field level, the desired thermodyna
properties of the system. However, this procedure negl
the effect of particle correlations. Whenever an accur
quantitative comparison is needed, a set of numerical si
lations will be required to determine accurately the approp

-
of

two
-

FIG. 11. Profiles of the relative amount of one of the species across
system, at two different times. These curves have been multiplied by
avoid confusion with the thin lines. The latter correspond to the normali
mean density at the same time~see head of Sec. IV for units!.
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ate phase diagram. We could equally use the free energ
carry out Monte Carlo simulations to analyze the static pr
erties of fluids; this procedure will suffer from similar draw
backs as a result of the ignored particle correlations.

When the free energy per particle depends on the a
aged local density, it is possible to recover central pairw
additive forces—an important computational feature. T
only assumption we have made is that the system is isot
mal, although it should be straight forward to generalize it
include energy transport, along the lines develop
previously.27

These models can be viewed as a dynamical den
functional theory~DFT! for smooth conservative forces wit
local momentum conservation. However, since the DPD p
ticles do not have a local structure, these models can o
describe the dynamics at a mesoscopic level, while the u
dynamical DFT can account for the dynamics down to
microscopic scale.

In addition to the freedom in the choice of the free e
ergy, this new type of proposed forces leads to weaker st
ture at short distances. Hence, we can enforce a proper le
and time scale separation, avoiding the appearance of m
scopic features of the system at distances of orderr c .

At the mean-field level, and using standard technique
is easy to derive expressions for the interfacial propert
We have shown that the absence of internal structure of
DPD particles~implying that all forces act on the sam
length scale! leads to qualitatively new behavior not prese
in atomic fluids. From the physical point of view, it show
that, for example, the same thermodynamic system can
tuned to favor macroscopic or microscopic phase separa
Although it may seem unrealistic, the competition of attra
tive and repulsive effective potentials on the same len
scales correspond to certain physical situations, and they

FIG. 12. Surface tension for a binary mixture at densityr50.5 with a
critical temperatureTc58 and quicomposed, as a function of the tempe
ture. The squares correspond to the expression derived from the mean
free energy in the small gradient limit.
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probably more common on the mesoscopic than in the
croscopic domain. In this respect, the models we have in
duced are quite flexible because, for a given bulk thermo
namic behavior~e.g., a given EOS!, it is still possible to
modify the parameters to control other physical properti
For example, the mean interaction strength can be chan
by modifying the way in which the local density is sample
or for the van der Waals fluid, it is possible to modify th
compressibility~and hence the speed of sound!. As in any
diffuse interface model, the typical interfacial width sets
minimum length scale in the system. For DPD the natu
scale isr c , unless the parameters are chosen carefully.
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