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Dissipative particle dynamics for interacting systems
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We introduce a dissipative particle dynamics scheme for the dynamics of nonideal fluids. Given a
free-energy density that determines the thermodynamics of the system, we derive consistent
conservative forces. The use of these effective, density dependent forces reduces the local structure
as compared to previously proposed models. This is an important feature in mesoscopic modeling,
since it ensures a realistic length and time scale separation in coarse-grained models. We consider
in detail the behavior of a van der Waals fluid and a binary mixture with a miscibility gap. We
discuss the physical implications of having a single length scale characterizing the interaction range,
in particular for the interfacial properties. ®001 American Institute of Physics.
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I. INTRODUCTION can be derived from a Hamiltonian, DPD includes dissipative
and random forces. These mimic the effect of viscous damp-
There is a strong incentive to develop “mesoscopic” nu-ing between fluid elements and the thermal noise of the fluid
merical techniques to model the dynamics of fluids with dif-elements, respectively. Flekkaand Covene$ have shown
ferent characteristic length scales. Mesoscopic simulationthat, in principle, a particular DPD-like model can be derived
make it possible to analyze processes that take place drom an atomistic description. However, no such derivations
length and time scales that are out of reach for purely atomexist for the commonly used DPD models. Nonetheless, even
istic simulations such as Molecular Dynami®4D). In MD,  without such a link to the underlying microscopics, it has
one retains the full atomic details in the description of thebeen shown that thermal equilibrium can be ensured by an
system, but at the expense of restricting the studies to shogppropriate choice of the ratio between dissipative and ran-
times. In contrast, models that describe the system at mes@om force€ The hydrodynamic behavior of the DPD model
scopic scales, employ a certain degree of coarse grainingas been explored in some detait? although the link be-
which allows one to analyze longer times. However, caregween the mesoscopic and the macroscopic description is not
should be taken that the loss of “atomic” information asso-completely understood.
ciated with the coarse-graining process does not lead to un- In conventional DPD, all interparticle forces have the
realistic features on larger length and time scales. In particusame finite interaction range . Their amplitudes decay ac-
lar, the coarse-grained models should provide an adequat®rding to a weight function(r;;) that has been made to
description of the equilibrium properties of the system. Some&anish atr, in order to avoid spurious jumps at the cutoff
of the mesoscopic models that have been proposed preuiistance. In this paper, we employ a more general description
ously in the literature were derived in a systematic way fromof the conservative interactions. In the existing literature, the
underlying microscopic models, as is the case with theconservative forces have usually been assumed to depend
lattice-Boltzmann metholiwhich can be viewed as a preav- explicitly on the distance between a pair of particles. For the
eraged lattice gas modeIComing from the opposite side, sake of computational convenience, the conservative forces
smoothed particle dynamics was introduced as a Lagrangiasetween DPD particles are smooth and monotonic functions
discretization of the macroscopic equations of fluid mofion. of the distance—in fact, the smoothness of the forces is one
A different strategy to simulate structured fluids is to assumef the advantages of DPD. When the forces depend linearly
that the solvent is passive, and that the suspended objeadd the interparticle separation, the equation of Sta@9 of
have a diffusive dynamics with diffusion coefficients that arethe DPD fluid is approximately quadratic in the density and
known a priori. This has led to the development of exhibits no fluid-fluid phase transition. Even though the
Browniarf’ and Stokesian dynamics. forces between DPD particles are smooth, they still induce
In the early nineties, Dissipative Particle Dynamicsstructure in the fluidreminiscent of atomic behavipon a
(DPD) was introduced as a novel way to simulate fluids at aength scale of order.. In this respect, the conventional
mesoscopic scafeln DPD, the fluid is represented by a large DPD scheme is similar to other mesoscopic models for non-
number(N) of point particles that have a pairwise additive ideal fluids but differs from the—computationally more
interaction. The interparticle forces are the sum of three condemanding—scheme of Flekk@nd Coveney that was pre-
tributions. In addition to the usual conservative forces thatiously mentioned.
Our aim in this paper is to arrive at a formulation of
aCurrent address: Department desiEa Fonamental, Universitat de Barce- DPD that allows for a description of the behavior of nonideal
lona, Av. Diagonal 647, 08028-Barcelona, Spain fluids and fluid-mixtures. To this end, we look for a model in
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which there is a direct link between the macroscopic equafixed by the ratio of the amplitudes of the dissipative and
tion of state and the effective interparticle forces. As we willrandom forceskgT=0?/(2y). We stress that the DPD equa-
show, as an additional advantage, our approach results tions of motion, Egs(1) and (2), cannot be derived from a
rather weak structural correlations in the fluid. In the nextHamiltonian.

section, we describe in detail the model and how conserva- Traditionally, and for simplicity, the conservative forces
tive forces are derived. We will subsequently elaborate then DPD have been taken as pairwise-additive and central,
general method on three characteristic examples: A nonidealith a weight function related t@P, and with a variable
fluid without a gas-liquid phase transition that has been studamplitude that sets the temperature scale in the system. As
ied previously with a different choice of conservative forces,long as the force is sufficiently weak that it does not induce
a van der Waals fluid, and a mixture with a miscibility gap. appreciable inhomogeneities in the density around a DPD
In Sec. Il we look at the interfacial properties of these ex-particle, it can only lead to an equation of state with a qua-
amples to gain some insight in the physical meaning of thalratic dependence in the density, irrespective of the precise
conservative forces that we introduce, and subsequently anahoice for the weight functiofsee the following One con-

lyze their equilibrium behavior and compare them with pre-sequence is that phase separation between disordered phases
vious models. We conclude with a discussion of our maincannot occur in a pure system; at least a binary mixture of

results. different kinds of particles is needéd.
We will first consider the general form that the free en-
Il. MODEL ergy of a DPD system can have, in order to elucidate the

generic shape of consistent conservative forces. In agreement

. In DPD one hasN pom_t p_arncles.pf masgm;} t.hat ._with the idea that the DPD particles refer to lumps of fluid, it
interact through a sum of pairwise-additive conservative, dis- .
L . . ~seems natural to assume that the relevant energy associated
sipative and random forces. These particles can be intef- . ) . . :
. S .. to their configurations is a free energy, rather than a strictly

preted as fluid elements, and the dissipative forces are intrQ- - . . ;
- : mechanical” potential energy. We can express quite generi-

duced to mimic the viscous drag between them. The random ; .
., - cally the free energyF of an inhomogeneous system with

force equilibrates the energy lost through friction betweendensit (r) as
the particles, enabling the system to reach an equilibrium yp

state. To be specific, if we caflr,,p,} the set of particle

positions and momenta of tiépoint particles, their dynam- _ f

ics are controlled by Newton equations of motion 7 drp(nf(n{r}), ©

dr

d—tk=vk, (1)  wheref(p) is the expression for the local free energy per
particle(in units ofkgT), andn({r}) is related to the density

dpy of the system at. This formulation is reminiscent of the

at ;I {FS(rij) +FP(ri)) + F(ryj)} strategy followed in density functional theory to study the
equilibrium properties of the fluidS. In fact, the particular
casen({r})=p({r}) corresponds to the local density ap-
:; {Fe(rip) = yoP(rij)vij ;8 + oo(rje; &}, (2) proximation in density functional theory, andrifr) is cho-
_ sen to be an average of the density over an interval around
where we have used the notation=r;—r; and v;j=Vi it can be understood as a weighted density approximation for

—V;. &; denotes a unit vector in the direction Of , and  he true free energy. We can separate the total free energy,
v;=p;/m; is the velocity of particlé. The dissipative force, f(p)=f9p)+(p), as the sum of the ideaF(p)

FD(rij), depends both on the relative positions and velocities— log(A3p)—1 plus the excess contribution, whefeis the

of the interacting pair of particles and its amplitude is charnermal de-Broglie wavelength. Our purpose is to obtain the
acterized by the parametgr This parameter is related to the equivalent expression for a DPD system, in which we Héve
viscosity of the DPD fluid. The third term in E@®), FR(r}),  particles distributed in the space. Since the free energy is an
is a random force acting on each pair of DPD particlés— extensive quantity, the total free energy of a DPD system can

stands for a random variable with Gaussian distribution anghg obviously expressed in terms of the free energy per DPD
unit variance. The random force has an amplitadand is particle, , as

also central. Central pair interactions ensure angular momen-
tum conservatiortalthough the dynamics can be generalized

N N
to account for noncentral forcE The dissipative and ran- _ _ _
dom forces are completely specified once the weight func- f_igl w(ni)_izl f dro(r=riy(nir})
tions, w®(r;;) and w"(r;;), are specified—these are smooth
and of finite range. Although they can be chosen at will, :f drp(r)g(n{r}), (4
Espaml and Warren showédhat »® andw® must be related

to ensure that the probability to observe a particular configu-

ration of DPD particles is given by the Boltzmann distribu- where we have introduced the symlmplto refer to the gen-
tion in equilibrium. Specifically, if they are chosen such thateralized density defined previously, although now expressed
= \/wP, then the correct equilibrium distribution is recov- in terms of the positions of the discréteDPD particlessee
ered, and the equilibrium temperature of the DPD fluid isthe following. Comparing Eqs(4) and (3), we can easily
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identify (p)="f(p) which obviously implies that we can interaction range. The dependence of the energy of a particu-
decompose) into its ideal and excess contributions. lar configuration on the particles’ positions enters implicitly

If the free energy determines the relevant energy for ahrough the weighted densities. For densities of the form
given configuration of DPD particles, we can then derive thegiven by Eq.(6), the conservative force acting on particle
force acting on each particle as the variation of such an erean be rewritten as
ergy when the corresponding patrticle is displaced. However, N ,
the motion of the particles themselves, due to the action of =3 ag(n;) =S (y+y Wij. =S F.

.. . F| . ] 4 (¢| ¢J) eu - Fljl

the dissipative and random forces, already accounts for the =1 odr j [w]
ideal contribution to the free energy of the system, which is (7)
not related to the interactions among the particles. Therefore oo \we have introduced the notatiai= ¢°(n;), and

only the excess part of the free energy will be involved in thhere the primes denote derivatives with respect to the cor-
effective interactions between the DPD particles. Accordyegnonding variables. Although the free energy of each par-
ingly, we can write the conservative force acting on particle;;q depends on the local density, and leads in general to

; C
I, F, as many-body effective forces, for the particular local density
g N introduced in Eq(6), the forces between DPD particles can
F=— EE ¥o(n)). (5) stiI_I be written down as additive pairwise forces—a compu-
=1 tational advantage.

The fact that the forces depend on the positions of many
articles through their corresponding local weighted densi-
s suggests that, in general, the local structure of the fluid
ase will be smoother than in the case in which forces are
erived from a pair-potential. This is an attractive feature of
he present model; the local structure in a fluid should only
c{‘c)e related to its microscopic structure, and should be

We have derived the generic form for the conservative force
acting on a DPD particle as a function of the excess fred
energy that characterizes the system, which is, in general, ng
a pairwise additive. These forces are analogous to the on
derived from semiempirical potentidfsin MD, used to ef-
fectively model the many-body interactions in condense

systems. However, we have started from the macroscopi . i .
meared out at mesoscopic, coarse-grained, scales. In this

roperties of the system, i.e., its free energy, rather than e . . .
guri‘;g microscopicyconsiStency 9 respect, the density-dependent interactions of these DPD

We can then fix the equilibrium thermodynamic proper_models enforce an appropriate length scale separation. In the

ties of the system beforehand, and derive a set of conseer?X%S?Ct'ons’ W% W!” analyz_?_ these pr?perues n det§|lt.
tive forces consistent with the desired equilibrium macro- €lore considering Specilic examples, as a consistency

scopic behavior. This procedure is reminiscent of ar]check, we will analyze the predictions for the pressure of a

approach used in other mesoscopic simulation technique:c%u\'sgosutc;vr\gr}?otrzet::efg;eErﬁréyagirth;a\r/t'iré?el’p I:L(@r}?uf[ﬁse'

that deal with generic nonideal fluids. L

Given that the free energy has been defined as a fund2ressure for a fluid will be
tional of a certain local density, local variations in such a dpf P
density are responsible for the effective forces among the P"= _Pf+P$=kBTP+P2 op (8)
DPD particles. The particular expression for the forces will
then depend both on the specific form of the free energy and  On the other hand, since we have derived the force be-
on the choice of the local density;. It seems natural to tween particles from the free energy, we can also obtain the
define the local density of a particias its average on the pressure of the fluid fO”OWing the virial route. In this case
corresponding interaction range. For simplicity, we weightthe pressure is given
this average with the same functions used to define the dis-

- 1
sipative and random forces, as introduced in &j. There- pVal= pkeT + mE Z rij+Fij
fore, we write b
1 — pkeT+ — f f drdr’p(rr’
=] 2 W), ®) —PkaT* 5y | | drdre(m)

_— : X(r=r")-F(r—r"), 9
where[A] refers to the spatial integral of a given quantity (r=r)-F(r=r") ©

The normalization factofw] ensures that; is indeed a den- where we have approximated the discrete sum overNthe
sity, so that in a homogeneous regions p. This is in spirit  DPD particles by an integral. Introducing the pair correlation
similar to the weighted density approximation in densityfunction,g(r), we can rewrite the previous equation as
functional theory® The use of a continuous and smooth

2 ex ’
weight function that vanishes at the cutoff distancg, en- pVinal =k T p+ p_f drg(r) i r-{ 2w (r)e]
sures a smooth sampling of the environment of each particle, 2d p [w]
avoiding spurious jumps. There is r priori reason to p? 9y rw']
choosew(r) equal to any of the other weight functions, al- =kgTp— q oo W] (10

though the particular case of a constant weight function con-
stitutes a pathological limit—in this case the conservativeln the last equality we have assumed that the density is
force will only act when one particle enters or leaves thenearly homogeneous, and that therefeng®™/dp is effec-
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tively a constant. Otherwise, it is not possible to express thenergy per particle)®= —kgT log{(1—bp)—ap}. We can re-
force in terms of the relative coordinates only. If there is nocover this EOS in a DPD system with pairwise conservative

local structure in the fluid, andv(r,)=0, then[rw']= forces of the form,

—d[w], and then Eq(10) coincides with the prediction for

the “thermodynamic” pressure, Eq(8) for any weight Fo= ( kgTh ) ( kgTh a) Wi (13)
function!® Otherwise, a discrepancy between the two pres- " || 1-bn 1-bn, [w] i

sures will appear because the averaged demsity always
centered on the corresponding DPD particle—a condition
density—and it is therefore related to tigér). In subse-
guent sections, we will see in some examples how such loc
structure may develop.

Theoretical studies have shown that in the fluid phase o
DPD, in the hydrodynamic limit the usual Navier-Stokes a
equation is recoveret,and that the equilibrium pressure Tc=5ch(2+3a3ch)(1—ch)2,
term is related to the pairwise forces through the usual virial

aFor reasons that will be discussed below, it is helpful to
generalize slightly the van der Waals fluid allowing for a
aclontribution cubic in the density. The EOS then becomes
= pkeT/(1—bp) —ap?— azabp®. The critical point of this
%nodel corresponds to the parameters

. . , . (14
expression, as we have derived previously. This corresponds 1 as—1+ 1+ 204+ al
to dynamics which conserves momentum localbs in pe=1 )
model-H?), instead of being purely relaxation@s happens b 4as
in certain dynamical models that start from density func- \/ﬁ
tional theorie&). By analogy with the usual nonideal DPD pb=x.— —1ltaztVltiestas 15
cM T Ac ’

models, in equilibrium we recover a probability distribution
for a given configuration in agreement with Boltzmann fluc- 5
tuation theorem: The probability of observing a fluctuation is 1 cP/@=Yc=Xc(2+3azXc)(1=Xc)* (16)
proportional to the exponential of the deviation of the appro-the compressibility of the fluidy, in turn, can be written
priate thermodynamic potential—the free enefgg intro-  yown as

duced in Eq(3)] for DPD models at constant volume, tem-

46!3

perature and number of particles. _1_kB_T+ kBTb(Z—bP)_2 _ag.ab
In the following subsections, we will consider three par- X~ p (1—bp)? a=sasabp
ticular examples, where we will compute explicitly the form
of the conservative forces. YYe L2 Bagx. 17

T XX(1—XX.)2
A. Groot and Warren fluid ol 2

In Fig. 1 we show the behavior of the compressibility for

Let us first derive the expression for the conservative i t val £ th ¢ for t t
force that corresponds to the nonideal fluid studied by Groofwo different values of the parameter;, for temperature

and Warrerf! They introduce a conservative force of the close to the critical temperafufk . The_ Increase s re-
ducesy both above and below the critical temperature. As

form
expected,y becomes negative in a region beldw that is
1- Tij - bounded by a spinodal.
Fyj= a8 NisTe (11) Controlling the compressibility of the fluid is a desirable

feature; a low compressibility helps reducing fluctuations of
the fluid interface, which may be useful in simulations. It
For this conservative force, they have shown that thealso provides a way of modifying properties of the fluid,
EOS is p=kgTp+aap®, where by a numerical fit they such as the speed of sound. Moreover, it gives an additional
found a=0.101+0.001. Using the expressions of the previ- parameter to select the surface tension which, as we will

0, rij>re

ous section, the corresponding pairwise force is explain, may even change sign in this DPD-van der Waals
W fluid. Finally, it proves useful to reduce the amplitude of the
2aaiaj ,r<rg density fluctuations to compare with mean field theoretical

Fij = [w] : 12 predictions, as the ones developed in the next section.

0, rij>re

It corresponds to an excess free energy per partjete
= aap, which is linear in the density. As stated in the intro- C. Binary mixture
duction, an interaction with a smooth, monotonic depen-
dence in position does not induce a fluid-fluid phase separg;
tion.

A binary mixture composed of particles of two speciés,
ndB, has also been considered by Groot and Waftén.
this system, it is possible to induce demixing with usual pair-
wise forces by modifying the relative repulsions between the
A-A, B—B, andB-A pairs. Nevertheless, even in this case,
The van der Waals fluid is the classic example of a fluida model in which the forces depend on local densities can be
with a liquid-gas phase transition. It is characterized by theauseful since if they induce less local structure, a relevant
equation of statgp=pkgT/(1—bp)—ap? (and excess free feature at a fluid-fluid interface.

B. van der Waals fluid
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5

fex:f dr{2X\pa(r)pp(r) + N apa(r)®+Ngpg(r)?}

o,=0

s a

: (20)

iZA ()\nBi+)\AnAi)+iEB (NNa +\gng)

3l where the two sums run over particles of typeand B,
respectively. The corresponding conservative force acting on
particlei can be written down as

AR RS

Fj:
ieA keB ieB

)\IEA H‘Bgs H

1r RN X[W/ k(8 — ;) ]- (22)

-~ ~ Although in this case with two averaged local densities the
0 ezl " s s Tr—— conservative forces do not have the form of Ef), they can
0 05 1 1.5 2 still be expressed as pairwise additive forces,

(22)

{—ZRAYBW{J-Q], ij same type
F.=
T 1)

—2\wj;g;, ij different type

——— 0.=5 :l b) This fluid will be miscible at high temperatures, and below a
|= critical temperatureT, a miscibility gap will develop. In

h terms of the parameters of the free energy, &9), for a

Iy symmetric mixturerl; is

\ keTo=p(r—ny), —PA | —c =t 23
N Ble A,PA+PBC ¢ 2

-2t In this section we develop a mean field theory for the

,’/\ interfacial properties for a nonideal DPD fluid that gives
| some insight in the meaning of the conservative forces for
0 05 ] 15 2 these DPD models. For definiteness, we concentrate on the
pb derivation of the surface tensiof,
Since we are interested in the interfacial properties, we
FI(_3. 1. Comprgssibilities of the van der Waals fluid around the critical focus on the excess free energy, and will not write down the
por: Ig; g’:’ﬁvgfzgﬂ iacl)uses of the parametag. (a) Curves atT/Te  jqaa| gas contribution, which is local in the density and does
o © not contribute to the interfacial properties. We start from the
continuum limit of the appropriate free energy, and make an
expansion in gradients. Therefore, we disregard correlations
If the system consists dfi, particles of typeA andNg in the positions between the particles, hence the mean field
particles of typeB, then there are two relevant local density character of the predictions of the present section.
fields, ny and ng, that are the straightforward generaliza-
tions of Eq.(6),

|
|
|
|
|
-~ > : lll. INTERFACIAL BEHAVIOR
|
|
|
|
|

A. van der Waals fluid

For a van der Waals fluid we can express the continuum
free energy of the fluid, that corresponds to the conservative

na=2> wriy) (18)  forces introduced in Eq13), as
" JeA [W]
fexzf dl‘p(l’)( —kgTlog(1—bn(r))—an(r)
g =3, i) 19
i jeB [W] ,

a3
- 7abn(r)2), (24)

na andng represent the concentration AfandB particles  wheren(r) is the continuum limit of Eq(6), namely,
around particlei, respectively. Whenever it is appropriate, 1
we will denote byp, and pg the continuum limit of the n(r)=—f dr'w(|r—r"])p(r"). (25
discrete densitiea, andng, respectively. [w]

The simplest free energy that leads to a miscibility gapln Eq. (24), the densityp(r) means the mean density at point
has an excess free energy of the form r. This is different from the density appearing in Sec. I,
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where it referred to the instantaneous value of the density fogualitative difference with respect to the corresponding ex-
a particular configuration. Due to this density preaveragingpressions for the standard van der Waals fluid. In the latter,
the results of the present section constitute a mean field aphe interfacial tension is a function only of the parameter

proximation. characterizing the long range attraction between the particles,
For a smooth planar interface, we can expand the densitwhereas now it depends on all the parametar$, and a;.
in Eq. (25) to second order in the gradieris, This qualitative difference can already be traced back to the

(26) coefficient of the gradient square term in free energy expan-
sion, Eq.(29—for the standard van der Waals fluid the gra-
Inserting this expression in E(R5), and using the fact that dient energy cost is only related @As a result, in this DPD

p(r—=2)=p(r)—z-Vp(r)+3zzVVp(r).

the weight function is radially symmetric we get van der Waals fluid there are different contributions to the
[22W] gradient energy term with different signs. Therefore, depend-
n(r)y=p(r)+ 2d[w] V2p(r). (27 ing on their relative strength, it is possible either to favor or
penalize the appearance of density gradients in the fluid;
With this expression, Eq24) can be written down as hence, the sign of the interfacial tension may change.
b[22W] In an atomic fluid, the repulsion parametey,in the van

Vzp(r)) der Waals EOS arises from the hard core repulsion, while the

fex=f drp(r)(—kBTIn(l—bp(r)—
2d[w] attraction parameten, comes from a long range weak at-

a[Z2w] traction. Therefore, they appear in different length scales,
—ap(r)— 2d[w] V2p(r) and accordingly, only the parameta+related to the long-

range structure—is responsible for the behavior of the inter-

azab [Z2w facial tension. On the contrary, for a DPD fluid there is no

2

p(r)?+ d[w] p(r)VZp(r)) ] (28 excluded volume interaction, and all interactions between the

o o _ particles take place at the same length scale,Then, the
where terms containing derivatives higher than second ordgg|ative strength of the different contributions will determine

have been neglected. Collecting terms in powers of the defpeir overall net effect. It is known that a microscopic model
sity gradients, making use of the integration by parts we cafy, \yhich both attractions and repulsions are long ranged

rewrite Eq.(28) in the usual form leads to a van der Waals equation of state in which the inter-

facial behavior can either favor or penalize the presence of
fex:f dfp(r)( —kgTIn(1—bp(r))—ap(r) interfaces’® The van der Waals fluid introduced in this paper
shares these same properties. Even if we can ensure a van der
as | [Zw] kgTh Waals EOS for a fluid, a careful tuning of the parametars,
— 7 abp(r)7 ]+ 2d[w] | (1—-bp{r})? ta b and @3 may lead to a van der Waals model for lamellar

fluid, when even interfaces are favored. Although unrealistic
+2a3abp(r)) |Vpr|2. (29 fpr atomic flujds, this bghavior is rele\./ant', e.g., fgr nanopar-
ticles, for which repulsive and attractive interactions act on

The first term in brackets gives the local contribution to theSimilar length scaleg! . _ .

excess free energy. When the ideal contribution is added, it 'nerefore, depending on the kind of fluid that needs to
gives us the free energy for a homogeneous van der Waale modeled at mesoscopic scales, the parameters in the free
fluid. The second term in brackets is the energy penalty t&nergy should be chosen appropriately. For example, in order
generate gradients in the system. It is this term that containé0 9et a positive surface tension, the densities of the fluid
to lowest order, the interfacial energy of the fluid. In particu-Phases is restricted because one must ensure that both the
lar, we can obtain from it an expression for the surface tenpressure and the surface tension are positive. In Fig. 2 we
sion. If we assume that the profile is a hyperbolic tangentdisplay the curves where the pressure and the surface tension
and we estimate its width from the asymptotic bulk coexist-vanish for two different values ofs. The area defined in

ing densitie€? we arrive at between the corresponding set of curves defines the region of
. . phase space where the fluid is mechanically stable with a
~_P1—pq [[Z7W] ( B kgTh +at2a-ab ﬂ positive surface tension. Remember that the values arid
2 diw] | (1—bpy)? arcasabpm dp?’ b set the critical valuep, and T,. The allowed regions do
(300 not change very much as the parametgris modified.
where d?f/dp?=1/p—2a+ksT(2—bp)/(1—bp)? If we makeb =0, this model reduces to that of Groot and

—3azabp is the second derivative of the homogeneous freéVarren. In this caséy becomes negativeemember thaais
energy with respect to the density evaluated at one of thBegative now. As we have mentioned in Sec. Il A, there is
coexisting phases. We have assumed for simplicity that th8© fluid-fluid phase separation in this model; therefore this
density difference between the two phases is small, so th&egative value of the surface tension does not lead to a pro-
we can approximate the density across the interface by itdferation of interfaces. However, the negative value?of
mean valuep,, . implies that the structure factor will have a minimum at a
If we look at the structure of both the expansion of thefinite wave vector. We can define a characteristic lenigh,
free energy and the surface tension, we can recognize @ which local structure in the fluid will develop. If we ex-

Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 115, No. 11, 15 September 2001 Dissipative particle dynamics 5021

which does not depend on the amplitenly on the shape

——— ® critical point ) . : . .
// \\ N - Z:'_;?a poin of the weight functiorw. Except for rapidly decaying weight
15T / NN T o functions, this length is of order of the interaction ramge
/ NN This fact is consistent with the local structure observed in the
/ AN ] radial distribution functions for this modesee Sec. IV A
/ AN We have also verified numerically the presence of a mini-
B & AT mum in the structure factd(k).
& NN
N [ AR

05 - / / /// B. Binary mixture
{//"@ We can also compute the interfacial tension for a binary
V7 /// mixture following the procedure of the previous subsection.
/ % The excess free energy in the continuum limit is now

0
0 1

plp, fex:)\f dr[pa(r)ng(r)+pg(r)na(r)]

FIG. 2. Curves where the pressure and the surface tension vanish for two

different values ofa; for a van der Waals fluid. Above the solid curve the +\ J' dr DNalr)+ X\ f dr Nne(r). (32
pressure is positive, and below the long dashed curves the surface tension is A Pal ) Al ) B Pal ) B ) (32)
positive. The region contained in between the corresponding pair of curves

corresponds to the portion of phase space where the fluid will be mechani- It is useful to introduce the total densipyand the mole

cally stable, with a positive surface tension. Above the long dashed curveggction c of component as the relevant variables. They are
the surface tension is negative. Two different valuesxpfare considered: -
30 anda,—5. defined as usual,

paA=pC, (33)

pand the free energy ER4) to next order in gradients, we pg=p(l—c). (34

can estimate this length to be - )
If we expand the local densitiegr) in the same way as

T —omr / [wr®] (31) in Eq. (27), we arrive at the square-gradient approximation
0 ¢ Vi1qwr?] for the free energy,

X 2 2 [ZZW] 2 2 2 2
7 :f dr2hpa(r)pe(r) +Aapal(r)“+Agpg(r)“+ 2d[w] {ApaVZpetNpeVpat NapaV patNepsV ps}
— 2 2.2 2 2 [2°w] 2 2 2 2 2
=2Ap°C(1—C)+Npp°C+Ngp“(1—cC)°+ 2d[W]p {=AcVc—A(1—-c)Vec+ApcVCc—Ag(1—C)V-Z}
2 2 2 [22w] 2
=2\p2c(1—c)+App2c?+Ngp?(1—cC)%+ 2dfw]” {2 —Aa—Np)|V[?) (35)

Assuming thatp is constant, and for a symmetric mixture to its bulk value. This gives ug’=4k/F", wherex/2 is the
(Aa=A\g), We get amplitude of thdVc|? in the gradient expansion of the free
energy, andF" is the second order derivative of the free
energy with respect to the concentration evaluated at its bulk
coexisting value. In the symmetric case, we get

T -1

Mooy (37

il dr(zm—xA)c(l—c)

+2[ZZ—W](>\—>\ )| Vel? (36) 2—
2d[w] A : &=

[Z°0]
[w]

Again, the interfacial tension can have either a positive omwherec,, is the value of the concentration in the bulk phase.
negative sign, depending on the relative magnitudes okthe The surface tensiony, can be obtained integrating the differ-
parameters. Ikp,=Ng=0, and only the repulsion between ence between the free energy profile and its bulk value. In
the particles belonging to different species is kept, then théhe small gradient limit, it reduces to
surface tension has the same signass expected. )

The interfacial widthé can be obtained taking into ac- y= f“ P [Z7w] T|Ve|2 (39)
count that the concentration profile converges exponentially —w 2d[w@] €
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FIG. 4. Radial distribution for a Groot-Warren fluid, using both the previ-
gbusly proposed pairwise force, E@L1), and for the force of the present
form, Eq.(12). In the second case, we compare the behavior for a linear and
a quadratic weight function. Same parameters as in Fig. 3. The mean density
is pm=3.

FIG. 3. Pressure as a function of the density for a Groot-Warren fluid, usin
both the previously proposed pairwise force, Effl), and for the force of
the present form, Eq12). In the second case we compare the behavior for
a linear and a quadratic weight functioa=25, «=0.101.L=6r., kgT

=1, y=1 (see head of Sec. IV for unjts

odel and by running a DPD simulation with the Groot-
arren model.

Groot and Warren used the same weight function for all
pairwise forces. The proposed model for this nonideal fluid
neatly shows that, for the present class of models, a linear
weight function is not suitable to sample the local density of
each DPD patrticle, because it leads to a pairwise conserva-
tive force that exhibits a discontinuity at the edge of the
T. [2[Zo] T3 interaction regionr .. We have analyzed the effect of such a
T \/m< — T_> , (400 jump on the th_ermodynamlc and struc_:tural properties of th_ls

¢ system. To this end, we have considered both decreasing

[Z2w] linear and quadratiev's.
E= AdWI(I=TIT)" (41 In Fig. 3 we compare the EOS obtained from simula-
[

tions; for a quadratiav, our model coincides with that of
Groot-Warren. However, for a lineav, the agreement sur-
vives only at low densities. This DPD model has a transition
We will now analyze the equilibrium properties of the t0 @ solid state at high densities, and the results obtained
examples of nonideal DPD systems introduced in Sec. Il anéndicate that the location of such a transition is sensitive to
will compare with the predictions of previous models per-the shape of the weight function—the characteristic force felt
forming numerical simulations. We take the interaction range?y €ach particle depends on the shapevdor a given den-
r. as the unit of length and the mass of the DPD partiotes Sity. In Figs. 4-5 we compare the radial distribution func-
as the unit of mass. The equations of motion are integrateions for our model and that of Groot-Warren, and for differ-
self-consistently to avoid spurious drifts in the thermody-€NtWSs, atincreasing values of the density. Itis clear that the

If we assume that the concentration profile is a tanh, we g
the estimate

 2[7%w] pTe
-~ 3lw] ¢

Close to the critical point, we recover the expected limiting
behavior for the interfacial propertié$,

(c,—1/2)2. (39

y=2pkgT,

IV. EQUILIBRIUM PROPERTIES

namic propertie<? shape .ofw plays'ar) important role in Fhe local strugture .of
_ the fluid, and will influence the location of the fluid-solid
A. Groot and Warren fluid transition. In Sec. IllA we have noted that for the present

Before studying a DPD model with fluid-fluid coexist- model there exists a characteristic lendth, associated with
ence, we compare the results of our model for a Grootdensity fluctuations and which is of ordey. Only for fairly
Warren fluid with the original one, based on forces given bynarrow weight functions will this length become much
Eqg. (12). In this case, both models should coincide and wesmaller tharr .
analyze it to see the effects of the weight function shape on At low densities, a lineaw generates less local structure,
the properties of nonideal fluids. a pleasant feature for a mesoscopic model. However, as the

We have performed simulations for a DPD fluid in three density is increased, the local structure develops faster for a
dimensions, taking as parametersa=25 and linear weight function, leading sooner to a transition to the
a=0.101—which corresponds to those used in Ref. 21. Irordered phase. The use of a quadratic weight function leads
Fig. 3 we compare the predictions for the EOS given by outto results identical to those of the GW model, while a linear
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——- linearw 0.0
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rr, FIG. 6. Equation of state for a 2-D van der Waals fluid. The different sets of
data points correspond to different temperatutes.0.016,a=1.%, a3

=5,L="7r,, y=1 (see head of Sec. IV for unijts
b) . . L
The actual coexistence curve should be derived from it using
the equal area Maxwell’s construction. The agreement with
the expected EOS from the macroscopic free energy is very
good, and only small deviations are observed, due to particle
correlations.
We have also analyzed the density and pressure profiles
,’\\\ PN when we bring into contact a liquid and a gas in the coexist-
//— \\ f/ A ence region. As mentioned in Sec. Il, the compressibility of
/ \/ the fluid, especially in the coexistence region, is very sensi-
/ N7 _ tive to the parametess that characterizes the amplitude of
/ — I‘?::::f:'cw the term cubic in the pressure. Fes=0 the density profiles
tend to fluctuate substantially. Note that our estimates for the
. s w parameters and ranges of stability are all based on a mean
0 0.5 1 1.5 2 25 3

field description, which may be no longer quantitatively cor-
rect under such conditions. Due to this, a series of simula-
FIG. 5. Radial distribution function for a Groot-Warren fluid, using both the tions will be needed for each set of selected parameters
previously proposed pairwise force, E¢1), and for the force of the present  whenever a detailed, quantitative comparison, may be re-
form, Eq.(_12). |I"| the secc_)nd case, we compare the _beh_avior for a linear a“‘équired.
a_quadra?lc Welght function. S_ame parameters as in Fig. 3. The mean den- When the parametats is increasedwe have taken the
sities are(a) p,=8 and(b) p,,=14. . . T T .
value a3=5), imposing an initial slab of liquid in coexist-
ence with a slab of gas the interface remains stable, and the
force tends to smooth the structure at short distances. THéeNSity fluctuations in the liquid phase are not too large.
mean repulsion between particles is larger with a linear In Fig. 7 we show the temperature, pressure and mean
rather than with a quadratic one. Moreover, it seems plausquare displacement of the system during the extension of
sible to assume that the discontinuity in the force induces &€ simulation. One can see that the temperature does not
higher sensitivity to local density fluctuations. These result$hift, and corresponds to its nominally assigned value. The
show how the modifications of the shape of the weight funcPressure exhibits important fluctuations, but if we subtract
tion can be used to fine-tune details of the behavior of a fluidthe normal and tangential componefitsthe figure we only
once the EOS has been fixed. display the averaged pressyreheir difference, which is
twice the surface tension, gives a value with a well-defined
positive mean. Also the mean square displacement shows
that particles have had the time to diffuse the interfacial
Next, we focus on the liquid-gas equilibrium properties width, which is roughly proportional to the interaction range,
of a two-dimensional van der Waals fluid. Taking a homoge+ ., indicating that the droplet is stabilized.
neous system, we can analyze the effect of the density fluc- Fig. 8@a) shows the density profiles obtained by starting
tuations on the EOS, and compare it with the predictionsvith a step density profile in the liquid-gas coexistence re-
coming from the macroscopically assumed EOS. In Fig. 6gion, where the numerical errors are smaller than the fluc-
we show the pressure values obtained in simulations run dtiations, as in the rest of the plots. The shape of the drop is
fixed homogeneous density, volume and temperature. In thistable and the interfaces fluctuate around their initial loca-
case we can recover the characteristic van der Waals loofion, as could be expected. The density ratio between the two

rr,

B. van der Waals fluid
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FIG. 7. Thermodynamic values of a DPD fluid with a van der Waals EOS

when a liquid is coexisting with the gas phase, in two dimensions. The -5
initial condition corresponds to a slab of fluid in thelirection in coexist-

ence with a slab of ga¥: is the interfacial tension, extracted from the mean
pressuresy=(L,/2)(Py,— Py,). Also displayed the mean-square displace-

ment in units of the interaction rangg . L,=20, L,=3, kgT=0.75,a

P
——- p,t=1106

- =442

=1.9¢b, b=0.0156,a3="5. The unit of time is the time needed fora DPD ® -15
particle to diffuser initially (see head of Sec. IV for unijts é

2

]
fluid phasespjiq/pgas=4 makes it reasonable to call the two _o5 |-

phases liquid and gas. The density in the gas phaser[szlo
which ensures that in both phases the number of interacting
particles is sufficiently high. By looking at the density pro-
files, one can also observe that the density fluctuations in the _ag . . L
dense phase are small, as expected on the basis of the sme -10 -5 0 s 10
compressibility of the fluid.
Finally, we have also computed the components of the g, 8. Equilibrium(a) density andb) pressure profiles for a 2-D van der
pressure tensor across the profiles. For an inhomogeneoW&als fluid. The initial profile is a step profile. Same parameters as in Fig. 7
fluid there is no unambiguous way of computing the local(see head of Sec. IV for unjts
components of the pressure tensor; we follow here the pro-
cedure described in Ref. 25 and display them in Figp).8

Thev foll basically the i i densi hibit Another appealing feature of these conservative interac-
€y toflow basically ! € Increase in ensity, exhibiling s s that their density dependence induces smooth local
larger fluctuations in the liquid phase. In the bulk phases, th%tructure. Indeed, if we analyze the radial distribution func-
FWO components .Of the pressure tensor_have to be_ equal. Thﬂﬁms for a homogeneous phase, we can see that the structure
is clearly shown in F|_g. 9, Where_ the dlffere_nces in the WOiy this case is almost nonexistent. When an interface is
components are confined to the interfaces, if we compare t resent, it is hard to assess the spurious structure that the

location of the differe_nces With. the density p“?f”es of Fig. model may induce through the density profile. All we can say
8(ha). I\/!orelovelr, ;he Imcrga_sri n flqlc;guat!ons fmhthg densqs that the decay of the density is monotonic from one phase
phase is clearly displayed. The equilibration of the drop can, y,q other, and therefore, avoids spurious structure close to

also be monitored by analyzing the time scale at which th‘?he interface. Such a structure would be spurious on the me-

pressure profile becomes symmetric at both interfaces. TQs'oscopic scale modeled by the DPD fluid. In contrast, the

gether with the pressure differences, we have also plotted ianet of structuring of the liquid-vapor interface on an

thin lines the integral of the pressure difference across thgtomic scale(beyond the Fisher-Widom lifeis a real
profile. This quantity is the surface tension, and indeed, th%ﬁect%

values we get when the profile is equilibrated agree with the
predictions extracted from the mean pressures, displayed IE
Fig. 7. We have also computed the excess free energy profile”
Its integral gives us an alternativehermodynamigroute to Finally, we have run simulations for a binary mixture
compute the surface tension. We have verified that the valuerresponding to the model described in Sec. 11 C. As in the
of the surface tension obtained integrating the excess fregrevious subsection, we concentrate on the equilibrium prop-
energy profile coincides with the value presented aboveerties of the fluid in the coexistence region. We have simu-
computed along the virial route. lated a 2-D fluid, starting with an initial step profile in con-

Binary mixture
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FIG. 9. Profiles of the difference between the normal and tangential com-

ponents of the pressure tensor along the system, for the pressure profiles G- 11. Proflles_ ohitne Fe'at've amount of one of the SPEcies across ot
Fig. 8(b). Same parameters as in Fig(see head of Sec. IV for units system, at two different times. These curves have been multiplied by 2 to

avoid confusion with the thin lines. The latter correspond to the normalized
mean density at the same tifeee head of Sec. IV for unjts

centration. In Fig. 10 we show the evolution of the
temperature and pressure, which remain essentially constagbes basically to zero in one of the two coexisting phases,
through the simulation. We also display the root mean squarghe interface does not broaden and keeps its width within
displacement of the two species. One can clearly see th@espite this large concentration gradient, the mean density
after a short initial period, when the species start to feel thgyarely changes across the interface. These normalized mean
presence of the interfaces their effective diffusion SlOWSdensitieS are d|Sp|ayed also in F|g 11 as thin curves. Al-
down. The fact that the mean square displacement is mudhough a small dip in the normalized mean density appears at
Iarger than the interfacial Wldth, which remains of the Orderthe interfaces’ its value is not |arge Compared with the typ|ca|
of the interaction range,, ensures that the initial configu- pulk density fluctuationgwhich are due to the compressibil-
ration has relaxed to its proper equilibrium shape. ity of the fluid). Again, this indicates that the use of concen-
We have computed the concentration profiles as a funcration dependent conservative forces suppresses the appear-
tion of time. In Fig. 11 we show the concentration profiles of ance of spurious structure at interfaces, while still being able
one of the species at an initial and late stage of the relaxatiog drive the phase separation.
towards the equilibrium coexistence. As was the case inthe e can also test the predictions of Sec. IlIB for the
van der Waals fluid, the fluctuations are greater in the coninterfacial properties on the basis of a binary mixture. To this
centrated phase. Although the concentration of each speciesd, we have integrated numerically E§8) using the con-
centration profiles obtained from the simulations, and we
have compared the results with the theoretical prediction, Eq.
(39). We display the results in Fig. 12, where we have mul-
tiplied the theoretical curve by an overall numerical factor,
since the numerical prefactors in E@9) are approximate.
One can observe that the overall good agreement is lost at
small temperatures, where the interface is very sharp, and
close to the critical point, where fluctuations are expected to
play a relevant role.

° V. CONCLUSIONS
8
— T, We have presented a new way of implementing conser-

61— i)(Ar/rj> " vative forces between DPD particles. Rather than assuming a

45k 0)1>2”2 force that depends on the interparticle separation, we have

5| introduced a conservative interaction that depends on the lo-
. ‘ cal excess free energy. In this way, it is possible to fix be-

0 0 560 1000 1500 2000 forehand, at the mean-field level, the desired thermodynamic
t properties of the system. However, this procedure neglects

. the effect of particle correlations. Whenever an accurate
FIG. 10. Temperature, pressure and mean-square displacements of the two L . . . .
species as a function of time, for a binary mixture below its critical tem- qUantitative comparison is needed, a set of numerical simu-

peratureT/T.=0.5, and withh =1, A ,=0.2 (see head of Sec. IV for unjts  lations will be required to determine accurately the appropri-
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06 probably more common on the mesoscopic than in the mi-
— croscopic domain. In this respect, the models we have intro-
O—-0 simulation . . .
05 I O — O theory duced are quite flexible because, for a given bulk thermody-
namic behavior(e.g., a given EOS it is still possible to
modify the parameters to control other physical properties.
For example, the mean interaction strength can be changed
by modifying the way in which the local density is sampled,
or for the van der Waals fluid, it is possible to modify the
compressibility(and hence the speed of soynds in any
diffuse interface model, the typical interfacial width sets a
minimum length scale in the system. For DPD the natural

scale isr, unless the parameters are chosen carefully.
01t
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